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Abstract

Various assumptions have been used in the literature to identify natural direct and indirect
effects in mediation analysis. These effects are of interest because they allow for effect
decomposition of a total effect into a direct and indirect effect even in the presence of interactions
or non-linear models. In this paper, we consider the relation and interpretation of various
identification assumptions in terms of causal diagrams interpreted as a set of non-parametric
structural equations. We show that for such causal diagrams, two sets of assumptions for
identification that have been described in the literature are in fact equivalent in the sense that if
either set of assumptions holds for all models inducing a particular causal diagram, then the other
set of assumptions will also hold for all models inducing that diagram. We moreover build on
prior work concerning a complete graphical identification criterion for covariate adjustment for
total effects to provide a complete graphical criterion for using covariate adjustment to identify
natural direct and indirect effects. Finally, we show that this criterion is equivalent to the two sets
of independence assumptions used previously for mediation analysis.
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1. Introduction

A number recent papers have developed identification and partial identifi-
cation results for natural direct and indirect effects (Robins and Greenland,
1992; Pearl, 2001; Robins, 2003; Petersen et al., 2006; Kaufman et al., 2009;
Sjölander, 2009; Hafeman and VanderWeele, 2010; Imai et al., 2010ab; Robins
et al. 2010; Robins and Richardson, 2010). Natural direct and indirect effects
are of interest because they provide definitions of direct and indirect effects
and allow for effect decomposition even in models with interaction or non-
linearities. The definition of these natural direct and indirect effects employ
nested counterfactual quantities that cannot be completely identified even in
a doubly randomized experiment (Robins, 2003; Imai et al., 2010b).

The identification of these natural direct and indirect effects thus comes
at a price, namely fairly strong assumptions that cannot be empirically con-
firmed. One strategy for identification is to assume that there are no inter-
actions between the effects of the exposure and the mediatior on the outcome
at the individual level (Robins and Greenland, 1992; Robins, 2003; cf. Pe-
tersen et al., 2006). Two alternative sets of identification assumptions have
been proposed in the literature that allow for non-parametric identification
of direct and indirect effects even in the presence of interactions. One set
of assumptions, introduced by Pearl (2001), required independence of two
counterfactual quantities. An alternative set of identification assumptions
described in Imai et al. (2010) used other assumptions which did not require
independence between two counterfactual quantities. When either of these
sets of assumptions hold conditional on a single set of covariates C, natural
direct and indirect effects are identified by what is sometimes referred to as the
“mediation formula” (Pearl, 2010). These various assumptions raise several
questions. First, we may want to know whether the two sets of identification
assumptions are equivalent for some class of causal models. Second, we may
want to know whether complete graphical criterion can be developed for the
use of the “mediation formula” (Pearl, 2010). In this paper we answer both
of these questions. Specifically, we show that for causal diagrams defined by
non-parametric structural equations, the two sets of assumptions are in fact
equivalent in the sense that if either set of assumptions holds for all models
inducing a particular causal diagram then the other set of assumptions will
also hold for all models inducing that causal diagram. Second, we give a
complete graphical criterion for the use of the mediation formula for natural
direct and indirect effects.

The remainder of this paper is organized as follows. In section 2 we
review material on graph theory and causal diagrams. In section 3 we discuss
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Figure 1: A directed acyclic graph.

controlled direct effects and natural direct and indirect effects, and describe
two sets of assumptions given in the literature for the identification of natural
effects. In section 4, we review a complete graphical identification criterion
for covariate adjustment for total effects called the “adjustment criterion”
(Shpitser et al., 2010) which is a generalization of Pearl’s (1995) backdoor path
criterion. Section 5 gives our two main results concerning the equivalence of
the two sets of identification assumptions and concerning a complete graphical
criterion for covariate adjustment in the identification of natural direct and
indirect effects. Section 6 places the present work in the context of other
forms of causal models and offers some concluding remarks. We defer the
proofs and detailed technical background to the appendices.

2. Preliminaries on Graphs

We first introduce graph-theoretic terminology we need to discuss causal and
probabilistic notions. A directed graph consists of a set of nodes and directed
arrows connecting pairs of nodes. A path is a sequence of distinct nodes where
any two adjacent nodes in the sequence are connected by an edge. A directed
path from a node X to a node Y is a path where all arrows connecting nodes
on the path point away from X and towards Y . If an arrow points from X to
Y then X is called a parent of Y and Y a child of X. If X has a directed path
to Y then X is an ancestor of Y and Y a descendant of X. By convention, X
is both an ancestor and a descendant of X. A directed acyclic graph (DAG)
is a directed graph where for any directed path from X to Y , Y is not a
parent of X. A consecutive triple of nodes Wi,Wj,Wk on a path is called a
collider if Wi and Wk are parents of Wj. Any other consecutive triple is called
a non-collider. A path between two nodes X and Y is said to be blocked by
a set Z if either for some non-collider on the path, the middle node is in Z,
or for some collider on the path, no descendant of the middle node is in Z.
For disjoint sets X,Y, Z we say X is d-separated from Y given Z if every path
from a node in X to a node in Y is blocked by Z. If X is not d-separated
from Y given Z, we say X is d-connected to Y given Z. See the graph in Fig.
1 for an illustration of these concepts. In this graph X1 → X2 → X3 ← X4 is
a path from X1 to X4; X1 → X2 → X3 is a directed path from X1 to X3; X1
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is a parent of X2, and an ancestor of X3; X2 → X3 ← X4 is a collider; X1 is
d-separated from X4 given X5; X1 is d-separated from X3 given X2 and X4;
X1 is d-connected to X5 given X3.

Directed graphs play an important role in probabilistic reasoning because it
is often possible to associate a graph G with a set of nodes V with a probability
distribution P (v) over variables V such that for any disjoint X,Y, Z ∈ V , if X
is d-separated from Y given Z in G, then X is independent from Y given Z in
P (v). In this way, a graphical notion of path blocking represents a probabilistic
notion of independence. Whenever we can associate G and P (v) in this way,
we say that P (v) satisfies the global Markov property with respect to G.

