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What if the data are not linearly separable?

• Classic solutions:
• Pick a suitably parameterized non-linear function
• Engineer features such that the data are likely to become 

separable in the feature space 
• Both approaches involve too much ad hoc trial and error

• Modern solutions:
• Use kernel trick and maximize margin (or regularize)
• Representation learning

Example

Suppose samples from two classes are not linearly separable in the 
most natural feature representation.

vs
No good linear separator 
in pixel representation
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Classifier engineering

Idea: 
• Try out nonlinear decision boundaries, e.g., 𝐰!𝐱 + 𝐱!𝐁 𝐱 + b = 0
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Dealing with data that are not linearly separable
Idea: 
• Map data samples  from the original input space to some higher-

dimensional feature space where they become separable and 
learn a separating hyperplane in the feature space

Φ:  x→ φ(x)



5

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G HonavarFall 2022

• In feature space [z1 , z2 ] the two 
classes 2 become linearly separable. 

• So EXOR is learnable in the feature 
space [z1 , z2 ] 

Exclusive OR revisited 

z1

z2

(0,0)

(1,1)

Decision boundary

(0,1) and (1,0)

𝜑! 𝐱 =𝜑! 𝑥!, 𝑥" = 𝑒 𝐱$𝐰! " = 𝑧!
𝜑" 𝐱 = 𝜑" 𝑥!, 𝑥" = 𝑒 𝐱$𝐰" " = 𝑧"

𝐰!= 1,1 &

𝐰"= 0,0 &

x 𝑧! 𝑧"
00 𝑒" 1

01 𝑒! 𝑒!

10 𝑒! 𝑒!

11 1 𝑒"
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Dealing with non-separable data

• Map input data to feature space where the classes become 
separable
• The resulting feature space often is of a higher dimension than 

the original input space
• Sometimes, linear separability requires the feature space to be 

infinite dimensional
• Learn a separating hyperplane in the feature space
Challenges
• How to cope with a high dimensional, perhaps even infinite 

dimensional feature space (how do you compute 𝐰 ' 𝐱when the 
two vectors are infinite dimensional?)
• How to ensure good generalization on samples not present in the 

training data ? 
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Dealing with non-separable data
Challenges
• How to cope with high dimensional, perhaps even infinite 

dimensional feature space (How do you compute 𝐰 ' 𝐱when the 
two vectors are infinite dimensional?)
• Kernel trick: Allows dot product in the feature space to be 

computed using dot product in the input space
• How to ensure good generalization on samples not present in 

the training data ? 
• Maximum margin separating hyperplane: Find a separating 

hyperplane that maximizes the margin of separation 
between the classes in the kernel induced feature space

• These two ideas came together for the first time in support 
vector machines, and revolutionized machine learning
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Kernel trick

• All of the algorithms we have considered for learning a separating 
hyperplane, e.g., perceptron, work by adding or subtracting 
(depending on the sign of the difference between the desired and 
actual output) a misclassified sample to an arbitrary weight vector. 

• The final weight vector 𝐰 = [ 𝑤", ⋯𝑤# ]T is a linear combination of 
training samples 

• The 𝛼$ are positive coefficients, proportional to the number of times 
the misclassification of 𝐱$ has caused the weight vector 𝐰 to be 
updated, and 𝑑$ the sign of the net contribution of 𝐱$ to the weight 
update.

• Key observation: 𝐰 lies in the space spanned by the training samples

𝐰 =-
$%"

&

𝛼$𝑑$ 𝐱$

Aizerman
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Kernel trick

• The final weight vector 𝐰 = [ 𝑤", ⋯𝑤# ]T is a linear combination of 
training samples 

• Key observation: 𝐰 lies in the space spanned by the training samples

𝐰 =-
$%"

&

𝛼$𝑑$ 𝐱$

Aizerman

𝐰 =1
1
0
0
+1

0
0
1
=

1
0
1

[0,0,1]#

[1,0,0]# 𝐰 = [1,0,1] #
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Kernel trick

