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Why Evaluate classifiers?
• To know how well a classifier can be expected to perform 

when it is put to use
• To choose the best model from among a set of alternatives
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Evaluating a Classifier

• How can we measure performance of classifiers?
• We can choose appropriate performance measures

• How well can a classifier be expected to perform on novel data, 
i.e., data not seen during training?
• We can estimate the performance of the classifier using an 

evaluation data set (not used for training)
• How can we trust the performance estimates?
• We can use statistical cross-validation

• How close is the estimated performance to the true
performance?
• How can we compare two models?
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Classification error

• Error = classifying a sample as belonging to one class when 
it belongs to another class
• Error rate = percent of misclassified samples out of the 

total samples in the validation data
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Naïve Baseline

• We hope to do better than the naïve baseline
• When the goal is to identify high-value but rare outcomes, we 

may do well by doing worse than the naïve baseline in terms of 
accuracy

Naïve  baseline:  classify all samples as belonging to the 
most prevalent (majority) class
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Estimating Classifier Performance

N:   Total number of instances in the data set
TPj: Number of True positives for class j
FPj : Number of False positives for class j
TNj: Number of True Negatives for class j
FNj: Number of False Negatives for class j
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Perfect classifier has Accuracy =1
Popular measure
Biased in favor of the majority class!
Should be used with caution!
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Classifier Learning -- Measuring Performance
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When One Class is More Important than another

• Tax fraud
• Credit default
• Response to promotional offer
• Detecting electronic network intrusion
• Predicting delayed flights
• Diagnosing cancer
• Predicting nuclear reactor meltdown

In many cases it is more important to identify members of a 
specific target class

In such cases, we may tolerate greater overall error, in return 
for better predictions of the more important class
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Measuring Classifier Performance: Sensitivity
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Perfect classifier à Sensitivity = 1
Probability of correctly labeling members of the target class
Also called recall or hit rate
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Classifier Learning -- Measuring Performance
Class
Label 

C1 ¬ C1

C1 TP= 55 FP=5

¬ C1 FN=10 TN=30

35
5

530
5

100
85

100
3055

60
55

555
55

65
55

1055
55
100

1

1

1

1

=
+

=
+

=

=
+

=
+

=

=
+

=
+

=

=
+

=
+

=

=+++=

FPTN
FPfalsealarm

N
TNTPaccuracy

FPTP
TPyspecificit

FNTP
TPysensitivit

FPTNFNTPN



11

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G HonavarFall 2022

Measuring Classifier Performance: Specificity
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Perfect classifier à Specificity = 1
Also called precision 
Probability that a positive prediction is correct
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Measuring Performance: Precision, Recall, and False Alarm
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Classifier Learning -- Measuring Performance
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Measuring Performance – Correlation Coefficient

€ 

CC j =
TPj ×TN j( ) − FPj × FN j( )

TPJ + FN j( ) TPj + FPj( ) TN j + FPj( ) TN j + FN j( )
                                     −1≤ CC j ≤1

€ 

CC j =
jlabeli − jlabel( ) jclassi − jclass( )

σ JLABELσ JCLASSd
i
∈D
∑

where jlabeli =1 iff the classifier assigns di to class c j
jclassi =1 iff the true class of di is class c j
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Beware of terminological confusion in the literature!
• Some authors use “accuracy” incorrectly to refer to recall 

i.e. sensitivity or precision i.e. specificity
• In medical statistics, specificity sometimes refers to 

sensitivity for the negative class i.e.

• Some authors use false alarm rate to refer to the 
probability that a positive prediction is incorrect i.e.

