1

LINEAR REGRESSION FOR
FUNCTION APPROXIMATION

Vasant Honavar

Artificial Intelligence Research Laboratory
Pennsylvania State University

University Park, PA 16823

(©Vasant Honavar

1 INTRODUCTION

Many practical problems call for function approximation. This requires a real-
valued function R — R. In this chapter, we introduce a simple linear neuron
and a learning algorithm for linear function approximation. We will later extend
this approach to non-linear function approximation using multi-layer neural
networks. This class of algorithms relies on gradient-based error minimization
techniques. The derivation of such learning algorithms requires the use of
elementary concepts from multi-variate calculus. Therefore, this chapter also
includes a brief review of the relevant mathematics.

2 FUNCTION APPROXIMATION

Given a set of training examples {[X, f(X)]} of an unknown function f : ®" —
R. We want a network that learns ¢(X) which is a good approximation of f(X).
We will make this more precise later.

In the simplest case, this is simply the familiar curve fitting problem where
given the values of a function f(x) of a single scalar variable x for some finite
set of values of its argument x, one tries to fit a curve or a function ¢(z) that
approximates f(x). Here f : ® — R. Typically, one does this by assuming

2 CHAPTER 1

W =[wo ... wn]

wi

xn
x0 Xi

Figure 1 Linear function with weights W = [wg . .. wn].

that ¢(z) has a certain form (e.g., linear, quadratic, etc.) and selecting the
parameters that define ¢(x) (e.g., the slope and intercept if ¢(z) is assumed to
vary linearly with z).

We are interested in a somewhat more general version of this problem wherein
f is a function of several arguments represented by X = [x¢---x,]. To start
with, let us assume that f(X) is a linear function. Then we can approximate

f(X) by a linear neuron whose output for a given input pattern X, is given
by:

op=W-X,

This function is determined by its weight vector W. We can generalize this
later, to allow more complex (non-linear) functions.

Given the desired output for the function, y,, we define the error of the function
for input pattern X as:

ep = (Yp — 0p)
We wish to minimize the magnitude of this error irrespective of the sign, we
will use the squared error:

e;i = (y;n - 0;0)2
Because we are really interested in the error over all Xy, the Mean Squared

Error is useful:
1L
2
&= P Z(yp —0p)
p=1
Where P is the number of patterns Xy. Since P is a constant, we can ignore
the % coefficient. We will use

P
&= (yp - Op)2

p=1

N =

Linear Regression for Function Approximation 3

EW)

i

Figure 2 &(W) defines an error surface. We wish to find a W* that mini-
mizes £(W).

o] "

Figure 3 A function that is convex between points P and Q.

as our definition of the error of the approximation.

Once we fix a training set, it is easy to see that £ is a function of the weight vec-
tor W. In particular, in the case of a linear neuron, £(W) is a quadratic func-
tion of W. The learning problem reduces to searching the (n + 1)-dimensional
weight space for a weight vector W* that minimizes £(W) (figure 2).

3 A LITTLE MATH

Consider f(z), a function of a scalar variable = over the domain D,.. (D, is the
set of possible values that x can assume).

m is non-decreasing if, x1 < xo = f(x1) < f(x2)Vr1, 29 € D,.

m is convex over some subdomain D if Vxi,z9 € D, the chord joining the
points P = f(z1) and @ = f(x2) on the graph of the function f(z) lies
above the graph of f(z). It is concave if the chord lies below the graph.

4 CHAPTER 1

Figure 4 The function fi(z) is not continuous at z = a.

® has a local minimum at x = a if 3 a neighborhood & C D, around a such
that f(z) > f(a) Yz € U. A local maximum requires that f(z) < f(a).

We say that lim,_,, f(z) = Aif, for any € > 0, 36 > 0 such that | f(z)—A |< e,
Vx such that | — a |< . Note that the value of the limit may be different
if we approach a along the z-axis in the positive as opposed to the negative
direction.

A function is said to be continuous (figure 8) at x = a if:

lim f(z)= lim f(x)

T—a r—a—

This means that the limit of f(z) is the same when we approach a from the
positive as well as the negative direction along the x axis. In particular, we will
be interested in continuity of error functions (because continuous error functions
lend themselves to minimization using techniques borrowed from multi-variate
calculus).