We will represent causation using non-parameteric structural equation mod-
els (NPSEMs) (Pearl, 2009). These models consist of a set of observable vari-
ables V , and a background variable Ui for each Vi ∈ V . Each background
variable Ui is assumed to vary according to some (unknown) probability dis-
tribution P (ui), while each Vi ∈ V is given by a non-parameteric structural
equation Vi = fi(pai, ui), where fi is an arbitrary function, pai refers to value
assignments to a subset of variables in V , and ui is a value assignment to Ui.
We assume the background variables U vary according to a joint distribution
P (u), such that P (u) =

∏
i P (ui), in other words all background variables

are jointly independent of each other. The assumption that the background
variables are independent is essentially that all common causes of any two
variables on the graph are also on the graph (Pearl, 2009). The distribution
P (u) along with the set of functions F for each Vi ∈ V together inducing a
probability distribution P (v) over observable variables V in the model.

An intervention setting a variable Xi to xi is represented in NPSEMs by
replacing the function fi for Xi by a constant-valued function evaluating to
xi. The result is a modified NPSEM with a new distribution over observables
which we call an interventional distribution, and denote by P (v|do(xi)).

NPSEMs are a particularly convenient formalism for reasoning about ef-
fects of interventions because the observable distribution P (v) of an NPSEM
satisfies the global Markov property with respect to the DAG associated with
the NPSEM called a causal diagram. This association between the causal di-
agram and the model allows probabilistic notions such as independence, and
causal notions such as confounding to be expressed in an intuitive visual way
with paths for any NPSEM represented by the corresponding graph.

3. Total, Direct, and Indirect Effects

If we are interested in the effect of do(a) on a subset Y of variables V , called
the outcome variables, we are interested in marginal of P (v|do(a)), written as
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P (y|do(a)) or P (Ya = y) where Ya is the counterfactual value of Y that would
be observed if A were set to a. This distribution represents the total effect of
A on Y . The total effect may not always be the causal quantity of interest.
Frequently, we may be interested in the effect of A on Y along a particular
causal path. For instance, we may want to quantify the causal influence of A
on Y not mediated by certain other variables in the model, i.e. the effect of
A on Y if some other variables M were either held fixed, or were otherwise
prevented from transmitting the influence of A on Y .

There are two formalizations of direct effects. We will need some additional
notation. We let Ya,m denote the counterfactual value of Y that would be
observed if A were set to a and M were set to m; we let Ma denote the
counterfactual value of M that would be observed if A were set to a. So as
to be a candidate for a mediator we restrict M to the non-ancestors of A. We
also assume A is a singleton set.

Definition 1 (Controlled direct effect) Given an outcome Y , treatment
value of interest a, value settings m for some other observable variables, and
value settings u to all background variables, the controlled direct effect of A
on Y not via M is given by Ya,m(u) − Ya∗,m(u).

Note that the value of this effect depends on the settings of both the back-
ground variables U = u and the mediating variables M = m. One might
concieve of u as indicating a particular individual. If we wish to summarize
controlled direct effect over possible values of U , we would use the average con-
trolled direct effect (with respect to a particular setting m) E[Ya,m]−E[Ya∗,m].
The average controlled direct effect is a function of interventional distributions.

One difficulty with the controlled direct effect formulation is that it is not
possible to consider indirect effects of A on Y , say the effect only along paths
which include mediating variables M unless there are a set of variables that
intercepts all direct paths from A to Y (VanderWeele, 2010b). An alternative
which avoids this difficulty is to consider the effect of setting A to a on Y
in a hypothetical situation where all the mediating variables M behaved as
if a were set to a reference value a∗ instead (Robins and Greenland, 1992;
Pearl, 2001). Such hypothetical situations still prevent M from transmitting
the influence of A on Y , yet allow a definition of an indirect effect as well, as
we now show.

Definition 2 (Natural direct effect) Given an outcome Y , treatment value
of interest a, a reference value a∗, and value settings u to all background vari-
ables, the natural direct effect of A on Y is given by Ya,Ma∗

(u) − Ya∗,Ma∗
(u),
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where Ma∗ in the subscript denotes the value of Ma∗(u). Note that we replaced
Ya∗,Ma∗

by Y ∗

a . These counterfactual quantities are in fact the same. The dis-
tribution P (Ya∗,Ma∗

) is a short-hand for writing
∑

m P (Ya∗,m,Ma∗ = m) which
is equal to

∑
m P (Ya∗ ,Ma∗ = m) = P (Ya∗) by the generalized consistency ax-

iom, sometimes known as composition (Pearl, 2009). See the appendix for a
precise definition of generalized consistency.

As before, if we wish to summarize natural direct effect over possible values
of U we would obtain the average natural direct effect E[Ya,Ma∗

] − E[Ya∗ ].
The natural indirect effect considers the behavior of the outcome Y in the

situation where A is set to the reference value a∗, yet the mediating variables
M vary as if A were set to a.

Definition 3 (Natural indirect effect) Given an outcome Y , treatment
value of interest a, a reference value a∗, and value settings u to all background
variables, the natural indirect effect of A on Y is given by Ya,Ma(u)−Ya,Ma∗

(u).

The average natural indirect effect, as before, is defined to be E[Ya∗,Ma ] −
E[Ya∗ ]. For the remainder of this paper, we will consider average natural direct
effects, with the understanding that our results generalize in a straightforward
way to indirect effects. As a terminological shorthand, we will omit “average,”
and simply discuss natural direct effects.

The total effect decomposes into the sum of the natural direct effect and
the natural indirect effect, making these effects of particular interest in assess-
ing the proportion of an effect mediated through an intermediate. Examples
in which direct and indirect effects are of interest might include assessing
the extent to which the effect of pre-eclampsia on cerebral palsy is medi-
ated by preterm birth and whether there is a direct effect (VanderWeele and
Hernández-Diaz, 2011) or assessing the extent to which certain genetic vari-
ants affect lung cancer through increased smoking or through other pathways
(Chanock and Hunter, 2008).

If it is possible to implement interventions on A and M via a randomized
experimental protocol, it is then possible to identify controlled direct effect,
since the controlled direct effect is a function of interventional distributions.
Unfortunately, in practice it is often not possible to randomize treatments
of interest. Furthermore, in the case of natural direct effects, there is, in
general, no experimental protocol which would identify the quantity of interest
E[Ya,Ma∗

] since this quantity involves A being set to one value with respect to
one variable, and to another value with respect to another variable.

The next natural question is one of identification, in other words, what
assumptions does one need to place on observable and counterfactual (e.g.
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post-intervention) variables in order to express controlled or natural effects in
terms of P (v).

For controlled direct effects, a simple and complete graphical criterion is
known in NPSEMs (Shpitser et al, 2006). For natural direct effects, which are
a special case of counterfactual probability distributions, complete identifica-
tion algorithms are also known in NPSEMs (Shpitser et al, 2008). There are
three chief obstacles to applying these natural direct effect identification re-
sults in practice. First, counterfactual identification algorithms in general rely
on untestable counterfactual independence assumptions. Second, they assume
complete knowledge of the causal diagram, knowledge that is often unavailable
in practice. Third, these algorithms may be difficult for an applied researcher
to use in practice.

