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• Function approximation is like classification except the 
labels are real valued

Example applications:

Function approximation (Regression)
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Predicting
• Stock value
• Income 
• Power consumption
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K nearest neighbor Function Approximator

Learning Phase
For each training example (Xi, f (Xi)), store the 
example in memory

Approximation phase 
Given a query instance Xq, identify the k nearest 

neighbors X1…Xk of Xq
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Value of a function (e.g., price of a product) at a query point is simply the average or 
inverse distance weighted average of the value of the function at the k nearest neighbors 
of the query point
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Regression
• For classification the output is nominal
• In regression the output is continuous
• Linear regression is perhaps the simplest approach
• Fit data with the best hyper-plane (line when the function is 

defined with respect to a single variable) which "goes 
through" the points

y
dependent

variable
(output)

x – independent variable (input)



Hyperplane for multiple linear regression
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Simple Linear Regression
• In the simplest case, we have one (input), independent variable x, 

and one (output) dependent variable y
• Multiple linear regression assumes an input vector x
• Multivariate linear regression assumes an output vector y

• We will "fit" the points with a linear hyper-plane (line in the 
simplest case)
• Which line should we use?
• Choose an objective function
• For simple linear regression we choose sum squared error (SSE)
• S (di – yi)2  =S (ei)2

• Thus, find the line which minimizes the sum of the squared 
residues (e.g. least squares)
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Curse of dimensionality

● The problem does not go away if we sample points 
randomly

● As the dimensionality n increases, smaller the fraction 
of samples in a n-dimensional volume 
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Calculus review

𝑥

𝑔 𝑥

𝑓 𝑥 =𝑥!

• A function of a real variable 𝑓(𝑥) is differentiable
at a point a if lim

!→#
$ %&! '$ %

! exists
• The limit is called the derivative of 𝑓(𝑥) at 𝑥 = 𝑎
• The the derivative of 𝑓(𝑥) is denoted by ($()
• If 𝑓 is differentiable at 𝑎, then f must be continuous at 𝑎

• 𝑔(𝑥) is not continuous, not differentiable
• 𝑓(𝑥) is continuous and differentiable
• ℎ(𝑥) is continuous but not differentiable at 𝑥 = 0
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Calculus review

𝑓 𝑥 = 𝑥%+3𝑥

𝑑(𝑢 + 𝑣)
𝑑𝑥 =

𝑑𝑢
𝑑𝑥 +

𝑑𝑣
𝑑𝑥

𝑑𝑓
𝑑𝑥 =
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Examples

𝑓 𝑥 = 𝑥 𝑥 + 3

𝑑(𝑢𝑣)
𝑑𝑥 = 𝑢

𝑑𝑣
𝑑𝑥 + 𝑣

𝑑𝑢
𝑑𝑥

𝑑𝑓
𝑑𝑥 =



27

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G HonavarFall 2022

Examples

𝑓 𝑥 =
𝑥(𝑥 + 3)
𝑥%

𝑑 𝑢
𝑣
𝑑𝑥 =

𝑣 𝑑𝑢
𝑑𝑥 −𝑢 𝑑𝑣

𝑑𝑥
𝑣%

𝑑𝑓
𝑑𝑥 =
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Partial derivatives and chain rule

( ) ( )

( )
( )

÷÷
ø

ö
çç
è

æ
¶
¶

÷÷
ø

ö
çç
è

æ
¶
¶

=
¶
¶

"

=
=

¹
¶
¶

=

å
= k

i
m

i ik

nii

m

i
i

n

x
u

u
z

x
zk

xxxfu
....uuφz

jix
x
f

xxxxff

1

1,0

1

21,0

  Then 

......Let 
Let  

ruleChain 

constant. as   all gby treatin obtained is 

,.....,Let X

• 𝑧 = 𝑓 𝑢, 𝑣 = 𝑢* +2𝑣
• 𝑢 = 𝑓+ 𝑥, 𝑦 = 2𝑥+y
• 𝑣 = 𝑓* 𝑥, 𝑦 = 𝑥* +𝑦
• ,-
,)
= ,-
,.

,.
,)
+ ,-
,/

,/
,)

𝑑𝑧
𝑑𝑥 = 2𝑢 2 + 2 2𝑥

𝑑𝑧
𝑑𝑥 = 4 2𝑥 + 𝑦 + 4𝑥

𝑑𝑧
𝑑𝑥 = 4 3𝑥 + 𝑦
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Taylor series approximation

• Suppose 𝑓 𝑥 = 𝑥%+1
• /0/1 = 2𝑥
• Suppose we want to approximate f(x) at 𝑥 = 1.01 given 𝑓(1) = 2
• 𝑓 1.01 ≈ 𝑓 1 +2 1.01 − 1 ≈ 2.02
• 𝑓(𝑥 +Δ𝑥) ≈ 𝑓 𝑥 + 3/0

