

Perceptron objective function

- We did not so far explicitly specify an objective function or loss function for the perceptron
- Can we write down a loss function for the perceptron?

$$
E_{0 / 1}(\mathbf{w})=\sum_{p} \max \left\{-d_{p} h_{\mathbf{w}}\left(\mathbf{x}_{p}\right), 0\right\}
$$

where
d_{p} is the label $(+1$ or -1$)$ for sample \mathbf{x}_{p}
$h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)=+1$ if $\mathbf{w} \cdot \mathbf{x}_{p}>0$ and $h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)=-1$ if $\mathbf{w} \cdot \mathbf{x}_{p}<0$ $-d_{p} h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)=+1$ if and only if d_{p} and $h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)$ agree
in which case $\max \left\{-d_{p} h_{\mathbf{w}}\left(\mathbf{x}_{p}\right), 0\right\}=\max \{1,0\}=1$
$-d_{p} h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)=-1$ if and only if d_{p} and $h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)$ disagree
in which case $\max \left\{-d_{p} h_{\mathrm{w}}\left(\mathbf{x}_{p}\right), 0\right\}=\max \{-1,0\}=0$
The max operation ensures that contribution of a sample \mathbf{x}_{p} to $E_{0 / 1}(\mathbf{w})$ is 1 if $h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)$ misclassifies \mathbf{x}_{p} and it is 0 otherwise.
(7) Penstate Fall $2022 \quad$ Vasant G Honavar

Perceptron objective function

$$
E_{0 / 1}(\mathbf{w})=\sum_{p} \max \left\{-d_{p} h_{\mathbf{w}}\left(\mathbf{x}_{p}\right), 0\right\}
$$

The perceptron loss function simply counts the number of misclassified samples.

- Is $E_{0 / 1}(\mathbf{w})$ differentiable with respect to \mathbf{w} ? $\quad h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)$
- No, because $h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)$ is not differentiable | $\mathbf{w} \cdot \mathbf{x}_{p}<0$ | $\mathbf{w} \cdot \mathbf{x}_{p}>0$ |
| :---: | :--- | with respect to \mathbf{w}

$$
\mathbf{w} \cdot \mathbf{x}_{p}=0
$$

- We cannot use gradient descent!
- Nevertheless, there is a non gradient based algorithm, namely, Rosenblatt's perceptron algorithm which is guaranteed to converge to a separating hyperplane (as we proved)
- but only when the classes are separable.

Perceptron Algorithm

- Perceptron algorithm is guaranteed to converge to a separating hyperplane whenever the training data are linearly separable.
- What if the training data are not linearly separable?
- All bets are off.
- The algorithm runs for ever, cycling indefinitely trying to correct errors that cannot be corrected (proof omitted)
- Can we come up with an algorithm that converges when the data are separable, and achieves a reasonable compromise solution when the data are not separable?
- Yes, as we shall see next

Can we define an alternative differentiable loss function?
$g_{\mathbf{w}}\left(\mathbf{x}_{p}\right)=\mathbf{w} \cdot \mathbf{x}_{p}$
$h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)=+1$ if $\mathbf{w} \cdot \mathbf{x}_{p}>0$ and $h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)=-1$ if $\mathbf{w} \cdot \mathbf{x}_{p}<0$
Let $E_{p}(\mathbf{w})=\max \left\{-d_{p} g_{\mathbf{w}}\left(\mathbf{x}_{p}\right), 0\right\}$
$E_{s o f t}(\mathbf{w})=\sum_{p} E_{p}(\mathbf{w})$
where d_{p} is the label (+1 or -1) for sample \mathbf{x}_{p}
$-d_{p} g_{\mathbf{w}}\left(\mathbf{x}_{p}\right)=$

- $+g_{\mathbf{w}}\left(\mathbf{x}_{p}\right)$ if d_{p} and $g_{\mathbf{w}}\left(\mathbf{x}_{p}\right)$ are of different signs
- $-g_{\mathbf{w}}\left(\mathbf{x}_{p}\right)$ if d_{p} and $g_{\mathbf{w}}\left(\mathbf{x}_{p}\right)$ are of same sign