For the subsequent discussion, we will assume that causal knowledge, while
incomplete, can be summarized as follows: there is a single treatment A, a
single outcome Y , and a set of mediating variables M which lie along some
causal pathways from A to Y , and a set of confounding factors C. Note that
since A and Y are single variables, a singleton set containing A is denoted as
{A}, and (for instance) a set containing A and all variables in C is denoted as
{A} ∪C. The exact causal relationships among variables in M and C are not
known. In this situation, criteria for the identification of natural direct effects
exist (Pearl, 2001; Imai et al. 2010). We will use A ⊥⊥ B|C to denote A is
independent of B conditional on C.

Assumption set 1 (Pearl, 2001).

P1: Ya,m ⊥⊥ A|C

P2: Ya,m ⊥⊥ M |{A} ∪ C

P3: Ma ⊥⊥ A|C

P4: Ya,m ⊥⊥ Ma∗|C

Assumptions P1,P2,P3 and P4 or slight variants of them have been em-
ployed by a number of other authors (Petersen et al., 2006; van der Laan
and Petersen, 2008; VanderWeele, 2009, 2010; VanderWeele and Vansteelandt,
2009).

These assumptions can all be interpreted as conditional ignorability of
some outcome Y and some treatment A given some covariate set C, which is
a counterfactual independence statement written as (Ya ⊥⊥ A|C). Conditional
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ignorability is a well known assumption which justifies adjustment for covari-
ates C when identifying the total causal effect of A on Y from observational
data. It can be interpreted as stating that there is no confounding between A
and Y after we adjust for C.

Assumptions P1 and P2 can be thought of as two parts of conditional
ignorability of Ya,m and {A} ∪ M given C, in other words (Ya,m ⊥⊥ {A} ∪
M |C). Assumptions P1 and P2 are logical consequences of this conditional
ignorability assumption and moreover P1 and P2 together imply (Ya,m ⊥⊥
{A} ∪ M |C). The third assumption P3 is just conditional ignorability of Ma

and A given C. Finally, the last assumption P4 is an independence of two
counterfactual quantities. One way to interpret P4 is that it is a kind of
conditional ignorability of Ym and M given C that holds in a world where A
was intervened on. However, the specific values to which A was intervened on
differ between Y and M variables. It is this disagreement on values of A that
makes Pearl’s last assumption problematic. It is untestable. We will show
later that this issue is somewhat mitigated because the last assumption is a
logical implication of the other three in NPSEMs.

An alternative set of assumptions exists which avoids the difficulty of mak-
ing an assumption about the independence of counterfactual quantities.

Assumption set 2 (Imai et al. 2010).

I1: {Ya,m,Ma∗} ⊥⊥ A|C

I2: Ya,m ⊥⊥ M |{A} ∪ C

Assumption I2 is identical to P2, and both can be thought of as logical
consequences of conditional ignorability of Ya,m and {A} ∪ M given C. As-
sumption I1 combines Pearl’s first and third assumptions into a single joint
statement of independence.

Hafeman and VanderWeele (2010) gave assumptions for the identification
of natural direct and indirect effects that are implied by but somewhat weaker
than assumption set 2; however, the results of Hafeman and VanderWeele
(2010) required a binary mediator. See Robins et al. (2010), Imai et al.
(2010) and Hafeman and VanderWeele (2010) for graphical and non-graphical
examples in which assumption set 2 may hold without assumption set 1 hold-
ing.

Either assumption set 1 or assumption set 2 permit us to identify the
natural direct effects via the following formula, which we call the adjustment
formula for natural direct effects:
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E[Ya,Ma∗
]−E[Ya∗ ] =

∑

c,m

{E[Y |a,m, c]−E[Y |a∗,m, c]}P (M = m|a∗, c)P (C = c)

The derivation of the adjustment formula from I1 and I2 is straightforward,
we reproduce it in the appendix.

In the absence of the confounder set C this formula reduces to Pearl’s
mediation formula (Pearl, 2009):

E[Ya,Ma∗
] − E[Ya∗ ] =

∑

m

{E[Y |a,m] − E[Y |a∗,m]}(M = m|a∗)

Similarly, we can use the same assumptions to given the adjustment formula
for natural indirect effects:

E[Ya∗,Ma ]−E[Ya∗ ] =
∑

c,m

E[Y |a∗,m, c]{P (M = m|a, c)−P (M = m|a∗, c)}P (C = c)

In the absence of the confounder set C this formula reduces to a version of
the mediation formula for indirect effects:

E[Ya,Ma∗
] − E[Ya∗ ] =

∑

m

E[Y |a∗,m]{P (M = m|a) − (M = m|a∗)}

Using covariate adjustment with mediation formula can give rise to a par-
ticularly simple approach to the estimation of direct and indirect effects. For
example, VanderWeele and Vansteelandt (2009) showed that if assumption
set 2 is satisfied and if Y and M are continuous and the following regression
models for Y and M are correctly specified:

E[Y |a,m, c] = θ0 + θ1a + θ2m + θ3am + θ′4c

E[M |a, c] = β0 + β1a + β′

2c

then the average natural direct and indirect effects are given by

E[YaMa∗
] − E[Ya∗Ma∗

] = {θ1 + θ3(β0 + β1a
∗ + β′

2E[C])}(a − a∗)

E[YaMa ] − E[YaMa∗
] = (θ2β1 + θ3β1a)(a − a∗).

These expressions generalize the approach to mediation analysis in the social
sciences of Baron and Kenny (1986) so as to allow for interactions between
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a y

c1 c2

Figure 2: A graph where adjusting for {C1, C2} correctly estimates the causal
effect of A on Y , yet the back-door criterion fails.

the effects of the exposure and the mediator on the outcome. VanderWeele
and Vansteelandt (2009) also gave expressions for the standard errors of these
estimators.

