

PennState Institute for Cor and Data Scien

Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory

PennState Clinical and Translationa

Kernelizing two-class Perceptron with softmax loss

- Let $\varphi_p = [\varphi_1(\mathbf{x}_p) \varphi_2(\mathbf{x}_p) \cdots \varphi_M(\mathbf{x}_p)]^T$ be the kernel-induced feature representation of sample \mathbf{x}_p
- Let $\mathbf{w} = [w_1 w_2 \cdots w_M]^T$ be the corresponding weight vector
- Recall $\mathbf{w} \cdot \varphi_p + b = \varphi_p^T \mathbf{w} + b$.
- So the perceptron loss in the kernel induced feature space is

$$E_{soft}(\mathbf{w}, b) = \sum_{p} \max\{0, -d_{p}(\varphi_{p}^{T} \mathbf{w} + b)\}$$

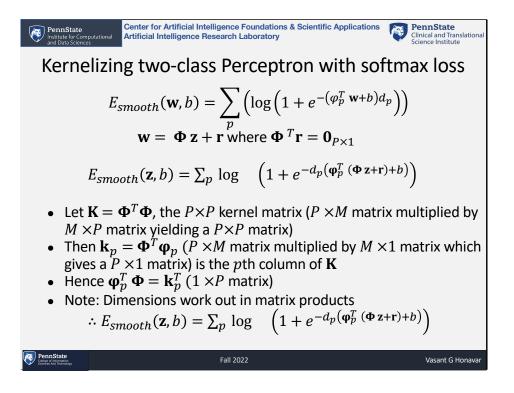
 $E_{smooth}(\mathbf{w}, b) \approx \sum_{p} \log \left\{ e^{0} + e^{-(\varphi_{p}^{T} \mathbf{w} + b)d_{p}} \right\} \approx \sum_{p} \log \left\{ 1 + e^{-(\varphi_{p}^{T} \mathbf{w} + b)d_{p}} \right\}$

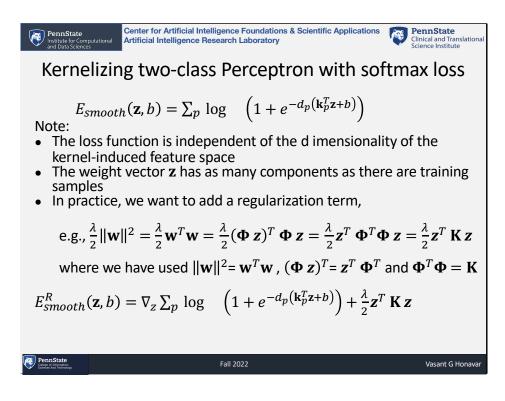
- Let $\Phi = [\phi_1 \phi_2 \cdots \phi_P]$ (*M*×*P* matrix formed by stacking the kernel-induced feature vectors for the *P* samples)
- From the preceding proposition of the fundamental theorem of linear algebra, we can write w = Φ z + r where Φ^Tr = 0_{P×1} (because r is orthogonal to the space spanned by the columns of Φ)

PennState

Fall 2022

Vasant G Honavar





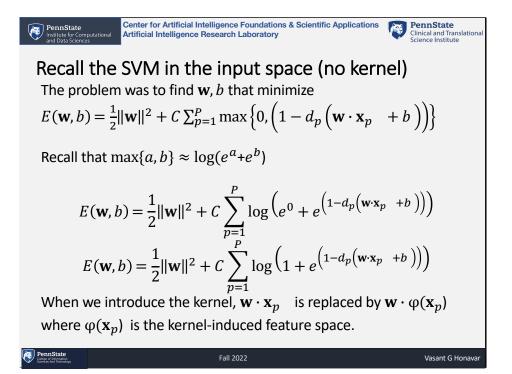
EXAMPLE 1 Conter for Artificial Intelligence Foundations & Scientific Applications **Conter for Artificial Intelligence Research Laboratory** $\begin{aligned} & \text{Minimizing the Kernelized two-class Perceptron with softmax loss} \\ & \nabla_z E_{smooth}^R(\mathbf{z}, b) = \nabla_z \sum_{p=1}^{P} \log \left(1 + e^{-d_p(\mathbf{k}_p^T \mathbf{z} + b)}\right) + \nabla_z \left(\frac{\lambda}{2} \mathbf{z}^T \mathbf{K} \mathbf{z}\right) \\ & \nabla_z E_{smooth}^R(\mathbf{z}, b) = \sum_{p=1}^{P} \frac{1}{\left(1 + e^{-d_p(\mathbf{k}_p^T \mathbf{z} + b)}\right)} \nabla_z \left(1 + e^{-d_p(\mathbf{k}_p^T \mathbf{z} + b)}\right) + \frac{\lambda}{2} \nabla_z (\mathbf{z}^T \mathbf{K} \mathbf{z}) \\ & = \sum_{p=1}^{P} \frac{1}{\left(1 + e^{-d_p(\mathbf{k}_p^T \mathbf{z} + b)}\right)} \left(0 + e^{-d_p(\mathbf{k}_p^T \mathbf{z} + b)}\right) \nabla_z \left(-d_p(\mathbf{k}_p^T \mathbf{z} + b)\right) + \frac{\lambda}{2} 2\mathbf{K} \mathbf{z} \\ & = -\sum_{p=1}^{P} \left(\left(\frac{e^{-d_p(\mathbf{k}_p^T \mathbf{z} + b)}}{1 + e^{-d_p(\mathbf{k}_p^T \mathbf{z} + b)}\right)} \left(d_p \mathbf{k}_p\right)\right) + \lambda \mathbf{K} \mathbf{z} \\ & \mathbf{z} \leftarrow \mathbf{z} - \eta \nabla_\mathbf{z} E_{smooth}^R(\mathbf{z}, b) \end{aligned}$ Note: **z** is a *P*×1 matrix (column vector), and so are **k**_p and **K z**