The max operation ensures that contribution of a sample \mathbf{x}_{p} to $E_{\text {soft }}(\mathbf{w})$ is

- $g_{\mathbf{w}}\left(\mathbf{x}_{p}\right)$ whenever $h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)$ misclassifies \mathbf{x}_{p} and - 0 otherwise.

```
(5) Pennstate
Can we define an alternative loss function?
- We can show that \(E_{\text {soft }}(\mathbf{w})=\sum_{p} \max \left\{-d_{p} g_{\mathbf{w}}\left(\mathbf{x}_{p}\right), 0\right\}\) is convex, continuous, and has first order derivatives with respect to \(\mathbf{w}\) except where \(g_{\mathbf{w}}\left(\mathbf{x}_{p}\right)=0\).
- So we can minimize \(E_{\text {soft }}(\mathbf{w})\) with respect to \(\mathbf{w}\) using (sub) gradient descent
```


PennState institute for Compulational
 Vector and matrix calculus

Scalar analog

$f(x)$	$\frac{d f}{d x}$
$a x$	a
x^{2}	$2 x$
$a x^{2}$	$2 a x$
$e^{a x}$	$a e^{a x}$

Vector or Matrix counterpart

$\boldsymbol{f}(\mathbf{w})$	$\frac{d \boldsymbol{f}}{d \mathbf{w}}$	
$\mathbf{W}^{T} \mathbf{A}$	\mathbf{A}	
$\mathbf{W}^{T} a$	a	a scalar constant
$\mathbf{W}^{T} \mathbf{W}$	$2 \mathbf{W}$	x scalar variable \mathbf{w} vector variable
$\mathbf{w}^{T} \mathbf{B} \mathbf{w}$	$2 \mathbf{B W}$	\mathbf{A} constant matrix
$\mathbf{a} \cdot \mathbf{W}$	\mathbf{a}	\mathbf{B} a constant square matrix \mathbf{W} a square matrix variable \mathbf{a} a constant vector
$e^{\mathbf{a} \cdot \mathbf{w}}$	$\mathbf{a} e^{\mathbf{a} \cdot \mathbf{w}}$	a

Reference: http://www.cs.cmu.edu/~mgormley/courses/10601/slides/10601-matrix-calculus.pdf
(O) Penstate Fall 2022 Vasant 6 Honevar

An alternative loss function $E_{\text {soft }}(\mathbf{w})$

- We can show that $E_{\text {soft }}(\mathbf{w})=\sum_{p} \max \left\{-d_{p} g_{\mathbf{w}}\left(\mathbf{x}_{p}\right), 0\right\}$ is convex, and differentiable with respect to \mathbf{w} except at loss $=0$.
- So we can minimize $E_{s o f t}(\mathbf{w})$ with respect to \mathbf{w} using (sub)gradient descent

$$
\begin{aligned}
& \nabla_{\mathbf{w}} E_{\text {Soft }}= \nabla_{\mathbf{w}} \sum_{p: d_{p}=h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)} \max \left\{-d_{p} g_{\mathbf{w}}\left(\mathbf{x}_{p}\right), 0\right\} \\
& \quad+\nabla_{\mathbf{w}} \sum_{p: d_{p} \neq h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)} \max \left\{-d_{p} g_{\mathbf{w}}\left(\mathbf{x}_{p}\right), 0\right\} \\
&= 0+\nabla_{\mathbf{w}} \sum_{p: d_{p} \neq h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)}-d_{p} g_{\mathbf{w}}\left(\mathbf{x}_{p}\right) \\
&= \sum_{p: d_{p} \neq h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)}-d_{p} \nabla_{\mathbf{w}} g_{\mathbf{w}}\left(\mathbf{x}_{p}\right) \\
&= \sum_{p: d_{p} \neq h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)}-d_{p} \nabla_{\mathbf{w}}\left(\mathbf{w} \cdot \mathbf{x}_{p}\right) \\
&= \sum_{p: d_{p} \neq h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)}-d_{p} \mathbf{x}_{p} \\
& \\
& \\
& \text { Fall 2022 }
\end{aligned}
$$

