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Perceptron objective function

* We did not so far explicitly specify an objective function or loss function
for the perceptron

* Can we write down a loss function for the perceptron?

Eo/1 (W) = X, max{—d,hy(x,),0}
where

dp is the label (+1 or —1) for sample x,,

hy(x,) = +1ifw-x, > 0and hy(x,) = —1ifw-x, <0
—dphw(xp) = +1ifandonlyif d,, and hw(xp) agree

in which case max{—dphw(xp), 0} = max{1,0} =1
—dphw(xp) = —1ifandonlyifd, and hw(xp) disagree

in which case max{—dphw(xp), 0} = max{—1,0} =0
The max operation ensures that contribution of a sample x,, to Eq /; (W)

is 1if hw(x) misclassifies x,, and it is 0 otherwise.
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Perceptron objective function

Eoj1(W) = Xp max{—dphy(xp), 0}
The perceptron loss function simply counts the number of
misclassified samples. ()
w(X
* Is Eg/1 (w) differentiable with respect to w? e

Xy <0 5
* No, because hy (X, ) is not differentiable 7 w-Xp >0

with respect tow
. w-x,=0
* We cannot use gradient descent!
* Nevertheless, there is a non gradient based algorithm, namely,
Rosenblatt’s perceptron algorithm which is guaranteed to
converge to a separating hyperplane (as we proved)

* but only when the classes are separable.
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Perceptron Algorithm

* Perceptron algorithm is guaranteed to converge to a
separating hyperplane whenever the training data are linearly
separable.

* What if the training data are not linearly separable?

* All bets are off.
* The algorithm runs for ever, cycling indefinitely trying to
correct errors that cannot be corrected (proof omitted)

* Can we come up with an algorithm that converges when the

data are separable, and achieves a reasonable compromise
solution when the data are not separable?

* Yes, as we shall see next
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Can we define an alternative differentiable loss function?

gw(Xp) = W-xp
hyw(xp) = +1ifw-x, > 0and hy(x,)= —1ifw-x, <0
Let E,(W) = max{—d,gw(x,), 0}
Esoft(w) = Zp Ep(w)
where d,, is the label (+1 or —1) for sample x,,

—dpgu(xp) =

- +gw(xp) ifd, and gw(xp) are of different signs

. —gw(xp) ifd, and gw(xp) are of same sign

The max operation ensures that contribution of a sample x,, to
Esoft(w) is

- gw(xp) whenever hw(xp) misclassifies x,, and

* 0 otherwise.

@ Pennstate Fall 2022 Vasant G Honavar




@ PennState Center for Artificial Intelligence Foundations & Scientific Applications @ PennState

Rt Artificial Intelligence Research Laboratory @ Clinical and Translational

and Data Sciences Science Institute

Can we define an alternative loss function?

* We can show that Egor (W) = X max{—dpgw(xp), 0} is
convex, continuous, and has first order derivatives with respect
to w except where gw(xp)=0.

* So we can minimize Esoft(w) with respect to w using (sub)
gradient descent Ep(w)

0 _dPgW(XP)
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Vector and matrix calculus

Scalar analog Vector or Matrix counterpart
f@ | df f(w)
dx dw
ax a wria A
x2 2x WTq a a scalar constant
ax? 2ax wiw W x scalar varlgble
w vector variable
FEEE | e w/Bw 2Bw A constant matrix
a-w a B a constant square matrlx
W a square matrix variable
edW  geaW a aconstant vector

Reference: http://www.cs.cmu.edu/~mgormley/courses/10601/slides/10601-matrix-calculus.pdf
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An alternative loss function E, ¢, (w)

* We can show that Egor (W) = X max{—dpgw(xp), 0} is
convex, and differentiable with respect to w except at loss = 0.

