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Quick review of Python

• https://colab.research.google.com/?authuser=1

https://colab.research.google.com/?authuser=1
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Now, on to some real content …
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• How would you write a program to distinguish a picture
of you from a picture of someone else?

• Provide examples pictures of you and pictures of 
other people and let a classifier learn to distinguish 
the two.

• How would you write a program to determine whether a 
sentence is grammatical or not?

• Provide examples of grammatical and ungrammatical 
sentences and let a classifier learn to distinguish the 
two.

• How would you write a program to distinguish cancerous
cells from normal cells?

• Provide examples of cancerous and normal cells and 
let a classifier learn to distinguish the two.

Classification

4
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Example: To play or not to play tennis

5

Example dataset

Three key elements
• Class label (“label”, denoted by y)
• Features (“attributes”)
• Feature values (“attribute values”, denoted by x)
Feature values can be binary, nominal or continuous

A labeled dataset is a collection of (x, y) pairs
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Example: To play or not to play tennis?

6

Example dataset

Task:

Predict the class of this “test” sample 
Requires us to generalize from the training data
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What is a good representation for images?

Example (face recognition)

7

Pixel values? Edges?
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Example (chair detection)
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A deeper dive into data

• What do we mean by data?
• Digital representation of objects, entities, persons, 

events, processes, etc. in the real world
• Employees
• Genomic sequences
• Social relationships
• Images
• Documents
• Medical histories
• …..

9
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Tabular data
• Objects or entities are 

represented by rows in a table.
• Columns of the table encode 

properties or characteristics, 
features,  of the objects

• Each object is represented by 
specifying the values of each 
attribute

• We call the set of all possible 
values of an attributes its 
domain
• Domain of Refund is {Yes, No}
• Domain of Taxable Income is ℜ+

(positive real numbers)

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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The way you encode an attribute has consequences
• Two different encodings of lengths of objects
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This scale 
preserves  
the ordering  
and additivity 
property of 
length.

This scale 
preserves  
only the 
ordering 
property of  
length.
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Attributes come in many flavors
• There are different types of attributes
• Nominal
• Examples: ID numbers, eye color, zip codes

• Ordinal
• Examples: rankings (e.g., taste of potato chips on a scale from 1-

10), grades, height {tall, medium, short}
• Interval
• Examples: calendar dates, temperatures in Celsius or 

Fahrenheit.
• Ratio
• Examples: temperature in Kelvin, length, counts, elapsed time 

(e.g., time to run a race)
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Properties of Attribute Values 

• Different types of attributes possess different properties:
• Distinctness:  =  ¹
• Order:  <  >
• Meaningfulness of differences +  -

• Meaningfulness of ratios  *  /
• Nominal attribute: distinctness
• Ordinal attribute: distinctness & order
• Interval attribute: distinctness, order & 

meaningfulness of  differences
• Ratio attribute: All 4 properties
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Measurement is a tricky subject
• Temperature is measured in Kelvin, degrees Celsius, and degrees 

Fahrenheit
• Temp in Kelvin = Temp in degrees Celsius + 273.15
• Temp in Fahrenheit = (Temp in degrees Celsius)(9/5)+32

• Is it physically meaningful to say that a temperature of 10 ° Celsius 
is twice as high as 5° Celsius?
• Not really. Think about the measurement scale. It is relative to 

the freezing and boiling point of water, not absolute.
• Consider measuring height

• If Bill’s height is three inches above average and Bob’s height is 
six inches above average, then would we say that Bob is twice 
as tall as Bill?
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 Attribute 
Type 

Description 
 

Examples 
 

Operations 
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Nominal 
 

Nominal attribute 
values only  
distinguish. (=, ¹) 

zip codes, employee 
ID numbers, eye 
color, sex: {male, 
female} 

mode, entropy, 
contingency 
correlation, c2 
test 
 

Ordinal Ordinal attribute 
values also order 
objects.  
(<, >) 

hardness of minerals, 
{good, better, best},  
grades, street 
numbers 

median, 
percentiles, rank 
correlation, run 
tests, sign tests 

N
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Q
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nt
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Interval For interval 
attributes, 
differences between 
values are 
meaningful. (+, - ) 

calendar dates, 
temperature in 
Celsius or Fahrenheit 

mean, standard 
deviation, 
Pearson's 
correlation, t and 
F tests 

Ratio For ratio variables, 
both differences and 
ratios are 
meaningful. (*, /) 

temperature in Kelvin, 
monetary quantities, 
counts, age, mass, 
length, current 

geometric mean, 
harmonic mean, 
percent variation 
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 Attribute 
Type 

Transformation 
 

Comments 
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Nominal 
 

Any permutation of values 
 

If all employee ID numbers 
were reassigned, would it 
make any difference? 
 