Minimizing $E_{\text {soft }}(\mathbf{w})$ using (sub) gradient descent

$$
\begin{array}{ll}
\nabla_{\mathbf{w}} E_{\text {soft }}=\sum_{p: d_{p} \neq h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)}-d_{p} \mathbf{x}_{p} & y_{p}=h_{\mathbf{w}}\left(\mathbf{x}_{p}\right) \\
\mathbf{w} \leftarrow \mathbf{w}-\eta \nabla_{\mathbf{w}} E_{\text {soft }} & \\
\mathbf{w} \leftarrow \mathbf{w}+\eta \sum_{p: d_{p} \neq h_{\mathbf{w}}\left(\mathbf{x}_{p}\right)} d_{p} \mathbf{x}_{p} &
\end{array}
$$

- We add a fraction of \mathbf{x}_{p} if the desired label is +1 and the predicted label is -1
- We subtract a fraction of \mathbf{x}_{p} if the desired label is -1 and the predicted label is +1
- The key difference from the perceptron algorithm is that because we perform gradient descent, we minimize the loss (error) over the training data even if the classes are not linearly separable!

Remarks on the $E_{\text {soft }}$ loss function

- $E_{\text {soft }}(\mathbf{w})=\sum_{p} \max \left\{-d_{p} g_{\mathbf{w}}\left(\mathbf{x}_{p}\right), 0\right\}$ has a trivial minimum at $\mathbf{w}=0$ that we must take steps in our code to avoid
- We can minimize $E_{\text {soft }}$ using only first order (sub)gradient descent (higher order derivatives do not exist)
- Can we approximate $E_{S o f t}$ by a smooth loss function, say $E_{\text {Smooth }}$ so we can use a broader range of optimization methods, including higher order methods?
- Yes
- By replacing max by softmax

Approximating max by softmax

Suppose $\max \{a, b\}=a$
Recall that $\log e^{x}=x$
$\max \{a, b\}=b+(a-b)=\log e^{b}+\log e^{a-b}$
Let softmax $\{a, b\}=\log \left(e^{a}+e^{b}\right)$
Note that $\log e^{b}+\log \left(1+e^{a-b}\right)=\log \left(e^{b}\left(1+e^{a-b}\right)\right)$

$$
=\log \left(e^{a}+e^{b}\right)=\operatorname{softmax}\{a, b\}
$$

softmax $\{a, b\}-\max \{a, b\}$

$$
\begin{aligned}
& =\log e^{b}+\log \left(1+e^{a-b}\right)-\log e^{b}-\log e^{a-b} \\
& =\log \left(1+e^{a-b}\right)-\log e^{a-b} \\
& =\log \frac{\left(1+e^{a-b}\right)}{e^{a-b}}=1+\frac{1}{e^{a-b}} \approx 1 \text { especially when } e^{a-b} \gg 1
\end{aligned}
$$

$E_{\text {soft }}$ to $E_{\text {smooth }}$ via softmax

- $E_{\text {soft }}(\mathbf{w})=\sum_{p} \max \left\{-d_{p} g_{\mathbf{w}}\left(\mathbf{x}_{p}\right), 0\right\}$

Approximating max by softmax, we have:

- $E_{\text {Smooth }}(\mathbf{w})=\sum_{p} \log \left(e^{0}+e^{-d_{p} \mathbf{w} \cdot \mathbf{x}_{p}}\right)$

$$
=\sum_{p} \log \left(1+e^{-d_{p} \mathbf{w} \cdot \mathbf{x}_{p}}\right)
$$

- $E_{\text {Smooth }}$
- Is convex and infinitely differentiable, hence we can use higher order optimization methods
- Does not have a trivial minimum at $\mathbf{W}=0$
- Empirically, we find that only the first few iterations improve $E_{\text {smooth }}$ before the magnitude of the weights starts to increase and become very large

