

What if the data are not linearly separable?
Suppose samples from two classes are not linearly separable in the most natural feature representation.

Example

No good linear separator in pixel representation

- Classic solutions:
- Pick a suitably parameterized non-linear function
- Engineer features such that the data are likely to become separable in the feature space
- Both approaches involve too much ad hoc trial and error
- Modern solutions:
- Use kernel trick and maximize margin (or regularize)
- Representation learning

Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory

Dealing with data that are not linearly separable
Idea:

- Map data samples from the original input space to some higherdimensional feature space where they become separable and learn a separating hyperplane in the feature space

Exclusive OR revisited

$$
\begin{array}{ll}
\varphi_{1}(\mathbf{x})=\varphi_{1}\left(x_{1}, x_{2}\right)=e^{\left\|\mathbf{x}-\mathbf{w}_{1}\right\|^{2}}=z_{1} & \mathbf{w}_{1}=[1,1]^{T} \\
\varphi_{2}(\mathbf{x})=\varphi_{2}\left(x_{1}, x_{2}\right)=e^{\left\|\mathbf{x}-\mathbf{w}_{2}\right\|^{2}}=z_{2} &
\end{array}
$$

- In feature space $\left[z_{1}, z_{2}\right.$] the two classes 2 become linearly separable.

x	z_{1}	z_{2}
00	e^{2}	1
01	e^{1}	e^{1}
10	e^{1}	e^{1}
11	1	e^{2}

- So EXOR is learnable in the feature space $\left[z_{1}, z_{2}\right]$

Dealing with non-separable data

- Map input data to feature space where the classes become separable
- The resulting feature space often is of a higher dimension than the original input space
- Sometimes, linear separability requires the feature space to be infinite dimensional
- Learn a separating hyperplane in the feature space

Challenges

- How to cope with a high dimensional, perhaps even infinite dimensional feature space (how do you compute $\mathbf{w} \cdot \mathbf{x}$ when the two vectors are infinite dimensional?)
- How to ensure good generalization on samples not present in the training data ?

Dealing with non-separable data

Challenges

- How to cope with high dimensional, perhaps even infinite dimensional feature space (How do you compute $\mathbf{w} \cdot \mathbf{x}$ when the two vectors are infinite dimensional?)
- Kernel trick: Allows dot product in the feature space to be computed using dot product in the input space
- How to ensure good generalization on samples not present in the training data?
- Maximum margin separating hyperplane: Find a separating hyperplane that maximizes the margin of separation between the classes in the kernel induced feature space
- These two ideas came together for the first time in support vector machines, and revolutionized machine learning

Kernel trick

- All of the algorithms we have considered for learning a separating hyperplane, e.g., perceptron, work by adding or subtracting (depending on the sign of the difference between the desired and actual output) a misclassified sample to an arbitrary weight vector.
- The final weight vector $\mathbf{w}=\left[w_{1}, \cdots w_{N}\right]^{T}$ is a linear combination of training samples

$$
\mathbf{w}=\sum_{p=1}^{P} \alpha_{p} d_{p} \mathbf{x}_{p}
$$

- The α_{p} are positive coefficients, proportional to the number of times the misclassification of \mathbf{x}_{p} has caused the weight vector \mathbf{w} to be updated, and d_{p} the sign of the net contribution of \mathbf{x}_{p} to the weight update.
- Key observation: \mathbf{w} lies in the space spanned by the training samples
(3) Penstare Fall 2022 Vasant 6 Honavar

Kernel trick

- The final weight vector $\mathbf{w}=\left[w_{1}, \cdots w_{N}\right]^{T}$ is a linear combination of training samples

$$
\mathbf{w}=\sum_{p=1}^{P} \alpha_{p} d_{p} \mathbf{x}_{p}
$$

- Key observation: \mathbf{w} lies in the space spanned by the training samples

$$
\mathbf{w}=1\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+1\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Kernel trick

-What is a kernel?

