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Linear Classifiers: Simple Neural Networks
• Background
• Threshold logic functions
• Connection to logic
• Connection to geometry
• Learning threshold functions – perceptron 

algorithm
• Perceptron convergence theorem
• Multi-category extensions
• Alternative loss functions and algorithms
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Background – Brains and Computers

• Brain consists of 1011 neurons, each connected to ~104 other neurons
• Each neuron is slow 
• 1millisecond to respond to a stimulus 

• Brain is astonishingly fast at perceptual tasks e.g. face recognition
• Brain processes and learns from multiple sources of sensory 

information (visual, tactile, auditory…)
• Brain is massively parallel, shallowly serial, modular and roughly 

hierarchical with recurrent and lateral connectivity within and 
between modules
• Turing: Thinking can be modeled by computation
• If thinking can be modeled by – computation
• it is natural to ask how and what  are the algorithms that underly 

thinking or
• what do brains compute
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Brain and information processing

Visual association area

Primary motor 
cortex

Motor association 
cortex

Primary somato-sensory cortex

Primary visual cortex

Auditory cortex

Auditory association 
area

Prefrontal cortex

Speech comprehension

Sensory association area
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Neural Networks

Ramon Cajal, 1900
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Neurons and Computation
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Neural information processing
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McCulloch-Pitts computational model of a neuron
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Threshold neuron – Connection with Geometry
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McCulloch-Pitts Neuron or Threshold Neuron
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McCulloch-Pitts Neuron - Connection to geometry

• A perceptron with 3 weights 𝑤! , 𝑤" , 𝑤# implements a line in 2-D 
A perceptron  with 4 weights [𝑤! , 𝑤" , 𝑤# , 𝑤$ ] implements a 
plane in 3-D 

• A perceptron with 𝑛 + 1weights [𝑤! ,⋯ ,𝑤%] implements an 
𝑛 − 1 dimensional hyperplane in 𝑛-D
• Dividing the 𝑛-D space into two half spaces
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Perceptron – Connection with Geometry

• Data live in ℜ! or ℜ!"# if we add a dummy input of 𝑥$ = 1
• Weights that define hyperplanes live in ℜ!"#

• A particular choice of weights defines a hyperplane given by 
∑%&#! 𝑤% 𝑥% +𝑤$ = 0

or
∑%&$! 𝑤% 𝑥% = 0

or
𝐰 * 𝐱 = 0

• The orientation of the hyperplane is specified by its normal 
vector 𝑤#⋯𝑤! '

• The distance of the hyperplane from a given data point 𝐱( is given by
𝐰*𝐱!

,"#"⋯",$#
= ,%","."!"⋯",$.$!

,"#"⋯",$#



13

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G HonavarFall 2022

Example

90°

(0,0)

(0,1)

(1,0)

(1,1)

−1 + 𝑥'

−1+ 𝑥'+ 𝑥( = 0

1
2

How many other equivalent 
equations define the same hyperplane?

Infinite number of them!
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Example

90°

(0,0)

(0,1)

(1,0)

(1,1)

−1 + 𝑥'

−1+ 𝑥'+ 𝑥( = 0

1
2

Which side of the hyperplane does the point (2,1) lie?

Check the sign of 𝑤)+∑*+'( 𝑤*𝑥* = −1+ 2+ 1 = 2
The sign is positive, so on the “positive side” pointed by the direction of the positive normal
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Perceptron as a pattern classifier
• The threshold neuron, that implements the “right” hyperplane, 

can be used to classify a set of data samples into one of two 
classes C1, C2  e.g., apples and oranges when they are 
represented as points in a suitable feature space
• If the output of the neuron for input pattern Xp is +1 then Xp is 

assigned to class C1

• If the output  is -1 then the pattern Xp is assigned to C2

+ +

-

- - +
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Threshold neuron – Connection with Logic