PennState Clinical and Translational
$E_{\text {Soft }}$ to $E_{\text {Smooth }}$ via softmax

- $E_{\text {smooth }}(\mathbf{w})=\sum_{p} \log \quad\left(1+e^{-d_{p} \mathbf{w} \cdot \mathbf{x}_{p}}\right)$
- Empirically, we find that only the first several iterations improve $E_{\text {smooth }}$ before the magnitude of the weights starts to become very large
- Solution: regularization - limit the magnitude of weights from increasing without bounds
- $E_{\text {smooth }}^{R}\left(w_{0}, \boldsymbol{\omega}\right)=\sum_{p} \log \left(1+e^{-d_{p} \boldsymbol{\omega} \cdot x_{p}-d_{p} \omega_{0}}\right)+\lambda\|\boldsymbol{\omega}\|^{2}$ where $\mathbf{w}=\left[w_{0} w_{1} \cdots w_{N}\right]^{T}, \boldsymbol{\omega}=\left[w_{1} \cdots w_{N}\right]^{T}$
λ is set to a small value, e.g., 0.0001 and prevents the weights from increasing without bounds
Alternatively, λ can be optimized using cross-validation
We will study regularization in greater detail later
$E_{\text {soft }}$ to $E_{\text {Smooth }}$ via softmax

$$
\begin{aligned}
E_{\text {smooth }}^{R}\left(w_{0}, \boldsymbol{\omega}\right) & =\sum_{p} \log \left(1+e^{-d_{p} \boldsymbol{\omega} \cdot \mathbf{x}_{p}-d_{p} w_{0}}\right)+\lambda\|\boldsymbol{\omega}\|^{2} \text { where if } \\
\mathbf{w} & =\left[w_{0} w_{1} \cdots w_{N}\right]^{T}, \quad \boldsymbol{\omega}=\left[w_{1} \cdots w_{N}\right]^{T}
\end{aligned}
$$

Gradient based update:
$\nabla_{\boldsymbol{\omega}} E_{\text {smooth }}^{R}\left(w_{0}, \boldsymbol{\omega}\right)=\nabla_{\boldsymbol{\omega}}\left(\sum_{p} \log \left(1+e^{-d_{p} \boldsymbol{\omega} \cdot \mathbf{x}_{p}-d_{p} w_{0}}\right)+\lambda\|\boldsymbol{\omega}\|^{2}\right)$
$=\sum_{p} \frac{1}{\left(1+e^{-d_{p} \boldsymbol{\omega} \cdot \mathbf{x}_{p}-d_{p} \omega_{0}}\right)} \nabla_{\boldsymbol{\omega}}\left(1+e^{-d_{p} \boldsymbol{\omega} \cdot \mathbf{x}_{p}-d_{p} \omega_{0}}\right)+\nabla_{\boldsymbol{\omega}}\left(\lambda\|\boldsymbol{\omega}\|^{2}\right)$
$=-\sum_{p} \frac{e^{-d_{p} \boldsymbol{\omega} \cdot \mathbf{x}_{p}-d_{p} w_{0}}}{\left(1+e^{-d_{p} \boldsymbol{\omega} \cdot \mathbf{x}_{p}-d_{p} w_{0}}\right)} d_{p} \mathbf{x}_{p}+2 \lambda \boldsymbol{\omega}$
Weight update
$\boldsymbol{\omega} \leftarrow \boldsymbol{\omega}-\eta \nabla_{\boldsymbol{\omega}} E_{\text {Smooth }}^{R}\left(w_{0}, \boldsymbol{\omega}\right)$

Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory
$E_{\text {soft }}$ to $E_{\text {Smooth }}$ via softmax
$E_{\text {Smooth }}^{R}\left(w_{0}, \boldsymbol{\omega}\right)=\sum_{p} \log \left(1+e^{-d_{p} \boldsymbol{\omega} \cdot \mathbf{x}_{p}-d_{p} w_{0}}\right)+\lambda\|\boldsymbol{\omega}\|^{2}$ where $\mathbf{w}=\left[w_{0} w_{1} \cdots w_{N}\right]^{T}, \boldsymbol{\omega}=\left[w_{1} \cdots w_{N}\right]^{T}$
Gradient based update:

$$
\begin{aligned}
& \nabla_{w_{0}} E_{\text {smooth }}^{R}\left(w_{0}, \boldsymbol{\omega}\right)=\nabla_{w_{0}}\left(\sum_{p} \log \quad\left(1+e^{-d_{p} \omega \cdot x_{p}-d_{p} w_{0}}\right)+\lambda\|\boldsymbol{\omega}\|^{2}\right) \\
& =\sum_{p} \frac{1}{\left(1+e^{-d_{p} \boldsymbol{\omega} \cdot x_{p}-d_{p} w_{0}}\right)} \nabla_{w_{0}}\left(1+e^{-d_{p} \boldsymbol{\omega} \cdot x_{p}-d_{p} w_{0}}\right)+0 \\
& =-\sum_{p} \frac{e^{-d_{p} \boldsymbol{\omega} \cdot x_{p}-d_{p} w_{0}}}{\left(1+e^{-d_{p} \boldsymbol{\omega} \cdot \mathbf{x}_{p}-d_{p} w_{0}}\right)} d_{p}
\end{aligned}
$$

Weight update
$w_{0} \leftarrow w_{0}-\eta \nabla_{\boldsymbol{\omega}} E_{\text {smooth }}^{R}\left(w_{0}, \boldsymbol{\omega}\right)$

Multi-class extension

Predicted class label for \mathbf{x}_{p} is given by $y_{p}=\operatorname{argmax}_{c} \mathbf{w}_{c} \cdot \mathbf{x}_{p}$
 Predicted class label for \mathbf{x}_{p} is d_{p}

Suppose we define E_{p}, the error on sample \mathbf{x}_{p} $E_{p}\left(\mathbf{w}_{1}, \cdots \mathbf{w}_{C}\right)=\max _{c=1, \cdots, c ; \& c \neq d_{p}}\left\{0, \mathbf{x}_{p} \cdot\left(\mathbf{w}_{c}-\mathbf{w}_{d_{p}}\right)\right\}$

Error on the training set
$E=\sum_{p} E_{p}\left(\mathbf{w}_{1}, \cdots \mathbf{w}_{C}\right)$
$\left(\mathbf{w}_{k}-\mathbf{w}_{j}\right) \cdot \mathbf{x}=0$

$$
=\sum_{p} E_{p}\left(\mathbf{w}_{1}, \cdots \mathbf{w}_{C}\right)
$$

Multi-class softmax

Suppose we define E_{p}, the error on sample \mathbf{x}_{p}

$$
E_{p}\left(\mathbf{w}_{1}, \cdots \mathbf{w}_{C}\right)=\max _{c \neq d_{p}} \mathbf{x}_{p} \cdot \mathbf{w}_{c}-\mathbf{w}_{d_{p}} \cdot \mathbf{x}_{p}
$$

$$
\approx \log \left(\sum_{c \neq d_{p}}^{C} e^{\mathbf{x}_{p} \cdot \mathbf{w}_{c}-\mathbf{w}_{d_{p}} \cdot \mathbf{x}_{p}}\right)
$$

$$
E=\sum_{p} E_{p}\left(\mathbf{w}_{1}, \cdots \mathbf{w}_{C}\right)
$$

$$
\nabla_{\mathbf{w}_{c}} E_{p}=\nabla_{\mathbf{w}_{c}}\left(\log \left(\sum_{c \neq d_{p}}^{C} e^{\mathbf{x}_{p} \cdot \mathbf{w}_{j}-\mathbf{w}_{d_{p}} \cdot \mathbf{x}_{p}}\right)\right)
$$