- $K: D_{\mathbf{x}} \times D_{\mathbf{x}} \rightarrow \mathfrak{R}$ is a kernel function if there exists an implicit mapping φ such that $K\left(\mathbf{x}_{p}, \mathbf{x}_{q}\right)=\varphi\left(\mathbf{x}_{p}\right) \cdot \varphi\left(\mathbf{x}_{q}\right)$
- That is, a kernel function implicitly defines the dot product between two samples in a (kernel induced) feature space.
- Hence, we can get linear machines to operate in a kernel induced feature space by replacing the pairwise dot product between data samples in the input space by $K\left(\mathbf{x}_{p}, \mathbf{x}_{q}\right)$

Kernel induced feature space

$$
\begin{aligned}
& \mathbf{x}_{p}=\left[\begin{array}{ll}
x_{1 p} & x_{2 p}
\end{array}\right]^{T} \\
& \mathbf{x}_{q}=\left[\begin{array}{ll}
x_{1 q} & x_{2 q}
\end{array}\right]^{T}
\end{aligned}
$$

Define

$$
\begin{aligned}
K\left(\mathbf{x}_{p}, \mathbf{x}_{q}\right) & =\left(\mathbf{x}_{p} \cdot \mathbf{x}_{q}\right)^{2} \\
& =\left(x_{1 p} x_{1 q}+x_{2 p} x_{2 q}\right)^{2} \\
& =x_{1 p}^{2} x_{1 q}^{2}+x_{2 p}^{2} x_{2 q}^{2}+2 x_{1 p} x_{1 q} x_{2 p} x_{2 q} \\
& =\left[\begin{array}{ll}
x_{1 p}^{2} & x_{2 p}^{2} \sqrt{2} x_{1 p} x_{2 p}
\end{array}\right]^{T} \cdot\left[\begin{array}{ll}
x_{1 q}^{2} & x_{2 q}^{2} \\
\sqrt{2} x_{1 q} & x_{2 q}
\end{array}\right] \\
& =\varphi\left(\mathbf{x}_{p}\right) \cdot \varphi\left(\mathbf{x}_{q}\right)
\end{aligned}
$$

Kernel induced feature space
$\left(x_{1}, x_{2}\right) \rightarrow \varphi(\mathbf{x})=\left(\begin{array}{ll}x_{1}^{2} & x_{2}^{2} \sqrt{2} x_{1}\end{array} x_{2}\right)$

(x) Pensstate

The magical beauty of Kernel functions

- $K\left(\mathbf{x}_{p}, \mathbf{x}_{q}\right)$ is expressed as a function of the dot product $\mathbf{x}_{p} \cdot \mathbf{x}_{q}$ in the input space
- Yet it implicitly yields the dot product between the images of \mathbf{x}_{p} and \mathbf{x}_{q} in the feature space φ

$$
K\left(\mathbf{x}_{p}, \mathbf{x}_{q}\right)=\varphi\left(\mathbf{x}_{p}\right) \cdot \varphi\left(\mathbf{x}_{q}\right)
$$

- Thus, the kernel function $K\left(\mathbf{x}_{p}, \mathbf{x}_{q}\right)$ makes it possible to compute the dot product $\varphi\left(\mathbf{x}_{p}\right) \cdot \varphi\left(\mathbf{x}_{q}\right)$ between highdimensional, even infinite dimensional feature vectors efficiently using the dot product $\mathbf{x}_{p} \cdot \mathbf{x}_{q}$ in the low, finite dimensional input space
- Given a function K, it is possible to verify that it is a kernel function (we will return to this later).

```
PennState
    Institue for Con
Center for Artificial Intelligence Foundations & Scientific Application
Artificial Intelligence Research Laboratory

\section*{Kernel trick}
```

- Kernel trick introduced above can be generalized so as to "kernelize" any machine learning algorithm that uses linear model for classification or regression
- Support vector machine
- Linear regression
- and many others
- Key idea: the weight vector learned by linear classifiers, e.g., perceptron, SVM, lies in the space spanned by the data samples

