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A Review of Bayesian Networks and Structure
Learning

Abstract This article reviews the topic of Bayesian networks. A Bayesian network
is a factorisation of a probability distribution along a directed acyclic graph. The
relation between graphical d-separation and independence is described. A short ar-
ticle from 1853 by Arthur Cayley [8] is discussed, which contains several ideas later
used in Bayesian networks: factorisation, the noisy ‘or’ gate, applications of algebraic
geometry to Bayesian networks. The ideas behind Pearl’s intervention calculus when
the DAG represents a causal dependence structure and the relation between the work
of Cayley and Pearl is commented on.

Most of the discussion is about structure learning, outlining the two main approaches,
search and score versus constraint based. Constraint based algorithms often rely on
the assumption of faithfulness, that the data to which the algorithm is applied is
generated from distributions satisfying a faithfulness assumption where graphical d-
separation and independence are equivalent. The article presents some considerations
for constraint based algorithms based on recent data analysis, indicating a variety of
situations where the faithfulness assumption does not hold. There is a short discussion
about the causal discovery controversy, the idea that causal relations may be learned
from data.
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1. Introduction.

1.1. Background and motivation. The models that were later to be called
Bayesian networks were introduced in 1982 into artificial intelligence by J. Pearl [63],
a seminal article in the literature of that field. A Bayesian network provides a com-
pact representation of a probability distribution that is too large to handle using
traditional specifications and provides a systematic and localised method for in-
corporating probabilistic information about a situation. The description ‘Bayesian
networks’ covers a large field of problems and techniques of data analysis and prob-
abilistic reasoning, where data is collected on a large number of variables and the
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aim is to factorise the distribution, represent it graphically and exploit the graph-
ical representation. Perhaps the earliest work that explicitly uses directed graphs
to represent possible dependencies among random variables is that from 1921 by S.
Wright [93], developed by the same author in 1934 (see [94]).

Bayesian networks only represent a small part of the wider field of graphical
models; a Bayesian network is a probability distribution factorised along a directed
acyclic graph (henceforth, written DAG). In many examples this is not the most
efficient model for representing the independence structure; the wider field of graph-
ical models and learning theory is not dealt with here and the reader is referred to
Studenỳ [88]. The book by Koller and Friedman [46] is an extensive text on graphical
models.

Situations where Bayesian networks provide the natural tools for analysis are, for
example: computing the overall reliability of a system given the reliability of the indi-
vidual components and how they interact (for example, Langseth and Portinale [49]),
system security (for example, Zhang and Song [98], where they use Bayesian net-
works as a tool for assessing intrusion evidence and whether a network is under
attack) and forensic analysis (for example, Dawid et. al. [21]). Further applications
are, for example: finding the most likely message that was sent across a noisy chan-
nel, restoring a noisy image, mapping genes onto a chromosome. One of the leading
applications of techniques from the area is to establishing genome pathways. Given
DNA hybridization arrays, which simultaneously measure the expression levels for
thousands of genes, a major challenge in computational biology is to uncover, from
such measurements, gene/protein interactions and key biological features of cellular
systems. This is discussed, for example, by Nir Friedman et. al. in [30] and refer-
ences to applications of Bayesian networks in reconstructing cellular co-expression
networks in biology are found in Markowetz and Spang [57]. DAGs have also proved
useful in a large number of situations where the graph is constructed along causal
principles; parent variables are considered to be direct causes. One field where causal
networks have proved particularly effective has been epidemiological research, where
DAGs have provided a framework for the problem of multiple confounding factors
in genetic epidemiology, as discussed by Greenland, Pearl and Robins [34]. Bayesian
networks offer an alternative to ‘näıve Bayes’ models of supervised classification in
machine learning, which exploits more of the structure (see Ekdahl and Koski [25]).
Additional applications to medical diagnosis, clinical decision support, crime factor
analysis, sensor validation, information retrieval, credit-rating, risk management and
robotics are found in Pourret, Nam, Näım and Marcot [75].

1.2. Organisation of the article. The article is organised as follows: the
section 1.1 is introductory, pointing out areas where Bayesian networks and graphical
models have had fruitful applications. The section 1.2 describes the organisation of
the article. The section 1.3 gives the basic definition of a Bayesian network and
outlines the main problems of learning. This leads to the section 1.4, describing the
problem of product approximations of high dimensional probability distributions and
their relation to Bayesian networks. The section 1.5 outlines the very important area
of causal networks, situations where the directions of the arrows of a DAG have a
cause to effect interpretation. The section 1.6 outlines the topic of dynamic Bayesian
networks, where the variables can be grouped into time slices and some of the arrows
indicate the progression between the time slices.

