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Perceptron objective function
• We did not so far explicitly specify an objective function or loss function 

for the perceptron
• Can we write down a loss function for the perceptron?

𝐸!/#(𝐰) = ∑$ max −𝑑$ℎ𝐰 𝐱$ , 0
where 

𝑑$ is the label (+1 or −1) for sample 𝐱$
ℎ𝐰 𝐱$ = +1 if 𝐰 2 𝐱$ > 0 and ℎ𝐰 𝐱$ = −1 if 𝐰 2 𝐱$ < 0

−𝑑$ℎ𝐰 𝐱$ = +1 if and only if 𝑑$ and ℎ𝐰 𝐱$ agree
in which case max −𝑑$ℎ𝐰 𝐱$ , 0 = max 1,0 = 1

−𝑑$ℎ𝐰 𝐱$ = −1 if and only if 𝑑$ and ℎ𝐰 𝐱$ disagree

in which case max −𝑑$ℎ𝐰 𝐱$ , 0 = max −1,0 = 0
The max operation ensures that contribution of a sample 𝐱$ to 𝐸!/#(𝐰)
is 1 if ℎ𝐰 𝐱$ misclassifies 𝐱$ and it is 0 otherwise.
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Perceptron objective function

𝐸!/#(𝐰) = ∑$ max −𝑑$ℎ𝐰 𝐱$ , 0
The perceptron loss function simply counts the number of 
misclassified samples.
• Is 𝐸!/# 𝐰 differentiable with respect to 𝐰?

• No, because ℎ𝐰 𝐱$ is not differentiable 

with respect to 𝐰
• We cannot use gradient descent!
• Nevertheless, there is a non gradient based algorithm, namely, 

Rosenblatt’s perceptron algorithm which is guaranteed to  
converge to a separating hyperplane (as we proved)
• but only when the classes are separable.

ℎ𝐰 𝐱"

𝐰 ( 𝐱" > 0𝐰 ( 𝐱" < 0

𝐰 ( 𝐱" = 0
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Perceptron Algorithm

• Perceptron algorithm is guaranteed to  converge to a 
separating hyperplane whenever the training data are linearly 
separable.
• What if the training data are not linearly separable?
• All bets are off.
• The algorithm runs for ever, cycling indefinitely trying to 

correct errors that cannot be corrected (proof omitted)
• Can we come up with an algorithm that converges when the 

data are separable, and achieves a reasonable compromise 
solution when the data are not separable?
• Yes, as we shall see next
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Can we define an alternative differentiable loss function? 

𝑔𝐰 𝐱$ = 𝐰 1 𝐱$
ℎ𝐰 𝐱$ = +1 if 𝐰 1 𝐱$ > 0 and ℎ𝐰 𝐱$ = −1 if 𝐰 1 𝐱$ < 0
Let 𝐸$ 𝐰 = max −𝑑$𝑔𝐰 𝐱$ , 0
𝐸-./0 𝐰 = ∑$ 𝐸$ 𝐰

where 𝑑$ is the label (+1 or −1) for sample 𝐱$

−𝑑$𝑔𝐰 𝐱$ =
• +𝑔𝐰 𝐱$ if 𝑑$ and 𝑔𝐰 𝐱$ are of different signs
• −𝑔𝐰 𝐱$ if 𝑑$ and 𝑔𝐰 𝐱$ are of same sign

The max operation ensures that contribution of a sample 𝐱$ to 
𝐸-./0(𝐰) is 
• 𝑔𝐰 𝐱$ whenever ℎ𝐰 𝐱$ misclassifies 𝐱$ and 
• 0 otherwise.
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Can we define an alternative loss function? 
• We can show that 𝐸-./0(𝐰) = ∑$ max −𝑑$𝑔𝐰 𝐱$ , 0 is 

convex, continuous, and has first order derivatives with respect 
to  𝐰 except where 𝑔𝐰 𝐱$ =0.
• So we can minimize 𝐸-./0 𝐰 with respect to 𝐰 using (sub) 

gradient descent

−𝑑"𝑔𝐰 𝐱"

𝐸" 𝐰

0
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Vector and matrix calculus

𝒇 𝒙 𝑑𝒇
𝑑𝑥

𝑎𝑥 𝑎
𝑥5 2𝑥
𝑎𝑥5 2𝑎𝑥
𝑒67 𝑎𝑒67

𝒇 𝐰 𝒅𝒇
𝒅𝐰

𝐖8𝐀 𝐀
𝐖8𝑎 𝑎
𝐖8𝐖 2𝐖
𝐰8𝐁𝐰 2𝐁𝐰
𝐚 1 𝐰 𝐚
𝑒𝐚(𝐰 𝐚𝑒𝐚(𝐰

Scalar analog Vector or Matrix counterpart

𝑎 scalar constant
𝑥 scalar variable
𝐰 vector variable
𝐀 constant matrix
𝐁 a constant square matrix
𝐖 a square matrix variable
a a constant vector