$=\left(\frac{1}{\sum_{c \neq d_{p}}^{C} e^{\mathbf{x} p \cdot \mathbf{w}_{j}-w_{d_{p}} \cdot \mathbf{x}_{p}}}\right) \nabla_{\mathbf{w}_{c}}\left(\log \left(\sum_{j \neq c \neq d_{p}} e^{\mathbf{x}_{p} \cdot \mathbf{w}_{j^{-}} \mathbf{w}_{d_{p}} \cdot \mathbf{x}_{p}}+\right)\right)$
$=\left(\frac{1}{\sum_{c \neq d_{p}}^{C} e^{\mathbf{x}_{p} \cdot \mathbf{w}_{j}-\mathbf{w}_{d_{p}} \cdot \mathbf{x}_{p}}}\right)\left(0+\left(e^{\mathbf{x}_{p} \cdot \mathbf{w}_{c}-\mathbf{w}_{d_{p}} \cdot \mathbf{x}_{p}}\right) \quad \nabla_{\mathbf{w}_{c}}\left(\mathbf{x}_{p} \cdot \mathbf{w}_{c}\right)\right)$
$=\left(\frac{\left(e^{\mathbf{x}_{p} \cdot \mathbf{w}_{c}-\mathbf{w}_{d_{p}} \cdot \mathbf{x}_{p}}\right)}{\sum_{c \neq d_{p}}^{C} e^{\mathrm{x}_{p} \cdot \mathbf{w}_{j}-\mathbf{w}_{d_{p}} \cdot \mathbf{x}_{p}}}\right) \mathbf{x}_{p}$ (assuming $c \neq d_{p}$)
$\mathbf{w}_{c} \leftarrow \mathbf{w}_{c}-\eta \sum_{p}\left(\frac{\left(e^{\mathbf{x}_{p} \cdot \mathbf{w}_{c}-\mathbf{w}_{d_{p}} \cdot \mathbf{x}_{p}}\right)}{\sum_{j=1}^{C} e^{\mathrm{x}_{p} \cdot \mathbf{w}_{j}-\mathbf{w}_{d_{p}} \cdot \mathbf{x}_{p}}}\right) \mathbf{x}_{p}$

```
PennState

\section*{Multi-class softmax}
```

Suppose we define E_{p}, the error on sample \mathbf{x}_{p}
$E_{p}\left(\mathbf{w}_{1}, \cdots \mathbf{w}_{C}\right) \approx$
$E=\sum_{p} E_{p}\left(\mathbf{w}_{1}, \cdots \mathbf{w}_{C}\right)$
$\nabla_{\mathbf{w}_{d_{p}}} E_{p}=\nabla_{\mathbf{w}_{d_{p}}}\left(\log \left(\sum_{j=1}^{C} e^{\mathbf{x}_{p} \cdot \mathbf{w}_{j}-\mathbf{w}_{d_{p}} \cdot \mathbf{x}_{p}}\right)\right)$
$=\left(\frac{1}{\sum_{j=1}^{C} e^{\mathbf{x}_{p} \cdot \mathbf{w}_{j}-\mathbf{w}_{d_{p}} \cdot \mathbf{x}_{p}}}\right) \nabla_{\mathbf{w}_{d_{p}}}\left(\sum_{j=1}^{C} e^{\mathbf{x}_{p} \cdot \mathbf{w}_{j}-\mathbf{w}_{d_{p}} \cdot \mathbf{x}_{p}}\right)$
$=\left(\frac{1}{\sum_{j=1}^{C} e^{\mathbf{x}_{p} \cdot \mathbf{w}_{j}-\mathbf{w}_{d_{p}} \cdot \mathbf{x}_{p}}}\right)\left(\sum_{j=1}^{C} \nabla_{\mathbf{w}_{d_{p}}}\left(e^{\mathbf{x}_{p} \cdot \mathbf{w}_{j}-\mathbf{w}_{d_{p}} \cdot \mathbf{x}_{p}}\right)\right)$
$=-\sum_{j=1}^{C} \mathbf{x}_{p}$ (assuming $\mathbf{w}_{j} \neq \mathbf{w}_{d_{p}}$)

```
    Center for Artificial Intelligence Foundations & Scientific Applications م
    PennState
Artificial Intelligence Research Laboratory 
```