When you write
• provide the formula in terms of TP, TN, FP, FN
When you read
• check the formula in terms of TP, TN, FP, FN
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Measuring Classifier Performance

• TP, FP, TN, FN provide the relevant information 
• No single measure tells the whole story
• A classifier with 98% accuracy can be useless if 98% of 

the population does not have cancer and the 2% that 
do are misclassified by the classifier
• Use of multiple measures recommended
• Beware of terminological confusion!
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Micro-averaged performance measures
Performance on a random sample
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Macro-averaged performance measures
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Cutoff for classification
Most machine learning algorithms classify via a 2-step process:
For each sample,

1. Compute probability of belonging to class “1”
2. Compare to cutoff value, and classify accordingly

• Default cutoff value is 0.50 
If probability of sample belonging to class 1 ≥ 0.50, classify as “1”
If probability of sample belonging to class 1 < 0.50, classify as “0”

• Can use different cutoff values for trading off one measure against 
another (more on this later)
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Actual Class Prob. of "1" Actual Class Prob. of "1"
1 0.996 1 0.506
1 0.988 0 0.471
1 0.984 0 0.337
1 0.980 1 0.218
1 0.948 0 0.199
1 0.889 0 0.149
1 0.848 0 0.048
0 0.762 0 0.038
1 0.707 0 0.025
1 0.681 0 0.022
1 0.656 0 0.016
0 0.622 0 0.004

• If cutoff is 0.50: 12 samples are classified as “1”
• If cutoff is 0.80: seven samples are classified as “1”

Cutoff Table
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Receiver Operating Characteristic (ROC) Curve

• The confusion matrix, and hence the previous measures of 
classifier performance are threshold dependent
• We can often trade off sensitivity against specificity – e.g., by 

adjusting classification threshold  q
• Is there a threshold-independent measure of classifier 

performance?
• ROC curve  is a plot of sensitivity against false alarm rate

obtained by varying the the classification threshold
• ROC curve shows the  sensitivity-specificity tradeoff for a 

given classifier
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ROC Curve
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Computing the ROC curve
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How to use an ROC curve?

• Each point on the ROC 
curve corresponds to a 
specific tradeoff 
between sensitivity and 
false positive rate

• The right tradeoff is 
application specific
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Trading off sensitivity against false positive rate
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Comparing two ROC curves

• A classifier h is  better than another classifier g if ROC(h) 
dominates the ROC(g)

• ROC(h) dominates ROC(g) à AreaROC(h) > AreaROC(g) 

𝑅𝑂𝐶(ℎ)

𝑅𝑂𝐶(𝑔)
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Comparing ROC curves
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Recall = Sensitivity = TPR
Precision = Specificity
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Misclassification Costs May Differ

• The cost of making a misclassification error may be 
higher for one class than the other(s)
• Consider a classifier trained to predict whether a 

nuclear reactor is likely to melt down in the next 6 
months
• Cost of a false negative prediction is much greater 

than that of a false positive prediction
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Example – Response to Promotional Offer

• “Naïve rule” (classify everyone as “0”) has error rate of 1%
• Using machine learning suppose 
• we can correctly classify eight 1’s as 1’s
• but at the cost of misclassifying twenty 0’s as 1’s and two 1’s as 

0’s.

• Suppose we send an offer to 1000 people, with 1% average 
response rate 

• “1” = response, “0” = nonresponse
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Predict as 1 Predict as 0
Actual 1 8 2
Actual 0 20 970

Error rate = (2+20) = 2.2%  (higher than naïve rate)

Confusion Matrix
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Introducing Costs & Benefits
Suppose:
• Profit from a “1” is $10
• Cost of sending offer is $1
Then:
• Under naïve rule, all are classified as “0”, so no offers are 

sent: no cost, no profit
• Under DM predictions, 28 offers are sent.