4. The Adjustment Criterion for Total Effects

A problem related to identifying natural direct effects is estimating total ef-
fects, that is the effect of treatment A on outcome Y along all causal paths.
Total effects are generally represented as E[Ya] − E[Ya∗ ]. A very common
method for estimating causal effects assumes a set of covariates C such that
adjusting for C results in an unbiased estimate of the total effect, in other
words:

E[Ya] − E[Ya∗ ] =
∑

c

{E[Y |a, c] − E[Y |a∗, c]}P (C = c)

This is known as the adjustment formula. Pearl gave the well known back-
door criterion which permits identification of total effects by the above formula.
The back-door criterion holds for C with respect to (A, Y ) if C consists of non-
descendants of A and d-separates all paths from A to Y which start with an
arrow pointing to A (i.e. all “back-door” paths).

Unfortunately, the back-door criterion is not complete for adjustment. In
other words, there exist causal diagrams where C does not satisfy the back-
door criterion with respect to (A, Y ), yet in all models inducing that diagram
the adjustment formula above yields an unbiased estimate of the total effect.

Recently, a generalization of the back-door criterion was developed which
was termed the adjustment criterion (Shpitser et al., 2010) for which we will
give two further definitions.

Definition 4 (Proper Causal Path) A directed path from a node in X ∈ A
to a node in Y is called proper causal with respect to A if it does not intersect
A except at X.
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Definition 5 (Adjustment Criterion) The adjustment criterion holds for
C with respect to (A, Y ) if C blocks all paths from A to Y which are not
proper causal with respect to A, and if C is not a descendant of any node on
a proper causal path from A to Y (except possibly nodes in A themselves) in
the graph where all arcs pointing to A are cut.

Consider the graph shown in Fig. 2. In this graph, adjusting for {C1, C2}
yields a valid estimate of the causal effect of A on Y , though the back-door
criterion fails for {C1, C2} with respect to (A, Y ). Note that the set {C1, C2}
satisfies the adjustment criterion with respect to (A, Y ) in this graph. The
following results involving the adjustment criterion are known (Shpitser et al.,
2010):

Theorem A. In any causal diagram G ,C satisfies the adjustment criterion
for (A, Y ) if and only if in every NPSEM inducing G, P (Ya) =

∑
c P (Y |a, c)P (C =

c).

Theorem B. In any causal diagram G, C satisfies the adjustment criterion
for (A, Y ) if and only if in every NPSEM inducing G, Ya ⊥⊥ A|C.

In other words, the adjustment criterion characterizes both covariate ad-
justment and conditional ignorability in NPSEM models, which implies co-
variate adjustment and conditional ignorability are equivalent in NPSEMs.
In fact, this equivalence holds in any causal model where conditional ignora-
bility implies covariate adjustment, and which is a supermodel of NPSEMs.
This includes almost any causal model in the literature where the generalized
consistency assumption holds.

5. Adjustment Criterion for Natural Direct and Indirect Effects

Our first result is that the two sets of assumptions used for covariate adjust-
ment for natural direct effects are in fact equivalent in NPSEMs, and are
in turn equivalent to a graphical criterion which fully characterizes covariate
adjustment in this setting.

Theorem 1. On any causal diagram G, assumption set 1 holds for all
NPSEMs inducing G if and only if assumption set 2 holds for all NPSEMs
inducing G if and only if the adjustment criterion holds for C with respect to
({A} ∪ M,Y ) and for C with respect to (A,M).

A minor corollary of our result is that the set of assumptions used by Pearl
is not logically minimal in NPSEMs, in the sense that one of the assumptions
used is implied by the other three.
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Corollary 1. (Ya,m ⊥⊥ A|C), (Ya,m ⊥⊥ M |{A} ∪ C), and (Ma ⊥⊥ A|C)
imply (Ya,m ⊥⊥ Ma∗ |C) in NPSEMs.

Completeness of the adjustment criterion allows us to derive a complete
graphical condition for the identification of natural direct and indirect effects
via the adjustment formula.

Theorem 2. The adjustment formula for natural direct and indirect effects
holds if and only if C satisfies the adjustment criterion relative to ({A}∪M,Y )
and C satisfies the adjustment criterion relative to (A,M).

Note that an immediate consequence of Theorem 2 is that if an investigator
believes that adjustment for C suffices to identify the joint effects of A and M
on Y because of the underlying causal structure relating the variables so that

P (Ya,m|C = c) = P (Y |A = a,M = m,C = c)

and that adjustment for C suffices to identify the effect of A on M because of
the underlying causal structure relating the variables so that

P (Ma|C = c) = P (M |A = a, C = c)

then the mediation formulas adjusting for C suffice to identify natural direct
and indirect effects. We note here that these results identify the counterfactual
distribution P (Ya,Ma∗

), rather than the expectation of Y with respect to this
distribution. This means that our results apply not only to average natural
direct and indirect effects, expressed in terms of expectations, but also to any
function of the identified counterfactual distribution.

We now give a few positive and negative examples to illustrate our criterion.
In the graph shown in Fig. 3 (a), the set {C1, C2} satisfies the adjustment
criterion (and the back-door criterion) with respect to (A,M), and with respect
to ({A,M}, Y ). By Theorem 2, this implies that P (Ya,Ma∗

= y) is identifiable
in this graph, and equal to

∑

c1,c2,m

P (y|a,m, c1, c2)P (m|a∗, c1, c2)P (c1, c2)

At the same time, while the set {C1} satisfies the adjustment criterion
(and the back-door criterion) with respect to (A,M), it does not satisfy either
the adjustment or the back-door criterion with respect to ({A,M}, Y ). By
Theorem 2, this implies P (Ya,Ma∗

= y) is not identifiable by the formula
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Figure 3: (a) Conditions of Theorem 2 hold for the adjustment set {C1, C2},
with respect to (A, Y ), but do not hold for the adjustment set {C1}. (b)
Conditions of Theorem 2 hold for the adjustment set {C1, C2, C3, C4, C5} with
respect to (A, Y ), but do not hold for the adjustment set {C1, C2, C3}.

∑

c1,m

P (y|a,m, c1)P (m|a∗, c1)P (c1)

Similarly, the set {C1, C2, C3, C4, C5} satisfies the adjustment criterion (but
not the back-door criterion) with respect to (A,M), and with respect to
({A,M}, Y ). This implies by Theorem 2 that P (Ya,Ma∗

= y) is identified
by the formula

∑

c1,c2,c3,c4,c5,m

P (y|a,m, c1, c2, c3, c4, c5)P (m|a∗, c1, c2, c3, c4, c5)P (c1, c2, c3, c4, c5)

On the other hand, the set {C1, C2, C3} fails to satisfy either the adjust-
ment criterion or the back-door criterion with respect to both (A,M) and
({A,M}, Y ). Thus, the effect P (Ya,Ma∗

= y) is not identified by the formula

∑

c1,c2,c3,m

P (y|a,m, c1, c2, c3)P (m|a∗, c1, c2, c3)P (c1, c2, c3)

6. Discussion

In this paper we have shown that two sets of identification assumptions for
natural direct and indirect effects (Pearl, 2001; Imai et al., 2010) are in fact
equivalent for NPSEMs and that, for NPSEMs, they are moreover equivalent
to a simple graphical criterion that we have called “the adjustment criterion
for the mediation formula.” We have moreover shown that in the context of
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NPSEMs this graphical criterion is in fact complete for the use of the mediation
formula; that is, if the graphical criterion is not satisfied for a particular causal
directed acyclic graph then there is some model consistent with the diagram
for which the mediation formula does not equal the natural direct and indirect
effects.