The section 2 describes the basic separation properties in DAGs, known as d-
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separation, and how they relate to the conditional independence structure of a
Bayesian network. The section 2.1 gives some basic definitions, illustrated when
the DAG has a causal interpretation. The section 2.2 describes the Aalborg algo-
rithm for updating a probability distribution when hard evidence is received, while
the section 2.3 discusses two refinements for a Bayesian network, context specific
independence and minimal sufficient causation which are able to incorporate more
of the independence structure.

The section 3 discusses the pioneering work from 1853 by Arthur Cayley [8], who
presents a causal probability network and a noisy ‘or’ gate. The section 4 discusses
the relation between the work of Arthur Cayley and Judea Pearl’s intervention cal-
culus, which is described. The section 5 describes the use of algebraic geometry as a
tool in Bayesian networks, a subject with which Arthur Cayley was familiar, in the
context of [8].

The section 6 discusses the problem of learning. The problem of learning the pa-
rameters for a given network is touched on briefly in the section 6.1. The section 6.2
describes the problem of structure learning, learning the independence structure from
data. There are three basic methods; search-and-score, constraint based and hybrid.
The section 6.3 gives an account of the search and score algorithms, describing meth-
ods of scoring, the Cooper Herzkovitz likelihood, Bayesian approaches and Bayesian
Information Criterion, along with others, and a brief outline of the approaches to
searching the space; Markov chain Monte Carlo, Sparse Candidate, Optimal Rein-
sertion, Greedy Equivalence Search. The greedy equivalence search algorithm, while
more economical than other search and score algorithms, requires a composition as-
sumption to return the correct graph, which is not required of the other search and
score algorithms discussed here.

In the section 6.4, the discussion then moves onto constraint based algorithms,
which are in general more economical, but which usually require a faithfulness as-
sumption, that there exists a DAG whose d-separation statements are equivalent to
the conditional independence statements of the distribution. An example is given to
show where faithfulness and composition fail and where algorithms on these principles
will return the wrong structure. Various examples of constraint based algorithms are
discussed, the Chow-Liu tree, three phase dependency analysis, the PC and MPCC
algorithms, the FAST algorithm and RAI algorithm. The Chow-Liu tree locates a
maximal dependency tree, while the others work on the principle of adding an edge
X ∼ Y if and only if there does not exist a set S such that X ⊥ Y |S (X condition-
ally independent of Y given a set of variables S). Under a faithfulness assumption,
together with a perfect oracle, these produce a correct graph. The Xie - Geng algo-
rithm, which firstly locates the independence graph and then pulls it apart to locate
the immoralities, is also outlined; this algorithm also requires faithfulness.

The section 6.5 moves on to hybrid algorithms, which contain features from both
constraint based and search and score approaches. The increasingly important tech-
nique of L1 regularisation is mentioned, the addition of an L1 component to the score
function helps to reduce the overall number of parameters in the output model.

The largest problem with many of the approaches used is the assumption of
faithfulness and the section 6.6 discusses the pitfalls of this assumption. Algorithms
that work well when applied to simulated data, simulated from a distribution which
has a faithful graphical model, do not necessarily function well on ‘real world’ data
sets. One of the problems is the presence of hidden variables - even if there were a
faithful distribution in principle, if common causes are hidden, the distribution over
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the observable variables may not be faithful. Various situations where the faithfulness
assumption may fail, and the resulting contradictions produced by constraint based
methods are indicated.

The section 7 discusses the ‘causal discovery’ controversy, the idea that a directed
arrow that has a valid interpretation of direct cause to effect can be learned from data
and also how, if it is possible to carry out controlled experiments, the contradictions
can be resolved by the data produced by controlled experiments along with Judea
Pearl’s intervention calculus. The important work of Freedman and Humphreys [28]
is discussed. The section 8 gives a conclusion, which is followed by an extensive
bibliography.

1.3. Description of a Bayesian network. A Bayesian network consists of a
factorisation of a probability distribution and a DAG corresponding to the factorisa-
tion. Those conditional independence statements that may be inferred directly from
the factorisation correspond to d-separation statements in the DAG and therefore
some key conditional independence statements in the probability distribution can
be located using graphical techniques for locating d-separation.