Kernelizing a broad class of loss functions

```
- We will introduce an approach to kernelizing any loss function that is expressed as a function of the dot product of \(\mathbf{w}\) and \(\mathbf{x}\)
- Key idea: the weight vector learned by linear classifiers, e.g., perceptron, SVM, lies in the space spanned by the data samples
- This treatment has several advantages over the standard treatment of kernel trick in SVM
- It does not require us to get into constrained convex optimization
- It relies on only elementary matrix algebra
- It is very general and can be used to kernelize a broad class of loss functions used in machine learning for classification, regression, dimensionality reduction, and clustering

A Proposition of the Fundamental Theorem of Linear Algebra
- Consider the decomposition of an \(M\)-dimensional vector \(\mathbf{w}\) over the column space of an \(M \times P\) matrix \(\mathbf{F}\)
- Let \(\mathbf{f}_{p}\) be the \(p\) th column of \(\mathbf{F}\)
- Then if \(\mathbf{w}\) lies within the column space of \(\mathbf{F}\), then
- \(\mathbf{w}\) can be expressed as a linear combination of the column vectors of \(\mathbf{F}\)
- \(\mathbf{w}=\sum_{p=1}^{P} \mathbf{f}_{p} z_{p}\) where \(z_{p}\) denotes the linear coefficient associated with \(\mathbf{f}_{p}\)
- Let \(\mathbf{z}=\left[\begin{array}{llll}z_{1} & z_{2} & \cdots & z_{p}\end{array}\right]^{T}\)
- Then we can write \(\mathbf{w}=\mathbf{F z}\)

- If \(\mathbf{w}\) lies outside the column space of \(\mathbf{F}\), we can decompose it as \(\mathbf{w}=\) \(\mathbf{F z + r}\)

\section*{Example}
\[
\begin{gathered}
\mathbf{F}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] \\
\mathbf{w}=1\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+1\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
\mathbf{u}=1\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+1\left[\begin{array}{l}
{[0,1,0]^{T}} \\
0 \\
1
\end{array}\right]+0.5\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \mathbf{u}=[1,0.5,1]^{T}
\end{gathered}
\]

\section*{Kernelizing two-class Perceptron with softmax loss}
- Let \(\varphi_{p}=\left[\varphi_{1}\left(\mathbf{x}_{p}\right) \varphi_{2}\left(\mathbf{x}_{p}\right) \cdots \varphi_{M}\left(\mathbf{x}_{p}\right)\right]^{T}\) be the kernel-induced feature representation of sample \(\mathbf{x}_{p}\)
- Let \(\mathbf{w}=\left[w_{1} w_{2} \cdots w_{M}\right]^{T}\) be the corresponding weight vector
- Recall \(\mathbf{w} \cdot \varphi_{p}+b=\varphi_{p}^{T} \mathbf{w}+b\).
- So the perceptron loss in the kernel induced feature space is
\[
\begin{gathered}
E_{\text {soft }}(\mathbf{w}, b)=\sum_{p} \max \left\{0,-d_{p}\left(\varphi_{p}^{T} \mathbf{w}+b\right)\right\} \\
E_{\text {Smooth }}(\mathbf{w}, b) \approx \sum_{p} \log \quad\left\{e^{0}+e^{-\left(\varphi_{p}^{T} \mathbf{w}+b\right) d_{p}}\right\} \approx \sum_{p} \log \quad\left\{1+e^{-\left(\varphi_{p}^{T} \mathbf{w}+b\right) d_{p}}\right\}
\end{gathered}
\]
- Let \(\boldsymbol{\Phi}=\left[\boldsymbol{\varphi}_{1} \boldsymbol{\varphi}_{2} \cdots \boldsymbol{\varphi}_{P}\right](M \times P\) matrix formed by stacking the kernel-induced feature vectors for the \(P\) samples)