/1 1
Δ𝑥
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Example
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Taylor series approximation of multi-variable functions
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Taylor series approximation of multi-variable functions

x = 
𝒙𝟏
⋮
𝒙𝑵

∇x = 

𝝏𝒇
𝝏𝒙𝟏
⋮
𝝏𝒇
𝝏𝒙𝑵

𝑓 𝐱𝟎 +𝐚 ≈ f 𝐱𝟎 + |∇8x 𝐱:𝐱𝟎 𝐚
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Taylor Series Approximation of Multivariate Functions
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Minimizing functions using Gradient descent
• Suppose we want to minimize 𝑓(𝑧) with respect to 𝑧
• Suppose we start at 𝑧 = 𝑧%
• Suppose we want to move to 𝑧 = 𝑧& such that 𝑓 𝑧& < 𝑓 𝑧%
• Change in 𝑧, Δ𝑧 = 𝑧& − 𝑧%
• Change in 𝑓, Δ𝑓 = 𝑓 𝑧& − 𝑓 𝑧%
• Gradient of 𝑓 at 𝑧% = A'(

') )!
≈ *(

*)

• We want Δ𝑓 < 0 (𝑓 decreases as we move from 𝑧%to 𝑧& )
• We should choose.                                where 𝜂 > 0

• Δ𝑓 = −𝜂 A'(
') )!

!
is never positive (as desired)

• Hence, we must update 𝑧 in the direction of the negative gradient of 𝑓
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Minimizing / Maximizing Multivariate Functions
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Minimizing / Maximizing Functions

x2

Gradient descent / ascent  
is guaranteed to find the 
minimum / maximum 
when the function has a 
single minimum / 
maximum

x1

f (x1, x2)

XC= (x1C, x2C)

X*
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● When does gradient descent stop?  
● Technically (when      is chosen well) the algorithm will halt near 

stationary points of a function, typically minima or saddle 
points.  

● How do we know this?  By the very form of the gradient 
descent step itself.  

● Say the step

does not move from the prior point             significantly.
● Then this can mean only one thing: that the direction we are 

traveling in is vanishing i.e., 
● This is - by definition - a minimum, or saddle point) of the 

function.



Hyperplane for multiple linear regression
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Simple Linear Regression
• In the simplest case, we have one (input), independent variable x, 

and one (output) dependent variable y
• Multiple linear regression assumes an input vector x
• Multivariate linear regression assumes an output vector y

• We will "fit" the points with a linear hyper-plane (line in the 
simplest case)
• Which line should we use?
• Choose an objective function
• For simple linear regression we choose sum squared error (SSE)
• S (di – yi)2  =S (ei)2

• Thus, find the line which minimizes the sum of the squared 
residues (e.g. least squares)
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Linear regression
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Learning Task

  

€ 

W = W0.........Wn[ ]T  is the weight vector 

Xp = X0p ....Xnp[ ]T  is the pth  training sample

y p = Wi
i
∑ Xip =W •  Xp is the output of the neuron  for input Xp

Xp = f Xp( )   is the desired output for input Xp

ep = dp − y p( )     is the error of the neuron on input Xp

S = Xp,dp( ){ }  is`a  (multi) set of training examples

ES W( ) = ES W0,W1,..........Wn( ) =
1
2

ep
2

p
∑  is the estimated 

                                                          error of W on training set S

Goal :  Find W* = argmin
W

ES W( )

𝑑+
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Learning linear functions

1w

0w

ES

The error is a quadratic 
function of the weights in 
the case of a linear 
function

tW

*W
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Learning linear functions
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( ) ip
p

ppii xydηww å -+¬  
Batch Update

( ) ipppii xydηww  -+¬

Per sample Update
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General Algorithm

• Algorithm (Model algorithm for n-dimensional 
unconstrained minimization).  Let xk be the current 
estimate of x*.
• [Test for convergence] If the conditions for convergence 

are satisfied, the algorithm terminates with xk as the 
solution.

• [Compute a search direction] Compute a non-zero n-
vector pk, the direction of the search.

• Different algorithms differ primarily in their choice of the 
search direction
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Momentum update
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The momentum update allows effective learning rate to 
increase when feasible and decrease when necessary. 
Converges for 0£a<1
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Locally weighted regression

Locally weighted regression involves calculating an 
approximation of the function value for a given input 
based on its nearest neighbors when needed during 
the approximation phase as opposed to during the 
learning phase. 

Let the approximation be of the form
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in a small neighborhood around a query Xq
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Locally weighted regression
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Minimize the error over the K nearest neighbors of Xq

( )( )

( )( )å

å

Î

Î

-+¬

¶

¶
-¬

-=

)(

)(

)(

)(

)()(

q

q

XKNNX
iii

i

q
ii

XKNNX
q

xXgXfηww

w
XE

ηww

XgXfXE 2

2
1



49

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G HonavarFall 2022

Locally weighted regression

Minimize the error over all the neighbors of Xq in the training set 
weighted by an inverse function of distance to the neighbors
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Locally weighted regression

Minimize the error over all the neighbors of Xq in the training 
set weighted by an inverse function of distance over the K
nearest neighbors
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