Consider a set of random variables V = {X1, . . . , Xd}. It may be ordered in d!
ways and each ordering gives rise to a different factorisation of the joint probabil-
ity distribution. Throughout, pX will be used to denote the probability distribution
over a variable, or set of variables X, while pX|Z denotes the conditional proba-
bility function of X given Z. The factorisation according to the ordering σ is the
representation

pX1,...,Xd =
d∏
j=1

pXσ(j)|Πσj , (1)

where, for each j, Πσ
j ⊂ {Xσ(1), . . . , Xσ(j−1)} and is the smallest such subset for

which the formula (1) holds. In the DAG corresponding to this factorisation, the
parent set for variable Xσ(j) is Πσ

j .
The notation X ⊥ Y |Z will denote X conditionally independent of Y given Z.

The notation X 6⊥ Y |Z denotes the negation, that the variables are not conditionally
independent.

Bayesian networks deal principally with discrete variables where the distribu-
tion, conditioned on the parent set, is multinomial, or with multivariate normal
distributions, where the analysis basically extends to correlation. Conditional Gaus-
sian distributions are also considered, where the distribution, conditioned on the
discrete variables, is multivariate normal. Some attempts have also been made to
deal with other distributions; for example, skew-normal by Capitanio, Azzalini and
Stanghellini [6].

In this article, attention is predominantly given to the setting where the variables
are multinomial.

Broadly speaking, three categories of inference problems are of interest:

1. For a given probability distribution with a given factorisation, compute the
conditional probability distribution over the remaining variables when some
variables are observed, or instantiated.

2. For a given factorisation, representing an independence structure, estimate
pXσ(j)|Πσj ; that is, estimate the parameters that describe the conditional prob-
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ability distribution of the variable Xσ(j), conditioned on its parent set Πσ
j ,

from the available data, for j = 1, . . . , d.

3. Learn the independence structure and, from this, find a suitable factorisation.
Having located the independence structure, the key problem is to find an effi-
cient ordering of the variables so that the conditioning sets are kept as small
as possible.

The name ‘Bayesian networks’ derives from the first of the inference problems
listed. Although Bayesian statistical techniques are frequently used in the analysis
for the second, the term Bayesian in the context of ‘Bayesian networks’ originates,
rather, from the non-controversial probabilistic use of Bayes rule and not from the
statistical meaning where a probability distribution is placed over the parameter
space. The term was first used by Judea Pearl [64] to emphasise the reliance on
Bayes conditioning when carrying out inference using a Bayesian network. When a
causal network is in view, the leaf variables are observable and Bayes rule is used to
update the probability distribution over the hidden variables, given information on
the leaf variables.

1.4. Bayesian Network as Product Approximation of High Dimensional
Discrete Probability Distributions. The topic of storing a high dimensional
discrete probability distribution (in a digital medium) was probably introduced in
1959 into the journal literature by P.M. Lewis II [52]. If it should not be possible
to store the whole distribution, the idea suggested and analysed by Lewis was a
product approximation of the discrete probability distribution, see e.g. [35]. The
problem of storing probability distributions is another expression of the ‘curse of
dimensionality’. For an intuitive statement of the issues involved we quote P.M.
Lewis II in [52, p.220]:

A product approximation is defined to be an approximation to a higher
order distribution made up of a product of several of its lower order
component distributions such that the product is an extension of the
lower order distributions.

By ‘extension’, Lewis means that the lower order component distributions can be
obtained by marginalisation from the product and that the product is a probability
distribution. A product of an arbitrary set of lower dimensional probability distri-
butions will not satisfy these requirements. The task is a special case of the classical
marginal problem. Let X = (X1, . . . , Xd) denote the random vector under consid-
eration and V = {X1, . . . , Xd} the set of variables. Let Xj denote the state space
of Xj and let X =

∏d
j=1 Xj denote the state space of X. Let XW denote the state

space of a subset W ⊂ V of the variables. Let us consider a family of non-empty
subsets {Wl}sl=1 of V that satisfy V =

⋃s
l=1Wl; X = ×sl=1XWl

.
For each l ∈ {1, . . . , s} let PWl

denote a measure over XWl
. The classical marginal

problem concerns the existence of a Borel measure P∗ on X such that for all Wl

PWl
= (P∗)↓Wl , (2)

where (P∗)↓Wl denotes the marginalization of P down to Wl. Some fundamental
contributions to this problem are due to H.G. Kellerer, E. Marczewski, V. Strassen
et. al. (see H.G. Kellerer [41,42]). We are only interested in the modest special case of
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finite discrete spaces. In fact, the classical marginal problem has either no solution,
one solution or an infinite number of solutions.