- From the preceding proposition of the fundamental theorem of linear algebra, we can write \(\mathbf{w}=\boldsymbol{\Phi} \mathbf{z}+\mathbf{r}\) where \(\boldsymbol{\Phi}^{T} \mathbf{r}=\mathbf{0}_{P \times 1}\) (because \(r\) is orthogonal to the space spanned by the columns of \(\boldsymbol{\Phi}\) )

\section*{Kernelizing two-class Perceptron with softmax loss}
\[
\begin{gathered}
E_{\text {Smooth }}(\mathbf{w}, b)=\sum_{p}\left(\log \left(1+e^{-\left(\varphi_{p}^{T} \mathbf{w}+b\right) d_{p}}\right)\right) \\
\mathbf{w}=\boldsymbol{\Phi} \mathbf{z}+\mathbf{r} \text { where } \boldsymbol{\Phi}^{T} \mathbf{r}=\mathbf{0}_{P \times 1} \\
E_{\text {Smooth }}(\mathbf{z}, b)=\sum_{p} \log \left(1+e^{-d_{p}\left(\boldsymbol{\varphi}_{p}^{T}(\boldsymbol{\Phi} \mathbf{z}+\mathbf{r})+b\right)}\right)
\end{gathered}
\]
- Let \(\mathbf{K}=\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}\), the \(P \times P\) kernel matrix ( \(P \times M\) matrix multiplied by \(M \times P\) matrix yielding a \(P \times P\) matrix)
- Then \(\mathbf{k}_{p}=\boldsymbol{\Phi}^{T} \boldsymbol{\varphi}_{p}(P \times M\) matrix multiplied by \(M \times 1\) matrix which gives a \(P \times 1\) matrix) is the \(p\) th column of \(\mathbf{K}\)
- Hence \(\boldsymbol{\varphi}_{p}^{T} \boldsymbol{\Phi}=\mathbf{k}_{p}^{T}\) ( \(1 \times P\) matrix)
- Note: Dimensions work out in matrix products
\[
\therefore E_{\text {smooth }}(\mathbf{z}, b)=\sum_{p} \log \left(1+e^{-d_{p}\left(\boldsymbol{\varphi}_{p}^{T}(\boldsymbol{\Phi} \mathbf{z} \mathbf{r})+b\right)}\right)
\]

\section*{Kernelizing two-class Perceptron with softmax loss}
\[
E_{\text {Smooth }}(\mathbf{z}, b)=\sum_{p} \log \quad\left(1+e^{-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)}\right)
\]

Note:
- The loss function is independent of the d imensionality of the kernel-induced feature space
- The weight vector \(\mathbf{z}\) has as many components as there are training samples
- In practice, we want to add a regularization term,
e.g., \(\frac{\lambda}{2}\|\mathbf{w}\|^{2}=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}=\frac{\lambda}{2}(\boldsymbol{\Phi} \boldsymbol{z})^{T} \boldsymbol{\Phi} \mathbf{z}=\frac{\lambda}{2} \boldsymbol{z}^{T} \boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \mathbf{z}=\frac{\lambda}{2} \boldsymbol{z}^{T} \mathbf{K} \mathbf{z}\)
where we have used \(\|\mathbf{w}\|^{2}=\mathbf{w}^{T} \mathbf{w},(\boldsymbol{\Phi} \mathbf{z})^{T}=\mathbf{z}^{T} \boldsymbol{\Phi}^{T}\) and \(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}=\mathbf{K}\)
\(E_{\text {smooth }}^{R}(\mathbf{z}, b)=\nabla_{z} \sum_{p} \log \left(1+e^{-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)}\right)+\frac{\lambda}{2} \mathbf{z}^{T} \mathbf{K} \mathbf{z}\)

Minimizing the Kernelized two-class Perceptron with softmax loss
\[
\begin{gathered}
\nabla_{Z} E_{\text {Smooth }}^{R}(\mathbf{z}, b)=\nabla_{z} \sum_{p=1}^{P} \log \left(1+e^{-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)}\right)+\nabla_{\mathbf{Z}}\left(\frac{\lambda}{2} \mathbf{z}^{T} \mathbf{K} \mathbf{z}\right) \\