We have derived our results within the context of causal diagrams that
correspond to NPSEMs. We close by making a few remarks concerning our
results when one steps out of the NPSEM framework. First, outside this
context, the various identification assumptions need not be equivalent. In-
deed, Imai, Kelle and Yamamoto point out that while assumptions I1, and
I2 imply assumptions P1,P2,P3, and P4, the converse is not necessarily true.
There are a number of examples in the literature showing this (Imai et al.,
2010; Hafeman and VanderWeele, 2010; Robins et al., 2010). Nevertheless,
we believe that NPSEMs constitute a very broad and general class of data
generating mechanisms and that most of the examples in which one set of
assumptions holds and the other fails are typically quite contrived. A second
point is that even outside of the NPSEM framework, the completeness of our
criterion will still be applicable to any alternative graphical model (Robins
and Richardson, 2010) that is a supermodel of NPSEMs such as the “minimal
counterfactual models” considered by Robins and Richardson (2010). Finally,
we note that although our adjustment criterion is sound and complete for the
use of the mediation formula on NPSEMs, it does not entail a complete iden-
tification criterion on NPSEMs more generally for natural direct and indirect
effects. It is complete only for the use of covariate adjustment in the iden-
tification of natural direct and indirect effects. Although there are examples
in which the adjustment criterion fails but natural direct and indirect effects
are still identified, they are not identified by covariate adjustment and the use
of the mediation formula. We believe that in practice there will be few, if
any, settings in which a researcher will have sufficient structural knowledge to
determine that the adjustment criterion for the mediation formula fails and
also has sufficient structural knowledge to determine that natural direct and
indirect effects are otherwise identified.

Appendix A (Technical Preliminaries)

We give background material and definitions needed for a formal proof of our
results.

For a given NPSEM, its causal disagram is a directed acyclic graph with a
vertex for every variable in V , and a directed arrow from Vi to Vj if Vi ∈ Paj.
It is known that for any NPSEM with distribution P (v) over observables and
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a causal diagram G, P (v) satisfies the global Markov property with respect to
G (Verma and Pearl, 1988; Geiger et al., 1990; Lauritzen et al., 1990; Pearl,
2009). Effects of an intervention do(v∗

i ) in an NPSEM with a causal diagram
G can be represented graphically by removing all incoming arrows to Vi, to
obtain a mutilated graph Gvi

. For any value assignment x to a set of variables
X ⊆ V , it is known that P (v|do(x)) satisfies the global Markov property with
respect to Gx.

Assuming an NPSEM with a causal diagram that is a DAG amounts to
assuming whenever two variables are on the graph, all their common causes
are also on the graph. For this to be satisfied the causal diagram may include
nodes which are unmeasured common causes. To facilitate arguments in the
appendix, we assume there is an underlying causal diagram that is a DAG,
that corresponds to some distribution P , but we only observe a marginal of
this distribution over V , the observable variables. Such marginals may not
satisfy the global Markov property with respect to any DAG. However, they
may satisfy the global Markov property with respect to a mixed graph. To
make our proofs as general as possible, we consider mixed graphs containing
two kinds of edges, directed and bidirected. For a given DAG G containing
nodes V partitioned into sets O of observed nodes and L of latent nodes, we
construct the latent projection G(O) of G as follows. G(O) contains a vertex
for every nodes in O. Furthermore, if there is a d-connected path from X to
Y (given the empty set) in G where all intermediate nodes are in L, with the
first arrow pointing away from X and the last arrow pointing towards Y , we
add a directed arrow from X to Y in G(O). If the first arrow points towards
X and the last arrow points towards Y , we add a bidirected arrow from X to
Y in G(O). The notion of d-separation generalizes in a natural way to latent
projections as m-separation (Richardson et al, 2002). A distribution P satis-
fies the global Markov property with respect to a mixed graph G if for any
disjoint sets X,Y, Z if X is m-separated from Y given Z in G, then X is inde-
pendent of Y given Z. For an NPSEM with a graph G if only a subset O ⊆ V
is observed, then P (O) satisfies the global Markov property with respect to
a latent projection G(O). Representing an intervention do(x) by cutting in-
coming arrows to X generalizes in a straightforward way to latent projections,
where incoming bidirected arcs to X are cut as well. In subsequent proofs we
will assume NPSEMs with a subset O of observable nodes, represented by a
latent projection G(O).

To derive Theorems 1 and 2, we also need to consider properties of coun-
terfactual independence. A widely known set of properties of conditional in-
dependence are the so called graphoid axioms (Dawid 1979; Pearl 1988).
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• (X ⊥⊥ Y |Z) ⇔ (Y ⊥⊥ X|Z)

• (X ⊥⊥ Y ∪ W |Z) ⇒ (X ⊥⊥ Y |Z)

• (X ⊥⊥ Y ∪ W |Z) ⇒ (X ⊥⊥ Y |W ∪ Z)

• (X ⊥⊥ Y |Z) ∧ (X ⊥⊥ W |Y ∪ Z) ⇒ (X ⊥⊥ Y ∪ W |Z)

These axioms hold in arbitrary probability distributions, and in particular
in counterfactual distributions.

The next axiom we will need is the axiom of generalized consistency, some-
times referred to as composition (Pearl, 2010). In NPSEMs, this axiom states
that if we observe Wx(u) = w, then for any Y , Yx(u) = Yx,w(u).

Finally, we will need to use the axiom of compositionality, which states
that if (X ⊥⊥ Y |Z) and (W ⊥⊥ Y |Z), then (X∪W ⊥⊥ Y |Z). Compositionality
does not hold in arbitrary probability distributions. Nevertheless, composi-
tionality does hold in distributions which satisfy a path-wise global Markov
property (such as d-separation) with respect to some graph for those inde-
pendences which are implied by that Markov property. This is because such
Markov properties are based on paths, and statements about paths between
sets decompose into statements about paths between elements of these sets.
For our purposes we are interested in applying compositionality to indepen-
dence statements in counterfactual distributions, and in NPSEMs there exists
a graph which displays counterfactual independences via d-separation. This
graph is known as a counterfactual graph (Shpitser et al, 2007).