Reference: http://www.cs.cmu.edu/~mgormley/courses/10601/slides/10601-matrix-calculus.pdf



8

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G HonavarFall 2022

An alternative loss function 𝐸'()*(𝐰)
• We can show that 𝐸-./0(𝐰) = ∑$ max −𝑑$𝑔𝐰 𝐱$ , 0 is 

convex, and differentiable with respect to 𝐰 except at loss = 0.
• So we can minimize 𝐸-./0 𝐰 with respect to 𝐰 using 

(sub)gradient descent 

∇𝐰 𝐸-./0 = ∇𝐰 ∑$:;#<=𝐰 𝐱#
max −𝑑$𝑔𝐰 𝐱$ , 0

+∇𝐰∑$:;#>=𝐰 𝐱#
max −𝑑$𝑔𝐰 𝐱$ , 0

= 0 + ∇𝐰 ∑$:;#>=𝐰 𝐱#
−𝑑$𝑔𝐰 𝐱$

= ∑$:;#>=𝐰 𝐱#
−𝑑$∇𝐰𝑔𝐰 𝐱$

= ∑$:;#>=𝐰 𝐱# −𝑑$ ∇𝐰 𝐰 1 𝐱$

= ∑$:;#>=𝐰 𝐱# −𝑑$ 𝐱$

−𝑑"𝑔𝐰 𝐱"

𝐸" 𝐰

0
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Minimizing 𝐸'()* 𝐰 using (sub) gradient descent
∇𝐰 𝐸-./0 = ∑$:;#>=𝐰 𝐱#

−𝑑$ 𝐱$

𝐰 ←𝐰 − η ∇𝐰 𝐸-./0
𝐰 ←𝐰 + η∑$:;#>=𝐰 𝐱#

𝑑$ 𝐱$
• We add a fraction of 𝐱$ if the desired label is +1 and the 

predicted label is −1
• We subtract a fraction of 𝐱$ if the desired label is −1 and the 

predicted label is +1
• The key difference from the perceptron algorithm is that because 

we perform gradient descent, we minimize the loss (error) over 
the training data even if the classes are not linearly separable!

𝑦" = ℎ𝐰 𝐱"
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Remarks on the 𝐸DEFG loss function

• 𝐸-./0(𝐰) = ∑$ max −𝑑$𝑔𝐰 𝐱$ , 0 has a trivial minimum at 
𝐰 =0 that we must take steps in our code to avoid
• We can minimize 𝐸-./0 using only first order (sub)gradient descent  

(higher order derivatives do not exist)
• Can we approximate 𝐸-./0 by a smooth loss function, say 𝐸-@..0=

so we can use a broader range of optimization methods, including 
higher order methods?
• Yes
• By replacing max by softmax

max

softmax𝑓(𝑠)
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Approximating max by softmax
Suppose max 𝑎, 𝑏 = 𝑎
Recall that	log 𝑒& = 𝑥
max 𝑎, 𝑏 = 𝑏 + 𝑎 − 𝑏 = log 𝑒' +log 𝑒()'

Let softmax 𝑎, 𝑏 = log 𝑒( + 𝑒'

Note that  log 𝑒' + log 1 + 𝑒()' = log 𝑒' 1 + 𝑒()'

= log 𝑒( + 𝑒' = softmax 𝑎, 𝑏
softmax 𝑎, 𝑏 − max 𝑎, 𝑏

= log 𝑒' + log 1 + 𝑒()' −log𝑒' −log 𝑒()'

= log 1 + 𝑒()' −log 𝑒()'

= log #*+$%&

+$%&
= 1 + #

+$%&
≈ 1 especially when 𝑒()' ≫ 1
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𝐸DEFG to 𝐸DHEEGI via softmax
• 𝐸-./0 𝐰 = ∑$ max −𝑑$𝑔𝐰 𝐱$ , 0
Approximating max by softmax, we have:

• 𝐸-@..0= 𝐰 = ∑$ log 𝑒! + 𝑒E;#𝐰(𝐱#
= ∑$ log 1 + 𝑒E;#𝐰(𝐱#

• 𝐸-@..0=
• Is convex and infinitely differentiable, hence we can use higher 

order optimization methods
• Does not have a trivial minimum at 𝐰 = 0

• Empirically, we find that only the first few iterations improve 𝐸-@..0=
before the magnitude of the weights starts to increase and become 
very large
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𝐸DEFG to 𝐸DHEEGI via softmax