Multi-class extension

- The softmax based loss function for multi-class perceptron needs to be regularized for the same reason its 2 -class counterpart needs to be regularized

The Perceptron Algorithms Revisited

The perceptron learns by adding misclassified positive or subtracting misclassified negative examples to an arbitrary weight vector, which (without loss of generality) we assumed to be the zero vector. So the final weight vector is a linear combination of the training samples

$$
\mathbf{w}=\sum_{i=1}^{l} \alpha_{i} y_{i} \mathbf{x}_{i},
$$

where, since the sign of the coefficient of \mathbf{x}_{i} is given by label y_{i}, the α_{i} are positive values, proportional to the number of times, misclassification of \mathbf{x}_{i} has caused the weight to be updated. It is called the embedding strength of the sample \mathbf{x}_{i}.

Dual Representation

The decision function can be rewritten as:

$$
\begin{aligned}
& h(\mathbf{x})=\operatorname{sgn}(\langle\mathbf{w}, \mathbf{x}\rangle) \\
& \quad=\operatorname{sgn}\left(\left\langle\sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}, \mathbf{x}\right\rangle\right) \\
& \quad=\operatorname{sgn}\left(\sum_{j} \alpha_{j} y_{j}\left\langle\mathbf{x}_{j}, \mathbf{x}\right\rangle\right)
\end{aligned}
$$

The update rule is
if:

$$
y_{i}\left(\sum_{j} \alpha_{j} y_{j}\left\langle\mathbf{x}_{j}, \mathbf{x}_{i}\right\rangle\right) \leq 0
$$

Then
$\alpha_{j} \leftarrow \alpha_{j}+\eta$
WLOG, we can take $\eta=1$

(3) PennState
 Institute for Con
 Capabilities and limitations of a perceptron

Capabilities

- Perceptron can represent threshold functions
- Perceptron can learn linear decision boundaries

Limitations

- What if the data are not linearly separable?
- More complex networks?
- Non-linear transformations into a feature space where the data become separable?

Exclusive OR revisited

In the feature (hidden) space:

$$
\begin{array}{ll}
\varphi_{1}\left(x_{1}, x_{2}\right)=e^{-\left\|\mathbf{X}-\mathbf{W}_{1}\right\|^{2}}=z_{1} & \mathbf{W}_{1}=[1,1]^{T} \\
\varphi_{2}\left(x_{1}, x_{2}\right)=e^{-\left\|\mathbf{X}-\mathbf{W}_{2}\right\|^{2}}=z_{2} & \mathbf{W}_{2}=[0,0]^{T}
\end{array}
$$

When mapped into the feature space $\left\langle\mathrm{z}_{1}, \mathrm{z}_{2}\right\rangle, \mathrm{C} 1$ and C2 become linearly separable. So a linear classifier with $\varphi_{1}(x)$ and $\varphi_{2}(x)$ as inputs can be used to solve the XOR problem.

23 Pennstate
 Postscript

Center for Artificial Intelligence Foundations \& Scientific Application Artificial Intelligence Research Laboratory

- Minsky and Papert's book had a chilling effect on machine learning research in the US for the next 25 years
- A few die-hards continued to work on machine learning
- Artificial Intelligence research shifted to knowledge-based systems
- Some success with human-engineered knowledge bases
- Knowledge engineering bottleneck encountered (1980's)
- Renewed interest in machine learning (mid-late 1980's)
- Practical approaches to training multi-layer neural networks (late 1980s)
- Data and computing revolution (1990s - 2000s)
- Machine learning takes over Artificial Intelligence (2010 present)