8 respond with profit of $10 each
20 fail to respond, cost $1 each
972 receive nothing (no cost, no profit)

• Net profit = $60
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Profit Matrix

Predict as 1 Predict as 0
Actual 1 $80 0
Actual 0 ($20) 0−20
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Statistically rigorous evaluation

• What we have done so far is to estimate the classifier’s 
performance on some available data.
• How well can a classifier be expected to perform on novel

data?
• Performance estimated on training data is often optimistic 

relative to performance on novel data
• We can estimate the performance (e.g., accuracy, 

sensitivity) of the classifier using evaluation data  (not 
used for training)
• How close is the estimated performance to the true

performance?
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Evaluation of a classifier with limited data

• Holdout method – use part of the data for training, and the 
rest for testing

• We may be lucky or unlucky – training data or test data may 
not be representative

• Solution – Run multiple experiments with disjoint training and 
test data sets in which each class is represented in roughly the 
same proportion as in the entire data set
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Classifier evaluation revisited
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Classifier evaluation

Data Label

0

0

1

1

0

1

0

Training data
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Classifier evaluation

Data Label

1

0

Pretend like we don’t 
know the labels



39

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G HonavarFall 2022

Classifier evaluation

Data Label

1

0

model

Classify

1

1

Pretend like we don’t 
know the labels
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Classifier evaluation

Data Label

1

0

model

Pretend like we don’t 
know the labels

Classify

1

1

Compare predicted labels 
to actual labels
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Comparing trained models 

Data Label

1

0

model 1
1

1

model 2
1
0

Is model 2 better than model 1?



- comparing different learning algorithms
- comparing different hyperparameters
- comparing different pre-processing techniques
- figuring out who has the best algorithm
- …
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Comparing algorithms

model 1 1

1

model 2
1

0

Predicted

1

0

Label

1

0

LabelPredicted

Evaluation

score 1

score 2

model 2 better if 
score 2 > score 1

When would we want to do this type of comparison?

Score can be 
any 
performanc
e measure 
of your 
choice
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Which model is better?

Model 1:  85% accuracy on a test set
Model 2:  80% accuracy on the same test set

Model 1:  85.5% accuracy on a test set
Model 2:  85.0% accuracy on the same test set

Model 1:  0% accuracy on a test set
Model 2:  100% accuracy on the same test set
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Comparing scores: significance

• Just comparing scores on one data set isn’t enough!
• We don’t particularly care that model 2 is better than model 

1 on the test data set that we happened to choose by 
chance
• We want to know whether model 2 is better than model 1 in 

general
• How can we be confident that the difference is real and not 

just due to random chance?
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Distribution of performance measure 

• We need the distribution of scores!  
• How can we get it?

68% 
confidence

95% 
confidence

99.7% 
confidence
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Repeated experimentation

Data Label
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Instead of one evaluation 
with a particular split of 
training and test data, run 
multiple evaluations, with 
different splits of training 
and test data
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Repeated experimentation
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K-fold cross validation
Tr

ai
ni

ng
 d

at
a

Split data into n 
equal-sized “folds”

…

Repeat for all splits:
train on K-1 “folds and  evaluate on 
the remaining “fold”

…

split 1 split 2

…

split 3

…
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K-fold cross validation
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K-fold cross validation

• Better utilization of labeled data
• More robust: don’t just rely on one evaluation set to 

evaluate the approach (or for optimizing parameters)
• Multiplies the computational overhead by K (have to 

train K models instead of just one)
• Typical choice of K is 5 or 10



51

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G HonavarFall 2022

K-fold cross-validation

Partition the data (multi) set S into K equal parts S1 ..SK 
with roughly the same class distribution as S.

𝐸𝑟𝑟𝑜𝑟𝑐 = 0
For i=1 to K do 

;iTrain SSS -¬iTest SS ¬

)( TrainSLearn¬a

}

{

),( TestSErrorErrorcErrorc a+¬

( )ErrorOutput
K

ErrorcError     ;÷
ø
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Estimating classifier performance
Recommended procedure 
• Use K-fold cross-validation (K=5 or 10) for estimating 

performance estimates (accuracy, precision, recall, points on 
ROC curve, etc.) and 95% confidence intervals around the mean

• Compute mean values of performance estimates and standard 
deviations of performance estimates