• 𝐸,-../0 𝐰 = ∑$ log 1 + 𝑒)1#𝐰2𝐱#

• Empirically, we find that only the first several iterations improve 𝐸,-../0
before the magnitude of the weights starts to become very large

• Solution: regularization – limit the magnitude of weights from increasing 
without bounds 

• 𝐸,-../04 𝑤!, 𝛚 = ∑$ log 1 + 𝑒)1#𝛚2𝐱#)1#6' + 𝜆 𝛚 7 where 
𝐰 = 𝑤! 𝑤#⋯𝑤8 9, 𝛚 = 𝑤#⋯𝑤8 9

𝜆 is set to a small value, e.g., 0.0001 and prevents the weights from 
increasing without bounds
Alternatively, 𝜆 can be optimized using cross-validation
We will study regularization in greater detail later
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𝐸DEFG to 𝐸DHEEGI via softmax

𝐸-@..0=F 𝑤!, 𝛚 = ∑$ log 1 + 𝑒E;#𝛚(𝐱#E;#H' + 𝜆 𝛚 5 where if 
𝐰 = 𝑤! 𝑤#⋯𝑤I 8, 𝛚 = 𝑤#⋯𝑤I 8

Gradient based update:
∇𝛚 𝐸,-../04 𝑤!, 𝛚 = ∇𝛚 ∑$ log 1 + 𝑒()!𝛚+𝐱!()!-" + 𝜆 𝛚 7

=∑1
2

#JK%.#𝛚+𝐱#%.#/'
∇𝛚 1 + 𝑒45:𝛚6𝐱:45:8; + ∇𝛚 𝜆 𝛚 7

= − ∑1
9<=:𝛚2𝐱:<=:>;

2: 9<=:𝛚2𝐱:<=:>;
𝑑1𝐱$ + 2𝜆𝛚

Weight update

𝛚← 𝛚− 𝜂 ∇𝛚 𝐸';((*<= 𝑤>, 𝛚
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𝐸DEFG to 𝐸DHEEGI via softmax

𝐸-@..0=F 𝑤!, 𝛚 = ∑$ log 1 + 𝑒E;#𝛚(𝐱#E;#H' + 𝜆 𝛚 5 where 
𝐰 = 𝑤! 𝑤#⋯𝑤I 8, 𝛚 = 𝑤#⋯𝑤I 8

Gradient based update:
∇H' 𝐸,-../0

4 𝑤!, 𝛚 = ∇-" ∑$ log 1 + 𝑒()!𝛚+𝐱!()!-" + 𝜆 𝛚 7

=∑1
2

#JK%.#𝛚+𝐱#%.#/'
∇8; 1 + 𝑒45:𝛚6𝐱:45:8; + 0

= − ∑1
9<=:𝛚2𝐱:<=:>;

2: 9<=:𝛚2𝐱:<=:>;
𝑑1

Weight update

𝑤> ← 𝑤> − 𝜂 ∇𝛚 𝐸';((*<= 𝑤>, 𝛚
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Multi-class extension

2

1

3

Decision surface 
between class k 
and j is given by 

𝑦$ = 𝑎𝑟𝑔𝑚𝑎𝑥L 𝐰L 1 𝐱$

𝐰0 −𝐰1 ( 𝐱 = 0

Predicted class label for 𝐱$ is given by
Predicted class label for 𝐱$ is 𝑑$

Suppose we define 𝐸$, the error on sample 𝐱$
𝐸$ 𝐰#,⋯𝐰? =max@A#,⋯,?;& @F1# 0, 𝐱$ 2 𝐰@−𝐰1#

Error on the training set 

𝐸 =∑$ 𝐸$ 𝐰#,⋯𝐰M
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Multi-class softmax
Suppose we define 𝐸", the error on sample 𝐱"
𝐸" 𝐰2,⋯𝐰3 =max45)! 𝐱" 6 𝐰4− 𝐰)! 6 𝐱"

≈ log ∑45)!
3 𝑒𝐱!+ 𝐰#( 𝐰$!+𝐱!

𝐸 =∑" 𝐸" 𝐰2,⋯𝐰3

∇𝐰#𝐸" = ∇𝐰# log ∑45)!
3 𝑒𝐱!+ 𝐰%( 𝐰$!+𝐱!