•What is a kernel?
• 𝐾: 𝐷𝐱×𝐷𝐱 → ℜ is a kernel function if there exists an implicit 

mapping 𝜑 such that 𝐾 𝐱$, 𝐱/ = 𝜑 𝐱$ ' 𝜑 𝐱/
• That is, a kernel function implicitly defines the dot product 

between two samples in a (kernel induced) feature space.
• Hence, we can get linear machines to operate in a kernel 

induced feature space by replacing the pairwise dot product 
between data samples in the input space by 𝐾 𝐱$, 𝐱/

Aizerman
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O
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O
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X
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O
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O
O
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X
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X
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Kernel induced feature space

𝑧2

original space

f-space

Define  
𝐾 𝐱#, 𝐱$ = 𝐱# % 𝐱$

%

= 𝑥&#𝑥&$ + 𝑥%# 𝑥%$
%

= 𝑥&#% 𝑥&$% + 𝑥%#% 𝑥%$% +2 𝑥&#𝑥&$ 𝑥%#𝑥%$
= 𝑥&#% 𝑥%#% 2𝑥&# 𝑥%#

'
% 𝑥&$% 𝑥%$% 2𝑥&$ 𝑥%$

= 𝜑 𝐱# % 𝜑 𝐱$

Kernel induced feature space
(𝑥&, 𝑥%)→ 𝜑 𝐱 = 𝑥&% 𝑥%% 2𝑥& 𝑥%

𝐱# = 𝑥&# 𝑥%#
'

𝐱$ = 𝑥&$ 𝑥%$
'
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The magical beauty of Kernel functions

• 𝐾 𝐱$, 𝐱/ is expressed as a function of the dot product
𝐱$ ' 𝐱/ in the input space

• Yet it implicitly yields the dot product between the images 
of 𝐱$ and 𝐱/ in the feature space 𝜑

𝐾 𝐱$, 𝐱/ =𝜑 𝐱$ ' 𝜑 𝐱/
• Thus, the kernel function 𝐾 𝐱$, 𝐱/ makes it possible to 

compute the dot product 𝜑 𝐱$ ' 𝜑 𝐱/ between high-
dimensional, even infinite dimensional feature vectors 
efficiently using the dot product 𝐱$ ' 𝐱/ in the low, finite 
dimensional input space

• Given a function 𝐾, it is possible to verify that it is a kernel 
function (we will return to this later).
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Kernel trick

• Kernel trick introduced above can be generalized so as to
“kernelize” any machine learning algorithm that uses linear 
model for classification or regression 
• Support vector machine
• Linear regression
• …… and many others

• Key idea: the weight vector learned by linear classifiers, e.g., 
perceptron, SVM, lies in the space spanned by the data 
samples
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Kernelizing a broad class of loss functions

• We will introduce an approach to kernelizing any loss function 
that is expressed as a function of the dot product of 𝐰 and 𝐱
• Key idea: the weight vector learned by linear classifiers, e.g., 

perceptron, SVM, lies in the space spanned by the data samples
• This treatment has several advantages over the standard 

treatment of kernel trick in SVM
• It does not require us to get into constrained convex 

optimization 
• It relies on only elementary matrix algebra
• It is very general and can be used to kernelize a broad class of 

loss functions used in machine learning for classification, 
regression, dimensionality reduction, and clustering
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Example

𝐅 =
1 0
0 0
0 1

𝐰 =1
1
0
0
+1

0
0
1
=

1
0
1

𝐮 =1
1
0
0
+1 

0
0
1
+ 0.5

0
1
0

[0,0,1]#

[0,1,0]#

[1,0,0]# 𝐰 = [1,0,1] #

𝐮 = [1, 0.5, 1] #
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Kernelizing two-class Perceptron with softmax loss
● Let 𝜑𝑝 = 𝜑1 𝐱𝑝 𝜑2 𝐱𝑝 ⋯𝜑𝑀 𝐱𝑝

𝑇
be the kernel-induced feature representation of 

sample 𝐱𝑝
● Let 𝐰 = 𝑤1𝑤2⋯𝑤𝑀 𝑇 be the corresponding weight vector
● Recall 𝐰 ∙ 𝜑𝑝 + 𝑏 = 𝜑𝑝𝑇 𝐰 + 𝑏. 
● So the perceptron loss in the kernel induced feature space is