The probabilities PWl
should also satisfy an additional consistency condition

known as pairwise compatibility (see Malvestuto [56]). By pairwise compatibility one
means that Ci,j = Wi

⋂
Wj , i 6= j implies that the margin at Ci,j satisfies

PCi,j = P
↓Ci,j
Wi

= P
↓Ci,j
Wj

. (3)

The collection of sets {Wl}sl=1 such that ∪Wl = V is said to satisfy a dependence
structure if for each l Wl = Al ∪Bl for two sets A1, Bl such that B1 = φ,

Bj = Wj

⋂(
j−1⋃
k=1

Wk

)
, j = 2, . . . , s

and
Aj = Wj\Bj j = 1, . . . , s

Let S = (Aj , Bj)lj=1. The probability distribution corresponding to the depen-
dence structure P̃, defined by

P̃S(x) = PA1(xA1
)

s∏
j=2

PAj |Bj (xAj |xBj )

is called the product approximation of the distribution P with respect to S.
It is shown by Malvestuto [56] that if the sets {Wl}sl=1 constitute a dependence

structure, then pairwise compatibility implies collective compatibility (equation (2))
and there is a unique extension of the given PWl

to a product approximation of
P. It can be seen that the well ordered nodes and their sets of parent nodes in a
DAG form a dependence stucture. Hence the product of conditional probabilities∏d
j=1 PXσj |XΠσ

j

is a unique and globally consistent probability distribution extend-

ing the given set of lower order probabilities. The first application of this way of
looking at Bayesian networks is due to Chow and Liu [16], who approximated high
dimensional distributions by products of second order probabilities on a binary tree.

1.5. Bayesian networks and causality. In several applications, the order-
ing of the variables is already given through principles from cause to effect; the
variables arranged such that ancestor variables have causal influences on their de-
scendant variables. In such problems, the factorisation along the DAG is a natural
way of expressing the problem; the conditional probabilities of the factorisation are
well defined natural building blocks. The leaf variables are the observable variables,
the effects, while the variables with lower orders, the causes, are hidden. It is the
conditional probability distribution of the hidden variables, given instantiations of
the observed variables that are of interest, which are computed using Bayes rule. An
early article that considers the notion of a factorisation of a probability distribution
along a DAG representing causal dependencies is that by H. Kiiveri, T.P. Speed and
J.B. Carlin [40], where a Markov property for Bayesian networks is defined. This is
developed in 1990 by J. Pearl [66].

For example, hidden Markov models (HMMs) are used to model dynamic systems
whose states are not observable, yet their outputs are. HMMs are widely used in
applications requiring temporal pattern recognition including speech, handwriting
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and gesture recognition and various problems in bioinformatics, discussed by Durbin,
Eddy and Mitchison [24].

1.6. Dynamic Bayesian Networks. This review largely confines itself to stan-
dard Bayesian networks, although dynamic Bayesian networks are an important tool
that have proved useful for a large class of problems. The thesis of Kevin Murphy [60]
provides a comprehensive introduction to the topic.

The first mention of dynamic Bayesian networks (DBNs) seems to be in 1989 by
Dean and Kanazawa [22]. The DBN framework provides a way to extend Bayesian
network machinery to model probability distributions over collections of random
variables (Zt)t­0. The parameter t ∈ {0, 1, 2, . . .} represents time. Typically, the
variables at a time slice t are partitioned into Zt = (U t, Xt, Y t) representing the
input, hidden and output variables of the model. The term ‘dynamic’ refers to the
fact that the system is dynamic; the basic structure remains the same over time.