Ordinal An order preserving change of 
values, i.e.,  
new_value = f(old_value)  
where f is a monotonic function 
 

An attribute encompassing 
the notion of good, better best 
can be represented equally 
well by the values {1, 2, 3} or 
by { 0.5, 1, 10}. 
 

N
um
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ic

 
Q
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Interval new_value = a * old_value + b 
where a and b are constants 

Thus, the Fahrenheit and 
Celsius temperature scales 
differ in terms of where their 
zero value is and the size of a 
unit (degree). 

Ratio new_value = a * old_value 
 

Length can be measured in 
meters or feet. 
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Discrete and Continuous Attributes 

• Discrete Attribute
• Has only a finite or countably infinite set of values
• Examples: zip codes, counts, or the set of words in a 

collection of documents 
• Often represented as integer variables.   
• Binary attributes are a special case of discrete attributes 

• Continuous Attribute 
• Takes real numbers as values
• Examples: temperature, height, or weight.  
• Practically, real values can only be measured and represented 

using a finite number of digits.
• Continuous attributes are typically represented as floating-

point numbers.  
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Asymmetric Attributes
• Only presence (a non-zero attribute value) matters

• Words present in documents
• Items present in customer transactions

• If you run into a friend at the grocery store would you ever say 
the following?

“We have similar taste because I did not buy almost every item 
that you also did not buy”
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Points to remember about attribute types

• The types of operations you choose should be “meaningful” for 
the type of data you have

• Distinctness, order, meaningful intervals, and meaningful 
ratios are only four (among many possible) properties of 
data

• The data type you see – often numbers or strings – may not 
capture all the properties or may suggest properties that are 
not present

• Analysis may depend on these other properties of the data
• In the end, what is meaningful may be domain-specific
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Important Characteristics of Data

• Dimensionality (number of attributes)
• Sparsity
• Resolution
• Size
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Types of data
• Tabular data
• Document Data
• Transaction Data

• Graph
• World Wide Web
• Molecular Structures
• Social networks

• Ordered
• Clinical histories
• System call sequences
• Genome Sequences Sequence Data
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Tabular data
• Data that consists of a collection of records, each of which 

encoded by a fixed set of attributes 
Tid Refund Marital 

Status 
Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Tabular data
• If data objects have the same fixed set of numeric attributes, 

then the data objects can be thought of as points in a multi-
dimensional space, where each dimension represents a distinct 
attribute 

• Such a data set can be represented by an m by n matrix, where 
there are m rows, one for each object, and n columns, one for 
each attribute



Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Fall 2022 Vasant G Honavar

Document Data
• Each document is encoded using a vector of word frequencies

• Each term is a component (attribute) of the vector
• The value of each component is the number of times the 

corresponding word occurs in the document. 

Document 1

season

tim
eout

lost

w
in

gam
e

score

ball

play

coach

team

Document 2

Document 3

3 0 5 0 2 6 0 2 0 2

0

0

7 0 2 1 0 0 3 0 0

1 0 0 1 2 2 0 3 0
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Transaction Data
• A special type of data, where 

• Each transaction involves a set of items.  
• For example, consider a grocery store.  The set of products 

purchased by a customer during one shopping trip 
constitute a transaction, while the individual products that 
were purchased are the items.

• Can represent transaction data as record data 

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 
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Graph Data 
• Examples: Social network, protein interaction network, 

protein structure, criminal network



Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Fall 2022 Vasant G Honavar

Ordered Data 

• Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC
CGCAGGGCCCGCCCCGCGCCGTC
GAGAAGGGCCCGCCTGGCGGGCG
GGGGGAGGCGGGGCCGCCCGAGC
CCAACCGAGTCCGACCAGGTGCC
CCCTCTGCTCGGCCTAGACCTGA
GCTCATTAGGCGGCAGCGGACAG
GCCAAGTAGAACACGCGAAGCGC
TGGGCTGCCTGCTGCGACCAGGG
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Ordered Data

• Spatially indexed 
temporal data

Average Monthly 
Temperature of 
land and ocean
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Data challenges …