For a given counterfactual distribution P (γ) = P (Y 1
a1 , ..., Y k

ak) derived from
an NPSEM inducing a causal diagram G, the counterfactual graph Gγ is ob-
tained by considering a mutilated graph Gai for each Y i

ai in γ, and having these
graphs share the background variables, representing the generalized consis-
tency axiom. For a detailed construction, see (Shpitser et al, 2008). The distri-
bution P (An(Y 1

a1)Gγ , ..., An(Y k
ak)Gγ ) satisfies the global Markov property with

respect to Gγ, and thus any conditional independences due to d-separation in
Gγ will satisfy the compositionality axiom.

Appendix B (Proofs)

We first show that assumptions I1 and I2 imply the adjustment formula
for natural direct effects.
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E[Ya,Ma∗
] =

∑

m

E[Ya,m|Ma∗ = m]P (Ma∗ = m) =

∑

c,m

E[Ya,m|Ma∗ = m,C = c]P (Ma∗ = m|A = a∗, C = c)P (C = c) =

∑

c,m

E[Ya,m|Ma∗ = m,C = c]P (M = m|A = a∗, C = c)P (C = c) =

∑

c,m

E[Ya,m|M = m,A = a∗, C = c]P (M = m|A = a∗, C = c)P (C = c) =

∑

c,m

E[Ya,m|A = a∗, C = c]P (M = m|A = a∗, C = c)P (C = c) =

∑

c,m

E[Ya,m|A = a, C = c]P (M = m|A = a∗, C = c)P (C = c) =

∑

c,m

E[Ya,m|M = m,A = a, C = c]P (M = m|A = a∗, C = c)P (C = c) =

∑

c,m

E[Y |M = m,A = a, C = c]P (M = m|A = a∗, C = c)P (C = c)

The first equality is by definition, and the second is by case analysis. The
third is implied by the generalized consistency axiom, the fourth is implied by
I1, the fifth is implied by I2, the sixth is implied by I1 and the graphoid axioms,
the seventh by I2, and finally, the eighth by the generalized consistency axiom.

Theorem 1. On any causal diagram G, Assumption 1 holds for all
NPSEMs inducing G if and only if Assumption 2 holds for all NPSEMs in-
ducing G if and only if the adjustment criterion holds for C with respect to
(A ∪ M,Y ) and for C with respect to (A,M).

Proof. We first show Assumption 1 implies Assumption 2. Note that
(Ya,m ⊥⊥ M |{A} ∪ C) is both I2 and P2. Assumptions P1 and P3 imply I1
by compositionality. Thus P1,P2,P3 imply I1,I2. We now show the converse:
again I2 and P2 are equivalent; also I1 implies P1 and P3. It remains to
show I1 and I2 imply P4. In fact, I2 implies (Ya,m ⊥⊥ Ma∗|A = a∗, C) by the
generalized consistency axiom. But together with I1 and the graphoid axioms,
this implies (Ya,m ⊥⊥ {Ma∗ , A = a∗}|C). But this implies (Ya,m ⊥⊥ Ma∗|C)
which is P4.

Note from this argument it thus follow that P1,P2,P3 imply P4 for NPSEMs.
Thus P1,P2,P3 and I1,I2 are equivalent.
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By results in Shpitser et al. (2010), the adjustment criterion holds for
Z with respect to (X,Y ) in a NPSEM if and only if (Yx ⊥⊥ X|Z) holds.
This means we must show the equivalence of the two assumptions and the
following two independences: (Ya,m ⊥⊥ A,M |C) and (Ma ⊥⊥ A|C). Note that
(Ma ⊥⊥ A|C) is P3, while P1 and P2 are equivalent to (Ya,m ⊥⊥ A,M |C) by
the graphoid axioms. We saw above that P1,P2,P3 and I1,I2 and P1,P2,P3,P4
are all equivalent for NPSEMs and this completes the proof.

Corollary 1 (Ya,m ⊥⊥ A|C), (Ya,m ⊥⊥ M |A,C), and (Ma ⊥⊥ A|C) imply
(Ya,m ⊥⊥ Ma∗|C) in NPSEMs.

Proof. This is immediate from the previous argument.

To prove completeness for Theorem 2, we will need some utility lemmas.

Lemma A. Let M be partitioned into M1 and M2 where M1 is a subset
of non-descendants of A. Then P (Ya,Ma∗

) = P (Ya,M2
a∗

).

Proof. We have P (Ya,Ma∗
) =

∑
m P (Ya,m,Ma∗ = m) =

∑
m P (Ya,m,M2

a∗ =
m2,M1

a = m) =
∑

m P (Ya,m2 ,M2
a∗ = m2,M1

a = m) =
∑

m2 P (Ya,m2 ,M2
a∗ =

m2) = P (Ya,M2
a∗

). Here the first identity is by rules of probability, the second

is by assumption on M1, and the third is by generalized consistency. The last
identity is by definition.

Lemma B. Let M be partitioned into M1 and M2 where M1 is a subset
of non-ancestors of Y . Then P (Ya,Ma∗

) = P (Ya,M2
a∗

).

Proof. We have P (Ya,Ma∗
) =

∑
m P (Ya,m,Ma∗ = m) =

∑
m P (Ya,m1,m2 ,M2

a∗ =
m2,M1

a = m) =
∑

m P (Ya,m2 ,M2
a∗ = m2,M1

a = m) =
∑

m P (Ya,m2 ,M2
a∗ =

m2) = P (Ya,M2
a∗

). Here the first two identities are by rules of probability, the

third is by assumption on M1, and the last by definition.

Lemma C Assume A, Y,M are such that P (Ya,m ) = P (Ym ) in every model
inducing G. Then P (Ya,Ma∗

) = P (Y ).
Proof. We have P (Ya,Ma∗

) =
∑

m P (Ya,m,Ma∗ = m) =
∑

m P (Ym,Ma∗ =
m) =

∑
m P (Y,Ma∗ = m) = P (Y ).

The first identity is by definition, the second by assumption, the third by
generalized consistency, and the last by rules of probability.