• Report mean values of performance estimates and their 
standard deviations or  95% confidence intervals around the 
mean

• Be skeptical – repeat experiments several times with different 
random splits of data into K folds!
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ROC and precision/recall curves

In the case of binary (2-class) classification
• Assume that the thresholds are comparable across folds.
• Pool the predictions across the K folds.
• Vary the prediction threshold and plot the ROC
In the case of multi-class classification, compute an ROC for 
each class against the rest (one versus all) using a procedure 
analogous to the above
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Leave-one-out cross validation

• K-fold cross validation where K = number of samples
• aka “jackknifing”
• pros/cons?
• when would we use this?
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Leave-one-out cross-validation

• K-fold cross validation with K = n where n is the total number of 
samples available

• n experiments – using n-1 samples for training and the 
remaining sample for testing 

• Leave-one-out cross-validation does not guarantee the same 
class distribution in training and test data!

Extreme case: 50% class 1, 50% class 2 
Predict majority class label in the training data 
True error – 50%; 

Leave-one-out error estimate – 100%!!!!!
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Leave-one-out cross validation

• Can be very expensive if training is slow and/or if there are a 
large number of examples
• Useful in domains with limited training data 
• maximizes the data we can use for training

• Some classifiers permit the estimation of leave-1-out 
performance measure without training and testing K models
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Comparing models: experiment 1
split model 1 model 2

1 87 88
2 85 84
3 83 84
4 80 79
5 88 89
6 85 85
7 83 81
8 87 86
9 88 89

10 84 85
average: 85 85

Is model 2 better 
than model 1?



58

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G HonavarFall 2022

Comparing models: experiment 2
split model 1 model 2

1 87 87
2 92 88
3 74 79
4 75 86
5 82 84
6

79 87
7 83 81
8 83 92
9 88 81

10 77 85
avg 82 85

Is model 2 better 
than model 1?
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Comparing models: experiment 3
split model 1 model 2

1 84 87
2 83 86
3 78 82
4 80 86
5 82 84
6 79 87
7 83 84
8 83 86
9 85 83

10 83 85
average: 82 85

Is model 2 better 
than model 1?
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Comparing models: 
split model 1 model 2

1 84 87
2 83 86
3 78 82
4 80 86
5 82 84
6 79 87
7 83 84
8 83 86
9 85 83

10 83 85
average: 82 85

split model 1 model 2

1 87 87
2 92 88
3 74 79
4 75 86
5 82 84
6 79 87
7 83 81
8 83 92
9 88 81

10 77 85
average: 82 85

What’s the difference?
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Comparing models

split model 1 model 2

1 84 87
2 83 86
3 78 82
4 80 86
5 82 84
6 79 87
7 83 84
8 83 86
9 85 83

10 83 85
average: 82 85

std dev 2.3 1.7

split model 1 model 2

1 87 87
2 92 88
3 74 79
4 75 86
5 82 84
6 79 87
7 83 81
8 83 92
9 88 81

10 77 85
average: 82 85

std dev 5.9 3.9

Even though the averages are same, the variance is different!
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Comparing models split model 1 model 2

1 80 82
2 84 87
3 89 90
4 78 82
5 90 91
6 81 83
7 80 80
8 88 89
9 76 77

10 86 88
average 83 85

std dev 4.9 4.7

Is model 2 better 
than model 1?
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Comparing 
models:

split model 1 model 2 score 2 –
score 1

1 80 82 2
2 84 87 3
3 89 90 1
4 78 82 4
5 90 91 1
6 81 83 2
7 80 80 0
8 88 89 1
9 76 77 1

10 86 88 2
average 83 85
std dev 4.9 4.7

Model 2 is never 
worse than model 1
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Comparing modelssplit model 1 model 2 model 2 –
model 1

1 80 82 2
2 84 87 3
3 89 90 1
4 78 82 4
5 90 91 1
6 81 83 2
7 80 80 0
8 88 89 1
9 76 77 1