• Noise
• Wrong data 
• Fake data 
• Missing data
• Duplicate data 
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Machine Learning for Classification

30
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Ingredients for classification

31

Idea: Incorporate your knowledge of the problem into a learning system
Sources of knowledge:
ü Feature representation

Ø Crucial for the success of machine learning
Ø Can be problem-specific
Ø A good representation takes you half way

ü Training data
Ø High quality labeled data can be hard to get
Ø We may have to get by with the available data
Ø Data may be biased for various reasons

ü Model training
Ø No single learning algorithm outperforms all others on every task (“no 

free lunch”)
Ø Different algorithms have different inductive biases
Ø Different algorithms make different assumptions
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Nearest Neighbor Classifiers
• Basic idea:

• If it walks like a duck, quacks like a duck, then it’s probably a 
duck

Training 
Samples

Test 
Sample

Compute 
Distance

Choose k of the 
“nearest” labeled 
samples
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Nearest-Neighbor Classifiers Require three things
– The set of stored training 

samples and their labels
– Distance Metric to compute 

distance between samples
– The value of K, the number of 

nearest neighbors to retrieve
! To classify a query sample:

– Compute distance to training 
samples

– Identify K nearest neighbors 
– Use class labels of the K 

nearest neighbors to 
determine the class label of  
the query sample (e.g., by 
taking majority vote)

Unknown recordQuery sample

33
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Definition of Nearest Neighbor

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a sample x are data points that have 
the k smallest distance to x

34
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K nearest neighbor classifier

Data samples are assumed to lie in an n-dimensional 
space – e.g., the Euclidean space 

An instance X is described by a feature vector

Where xip denotes the value of the ith feature in Xp

( ) ( ) ÷÷
ø

ö
çç
è

æ
-= å

=

N

i
iriprp xxXXd

1

2,

Defines the Euclidean distance between two points in the Euclidean space

𝑋!=[𝑥"!⋯𝑥#!]
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Standardization

Standardization can be important when the variables 
are not all measured on the same scale
• 0-1 scaling 

4, 3, 1 2
e.g. 3 à (3-min)/(max-min)=(3-1)/(4-1)=2/3

• Z-score scaling: subtract out the mean, divide by std. 
deviation
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K nearest neighbor Classifier

Learning Phase
For each training example (Xi, f (Xi)), store the 
example in memory

Classification phase 
Given a query instance Xq, identify the k nearest 

neighbors X1…Xk of Xq
Assign  Xq the label of the majority class

where 

( ) ( ) ., andiff , 11 =d==d bab  aba

𝑔 𝑋! = 𝑎𝑟𝑔𝑚𝑎𝑥𝜔 )
"#$

%

𝛿 𝜔, 𝑓 𝑋"
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Distance weighted K nearest neighbor Classifier

Learning Phase
For each training example (Xi, f (Xi)), store the 
example in memory

Classification phase 
Given a query instance Xq, identify the k nearest 

neighbors of Xq - KNN (Xq)= {X1…Xk}

And obtain a weighted vote, with each nearest 
neighbor getting a vote in favor of its class label that 
is weighted by the distance to the query

( )2
1

qi
i XXd
w

,
=
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Distance Measures
• Distance

• Depends on the data representation 
• Distance measure chosen

ID Gender Age Salary
1 F 27 19,000
2 M 51 64,000
3 M 52 100,000
4 F 33 55,000
5 M 45 45,000

w1 w2 w3 w4 w5 w6
Doc1 0 4 0 0 0 2
Doc2 3 1 4 3 1 2
Doc3 3 0 0 0 3 0
Doc4 0 1 0 3 0 0
Doc5 2 2 2 3 1 4

An Employee DB Word Frequencies for Documents

Representation has to be chosen with some care
Distance measure should be chosen to work with the representation



40

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Fall 2022 Vasant G Honavar

Distance measures

• d (p, q) between two points p and q is a proper distance 
measure if it satisfies:
1. Positive definiteness:

d (p, q) ³ 0   for all p and q and 
d (p, q) = 0 only if p = q. 

2. Symmetry: d (p, q) = d (q, p) for all p and q.
3. Triangle Inequality:

d (p, r) £ d (p, q) + d (q, r) for all points p, q, and r.  
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Cosine Distance
• If d1 and d2 are two document vectors, then

1-cos( d1, d2 ) = 1-(d1 • d2) / ||d1|| ||d2|| ,
where • indicates vector dot product and || d || is the

length of vector d.