𝐸𝑠𝑜𝑓𝑡 𝐰, 𝑏 = :
𝑝

max 0, −𝑑𝑝 𝜑𝑝𝑇 𝐰 + 𝑏

𝐸-.//01 𝐰, 𝑏 ≈ ∑𝑝 log 𝑒0 + 𝑒− 𝜑𝑝𝑇 𝐰+𝑏 𝑑𝑝 ≈ ∑𝑝 log 1 + 𝑒9 :#$ 𝐰;< =#

● Let 𝚽 = 𝛗1𝛗2⋯𝛗𝑃 (𝑀×𝑃 matrix formed by stacking the kernel-induced feature 
vectors for the 𝑃 samples)

● From the preceding proposition of the fundamental theorem of linear algebra, we can 
write 𝐰 = 𝚽 𝐳 + 𝐫 where 𝚽 𝑇𝐫 = 𝟎𝑃×1 (because r is orthogonal to the space spanned 
by the columns of 𝚽)
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Kernelizing two-class Perceptron with softmax loss

𝐸NOPPQR 𝐰,𝑏 =-
$

log 1 + 𝑒S T@A 𝐰UV W@

𝐰 = 𝚽𝐳+ 𝐫where 𝚽 !𝐫 = 𝟎&×"

𝐸NOPPQR 𝐳, 𝑏 = ∑$ log 1 + 𝑒SW@ 𝛗@A 𝚽𝐳U𝐫 UV

● Let 𝐊= 𝚽!𝚽, the 𝑃×𝑃 kernel matrix (𝑃 ×𝑀matrix multiplied by 
𝑀×𝑃 matrix yielding a 𝑃×𝑃 matrix)

● Then 𝐤$ =𝚽!𝛗$ (𝑃 ×𝑀matrix multiplied by 𝑀×1matrix which 
gives a 𝑃 ×1matrix) is the 𝑝th column of 𝐊

● Hence 𝛗$!𝚽= 𝐤$! (1 ×𝑃 matrix)
● Note: Dimensions work out in matrix products

∴ 𝐸NOPPQR 𝐳, 𝑏 = ∑$ log 1 + 𝑒SW@ 𝛗@A 𝚽𝐳U𝐫 UV
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Kernelizing two-class Perceptron with softmax loss

𝐸NOPPQR 𝐳, 𝑏 = ∑$ log 1 + 𝑒SW@ 𝐤@A𝐳UV

Note:
● The loss function is independent of the d imensionality of the 

kernel-induced feature space
● The weight vector 𝐳 has as many components as there are training 

samples
● In practice, we want to add a regularization term, 

e.g., YZ 𝐰 Z = Y
Z𝐰

!𝐰 = Y
Z 𝚽𝒛 !𝚽𝒛 = Y

Z𝒛
!𝚽!𝚽𝒛 = Y

Z𝒛
! 𝐊 𝒛

where we have used 𝐰 Z=𝐰!𝐰 , 𝚽𝒛 != 𝒛!𝚽! and 𝚽!𝚽= 𝐊

𝐸NOPPQR[ 𝐳, 𝑏 = ∇\∑$ log 1 + 𝑒SW@ 𝐤@A𝐳UV + Y
Z𝒛

! 𝐊 𝒛
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Minimizing the Kernelized two-class Perceptron with 
softmax loss

∇( 𝐸)*++,-. 𝐳, 𝑏 = ∇(/
#/&

0

log 1 + 𝑒12@ 𝐤@A𝐳56 +∇𝒛
𝜆
2𝒛

' 𝐊 𝒛
P

∇B 𝐸-.//01C 𝐳, 𝑏 = ∑DE!F !

!;G$%& 𝐤&(𝐳*+
∇𝒛 1 + 𝑒9=& 𝐤&(𝐳;< + K

"
∇𝒛 𝒛# 𝐊 𝒛

= ∑DE!F !