10 86 88 2
average: 83 85

std dev 4.9 4.7

How do we decide if 
model 2 is better 
than model 1?
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Statistical tests

Setup:
• Assume some default hypothesis about the data that you’d 

like to disprove, called the null hypothesis
• e.g. model 1 and model 2 are not statistically different in 

performance

Test:
• Calculate a test statistic from the data (often assuming 

something about the data)
• Based on this statistic, with some probability we can reject 

the null hypothesis, that is, show that it does not hold
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t-test

• Tests whether or not two samples 
come from the same underlying 
distribution

• In our case, the two distributions 
of interest are the distributions of 
performance of two models e.g., 
on identical K-fold cross-validation 
runs
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t-test

Null hypothesis: model 1 and model 2 accuracies are no 
different, i.e. they come from the same distribution
Implication: probability that the difference in accuracies is due 
to random chance (low values are better)



68

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G HonavarFall 2022

Cross-validation based paired t-test

For our setup, we’ll do what’s called a “paired t-test”
• The values can be thought of as pairs, where they were 

calculated under the same conditions 
• In our case, the same train/test split

For almost all experiments, we’ll do a “two-tailed” version of the t-test

Note: This is not a perfect solution because in order to estimate the 
distribution of scores, the samples used should be independent, but in 
the case of cross-validation run, while the test data do not overlap 
between runs, training data do. For example, two runs of 10-fold CV, 
share 80% of the training data.
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Cross-validation based paired t-test: Is model A better than B?

Fold model A model B Difference
1 𝑠( 1 𝑠) 1 𝑑 1 = 𝑠( 1 − 𝑠) 1
2 𝑠( 2 𝑠) 2 𝑑 2 = 𝑠( 2 − 𝑠) 2
3 𝑠( 3 𝑠) 3 𝑑 3 = 𝑠( 3 − 𝑠) 3
.. .. .. ..
.. .. .. ..

𝐾 𝑠( 𝐾 𝑠) 𝐾 𝑑 𝐾 = 𝑠( 𝐾 − 𝑠) 𝐾

𝑑̅ =+
*+,

-

𝑑 𝑘 𝑡 =
𝑑̅ 𝐾

1
𝐾 −1 ∑*+.- 𝑑 𝑘 − 𝑑̅ /
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p-value

• The result of a statistical test is often a p-value

• p-value: the probability that the null hypothesis holds
• Specifically, if we re-ran this experiment multiple 

times (say on different data) what is the probability 
that we would reject the null hypothesis incorrectly 
(i.e. the probability we’d be wrong)
• High p-values are bad. Low p-values are good.

• Common values to consider “significant”: 
• 0.05 (95% confident)
• 0.01 (99% confident)
• 0.001 (99.9% confident)
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𝑡 statistic and 𝑝-values for different values of 𝐾

K K

Figure source: Nature Methods volume 10, pages 1041–1042 (2013)

For a given 𝑡, you can read off the corresponding 𝑝-value
Or use a 𝑝-value calculator which for a given 𝑡 and 𝐾−1, returns 𝑝
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Comparing models Is model B better 
than model A?

Compute the t-statistic 
and the p-value!

split model A model B Difference

1 80 82 2

2 84 87 3

3 89 90 1
4 78 82 4

5 90 91 1

6 81 83 2

7 80 80 0

8 88 89 1

9 76 77 1

10 86 88 2

𝑑̅=1.7

𝑡 =
𝑑̅ 𝐾

1
𝐾 −1 ∑*+.- 𝑑 𝑘 − 𝑑̅ /

𝑡 =
1.7 10
1/9 (13.7)

= 4.3572

𝑝-value= 0.001831

Model 2 is statistically significantly better than 1 at p-value < 0.01  



No… the problem is that we only have one test set and we can’t resample, etc. 
because then we’ll have looked at the test data!
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Statistical tests on test data

Labeled
Data

(data with labels)