* So we can minimize E,, ¢ (W) with respect to w using
(sub)gradient descent

Vw Esoft = Vw Zp:dp=hw(xp) max{—dpgw(xp), 0}
HVw Xy (x,) max{—d, guw(xp), 0}
=0+ Vy X 2hy (x) —dpgw(Xp) N
= Yoy () —dpVwgw(Xp)

= Zp:dp;thw(xp) —dp Vo (W - Xp)

0 _dPgW(XZJ)

= Zp:dpihw(xp) _dp Xp
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Minimizing E;, s (w) using (sub) gradient descent
— _ = hy(x

Vw Esoft = Lypa, ny (x,) %0 Xp o = hulxp)

W ewW—nVy Egore

Wewn Zp:dp#:hw(xp) dp Xp

* We add a fraction of x,, if the desired label is +1 and the

predicted label is —1

* We subtract a fraction of x,, if the desired label is —1 and the
predicted label is +1
* The key difference from the perceptron algorithm is that because

we perform gradient descent, we minimize the loss (error) over
the training data even if the classes are not linearly separable!
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Remarks on the Eg, ¢ loss function

* Esore(W) = Xp max{—dpgw(xp), O} has a trivial minimum at
w =0 that we must take steps in our code to avoid

* We can minimize Eg, ¢, using only first order (sub)gradient descent
(higher order derivatives do not exist)

* Can we approximate Eg, ¢ by a smooth loss function, say Egmootn

SO we can use a broader range of optimization methods, including
higher order methods?

* Yes
* By replacing max by softmax

£(s) softmax
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Approximating max by softmax

Suppose max{a, b} = a
Recall thatloge* = x
max{a,b} = b+ (a — b) = loge? +loge®?
Let softmax {a, b} = log(e® + e?)
Note that loge? + log(1 + e%?) = log (eb(l + ea‘b))
=log(e® + e?) = softmax {a, b}
softmax {a, b} — max{a, b}
=loge? +log(1 + % %) —loge? —log e4~

=log(1 + e%?) —log ea7?

-b
. (1+e97b) 1

~ab = 1+ -5 ~ 1 especially when e b1
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Esoft t0 Esmootn Via softmax

° soft(w) = Zp max{_dpgw(xp)’ 0}
Approximating max by softmax, we have:

* Esmootn(W) = X log (eo + e_dpw'xp)
= Yp log (1 + e_dpw'xp)
° Esmooth

* |s convex and infinitely differentiable, hence we can use higher
order optimization methods

* Does not have a trivial minimumat w = 0
* Empirically, we find that only the first few iterations improve Egp00th

before the magnitude of the weights starts to increase and become
very large
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Esoft t0 Esmootn Via softmax

* Esmootn(W) = Zp log (1 + e_dpw'xp)

* Empirically, we find that only the first several iterations improve Eg;00th
before the magnitude of the weights starts to become very large

* Solution: regularization — limit the magnitude of weights from increasing
without bounds

« ER vorno, @)= Y, log (14 e %®Xp~pWo) 4+ }]|w||? where
w = [wo wy - wyl”, o = [wy - wy]”

Ais set to a small value, e.g., 0.0001 and prevents the weights from

increasing without bounds

Alternatively, A can be optimized using cross-validation

We will study regularization in greater detail later
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Esoft t0 Esmootn Via softmax

ER otn(Wo, ®) = Yp log (1 + e_dp“"xp_dpwf’) + Al|w]|? where if
w = [wo wy - wy]T, o = [wy - wy]"

Gradient based update:

Voo EdnootnWo, @) = Vyy(Zp log (1 + e »~%0) + A|w]|?)

1 — X —
=Zp (1+ e—dp“"xp—dpwo) vw(l t+ e dpw *p deO) +V(,,(/1||0)”2)

e—dp(l)'Xp—deO

=~ Zp (1+ e—dpoo'xp—dpwo) dep + 21w

Weight update
R
®w<w-7nV, Esmooth(WOJ w)
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Esoft t0 Esmootn Via softmax

ER otn(Wo, ®) = Yp log (1 + e_dp“"xp_dpwf’) + Al|w||? where
w = [wowy - wy]”, @ = [wy - wy]"

Gradient based update:

Vi, Egmooth(Wva) = Vi, (Zp log (14 e %®Xp=dp"0) 4 /1”(1)”2)

0
_ 1 —dpw-Xy—dyWo

_Zp (1+ e~ xp=dpWo) VWo(l T e PRI )"'0
e—dp(l)'Xp—deO

P (1+ e dpoxp=dpwo) 7P

Weight update
R
Wo €< Wo—1 Va) Esmooth(WO; (1))
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Multi-class extension

Predicted class label for x,, is given by  ¥p = argmax. Wc- X
Predicted class label for x,, is dp

Suppose we define E), the error on sample x,,

Ep( Wy, WC) =maXc=1,..c;& c#dp {0, Xp - (WC— de)}

Decision surface  Error on the training set
between class &

andj is given by _
(W —wj)-x=0 E _ZP Ep(WL we)
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Multi-class softmax