\nabla_{Z}^{P} E_{\text {Smooth }}^{R}(\mathbf{z}, b)=\sum_{p=1}^{P} \frac{1}{\left(1+e^{-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)}\right)} \nabla_{\mathbf{Z}}\left(1+e^{-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)}\right)+\frac{\lambda}{2} \nabla_{\mathbf{z}}\left(\mathbf{z}^{T} \mathbf{K} \mathbf{z}\right) \\
=\sum_{p=1}^{P} \frac{1}{\left(1+e^{-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)}\right)}\left(0+e^{-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)}\right) \nabla_{\mathbf{z}}\left(-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)\right)+\frac{\lambda}{2} 2 \mathbf{K} \mathbf{z} \\
=-\sum_{p=1}^{P}\left(\left(\frac{e^{-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)}}{1+e^{-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)}}\right)\left(d_{p} \mathbf{k}_{p}\right)\right)+\lambda \mathbf{K} \mathbf{z} \\
\mathbf{z} \leftarrow \mathbf{z}-\eta \nabla_{\mathbf{Z}} E_{\text {Smooth }}^{R}(\mathbf{z}, b)
\end{gathered}
\]

Note: \(\mathbf{z}\) is a \(P \times 1\) matrix (column vector), and so are \(\mathbf{k}_{p}\) and \(\mathbf{K} \mathbf{z}\)

\section*{Minimizing the Kernelized two-class Perceptron with} softmax loss
\[
\begin{aligned}
& E_{\text {Smooth }}^{R}(\mathbf{z}, b)=\sum_{p=1}^{P} \log \left(1+e^{-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)}\right)+\left(\frac{\lambda}{2} \mathbf{z}^{T} \mathbf{K} \mathbf{z}\right) \\
& \nabla_{b} E_{\text {Smooth }}^{R}(\mathbf{z}, b)=\nabla_{b} \sum_{p=1}^{P} \log \left(1+e^{-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)}\right)+\nabla_{b}\left(\frac{\lambda}{2} \mathbf{z}^{T} \mathbf{K} \mathbf{z}\right) \\
& =\sum_{p=1}^{P}\left(\frac{e^{-d_{p}\left(\mathbf{k}_{p}^{T} z^{T}+b\right.}}{1+e^{-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)}}\right) \nabla_{b}\left(-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)\right)+0 \\
& =-\sum_{p=1}^{P}\left(\frac{\left.e^{-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right.}\right)}{1+e^{-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)}}\right) d_{p} \\
& b \leftarrow b-\eta \nabla_{b} E_{\text {Smooth }}^{R}(\mathbf{z}, b)
\end{aligned}
\]

\section*{Recall the SVM in the input space (no kernel)}

The problem was to find \(\mathbf{w}, b\) that minimize
\(E(\mathbf{w}, b)=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{p=1}^{P} \max \left\{0,\left(1-d_{p}\left(\mathbf{w} \cdot \mathbf{x}_{p}+b\right)\right)\right\}\)
Recall that \(\max \{a, b\} \approx \log \left(e^{a}+e^{b}\right)\)
\[
\begin{aligned}
& E(\mathbf{w}, b)=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{p=1}^{P} \log \left(e^{0}+e^{\left(1-d_{p}\left(\mathbf{w} \cdot \mathbf{x}_{p}+b\right)\right)}\right) \\
& E(\mathbf{w}, b)=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{p=1}^{P} \log \left(1+e^{\left(1-d_{p}\left(\mathbf{w} \cdot \mathbf{x}_{p}+b\right)\right)}\right)
\end{aligned}
\]

When we introduce the kernel, \(\mathbf{w} \cdot \mathbf{x}_{p}\) is replaced by \(\mathbf{w} \cdot \varphi\left(\mathbf{x}_{p}\right)\) where \(\varphi\left(\mathbf{x}_{p}\right)\) is the kernel-induced feature space.

\section*{Soft margin Kernel SVM}
\[
\begin{aligned}