The derivative of a function f(z) is defined as follows:

@ St An) — f@)

— = lim
dr Az—0 Az

Thus, the derivative of f(x) evaluated at © = a (written as f(z) |z=4) gives the
rate of change of f(x) with respect to z at z = a.
The second derivative of a function f(x) is defined as:

2f ddf
dz? dx dx

Linear Regression for Function Approximation)

Figure 5 The function f2(z) is continuous at = = a.

Figure 6 The derivative specifies the rate of change of f(x).

Clearly, it represents the rate of change of the derivative of f(x).

The following properties of derivatives are easy to derive from first principles
using the definition of the derivative. Let u and v be functions of z. Then:

dlu+v) du dv

dr dr ' da
dy _v@E —ufp
do v2
d(uv) dv du
=U-—+v—

6 CHAPTER 1

If j—’; > 0 then f(x) is strictly increasing.
If % < 0 then f(z) is strictly decreasing.
If % = 0 then f(x) is strictly constant.

The derivative of f(z) at x = ¢ is zero if z(is a local minimum or a local
maximum of f(z) (or if f(z) = constant):

daf

dzr

|w:wo: 0

We can determine whether z(is a minimum or maximum by evaluating f(z)
in the neighborhood of x.

Suppose f(x) is differentiable (i.e., its derivatives %, %, e % exist) and

f(z) is continuous in the neighborhood of zy. Then the Taylor Series expan-
sion of a function f(x) around x = z is given by:

df 1d*f 2 Ld"f

f(@) = f(2) la=zo 5= o=z (@ — T0)+ 555 |o=a (¥ —x0) +.. .+—7 (x — x0)

dx 2 dz?

Taylor series expansion is useful in approximating the value of a function f(x)
over small neighborhoods in its domain D,,, when we are given (of can some-
how measure or estimate) the value of the function and its derivatives at a
point zy in the neighborhood. If we consider only the first two terms of the
expansion, we get a first order approximation (or linear approximation) of f(z)
in the neighborhood of xy. Considering additional terms involving higher or-
der derivatives results in successively higher order (e.g., quadratic, cubic, etc.)
approximations.

Suppose we know that f(1) = 1; and % |g=1= 0.1; Then, the first order
Taylor series approximation of f(z) at @ = 1.01 is given by f(1 + 0.01 =
F(1) + 0.1 x 0.01 = 1.001.

3.1 Functions of several variables

The concepts introduced above extend quite naturally to the case of multi-
variate functions (i.e., functions of several variables). Consider a multivariate
function f(X) = f(xo,...,2,)). Now we have partial derivatives that represent
the rate of change of f(X) with respect to each variable x;. A partial deriva-
tive with respect to x; is computed by taking the derivative of f(xo,...xz,) by
treating Vj # i, x; as though it were a constant.

Linear Regression for Function Approximation 7

Consider the following example:

y = p(x1,12) = 422 + 22 + 22129

%:8114-2:62
5—222124-2:61
2
g—x?_s
2
%:2

The chain rule is often useful in simplifying the calculation of partial deriva-
tives. Consider the following;:

z = ¢(u,v)
U = fl(xvy)
v = fQ(Iay)

Then, chain rule allows us to compute the partial derivative of z with respect
to = as follows:

0: _0z0u 9:00
dr Oudxr Ovodx

As an example, consider

2 =u+v?
u = I2
v=uay
Then 55
e 1(22) + (2v)(y) = 2z + 2(zy)y = 2z + 22y

It is left as an exercise to verify that direct computation of the partial derivative
% by first substituting for v and v in the expression for z yields the same result.

8 CHAPTER 1

More generally, consider:
z=d(ur,ug - Up)

where
U; = fi($1;172 Ty

Then, we have from the chain rule, Vi =1---n:

0z "0z Ou;
6:@» _;6—%8:@

Taylor Series can be used to approximate a function of several variables in a
neighborhood where the function is continuous and differentiable. For example,
the Taylor Series expansion for the function ¢(x1,x2) around Xo = (201, Zo2)
is given by:

$(Xo) + 22 |x=x, (¥1 — T01) + = |x=x, (¥2 — T02) +

2 2
%Z—m‘é’ Ix=x, (#1 — 01)* + %% Ix=x, (T2 = T02)* + ...