Lemmas A and B together imply that we may restrict ourselves to a me-
diator set M which lies in An(Y ) ∩ De(A) without loss of generality. Lemma
C implies that we can restrict ourselves to the (non-trivial) case of mediators
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which leave some causal paths from A to Y open. In all subsequent results,
we will assume M which lies in An(Y ) ∩ De(A) and leaves some causal paths
from A to Y open. We call such sets M standard mediating sets for (A, Y ).

Lemma 1. Let M be a standard mediating set with respect to (A, Y ).
Then if the adjustment criterion holds for C with respect to (A, Y ), then the
adjustment criterion holds for C with respect to (A,M).

Proof. If there exists W on a proper causal path from A to M such that
C ∩ De(W ) 6= ∅, then W must also lie on a proper causal path from A to Y .
If C opens a non-causal path π from A to M , then adjoining a directed path
from M to Y to π results in a non-causal path π∗ from A to Y . Note that
M must have a directed path to Y by assumption, and C cannot intersect
this directed path since that would violate the adjustment criterion for C with
respect to (A, Y ). This implies C opens π∗, which leads to a contradiction.

Lemma 2. Let M be a standard mediating set with respect to (A, Y ). If
the adjustment criterion holds for C with respect to (A, Y ), then C blocks all
non-causal paths from A to Y , and C does not contain descendants of nodes
W 6∈ A ∪ M which lie on a proper causal path from A ∪ M to Y .

Proof. The first claim follows by definition of the adjustment criterion. If
the second claim is false, then C cannot satisfy the adjustment criterion with
respect to (A, Y ), since M must lie in De(A) ∩ An(Y ).

Lemma 3. Let M be a standard mediating set with respect to (A, Y ).
Assume the adjustment criterion does not hold for C with respect to (A, Y ).
Then either the adjustment criterion does not hold for C with respect to (A,M)
or the adjustment criterion does not hold for C with respect to ({A}∪M,Y ).

Proof. If C opens a non-causal path from A to Y , then the adjustment
criterion does not hold for C with respect to ({A}∪M,Y ). If C is a descendant
of a node W 6= A on a proper causal path π from A to Y , then either π
intersects M or not. If it does not, then the adjustment criterion does not
hold for C with respect to ({A}∪M,Y ). If it does, then there is either a node
M ′ in M between A and W on π or not. If so, then C is a descendant of M ′

and thus C violates the adjustment criterion for (A,M). If not, then W is on
a path from A to M which again violates the adjustment criterion for C with
respect to (A,M).

Lemma 4. Fix a causal diagram G. Let γ[x1, ..., xk] be a counterfactual
probability which is a function of x1, ..., xk which are subscripted values of
variables X1, ..., Xk in a class of NPSEMs inducing G. Let x′

1, ..., x
′

k be value
assignments to X1, ..., Xk different from x1, ..., xk. Assume γ[x1, ..., xk] is not
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identifiable (in a class of NPSEMs inducing G) by a functional φ[x1, ..., xk]
(derived from the appropriate joint distribution P of the models in the NPSEM
class). In other words, there exists an NPSEM inducing G where γ[x1, ..., xk] 6=
φ[x1, ..., xk].

Then γ[x′

1, ..., x
′

k] is not identifiable by φ[x′

1, ..., x
′

k] in the same class of
NPSEMs.

Proof. If γ[x′

1, ..., x
′

k] is identifiable by φ[x′

1, ..., x
′

k], then variable replace-
ment yields a contradiction.

Lemma 5. Let M be an NPSEM inducing a graph G where some nodes are
deterministic functions of their parents. If there are probability distributions
PM , QM over observable counterfactual variables in M such that PM 6= QM ,
then there exists an NPSEM M∗ inducing G where no observable node is a
deterministic function of its parents, such that PM∗ 6= QM∗ .

Proof. Let D be the set of deterministic nodes in M . Fix an arbitrarily
small ǫ > 0. To construct M∗, we copy all functions in M , except for every
node Xi ∈ D, we associate a new binary unobserved parent Ui independent of
other unobserved variables with the function FM∗

i determining XM∗

i behaving
as Fi in M with respect to arguments other than UM∗

i if UM∗

i = 1, and as some
function other than Fi with respect to arguments other than UM

i if UM∗

i = 0.
For each UM∗

i , we let P (UM∗

i = 1) be large enough so the probability of M∗

behaving as M is greater than 1 − ǫ.
Thus, since models M and M∗ have identical behavior with probability

greater than 1 − ǫ, for all values v of the distributions PM , PM∗ , |PM(v) −
PM∗(v)| ≤ ǫ. Similarly, for QM∗ and QM . It suffices to set epsilon to be less
than |PM(v)−QM(v)|/2 for some set of values v of PM to get our conclusion.

We are now ready to prove Theorem 2.

Theorem 2. Let M be a standard mediating set with respect to (A, Y ).
The adjustment formula for natural direct and indirect effects holds if and only
if C satisfies the adjustment criterion relative to ({A,M}, Y ) and C satisfies
the adjustment criterion relative to (A,M).

Proof. We first prove soundness. If C satisfies the adjustment criterion
relative to to ({A,M}, Y ) and C satisfies the adjustment criterion relative to
(A,M), then the adjustment formula natural effects holds by Theorem 1 and
results of Imai and Pearl.

We now prove completeness. Assume C does not satisfy the adjustment
criterion for (A, Y ). Then by Lemma 3, either C does not satisfy the adjust-
ment criterion for ({A}∪M,Y ), or C does not satisfy the adjustment criterion
for (A,M).
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Let γ[a, a∗] = P (Ya,Ma∗
= y) =

∑
m P (Ya,m = y,Ma∗ = m), and φ[a, a∗] =∑

m,c P (Y = y|c,m, a)P (m|c, a∗)P (c). Now by Theorem A, γ[a, a] is not iden-
tifiable by φ[a, a], which implies our conclusion by Lemma 4.

Assume C satisfies the adjustment criterion for (A, Y ). By Lemmas 1
and 2, the only way C can fail to satisfy the adjustment criterion for either
(A ∪ M,Y ) or (A,M) is if C opens a non-causal path π from M ′ ∈ M to Y .
Furthermore, π must be back-door for M and the arrow in π adjancent to Y
must point to Y . If the former condition is not true, then a directed path from
A to M ′ joined with π would result in a non-causal path from A to Y open by
C. If the latter condition is not true, then there is an element in C which is
a descendant of Y , which would mean the adjustment criterion does not hold
for C with respect to (A, Y ).