• Example:
d1 =  3 2 0 5 0 0 0 2 0 0 
d2 =  1 0 0 0 0 0 0 1 0 2

d1 • d2=  3x1 + 2x0 + 0x0 + 5x0 + 0x0 + 0x0 + 0x0 + 2x1 + 0x0 + 0x2 = 5
||d1|| = (3x3+2x2+0x0+5x5+0x0+0x0+0x0+2x2+0x0+0x0)0.5 =  (42) 0.5 = 6.481
||d2|| = (6) 0.5 = 2.245

cos( d1, d2 ) = .3150
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Distance Measures

Distances in vector spaces

• Euclidean distance ∑&#$' 𝑝& − 𝑞&
(

• Minkowski distance 
• a generalization of Euclidean distance

•
! ∑&#$' 𝑝& − 𝑞&

)

Distance measures in Boolean spaces
• n=1 Manhattan distance
• n=2 Euclidean distance
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Distance measures for data with nominal attributes

• Nominal attributes can take 2 or more values, e.g., red, yellow, 
blue, green (generalization of a binary attribute)

• Simple matching – distance between two objects is simply the 
number of mismatched attributes divided by the total  number 
of attributes

• One hot encoding – Encode each M-valued nominal attribute an 
M-bit vector
Red: 1 0 0 0, Yellow: 0 1 0 0; Blue: 0 0 1 0 …

• Use distance measures designed for vectors …
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Decision Boundary induced by the 1 nearest neighbor classifier
form a Voronoi diagram

Query points in the polygon surrounding the training data point are closer 
to it than any other training data point 

Manhattan distance Euclidian distance

Image source: Wikipedia
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Principles of Machine 

Learning, IST 597K, Spring 
2017, (C) Vasant Honavar

P-spectrum similarity for sequences over an alphabet 
• The p-spectrum of a string is the histogram – vector of 

number of occurrences of all possible contiguous substrings –
of length p

• We can define a similarity function K(s, t) over å* ´ å*  as  the 
inner product of the p-spectra of s and t.

€ 

s = statistics
t = computation
p = 3
Common substrings :  tat, ati
K(s,t) = 2
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Can you think of a similarity function for graphs?

• Two graphs are similar if their k-hop neighborhoods are similar. 

46
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Nearest Neighbor Classification…

• Choosing the value of k:
• If k is too small, the model can be sensitive to noise 
• If k is too large, neighborhood may include too many 

samples from other classes

X
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• Nearest neighbor classifiers are conceptually simple
• Learn by simply memorizing the training data
• The computational effort of learning is low
• The storage requirements of learning is high 

– need to memorize the training data
• Cost of classifying new instances can be high

– Use efficient data structures and algorithms for nearest neighbor search, 
k-d trees, e.g., locality sensitive hashing

• A distance measure needs to be defined over the input space
• Performance degrades when 

• Dimensionality increases
• The number of irrelevant attributes increases
• The attributes are highly correlated
– Need to perform feature selection or dimensionality reduction 

Nearest neighbor classifiers
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K-d Tree
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Similarity measures in high dimensions
• As we increase the number of Dimensions, our data 

becomes more sparse (the ”volume” of the space increases 
exponentially with the number of dimensions)

• As we increase the dimensions of our data, the average 
similarity  between pairs of data points decreases.

• In the limit, the average similarity between the closest 
points approaches the average similarity between the 
farthest points. 

50



51

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Fall 2022 Vasant G Honavar 51



52

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Fall 2022 Vasant G Honavar

• Function approximation is like classification except the 
labels are real valued

Example applications:

Function approximation (Regression)

52

Predicting
• Stock value
• Income 
• Power consumption
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K nearest neighbor Function Approximator

Learning Phase
For each training example (Xi, f (Xi)), store the 
example in memory

Approximation phase 
Given a query instance Xq, identify the k nearest 

neighbors X1…Xk of Xq

( )
K

Xf
Xg

i

K

l
q

)(å
=¬ 1

Value of a function (e.g., price of a product) at a query point is simply the average or 
inverse distance weighted average of the value of the function at the k nearest neighbors 
of the query point
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Lab: Nearest Neighbor Classifier

https://colab.research.google.com/drive/1m71GlCWdEovGlAhVxlwq68qrsIkYda6r?usp=sharing