This can be extended to functions of several variables. Usually, we will only be
interested in the first order terms of the expansion.

4 MINIMIZATION OF FUNCTIONS

Recall that approximation of functions from examples essentially involves find-
ing a set of weights that minimize a suitably defined error function. This entails
finding the values of arguments of the error function which yield a minimum
value of the error.

To further develop our intuition about this problem, consider a function f(z) of
one variable, namely, z. Suppose we want to minimize f(z). It seems reasonable
to start with some initial value for z (say z = zp) and then take small steps
along the z-axis so that at each step, we obtain a smaller value for f(z) than
that which we had at the previous step. If f(z) is a convex function, then it
is easy to see that such a procedure is guaranteed to lead us to a value of z
that minimizes f(z). Consider the move from 2y to z; where Az = z; —zy. We

Linear Regression for Function Approximation 9

would like to ensure that f(z1) < f(z0).
Using Taylor series expansion of f(z) in the neighborhood of z = zg, we have:

af

f(z1) = flz0 + Az) = f(z20) +

la=z (A2) 4

Thus, the change in value of f(z) as one moves from zp to z; (that is, by an
amount Az) from zy along the z axis, is given by:

AF = f(a) = fla) = 9L Josorc

We want to make sure that Af is negative so that the value of f(z1) is smaller
than f(z0). Suppose we choose:

0
Az = _778_:]; |z:z0

where n > 0 is a suitable learning rate. We see that:

0
ar= -y, <o

Note that we assumed that

1. f is differentiable at z = zg
2. f(z) is continuous in the neighborhood of z = z

3. Az will be small (ideally infinitesimally small) so that the first order Taylor
series approximation is reasonably accurate in the neighborhod of z = z.
(This requires 7 to be infinitesimally small. In practice, we will use as
large a value for 1 as we can get away with. More on this later).

In essence, we perform a gradient descent on f(z). This technique is naturally
extended to minimization of multivariate functions as we shall see shortly.

10 CHAPTER 1

5 MEAN SQUARED ERROR MINIMIZING
LEARNING RULE FOR LINEAR
FUNCTION APPROXIMATION

Going back to the problem of approximating an unknown function from ex-
amples, we have o, = actual output of a linear function for pattern z, =

[Zop -+ + Tnp]-

For a linear function we have: o, = ¥; = 0"w; - x4, and y, = the desired output
of the function for input pattern z,

Our goal is to find W* that minimizes
L 2 1 2
E(W) = §Ep:0(yp —o0p)° = 5217(@17)

We start with an initial weight vector (typically chosen at random) and we
change W in the direction of the negative gradient of £(W) at each step, with
respect to each of the variables w; where 0 <7 < n.

Thus,
- o€
w; w; —
nawi
The task reduces to computing
o€
811)1'

in terms of known or observed quantities.

Consider:

Linear Regression for Function Approximation 11

de, 0oy

_ Oey Jep
T Ow; do, Ow;

= (1) 13)

=(-1)- 8?0- - [wi - i + Z(wk - Thp)]
v ki

= _xip
Thus:

wi<—wi+n~2(yp—op)~:1:ip
)

6 BATCH VERSUS PER-PATTERN
WEIGHT UPDATE

The version of the learning rule in which weights are updated each time after
a complete pass through the training set is called the batch update rule.

In the case of the linear function, the batch update rule is given by:
w; <= w; + 13, (Yp — 0p)Tip

Alternatively, this can be approximated by a per-pattern update (where weights
are changed after each pattern presentation.

Eg. w; w; + n(yp — 0p)Tip, in the case of linear func-
tion.

In either case, the learning algorithm involves an iterative procedure which
starts with an initial weight vector (typically chosen at random) and makes
several passes through the training set, modifying the weights using either the
batch or per-pattern weight update until the error falls below a desired value
€.

12 CHAPTER 1

7 VECTOR-VALUED FUNCTION
APPROXIMATION

The algorithms derived above can be easily extended to deal with vector valued
functions (i.e., where there are multiple outputs to be computed for a given
input).

Let w;; = weight from input z;, to jth output and let £; denote the correspond-
ing error. Since the outputs are independent, we can use the update equation
that we derived for the single output case for each of the outputs.