All
Training

Data

Test
Data

Training
Data

Development
Data

Cross-validation with t-test

Can we do that here?
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Bootstrap resampling

Test set D with n samples
do m times:
- sample n examples with replacement from the test set to 

create a new test set D’
- evaluate model(s) on D’
calculate t-test on the collection of m results
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Bootstrap resampling

Test 1
sa

m
pl

e w
ith

 
re

pl
ac

em
en

t
Test
Data

Test m

…

Test 2
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Bootstrap resampling

model A

Test 1

Test 2

Test m

…

ev
alu

at
e 

m
od

el
 o

n 
da

ta

A score 1

A score 2

A score m

…
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Bootstrap resampling

model B

Test’ 1

Test’ 2

Test’ m

…

ev
alu

at
e 

m
od

el
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n 
da

ta

B score 1

B score 2

B score m

…
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Bootstrap resampling

A score 1

A score 2

A score m

…

B score 1

B score 2

B score m

…

paired t-test (or other analysis)
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Experimentation good practices

Never peek at your test data!
During development
• Compare different models and any user-specified 

parameters on development data
• Use cross-validation to get more consistent results
• If you want to be confident with results, use a t-test and 

look for p = 0.05 (or lower)

For final evaluation, use bootstrap resampling combined with a 
t-test to compare models
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How close is the estimated error to true error?

The true error of a hypothesis h 
with respect to a target function f 
and an instance distribution D is 

[ ])()(Pr)( xhxfhError
DxD ¹º

Î

The sample error of a binary classifier h with respect to a target function f and 
an instance distribution D is

otherwise 0),( ; iff 1),(
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Estimating classifier performance
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Evaluating the performance of a classifier

• Sample error estimated from training data is an optimistic
estimate

• For an unbiased estimate, h must be evaluated on an 
independent sample S (which is not the case if S is the training 
set!)

• Even when the estimate is unbiased, it can vary across samples!
• If h misclassifies 8 out of 100 samples

[ ] )()(  hErrorhErrorEBias DS -=

080
100
8 .)( ==hErrorS

How close is the sample error to the true error?
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How close is the estimated error to the true error?

• Choose a sample S of size n according to distribution D
• Measure )(hErrorS

)(hErrorS is a random variable (outcome of a random experiment)

?)( about conclude  wecan  what,)( Given hErrorhError DS

More generally, given the estimated performance of a hypothesis, 
what can we say about its actual performance?
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Evaluating performance when we can afford to test on a 
large independent test set

The true error of a hypothesis h with respect to a target 
function f and an instance distribution D is 

[ ])()(Pr)( xhxfhError
DxD ¹º

Î

The sample error of a classifier h with respect to a target 
function f and an instance distribution D is

otherwise 0),( ; iff 1),(
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Evaluating Classifier performance

Sample error estimated from training data is an optimistic
estimate

For an unbiased estimate, h must be evaluated on an 
independent sample S (which is not the case if S is the 
training set!)

Even when the estimate is unbiased, it can vary across 
samples!

If h misclassifies 8 out of 100 samples

[ ] )()(  hErrorhErrorEBias DS -=

080
100
8 .)( ==hErrorS

How close is the sample error to the true error?
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How close is estimated error to its true value?

Choose a sample S of size n according to distribution D
Measure )(hErrorS

)(hErrorS is a random variable (outcome of a random 
experiment)

?)( about conclude  wecan  what,)( Given hErrorhError DS

More generally, given the estimated performance of a classifier, 
what can we say about its actual performance?
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How close is estimated accuracy to its true value?

Question: How close is p (the true score, e.g., accuracy) to its 
estimate 𝑝̂?

This problem is an instance of a well-studied problem in 
statistics 
• The problem of estimating the proportion of a population 

that exhibits some property, given the observed proportion 
over a random sample of the population. 
• In our case, the property of interest is that a model h 

correctly (or incorrectly) classifies a sample.
• Testing the model h on a single random sample x drawn 

according to D amounts to performing a random experiment 
which succeeds if h correctly classifies x and fails otherwise. 
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How close is estimated accuracy to its true value?