• Suppose the input space is {0,1}𝑛
• Then threshold neuron computes a Boolean 

function 𝑓 ∶ {0,1}𝑛 � {−1,1}

𝑥1 𝑥2 ℎ 𝑋 = 𝐰 4 𝐱 𝑦

0 0 -1.5 -1

0 1 -0.5 -1

1 0 -0.5 -1

1 1 0.5 1

Example

Let 𝑤0 = −1.5; 𝑤1 = 𝑤2 = 1

• In this case, if we interpret 1 
as TRUE and -1 as FALSE, the  
threshold neuron 
implements the logical AND 
function
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Threshold neuron – Connection with Logic
• A threshold neuron with the appropriate choice of weights 

can implement Boolean AND, OR, and NOT function
• Theorem: For any arbitrary Boolean function f, there exists a 

network of threshold neurons that can implement f.
• Theorem: Any arbitrary finite state automaton can be 

realized using threshold neurons and delay units
• Networks of threshold neurons, given access to unbounded 

memory, can compute any Turing-computable function
• Corollary: Brains if given access to enough working memory, 

can compute any computable function
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Threshold neuron: Connection with Logic
Theorem: There exist Boolean functions that cannot be 

implemented by a single threshold neuron.
Example: Exclusive OR 

Why?
A hyperplane 
separating the red 
points from the 
black points does 
not exist!

x1(0,0)

(0,1)

(1,0)

(1,1)

x2

𝑥1 𝑥2 𝑦
0 0 -1
0 1 1
1 0 1
1 1 -1
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Threshold neuron – Connection with Logic

• Definition: A function that can be computed by a single 
threshold neuron is called a threshold function
• Of the 16  2-input Boolean functions, 14 are Boolean 

threshold functions
• As n increases, the number of Boolean threshold 

functions becomes an increasingly small fraction of the 
total number of n-input Boolean functions

( ) 2

2nThreshold nN £ ( ) n

nNBoolean
22=



20

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G HonavarFall 2022

Terminology and Notation

• Synonyms: Threshold function, Linearly separable 
function, linear discriminant function
• Synonyms: Threshold neuron, McCulloch-Pitts neuron, 

Perceptron, Threshold Logic Unit (TLU)

• We often include𝑤0 as one of the components of w and 
incorporate 𝑥0as the corresponding component of x with 
the understanding that 𝑥0 = 1. 

• Then 𝑦 = 1 if 𝐰 4 𝐱 > 0 and 𝑦 = −1 otherwise.
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Learning Threshold functions

A training example Ek is an ordered pair (𝑋𝑘, 𝑑𝑘)where 

is an (𝑛 + 1) dimensional input sample, 
is the desired output of the classifier and f  is an unknown 

target function to be learned.

A training set 𝐸 is simply a multi-set of examples.

[ ]Tnkkkk xxx  ....  10X =
}1 ,1{)( -Î= kk fd X
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Learning Threshold functions
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Learning Task: Given a linearly separable training set E, find a solution 

We say that a training set E is linearly separable if and only if  
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Learning to classify = finding separating hyperplane

+ +

-

- - +
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Rosenblatt’s Perceptron Learning Algorithm

[ ]T000W ..... =

EEk Î
)( kk signy XW•¬

Initialize 

Repeat until a complete pass through 𝐸 results in no weight 
updates

{
( ) kkk yd XWW -h+¬ }

( )**  Return        ; WWW ¬

0 rate learningSet >h

For each training example 
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Perceptron learning algorithm – Example 
Let 𝑆 += 1, 1, 1 , 1, 1,−1 , 1, 0,−1

𝑆−= 1,−1,−1 , 1,−1, 1 , 1,0, 1

2
1

=h
𝑿, 𝑑, 𝑾 𝑾.𝑿𝒌 𝑦, Update? Updated W

(1, 1, 1) 1 (0, 0, 0) 0 -1 Yes (1, 1, 1)

(1, 1, -1) 1 (1, 1, 1) 1 1 No (1, 1, 1)

(1,0, -1) 1 (1, 1, 1) 0 -1 Yes (2, 1, 0)

(1, -1, -1) -1 (2, 1, 0) 1 1 Yes (1, 2, 1)

(1,-1, 1) -1 (1, 2, 1) 0 -1 No (1, 2, 1)

(1,0, 1) -1 (1, 2, 1) 2 1 Yes (0, 2, 0)

(1, 1, 1) 1 (0, 2, 0) 2 1 No (0, 2, 0)

𝐖= (0 0 0)
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Perceptron (1957)
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Perceptron
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Understanding Weight Updates