_y. D5
g 6’[1}]‘1'

Wy < Wyq

Note: We cannot do this in general unless o;’s are mutually independent. In
general, we will have to consider the partial derivative of the error with respect
to each of the parameters of interest. We will see examples of this later when
we develop the generalized delta rule for multi-layer networks.

8 CHOICE OF LEARNING RATE

Taylor series approximation requires that the learning rate n be small (ideally
infinitesimally small - for the first order approximation to be accurate) But in
practice if 7 is too small, learning will take forever. If 7 is too large, we may
overshoot the desired minimum of £ and oscillate. This raises the following
question: Is it possible to establish a useful practical range for n ?

A useful bound on 7 can be derived as follows:

Let W be the weight vector and o, = W - X, the output for pattern X,
Ey(W) = (yp, — 0,)? (Error on pattern X,, using the current weight vector W).
Suppose we use per-pattern version, a LMS rule to obtain an updated weight

vector W,ew:

Wnew =W+ 77(%0 - OP)XP

Linear Regression for Function Approximation 13

Ep(Waew) = (9p = Waew - Xy)*
=p— (WHnlyy —W- X;D)Xp)xp)2
=((yp = W-Xp) =n(yp = W - X)X, - Xp)2
= (yp = W - Xp)? + () (g — W - X, (X)* = 2 m(yp = W - X,)*(1X,)
=E(W) =29 B,(W)(IX,[)? +0* - B, (W)(I X,])*

In order for the the error after update to be lower than the error before the
weight update, we need:

Ep(Wiew) < Ep(W)

EP(Wnew) - 8p(w) < 0

or
EP(W) - gp(wnew) >0

Ep(W) = Ep(Waew) = 21+ E;(W)(IX,[)* = 7 - £,(W) (X, [1)*
We know that &,(W) > 0 because it is (y, — 0,)?. Thus, we have:
Ep(W) = E(Whew) 2 0
if:

2| Xp)? =0 - 1 Xp* = 0

=2-n—n-|X,[*>>0

Since n > 0, this means:

14 CHAPTER 1

Widrow suggests the following rule of thumb:

0.1
X2

1
<n<
X 12

Note that the bound derived above is not very rigorous because it is based on
per-pattern update and does not make use of the true gradient of the error
function. A more rigorous set of bounds on 7 can be derived assuming batch
version of LMS rule:

0<n<

Amam

where A4, is the largest eigenvalue of the Hessian (matrix of 2nd order partial
derivatives) of the error function £ (Eigenvalues of matrix A are given by the
solution of |A — AI| = 0 where A is a vector of eigenvalues and I is a matrix
with 1s along the diagonal and zeros everywhere else.

Even though this gives a mathematically rigorous approach to choosing an
appropriate learning rate, it incurs the additional overhead of computing the

Hessian of the error function.

In practice, there is a simpler method for adaptively changing n that works
reasonably well.

Momentum Modification

This modification to the weight update rule is based on the following phys-
ical intuition: If one is running down a hill one’s velocity increases as one
gains momentum , so one will move faster and faster until the gradient changes
direction and causes one to slow down.

Use of Momentum term to speed up LMS Learning;:

Let

Aw;(t) denote the change in the ith component of the weight vector as dictated
by the LMS rule. Suppose we choose

Linear Regression for Function Approximation 15

where o€
Awi(t) = —nawi + « Awl(t — 1)
o€
Aw;(0) = = —|u.—w:
w;(0) = —n Buo; =)

o€
Aw;i(1) = a A w;(0) —n - %|wi:wi(l)

o€
Aw;i(2) = a Aw;i(1) —n- %|wi:wi(2)

Thus we have:

t
o
sz(t) = —WZ at ' %|w¢:wi(‘r)

It can be shown that this series converges for values of a that satisfy 0 < o < 1.
In practice, « is typically set to 0.9 or so. Note that the momentum modification
allows us to effectively vary the learning rate in the LMS learning rule by taking
large steps in the weight space when the gradient of the error function is more
or less constant while at the same time, forcing small steps when the gradient
is changing.

9 SUMMARY

In this chapter, we have developed simple gradient-based learning algorithms for
linear function approximation. Linearity of the approximation limits the class
of functions that can be approximated. Later, we will extend these concepts to
deal with multi-layer non-linear function approximators and pattern classifiers.
Nevertheless, even the simple models that we have looked at find a number of
practical applications.