The output of a classifier whose true error is s as a 
binary random variable which corresponds to the 
outcome of a Bernoulli trial with a success rate 𝑝 (the 
probability of correct prediction)

The number of successes r observed in N trials is a 
random variable 𝑌 which follows the Binomial 
distribution 

rnr pp
rnr

nrP --
-

= )(
)!(!

!)( 1
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Probability of observing r misclassified examples in a sample 
of size n:

ErrorS (h) is a Random Variable

rnr pp
rnr

nrP --
-

= )(
)!(!

!)( 1
r
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Recall  basic statistics

Consider a random experiment with discrete valued outcomes

The expected value of the corresponding random variable Y  is

The variance of Y is

The standard deviation of Y is

Myyy ,..., 21

)Pr()( i

M

i
i yYyYE =º å

=1

[ ]2])[()( YEYEYVar -º
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How close is estimated accuracy to its true value?

• The mean of a Bernoulli trial with success rate p = p
• Variance = p (1-p)
If N trials are taken from the same Bernoulli process, the 

observed success rate     has the same mean p 
and variance 

For large N, the distribution of      follows a Gaussian 
distribution

p̂

N
pp )1( -

p̂
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Binomial Probability Distribution

rnr pp
rnr

nrP --
-

= )(
)!(!

!)( 1

Probability 𝑃(𝑟) of r heads in 𝑛 coin flips, if 𝑝 = Pr(heads)
• Expected, or mean value of 𝑋, 𝐸[𝑋], is

å
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• Variance of X is

• Standard deviation of X, sX, is
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Estimators, Bias, Variance, Confidence Interval
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An 𝑁% confidence interval for some parameter 𝑝 that is the interval which 
is expected with probability 𝑁% to contain 𝑝
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Normal distribution approximates binomial

ErrorS(h) follows a Binomial distribution, with
• mean 
• standard deviation

We can approximate this by a Normal distribution with the same 
mean and variance when 𝑛𝑝(1 − 𝑝) ≥ 5

Say 𝑝 = 0.1 Then 𝑛 ≥ 0
(,..)(,.2)

≈ 55

For typical values of 𝑝 (classification error) 
and 𝑛 (test set size), 𝑛𝑝(1 − 𝑝) ≥ 5

)()( hErrorDhErrorS
=µ

n
hErrorhError SS

hErrorS

))()((
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Confidence interval for proportions

𝐸𝑟𝑟𝑜𝑟3 ℎ ± 𝑧∗
𝐸𝑟𝑟𝑜𝑟3 ℎ (1−𝐸𝑟𝑟𝑜𝑟3 ℎ )

𝑛 • Suppose error on 
a test set of 100 
samples is 0.1

• What is the 90% 
confidence 
interval for the 
true error?

0.1±1.64485 ,.,2
.,,

= 0.1 ± 0.05



96

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G HonavarFall 2022

One sided confidence interval

Sometimes we are interested in the confidence associated with the 
upper bound on error.
In the above example, we can be 97.5% confident that the error is 
not greater than 

𝐸𝑟𝑟𝑜𝑟3 ℎ + 𝑧∗
𝐸𝑟𝑟𝑜𝑟3 ℎ (1−𝐸𝑟𝑟𝑜𝑟3 ℎ )

𝑛



97

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G HonavarFall 2022

Evaluation of regression models

• We have considered evaluation of classifiers in detail
• We can apply all of the key ideas (cross-validation, 

bootstrap estimation, confidence intervals, comparison 
of models, comparison of algorithms) to the regression 
setting
• The key difference is the choice of the performance 

measure – typically mean squared error on the 
evaluation data (or test data)
• Confidence interval of error = (mean error) z*(std. 

deviation of error)/ 𝑛