E(\mathbf{w}, b)= & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{p} \max \left\{0,\left(1-d_{p}\left(\varphi_{p}^{T} \mathbf{w}+b\right)\right)\right\} \\
& \approx \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{p=1}^{P} \log \quad\left(e^{0}+e^{\left(1-d_{p}\left(\varphi_{p}^{T} \mathbf{w}+b\right)\right)}\right)
\end{aligned}
\]

From kernel trick, we have:
\[
\begin{aligned}
& E(\mathbf{z}, b) \approx \frac{1}{2} \mathbf{z}^{T} \mathbf{K} \mathbf{z}+C
\end{aligned} \sum_{p=1}^{P} \log \quad\left(1+e^{\left(1-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)\right)}\right)
\]
\(\mathbf{z} \leftarrow \mathbf{z}-\nabla_{\mathbf{z}} E(\mathbf{z}, b)\)

\section*{Soft margin Kernel SVM}
\[
\begin{aligned}
& E(\mathbf{z}, b) \approx \frac{1}{2} \mathbf{z}^{T} \mathbf{K} \mathbf{z}+C \sum_{p=1}^{P} \log \\
& \left(1+e^{\left(1-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)\right)}\right) \\
& \nabla_{b} E(\mathbf{z}, b)=0+\nabla_{b}\left(C \sum_{p=1}^{P} \log \left(1+e^{\left(1-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)\right)}\right)\right) \\
& =-\sum_{p=1}^{P}\left(\frac{C e^{\left(1-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)\right)}}{1+e^{\left(1-d_{p}\left(\mathbf{k}_{p}^{T} \mathbf{z}+b\right)\right)}} d_{p}\right) \\
& b \leftarrow b-\nabla_{b} E(\mathbf{z}, b)
\end{aligned}
\]

Consider linear regression in kernel-induced feature space
\(E_{M S E}(\mathbf{w}, b)=\sum_{p=1}^{P}\left(d_{p}-y_{p}\right)^{2}\) where \(y_{p}=\boldsymbol{\varphi}_{p}^{T} \mathbf{w}+b\)
Derive the update equations for weights \(\mathbf{z}\) and \(b\) by kernelizing linear regression.

Hint: Show that the kernelized loss function can be written as:
\(E_{M S E}(\mathbf{z}, b)=\sum_{p=1}^{P}\left(d_{p}-b-\mathbf{k}_{p}^{T} \mathbf{z}\right)^{2}\)
Before proceeding to minimize it with respect to \((\mathbf{z}, b)\)

\section*{The power of kernels}
- Kernels allow us to learn non-linear decision or regression surfaces in the input space which correspond to linear surfaces in kernel-induced feature space
- Kernel trick allows us to generalize machine learning methods for classification and regression designed for data that live in fixed dimensional vector input spaces to work with arbitrary data - sequences, graphs, documents ...
- Kernels provide a means of injecting domain knowledge (useful notions of similarity) into predictive models trained using machine learning
- Kernelization can be used to upgrade any linear model for classification or regression to work with kernel-induced feature spaces
- The resulting loss functions are independent of the dimensionality of the feature space - allows working with even infinite dimensional feature spaces
- Generalization in high-dimensional kernel induced feature spaces requires regularization (e.g., maximizing margin in the case of SVM)
(7) Penstate \(\quad\) Fall \(2022 \quad\) Vasant G Honavar

\section*{The Kernel Matrix}

Kernel matrix is a \(P \times P\) matrix of pair-wise dot products between kernel-induced feature vectors that encode the training samples
\(\mathbf{K}=\)\begin{tabular}{|l|l|l|l|l|}
\hline\(K(1,1)\) & \(K(1,2)\) & \(K(1,3)\) & \(\cdots\) & \(K(1, P)\) \\