= 2
∑#&$!
' 7

𝐱!) 𝐰%+ 𝐰$!)𝐱!
∇𝐰# log ∑1545)! 𝑒

𝐱!+ 𝐰%( 𝐰$!+𝐱! +

= 2
∑#&$!
' 7

𝐱!) 𝐰%+ 𝐰$!)𝐱!
0 + 𝑒𝐱!+ 𝐰#( 𝐰$!+𝐱! ∇𝐰# 𝐱" 6 𝐰4

=
7
𝐱!) 𝐰#+ 𝐰$!)𝐱!

∑#&$!
' 7

𝐱!) 𝐰%+ 𝐰$!)𝐱!
𝐱" (assuming 𝑐 ≠ 𝑑")

𝐰4← 𝐰4− η∑"
7
𝐱!) 𝐰#+ 𝐰$!)𝐱!

∑%,-
' 7

𝐱!) 𝐰%+ 𝐰$!)𝐱!
𝐱"
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Multi-class softmax
Suppose we define 𝐸$, the error on sample 𝐱$
𝐸$ 𝐰#,⋯𝐰? ≈
𝐸 =∑$ 𝐸$ 𝐰#,⋯𝐰M

∇𝐰.#𝐸$ = ∇𝐰.# log U
N<#

M

𝑒𝐱#( 𝐰8E 𝐰.#(𝐱#

= #
∑89:
; K𝐱#+ 𝐰8% 𝐰.#+𝐱#

∇𝐰.# ∑N<#M 𝑒𝐱#( 𝐰8E 𝐰.#(𝐱#

=
1

∑N<#M 𝑒𝐱#( 𝐰8E 𝐰.#(𝐱# U
N<#

M

∇𝐰.#(𝑒
𝐱#( 𝐰8E 𝐰.#(𝐱#)

=−∑N<#M 𝐱$ (assuming 𝐰N≠ 𝐰;#)
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Multi-class extension

• The softmax based loss function for multi-class perceptron 
needs to be regularized for the same reason its 2-class 
counterpart needs to be regularized
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The Perceptron Algorithms Revisited

The perceptron learns by adding misclassified positive or 
subtracting misclassified negative examples to an arbitrary 
weight vector, which (without loss of generality) we 
assumed to be the zero vector. So the final weight vector 
is a linear combination of the training samples

where, since the sign of the coefficient of         is given by 
label yi,  the        are positive values, proportional to the 
number of times, misclassification of     has caused the 
weight to be updated. It is called the embedding strength 
of the sample        . 

1
,

l

i i i
i

ya
=

=åw x

ix

ia
ix

ix
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Dual Representation

The decision function can be rewritten as:
ℎ 𝐱 = sgn ( 𝐰,𝐱 )

= sgn (⟨∑𝒋 𝛼N𝑦N 𝐱N , 𝐱⟩)
= sgn (∑𝒋 𝛼N𝑦N ⟨𝐱N , 𝐱⟩)

The update rule is 
if:

𝑦Q(∑𝒋 𝛼N𝑦N ⟨𝐱N , 𝐱𝒊⟩)≤ 0
Then

𝛼N ←𝛼N+𝜂
WLOG, we can take 𝜂 = 1
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Capabilities and limitations of a perceptron 

Capabilities
• Perceptron can represent threshold functions
• Perceptron can learn linear decision boundaries

Limitations
• What if the data are not linearly separable?

§ More complex networks?
§ Non-linear transformations into a feature space where 

the data become separable?
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Extending Linear Classifiers

Map data into a feature space where they are linearly 
separable

( )j®x x
x ( )j x

X F
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In the feature (hidden) space:

When mapped into the feature space < z1 , z2 >, C1 and C2 become linearly 
separable. So a linear classifier with j1(x) and j2(x) as inputs can be used to solve 
the XOR problem. 

Exclusive OR revisited 

2212

1211
2

2

2
1

zexx

zexx
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--
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“Perceptrons” (1969)

“The perceptron […] has many features 
that attract attention: its linearity, its 
intriguing learning theorem; its clear 
paradigmatic simplicity as a kind of 
parallel computation. There is no reason to 
suppose that any of these virtues carry over to 
the many-layered version. Nevertheless, we 
consider it to be an important research problem 
to elucidate (or reject) our intuitive judgement 
that the extension is sterile.” 
[pp. 231 – 232]
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Postscript
• Minsky and Papert’s book had a chilling effect on machine 

learning research in the US for the next 25 years
• A few die-hards continued to work on machine learning
• Artificial Intelligence research shifted to knowledge-based 

systems
• Some success with human-engineered knowledge bases 
• Knowledge  engineering bottleneck encountered (1980’s)
• Renewed interest in machine learning (mid-late 1980’s)
• Practical approaches to training multi-layer neural networks 

(late 1980s)
• Data and computing revolution (1990s – 2000s)
• Machine learning takes over Artificial Intelligence (2010 –

present) 