To prove our result, it suffices to give a counterexample model for this case
such that the natural effect is not equal to the adjustment formula. We are free
to choose among models not faithful to G, in other words models which contain
independence restrictions not encoded by G via a path-separation criterion.
Without loss of generality, we restrict ourselves to DAGs. In cases where
the model is a latent projection of a DAG, we can always recover a DAG by
replacing each bidirected arc connecting a node pair with a new node parent
of that node pair.

Fix a single M ′ ∈ M with a path π1 from M ′ to Y , with the arrow in π1

adjacent to M ′ pointing to M ′, and the arrow in π1 adjacent to Y pointing to
Y . Path π1 is d-connected given some minimal subset C ′ of C. By assumption,
there is a directed path π2 from A to M ′. Since M is a standard mediating
set for (A, Y ) by assumption, we may assume there is a directed path π3 from
A to Y .

See Fig. 4 for a schematic representation of this case. Note that our
proof will work for an arbitrary graph embedding a subgraph with A,M ′, C ′, Y
corresponding to this schematic representation (e.g. A has a directed path to
Y and to M ′, and there is a path from M ′ to Y open by C with arrows adjacent
to M ′ and Y pointing to M ′ and Y ). This is because we can always consider a
non-faithful model where all nodes not equal to A,M ′, Y and not on the paths
π1, π2, π3 are jointly independent of all other nodes in the model (for instance,
each node could correspond to a Bernoulli random trial).

By properties of d-separation it follows that the path π1 decomposes into
a set of segments τ1, ..., τn where each segment τi is a directed path, the first
such segment points to M ′, the last such segment points to Y , and if there
are two intermediate segments, they point to a node ancestral of an element
in C (since π1 is d-connected given C ′). Note that for odd i, τi and τi+1 share
the topmost node, we will denote it as E(i+1)/2. Note that by definition of π1,
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n ≥ 2 and is even, and so there are n/2 such topmost nodes.
We now give a partially deterministic parameterization of the family of

models shown in Fig. 4. We will show this parameterization gives a coun-
terexample showing our claim. A fully stochastic parameterization will then
follow by Lemma 5.

All variables will be binary. Variables A,E1, ..., En/2−1 are Bernoulli with
p = 0.5. En/2 is Bernoulli with p = ǫ. All other variables Xi are set to
(
∑

Pa(X)) (mod 2), in other words their values are equal to the sum of
values of their parents modulo 2. We now give a series of lemmas about
this parameterization culminating in showing P (Ya,Ma∗

= y) 6=
∑

c,m P (Y =
y|m, c, a)P (m|c, a∗)P (c).

Lemma 6. In our model family, C ⊥⊥ A, and P (Ya,Ma∗
= y) = P (Ya =

y) = P (y|a).
Proof. The first claim is a consequence of d-separation in our family of

graphs. To see that the second identity is true, note that P (Ya,Ma∗
= y) =∑

m P (Ya,m = y,Ma∗ = m) =
∑

m P (Ya = y,Ma∗ = m) = P (Ya = y) follows
because M has no directed paths to Y . P (Ya = y) = P (y|a) follows because
A and Y are not confounding in our family of graphs.

Lemma 7. Assume that C ′ = {C1, ..., Ck} (a possibly empty set) in our
model family. Then the following identities hold:

(1) P (a, c′,m′) = 1
2k+1 (1 − ǫ) if (m′ +

∑
ci∈c′ ci) (mod 2) = a

(2) P (a, c′,m′) = 1
2k+1 ǫ if (m′ +

∑
ci∈c′ ci) (mod 2) 6= a

(3) P (Y = 0|c′,m′, A = 0) = 1 if (m′ + y +
∑

ci∈c′ ci) (mod 2) = a

(4) P (Y = 0|c′,m′, A = 0) = 0 if (m′ + y +
∑

ci∈c′ ci) (mod 2) 6= a

Proof.
First, we note that n/2 ≥ k + 1. This is because every path segment τi

must have a unique descendant in C ′ ∪ {M ′}, and every element in C ′ is a
descendant of at least two path segments τi, τi+1 in π1.

Next, we note that (m′ +
∑

ci∈c ci) (mod 2) = (a + ek) (mod 2). This is
because {M ′}∪C ′ can be viewed of taking the sum (mod 2) of A,E1, ..., En/2,
except the values of E1, ..., En/2−1 are counted twice.

Note that P (a, c′,m′) =
∑

en/2
P (c′,m′|en/2, a)P (a)P (en/2). If A = 0 and

En/2 = 0, P (c′,m′|en/2, a) > 0 only if (m +
∑

ci∈c′ ci) = 0. Since n/2 ≥ k + 1,
and since E1, ..., En/2−1 are Bernoulli with p = 0.5, P (c′,m′|en/2, a) is uni-

the topmost node, we will denote it as E(i+1)/2. Note that by definition of π1,
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Figure 4: Schematic representation of the case involving confounding of medi-
ator and outcome.

in other words: P (c′,m′|en/2, a) = 1/2k if above constraint on c′,m′ holds.
P (a) = 0.5 and P (En/2 = 0) = 1 − ǫ, which implies (1) and (2).

Similarly, (y + m′ +
∑

ci∈c′ ci) = 0 (mod 2) in our model. This is because
{Y,M ′}∪C ′ can be viewed as taking the sum (mod 2) of A,E1, ..., En/2, and
every value is counted twice. This implies that P (y = 0|m′, c′) = 1 if and only
if (m′ +

∑
ci∈c′ ci) = 0. This implies (3). and (4).

Lemma 8. In our model family, P (Y = 0|A = 0) = 1 − ǫ, while∑
c,m′ P (y = 0|c,m′, a = 0)P (m′|c, a = 1)P (c) = ǫ.

Proof. Y is a function of A and En/2 in our model family. If A is known
to equal 0, Y will equal A if and only if En/2 assumes value 0 which happens
with probability 1 − ǫ.

Next, note that P (Y = 0|c′,m′, A = 0) is only defined if (m′ +
∑

ci∈c′ ci)
(mod 2) = 0, and is then equal to 1 by Lemma 7. Finally, also by Lemma 7,
P (c′,m′|A = 1) = 1

2k ǫ if (m′ +
∑

ci∈c′ ci) (mod 2) = 0.

Since there are k elements in C ′, there are 2k+1 terms in the sum
∑

c′,m′ P (Y =

0|c′,m′, A = 0)P (c′,m′|A = 1). In our model, only 2k terms do not go to 0.
This implies the sum evaluates to ǫ, which is our conclusion.
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