\hline\(K(2,1)\) & \(K(2,2)\) & \(K(2,3)\) & \(\cdots\) & \(K(2, P)\) \\
\hline & & & & \\
\hline\(\cdots\) & \(\cdots\) & \(\cdots\) & \(\cdots\) & \(\cdots\) \\
\hline\(K(l, 1)\) & \(K(l, 2)\) & \(K(l, 3)\) & \(\cdots\) & \(K(P, P)\) \\
\hline
\end{tabular}

\section*{Properties of Kernel Matrices}

It is easy to show that the kernel matrix is
- A Square matrix
- Symmetric ( \(\mathbf{K}^{T}=\mathbf{K}\) )
- Positive semi-definite (all eigenvalues of \(\mathbf{K}\) are non-negative
- Recall that Eigen values of a square matrix \(\mathbf{A}\) are given by values of \(\lambda\) that satisfy \(|\mathbf{K}-\lambda \mathbf{I}|=0)\)
Any symmetric positive semi definite matrix can be regarded as a kernel matrix, that is, as an inner product matrix in some feature space \(\Phi\).

Mercer's Theorem: Characterization of Kernel Functions
A function \(K: D_{\mathbf{x}} \times D_{\mathbf{x}} \rightarrow \mathfrak{R}\) is said to be (finitely) positive semi-definite if
- \(K\) is a symmetric function: \(K\left(\mathbf{x}_{p}, \mathbf{x}_{q}\right)=K\left(\mathbf{x}_{q}, \mathbf{x}_{p}\right)\)
- Matrices formed by restricting \(K\) to any finite subset of the domain \(D_{\mathbf{x}}\) are positive semi-definite Characterization of Kernel Functions
Every (finitely) positive semi definite, symmetric function is a kernel: i.e., there exists a mapping \(\varphi\) such that it is possible to write: \(K\left(\mathbf{x}_{p}, \mathbf{x}_{q}\right)=\varphi\left(\mathbf{x}_{p}\right) \cdot \varphi\left(\mathbf{x}_{q}\right)\)

\section*{Modularity of Kernels}

The set of kernels is closed under some operations. If \(K_{1}, K_{2}\) are kernels over \(\mathfrak{X} \times \mathfrak{X}\), then the following are kernels:
\[
\begin{aligned}
& K(\mathbf{x}, \mathbf{z})=K_{1}(\mathbf{x}, \mathbf{z})+K_{2}(\mathbf{x}, \mathbf{z}) \\
& K(\mathbf{x}, \mathbf{z})=a K_{1}(\mathbf{x}, \mathbf{z}) ; \quad a>0 \\
& K(\mathbf{x}, \mathbf{z})=K_{1}(\mathbf{x}, \mathbf{z}) K_{2}(\mathbf{x}, \mathbf{z}) \\
& K(\mathbf{x}, \mathbf{z})=f(\mathbf{x}) f(\mathbf{z}) ; \quad f: \mathcal{X} \rightarrow \mathfrak{R} \\
& K(\mathbf{x}, \mathbf{z})=K_{3}(\varphi(\mathbf{x}), \varphi(\mathbf{z})) ; \\
& \quad\left(\varphi: \mathcal{X} \rightarrow \mathfrak{R}^{N} ; K_{3} \text { is a kernel over } \mathfrak{R}^{N} \times \mathfrak{R}^{N}\right) \\
& K(\mathbf{x}, \mathbf{z})=\mathbf{x}^{T} \mathbf{B z} ;
\end{aligned}
\]
(B is a symmetric positive definite \(n \times n\) matrix and \(\chi \subseteq \mathfrak{R}^{n}\) )
We can make complex kernels from simple ones: modularity! (0) Pensime

\section*{Kernels for different types of data}
- We can define Kernels over arbitrary instance spaces including
- Finite dimensional vector spaces,
- Boolean spaces
- \(\sum^{*}\) where \(\sum\) is a finite alphabet
- Documents, graphs, molecular structures, etc.
- Kernels need not always be expressed by a closed form formula.
- Many useful kernels can be computed by complex algorithms (e.g., diffusion kernels over graphs)
- This allows machine learning methods designed for data encoded by fixed dimensional feature vectors to be upgraded to work with arbitrary data types - sequences, graphs, etc.
```