• During learning, training data are fixed.
• What is being updated are the weights.
• Consider the weight space defined by the coordinates of the 

weight vector
• Points in this space correspond to different choices of the 

weights
• Just as in the data space, weights defined hyperplanes, in 

the weight space, training data samples define (fixed) 
hyperplanes.
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Understanding Weight Updates

0w

1w

qX
pX

0XW =• p

0XW =• q

rX

0XW =• r

Solution region

+Î S
-Î S

Goal: Find a point in the weight space that lies on the 
appropriate side of each sample hyperplane
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Understanding Weight Updates

0w

1w

0XW =• p
+Î S

• Goal: Find a point in the weight space that lies on the appropriate 
side of each sample hyperplane

• If the current weight vector is on the wrong side of a pattern 
hyperplane, the most efficient way to go to the right side is to 
move along the direction of the normal to the hyperplane

𝐰.

𝐰.+1

𝐰'() ←𝐰' + 𝑑* −𝑦* 𝑿*

𝜂𝐗/
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Perceptron Convergence Theorem (Novikoff)

Theorem Let                      be a training set where         
and . 

n
k Â´Î }1{X( ){ }kk dE  ,X=
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-- that is, E is linearly separable. The bound on the number t of 
weight updates  is given by
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Proof of Perceptron Convergence Theorem

*W

tW
q
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Proof of Perceptron Convergence Theorem
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Proof of Perceptron Convergence Theorem
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Proof of Perceptron Convergence Theorem
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Proof of Perceptron Convergence Theorem
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Notes on the Perceptron Convergence Theorem

• The bound on the number of weight updates does not 
depend on the learning rate
• The bound is not useful in determining when to stop the 

algorithm because it depends on the norm of the unknown 
weight vector and delta 
• The convergence theorem offers no guarantees when the 

training data set is not linearly separable

Exercise: Prove that the perceptron algorithm is robust with 
respect to fluctuations in the learning rate 

¥<££< maxmin ηηη t0
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sclassifierbinary   1-K

One-versus-rest One-versus-one

sclassifierbinary   1-K ( ) sclassifierbinary   
2
1-KK

Problem: Green region has ambiguous class membership

Multi-category classifiers 
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Multi-category classifiers 

C2

C1

C3

Decision surface between class Ck and Cj is given by 

Define K linear functions of the form:

𝑦7 𝐱 = 𝐰7 4 𝐱

ℎ 𝐱 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑘 𝑦7 𝐱

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑘 𝐰7 4 𝐱

𝐰7 −𝐰8 4 𝐱 = 0
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Linear separator for K classes

• Decision regions defined by 

are singly connected and convex
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Winner-Take-All Networks

otherwise 
   iff 

0
1

=

¹"•>•=

ip

pjpiip

y
ijy XWXW

[ ] [ ] [ ]TTT  
3

 
2

 
1 0  0  2 ,1  1  1 ,1-  1-  1 === WWW

W1.Xp W2.Xp W3.Xp y1 y2 y3
1 -1 -1 3 -1 2 1 0 0
1 -1 +1 1 1 2 0 0 1
1 +1 -1 1 1 2 0 0 1
1 +1 +1 -1 3 2 0 1 0

What does neuron 3 compute?

Note:Wj are augmented weight vectors
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Linear separability of multiple classes

( ){ }ijSi

SSSS

CCji
CSi

CCCC
SSSS

p
*
jp

*
iip

*
M

**
M

ji

ii

M

M

¹"•>•Î""

$

Æ=¹"

Í"

    ,  
that such ,.., vectors  weight iff separable

linearly  are ...,, sets the thatsay  We
   

   
classes disjoint be ...,, Let

instances of multisets be ...,, Let

XWXWX
WWW 21

321

321

321

!



43

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G HonavarFall 2022

Training WTA Classifiers
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WTA Convergence Theorem

Given a linearly separable training set, the WTA learning
algorithm is guaranteed to converge to a solution within a 
finite number of weight updates.

Proof Sketch: 
• Reduce the WTA training problem to the problem of training a 

single perceptron using a suitably transformed training set. 
• Then the proof of WTA learning algorithm reduces to the proof 

of perceptron learning algorithm
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WTA Convergence Theorem
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WTA Convergence Theorem
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