!;G%&# 𝐤#
$𝐳)*

0 + 𝑒9=# 𝐤#$𝐳;< ∇𝒛 −𝑑D 𝐤D#𝐳 + 𝑏 + K
"
2𝐊 𝒛

=−∑#/&0 8LM@ 𝐤@A𝐳NO

&58LM@ 𝐤@A𝐳NO
𝑑#𝐤# + 𝜆 𝐊 𝒛

𝐳 ← 𝐳 − 𝜂 ∇𝐙𝐸)*++,-. 𝐳, 𝑏

Note: 𝐳 is a 𝑃×1matrix (column vector), and so are 𝐤$ and 𝐊 𝒛
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Minimizing the Kernelized two-class Perceptron with 
softmax loss

𝐸NOPPQR[ 𝐳, 𝑏 = -
$%"

&

log 1 + 𝑒SW@ 𝐤@A𝐳UV +
𝜆
2𝒛

! 𝐊 𝒛

∇V 𝐸NOPPQR[ 𝐳, 𝑏 = ∇V∑$%"& log 1 + 𝑒SW@ 𝐤@A𝐳UV + ∇V
Y
Z𝒛

! 𝐊 𝒛

= ∑$%"& aLM@ 𝐤@A𝐳NO

"UaLM@ 𝐤@A𝐳NO
∇V −𝑑$ 𝐤$!𝐳 + 𝑏 + 0

= −∑$%"& aLM@ 𝐤@A𝐳NO

"UaLM@ 𝐤@A𝐳NO
𝑑$

𝑏 ← 𝑏 − 𝜂 ∇V𝐸NOPPQR[ 𝐳, 𝑏
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How about Kernel SVM?
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Recall the SVM in the input space (no kernel)
The problem was to find 𝐰,𝑏 that minimize

𝐸 𝐰, 𝑏 = "
Z 𝐰

Z +𝐶∑$%"& max 0, 1 − 𝑑$ 𝐰 ' 𝐱$ +𝑏

Recall thatmax{𝑎, 𝑏} ≈ log(𝑒b+𝑒V)

𝐸 𝐰, 𝑏 =
1
2 𝐰 Z +𝐶-

$%"

&

log 𝑒c + 𝑒 "SW@ 𝐰d𝐱@ UV

𝐸 𝐰, 𝑏 =
1
2 𝐰 Z +𝐶-

$%"

&

log 1 + 𝑒 "SW@ 𝐰d𝐱@ UV

When we introduce the kernel,𝐰 ' 𝐱$ is replaced by 𝐰 ' φ(𝐱$) 
where φ(𝐱$) is the kernel-induced feature space.
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Soft margin Kernel SVM
𝐸 𝐰, 𝑏 = !

" 𝐰 " + 𝐶 ∑D max 0, 1 − 𝑑D 𝜑D# 𝐰 + 𝑏

≈ !
" 𝐰 "+𝐶 ∑DE!F log 𝑒P + 𝑒 !9=# :#$ 𝐰;<

From kernel trick, we have:

𝐸 𝐳, 𝑏 ≈ !
"𝒛

# 𝐊 𝒛 + 𝐶 ∑DE!F log 1 + 𝑒 !9=# 𝐤#$ 𝐳;<

∇𝒛 𝐸 𝐳, 𝑏 = 𝐊 𝒛 + 𝐶:
DE!

F

∇𝒛 log 1 + 𝑒 !9=# 𝐤#$ 𝐳;<

= 𝐊 𝒛 −:
DE!

F
𝐶𝑒 !9=# 𝐤#$ 𝐳;<

1 + 𝑒 !9=# 𝐤#$ 𝐳;<
𝑑D𝐤D

𝐳 ← 𝐳 − ∇𝒛 𝐸 𝐳, 𝑏
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Soft margin Kernel SVM

𝐸 𝐳, 𝑏 ≈ !
"
𝒛& 𝐊 𝒛+ 𝐶∑56!7 log 1 + 𝑒 !$8: 𝐤:; 𝐳:;

∇; 𝐸 𝐳, 𝑏 = 0+ ∇; 𝐶∑56!7 log 1 + 𝑒 !$8: 𝐤:; 𝐳:;

= −∑56!7 <=
!<=: 𝐤:

; 𝐳>?

!:=
!<=: 𝐤:; 𝐳>?

𝑑5

𝑏 ← 𝑏 − ∇; 𝐸 𝐳, 𝑏
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Exercise: Kernel Linear Regression

Consider linear regression in kernel-induced feature space
𝐸ghi 𝐰,𝑏 =∑$%"& 𝑑$ −𝑦$

Z
where 𝑦$ = 𝛗$! 𝐰+𝑏

Derive the update equations for weights 𝐳 and 𝑏 by kernelizing 
linear regression.