Suppose we define Ey, the error on sample x,,
E,(wy,--w¢) = MaX;xq, Xp * We— Wa,,* Xp

~ log( (C:idp e*p Ve wdp'xp)
E= Zp Ep( Wy, WC)
VWCEZJ = VWc (log( (C:idp exp'wj_ Ve

_ 1 Xp* Wj— Wg, X
- T Xp Wi de‘xp) Vwc (10g (Zj¢c¢dp e? ™ PP +))
czdp €

= (ZC eprle_ de"‘p) (0 + (Ve YY) v (x, 'WC))

cxdp

(exz;-wc— de‘Xp -
W W X Xp, (assuming ¢ # d,)

Z *d-
c*dp
(exp‘ We “dp"‘l’

W W, — 1Y, me Xp
j=
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Multi-class softmax
Suppose we define E), the error on sample x,,
Ep( Wy, - WC) &

E =2p Ep(wlx"'WC)

C
_ Xp'Wj— de'Xp
depEp = Vde log Ze
j=1
— 1 C _Xp'Wj— Wg Xp
B (ZC P Vit de'x”) dep (ZJ'=1 - P )
j=1
1 C
— Xp' W]'— de-Xp
—\§C_ o Wit Wa, % Z dep (e )
]=1 ]:1

C 9
= — Yj=1Xp (assuming w;# Wa,)
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Multi-class extension

* The softmax based loss function for multi-class perceptron
needs to be regularized for the same reason its 2-class

counterpart needs to be regularized
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The Perceptron Algorithms Revisited

The perceptron learns by adding misclassified positive or
subtracting misclassified negative examples to an arbitrary
weight vector, which (without loss of generality) we
assumed to be the zero vector. So the final weight vector
is a linear combination of the training samples

I
W= zaiyixi’
i=1

where, since the sign of the coefficient of X, is given by
label y;, the &; are positive values, proportional to the
number of times, misclassification of X;has caused the
weight to be updated. It is called the embedding strength
of the sample X;.
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Dual Representation

The decision function can be rewritten as:
h(x) = sgn ((w,x))

sgn ((X; @y X;,x))

=sgn (Y a;y; (X;,X))

The update rule is
if:
yildj ay; (X;, x)< 0
Then
aj < a]-+77
WLOG, we can takenn =1
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Capabilities and limitations of a perceptron

Capabilities
* Perceptron can represent threshold functions

* Perceptron can learn linear decision boundaries

Limitations
* What if the data are not linearly separable?
= More complex networks?

= Non-linear transformations into a feature space where

the data become separable?
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Extending Linear Classifiers

Map data into a feature space where they are linearly
separable
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Exclusive OR revisited

In the feature (hidden) space:
2 T
@, (x;,x,) = e VI = Z; Wl = [1’1]
—{IX-W, | =4, W2 — [0,0]T

(Pz(xl’xz):e

A

| 900

Decision boundary
N
\\ /_

N

22
N\
N

1.0

T S
——b. S (lrl)
N\ R .
F—
0.5 4'\0 Z1
Y

0.5

(0,1) and (1,0)

When mapped into the feature space < z;, z, >, C1 and C2 become linearly
separable. So a linear classifier with @4(x) and @,(x) as inputs can be used to solve
the XOR problem.
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“Perceptrons” (1969)

“The perceptron [...] has many features
that attract attention: its linearity, its
intriguing learning theoremy; its clear
paradigmatic simplicity as a kind of
parallel computation. There is no reason to
suppose that any of these virtues carry over to
the many-layered version. Nevertheless, we
consider it to be an important research problem
to elucidate (or reject) our intuitive judgement
that the extension is sterile.”

[pp. 231 - 232]
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Expanded Edition

Perceptrons
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Postscript

* Minsky and Papert’s book had a chilling effect on machine
learning research in the US for the next 25 years

* A few die-hards continued to work on machine learning

* Artificial Intelligence research shifted to knowledge-based
systems

* Some success with human-engineered knowledge bases

* Knowledge engineering bottleneck encountered (1980’s)

* Renewed interest in machine learning (mid-late 1980’s)

* Practical approaches to training multi-layer neural networks
(late 1980s)

* Data and computing revolution (1990s — 2000s)

* Machine learning takes over Artificial Intelligence (2010 —
present)
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