(3) PennState
PennState

Kernels on Sets and Multi-Sets

```
Let \(X \subseteq 2^{V}\) for some fixed domain \(V\)
Let \(A_{1}, A_{2} \in X\)
Then \(K\left(A_{1}, A_{2}\right)=2^{\left|A_{1} \cap A_{2}\right|}\) is a kernel.
Example:
\[
\begin{gathered}
V=\{A, B, C, D, F\} \\
S_{1}=\{A, B, C, D\}, S_{2}=\{B, C, D, E\}
\end{gathered}
\]
\(S_{1} \cap S_{2}=\{B, C, D\}\)
\(K\left(S_{1}, S_{2}\right)=2^{3}=8\)
Exercise: Define a Kernel on the space of multi-sets whose elements are drawn from a finite domain \(V\)
```


(38) PennState
 Institute for Conn and Data Science
 Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory
 String Kernel (\boldsymbol{p}-spectrum Kernel)

- The p-spectrum of a string is the histogram - vector of number of occurrences of all possible contiguous substrings of length p
- We can define a kernel function $K(s, t)$ over $\sum^{*} \times \sum^{*}$ as the inner product of the p-spectra of s and t.

$$
s=\text { statistics }
$$

$t=$ computation

$$
p=3
$$

Common substrings : tat, ati

$$
K(s, t)=2
$$

Graphlet kernel for graphs

- Count the number of occurrences of each graphlet (subgraph with a specified structure) of a given size (4 in the example) in graphs
- Constructs a vector from the histogram of graphlets of size k in each of the graphs $G_{1} \cdots G_{M}$

Normalize the histograms $D_{G_{1}} \cdots$ $D_{G_{M}}$
[15,17,1,85,9,4,3,5,7,2,99]

- $K\left(G_{i}, G_{j}\right)=\cos \theta\left(D_{G_{i}}, D_{G_{j}}\right)$

(3) Pennstate Artificial Intelligence Research Laboratory
 How to design good kernels?

Center for Artificial Intelligence Foundations \& Scientific Applications

- The purpose of a kernel function is to map data into a suitable kernel induced feature space where it is easier to learn than in the original space
- How can we design good kernels?
- Kernel function $K\left(\mathbf{x}_{p}, \mathbf{x}_{q}\right)=\varphi\left(\mathbf{x}_{p}\right) \cdot \varphi\left(\mathbf{x}_{q}\right)$ is a measure of similarity between pairs of data samples
- We can inject domain knowledge into a kernel function
- There is no algorithm that can provide us an optimal kernel for any given problem or data set
- Can we tell if a proposed kernel is a good kernel?
- Examine the Kernel matrix
- Is it mostly diagonal (non-zero entries only along the diagonal and zeros everywhere else?
- Then the kernel does not provide any useful notion of similarity that the machine learning algorithm can exploit

Kernels - the good, the bad, and the ugly

- Bad kernel - A kernel when applied to the data set, yields a kernel matrix that is mostly diagonal
- No data sample is similar to any other!
- In mapping in a space with too many irrelevant features, kernel matrix becomes diagonal
- Need some prior knowledge of target so

1	0	0	\ldots	0
0	1	0	\ldots	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

- A diagonal kernel matrix implies that there is no regularity to be exploited by the learning algorithm

```
PennState
    InennState
    Msiture fore Compulational
Center for Artificial Intelligence Foundations & Scientific Application
Artificial Intelligence Research Laboratory

\section*{How to craft good kernel functions for specific applications?}
```

- There is no general algorithm for designing an optimal kernel function for a given data set or machine learning problem
- However, it is easy to determine whether a given kernel is a reasonable kernel for a given data set
- Examine the Kernel matrix
- Does the kernel matrix exhibit a block diagonal structure where the blocks define subsets of data that are similar and share class labels

The power of kernels

- Kernels allow us to learn non-linear decision or regression surfaces in the input space which correspond to linear surfaces in kernel-induced feature space
- Kernel trick allows us to generalize machine learning methods for classification and regression designed for data that live in fixed dimensional vector input spaces to work with arbitrary data - sequences, graphs, documents ...
- Kernels provide a means of injecting domain knowledge (useful notions of similarity) into predictive models trained using machine learning
- Kernelization can be used to upgrade any linear model for classification or regression to work with kernel-induced feature spaces
- The resulting loss functions are independent of the dimensionality of the feature space - allows working with even infinite dimensional feature spaces
- Generalization in high-dimensional kernel induced feature spaces requires regularization (e.g., maximizing margin in the case of SVM)
(7) Penstate \quad Fall $2022 \quad$ Vasant G Honavar

Kernel Trick

- Map input data to a high dimensional feature space learning becomes easy

Challenges

- How to cope with high dimensional, perhaps even infinite dimensional feature space
- How do you compute the dot product between weights and features when the kernel induced feature space is high dimensional?
- Use the Kernel trick which makes the dimensionality of the weights independent of the dimensionality of the feature space
- How to ensure good generalization on samples not present in the training data?
- Regularize the weights in the kernel induced feature space