Hint: Show that the kernelized loss function can be written as: 

𝐸ghi 𝐳, 𝑏 =∑$%"& 𝑑$ −𝑏 −𝐤$! 𝐳
Z

Before proceeding to minimize it with respect to 𝐳, 𝑏
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The power of kernels
• Kernels allow us to learn non-linear decision or regression surfaces in the 

input space which correspond to linear surfaces in kernel-induced feature 
space

• Kernel trick allows us to generalize machine learning methods for 
classification and regression designed for data that live in fixed 
dimensional vector input spaces to work with arbitrary data – sequences, 
graphs, documents …

• Kernels provide a means of injecting domain knowledge (useful notions of 
similarity)  into predictive models trained using machine learning

• Kernelization can be used to upgrade any linear model for classification or 
regression to work with kernel-induced feature spaces

• The resulting loss functions are independent of the dimensionality of the 
feature space – allows working with even infinite dimensional feature 
spaces

• Generalization in high-dimensional kernel induced feature spaces requires 
regularization (e.g., maximizing margin in the case of SVM)
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The Kernel Matrix

K =

K(1,1) K(1,2) K(1,3) … K(1,P)

K(2,1) K(2,2) K(2,3) … K(2,P)

… … … … …

K(l,1) K(l,2) K(l,3) … K(P,P)

Kernel matrix is a 𝑃×𝑃 matrix of pair-wise dot products between 
kernel-induced feature vectors that encode the training samples
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Properties of Kernel Matrices

It is easy to show that the kernel matrix is 
• A Square matrix 
• Symmetric (𝐊 𝑇 = 𝐊)
• Positive semi-definite (all eigenvalues of 𝐊 are non-negative 

• Recall that Eigen values of a square matrix A are given by 
values of l that satisfy | 𝐊 -lI |=0)

Any symmetric positive semi definite matrix can be regarded as 
a kernel matrix, that is, as an inner product matrix in some  
feature space F.
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Mercer’s Theorem: Characterization of Kernel Functions

A function 𝐾 ∶ 𝐷𝐱×𝐷𝐱 →Â is said to be (finitely) positive 
semi-definite if 

• K is a symmetric function: 𝐾(𝐱$, 𝐱/) = 𝐾(𝐱/, 𝐱$)
• Matrices formed by restricting 𝐾 to any finite subset of the 

domain 𝐷𝐱 are positive semi-definite
Characterization of Kernel Functions 
Every (finitely) positive semi definite, symmetric function is a 

kernel: i.e., there exists a mapping  j such that it is 
possible to write:𝐾 𝐱$, 𝐱/ =𝜑 𝐱$ ' 𝜑 𝐱/
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Modularity of Kernels
The set of kernels is closed under some operations. If
K1 , K2 are kernels over X´X, then the following are kernels: 

We can make complex kernels from simple ones: modularity!

( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )( )
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Kernels for different types of data

• We can define Kernels over arbitrary instance spaces including
• Finite dimensional vector spaces, 
• Boolean spaces
• å* where å is a finite alphabet
• Documents, graphs, molecular structures, etc.

• Kernels need not always be expressed by a closed form formula. 
• Many useful kernels can be computed by complex algorithms 

(e.g., diffusion kernels over graphs)
• This allows machine learning methods designed for data encoded 

by fixed dimensional feature vectors to be upgraded to work with 
arbitrary data types – sequences, graphs, etc.
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Kernels on Sets and Multi-Sets

( ) kernel. a is  , Then

, Let
 domain fixed some for  Let
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Exercise: Define a Kernel on the space of multi-sets 
whose elements are drawn from  a finite domain V

Example:
𝑉 = {𝐴,𝐵, 𝐶,𝐷, 𝐹}

𝑆" = 𝐴,𝐵, 𝐶,𝐷 , 𝑆Z = 𝐵,𝐶,𝐷, 𝐸
𝑆" ∩ 𝑆Z = 𝐵,𝐶,𝐷
𝐾 𝑆", 𝑆Z = 2j =8
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String Kernel (p-spectrum Kernel)
• The p-spectrum of a string is the histogram – vector of 

number of occurrences of all possible contiguous substrings –
of length p
• We can define a kernel function K(s, t) over å* ´ å*  as  the 

inner product of the p-spectra of s and t.