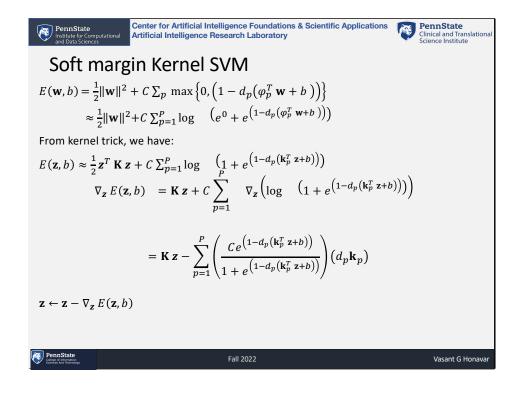
PennState

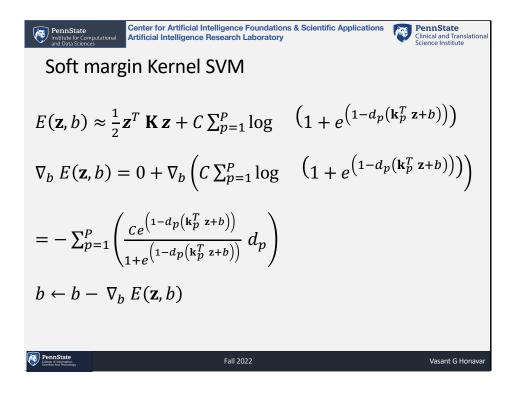
Fall 2022

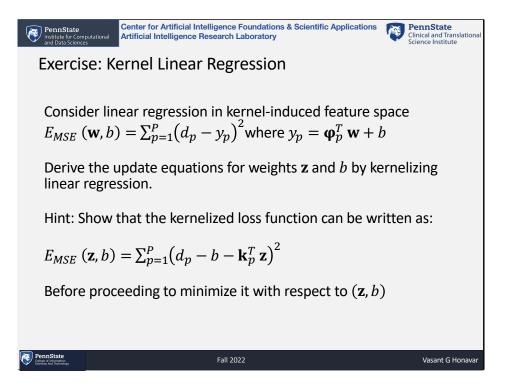
Vasant G Honavar

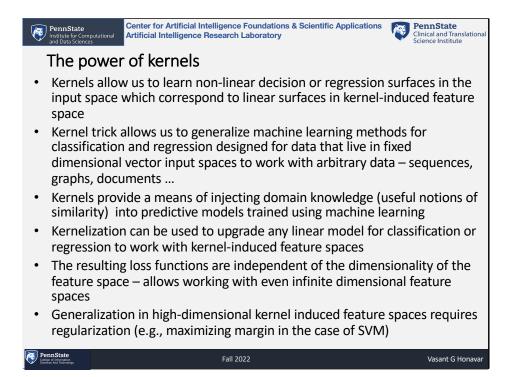
$$\hline$$











PennState Institute for Computation and Data Sciences	ute for Computational Artificial Intelligence Research Laboratory					
The Kernel Matrix						
Kernel matrix is a $P \times P$ matrix of pair-wise dot products between kernel-induced feature vectors that encode the training samples						
	<i>K</i> (1,1)	<i>K</i> (1,2)	<i>K</i> (1,3)		<i>K</i> (1, <i>P</i>)	
К =	<i>K</i> (2,1)	K(2,2)	<i>K</i> (2,3)		K(2,P)	-
	<i>K</i> (<i>l</i> ,1)	<i>K</i> (<i>l</i> ,2)	<i>K</i> (<i>l</i> ,3)		<i>K</i> (<i>P</i> , <i>P</i>)	
PennState Fall 2022						Vasant G Honavar