€ 

s = statistics
t = computation
p = 3
Common substrings :  tat, ati
K(s,t) = 2
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Graphlet kernel for graphs
• Count the number of 

occurrences of each graphlet 
(subgraph with a specified 
structure) of a given size (4 in 
the example) in graphs 
• Constructs a vector from the 

histogram of  graphlets of size 𝑘
in each of the graphs 𝐺"⋯𝐺g
• Normalize the histograms 𝐷kQ ⋯
𝐷kR
• 𝐾(𝐺l, 𝐺m)= cos 𝜃(𝐷kS, 𝐷kT)

All Graphlets of size 4

[15,17,1,85,9,4,3,5,7,2,99]

normalize

[0.06,0.07,0,0.34,0.04,0.02,0.01,0.02,0.03,0.01,0.40]
𝐷U+

Type equation
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How to design good kernels?
• The purpose of a kernel function is to map data into a suitable 

kernel induced feature space where it is easier to learn than in 
the original space

• How can we design good kernels?
• Kernel function 𝐾 𝐱$, 𝐱/ =𝜑 𝐱$ ' 𝜑 𝐱/ is a measure of 

similarity between pairs of data samples 
• We can inject domain knowledge into a kernel function
• There is no algorithm that can provide us an optimal kernel 

for any given problem or data set

• Can we tell if a proposed kernel is a good kernel? 
• Examine the Kernel matrix

• Is it mostly diagonal (non-zero entries only along the 
diagonal and zeros everywhere else? 

• Then the kernel does not provide any useful notion of 
similarity that the machine learning algorithm can 
exploit
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Kernels – the good, the bad, and the ugly

• Bad kernel – A kernel when applied to the 
data set, yields a kernel matrix that is mostly 
diagonal 
• No data sample is similar to any other!

• In mapping in a space with too many 
irrelevant features, kernel matrix becomes 
diagonal
• Need some prior knowledge of target so 

choose a good kernel 
• A diagonal kernel matrix implies that there is 

no regularity to be exploited by the learning 
algorithm

1 0 0 … 0
0 1 0 … 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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How to craft good kernel functions for specific applications?

• There is no general algorithm for designing an optimal kernel 
function for a given data set or machine learning problem
• However, it is easy to determine whether a given kernel is  a  

reasonable kernel for a given data set
• Examine the Kernel matrix
• Does the kernel matrix exhibit a block diagonal 

structure where the blocks define subsets of data that 
are similar and share class labels
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Kernels – the good, the bad, and the ugly

• Good kernel – Corresponds to a Gram 
(kernel) matrix in which subsets of data 
points belonging to the same class are 
similar to each other, and hence the 
machine can  detect hidden structure in 
the data

3 2 0 0 0
2 3 0 0 0
0 0 4 3 3
0 0 3 4 2
0 0 3 2 4

Class 1

Class 2
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The power of kernels
• Kernels allow us to learn non-linear decision or regression surfaces in the 

input space which correspond to linear surfaces in kernel-induced feature 
space

• Kernel trick allows us to generalize machine learning methods for 
classification and regression designed for data that live in fixed 
dimensional vector input spaces to work with arbitrary data – sequences, 
graphs, documents …

• Kernels provide a means of injecting domain knowledge (useful notions of 
similarity)  into predictive models trained using machine learning

• Kernelization can be used to upgrade any linear model for classification or 
regression to work with kernel-induced feature spaces

• The resulting loss functions are independent of the dimensionality of the 
feature space – allows working with even infinite dimensional feature 
spaces

• Generalization in high-dimensional kernel induced feature spaces requires 
regularization (e.g., maximizing margin in the case of SVM)
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Kernel Trick
• Map input data to a high dimensional feature space learning 

becomes easy 
Challenges
• How to cope with high dimensional, perhaps even infinite 

dimensional feature space 
• How do you compute the dot product between weights and 

features when the kernel induced feature space is high 
dimensional? 
• Use the Kernel trick which makes the dimensionality of the 

weights independent of the dimensionality of the feature space
• How to ensure good generalization on samples not present in the 

training data? 
• Regularize the weights in the kernel induced feature space
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