Definition 1 A k - slice Dynamic Bayesian network is a DAG corresponding to a
factorisation of the probability distribution over the variables {Z0, Z1, . . .} such that
for t ­ k,

pZ0,...,Zt = pZ0

k−1∏
s=1

pZs|Z0,...,Zs−1

t∏
s=k

pZs|Zs−k,...,Zs−1

where, for t ­ k,
PZt|Zt−k−1,...,Zt−1 =

∏
j

pZjt |Π(Zjt ),

Zjt is the jth node at time t, which could be a component of either Xt, Yt or Ut
and the set Π(Zjt ) of parents of Zjt belongs to the collection Zt−k, . . . , Zt−1. There
may also be associations within a time slice. These are indicated by undirected
arrows, which do not represent causality. The resulting graph is a chain graph.

The requirement is that the subgraph restricted to {Zt, . . . , Zt+k−1} is the same
for each t ­ 0 and the conditional probabilities pZjt |Π(Zjt ) are the same for each
t ­ k. Furthermore, for 1 ¬ i ¬ j ¬ k, and each s ­ j, the subgraph restricted to
{Zs+i, . . . , Zs+j} is a subgraph of the subgraph restricted to {Zs+i−1, . . . , Zs+j}. 2

The arcs between slices are from left to right and reflecting the causal flow of
time. If there is an arc from Zjt−1 to Zjt , the node Zj is said to be persistent. The
arcs within a slice may have arbitrary direction, so long as the overall DBN is a
DAG. The arcs within a time slice may be undirected, since they model correlation
or constraints rather than causation. The resulting model is then a (dynamic) chain
graph.

The parameters of the conditional probabilities pZjt |Π(Zjt ) are time-invariant for
t ­ k, i.e., the model is time-homogeneous. If parameters can change, they may be
added to the state-space and treated as random variables or alternatively a hidden
variable may be added that selects which set of parameters to use.

Within the engineering community, DBNs have become a popular tool, because
they can express a large number of models and are often computationally tractable.

DBNs have been successfully applied to the reconstruction of genetic networks,
where genes do not remain static, but rather their expression levels fluctuate con-
stantly. Increased expression level of a gene will result in increased levels of mRNA
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Figure 1: A fork connection

from that gene which will in turn influence the expression levels of other genes. DBNs
have proved to be a successful way of analysing genetic expression data.

2. Directed Acyclic Graphs and Causal Networks.

2.1. Independence and d-separation. A causal network is one where the
DAG along which the probability distribution factorises is considered to have a
causal interpretation; the parents of a variable are those that have a direct causal
effect on a variable. In such situations, it is natural for the conditional probabilities,
where the conditioning variables are the direct causes, to be the basic building blocks
and to use these to construct probability distributions over larger systems. In a DAG,
there are three ways in which two variables with no direct connection between them
can be connected via a third; the fork, chain and collider respectively, which have
clear interpretations when the graph has been derived from causal principles.

1. The fork connection is illustrated in figure 1. The fork variable Z is a common
cause.

A probability distribution over the variables X,Y, Z that factorises according
to the DAG in figure 1 may be expressed as

pX,Y,Z = pZpX|ZpY |Z .

Note that X ⊥ Y |Z; X and Y are conditionally independent given Z, but
X 6⊥ Y , or at least not necessarily. If a causal interpretation is valid, then the
fork variable Z is a common cause. It is illustrated by the following example
by Albert Engström (1869 - 1940), a Swedish cartoonist. ‘During a convivial
gathering there is talk of the unhygienic aspect of using galoshes. One of those
present chimes in: “Yes, I’ve also noticed this. Every time I’ve woken up with
my galoshes on, I’ve had a headache.” ’ There is an association between head
and feet; they are not independent of each other. But the association may be
explained fully through the state of the hidden variable Z, which denotes the
activities of the previous evening, the common cause of both headache and
forgetting to remove galoshes before sleeping.

2. The chain connection is illustrated in figure 2. This describes a situation where
the association between X and Y is only through Z; X has a causal influence
on Z, which in turn has a causal influence on Y .

A probability distribution over (X,Y, Z) that factorises along the graph in
figure 2 may be written as:

pX,Y,Z = pXpZ|XpY |Z .
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As with the fork connection, X ⊥ Y |Z, but X 6⊥ Y , or at least not necessarily.

3. The collider connection is illustrated in figure 3. Here X and Y both have
causal influence on Z. This corresponds to a factorisation

pX,Y,Z = pXpY pZ|X,Y .

For variables that factorise according to a collider, the properties are the op-
posite; X ⊥ Y , but X 6⊥ Y |Z; at least they are not necessarily conditionally
independent. If there is information on the state of Z, then there will be a
flow of information between X and Y . The classic example here is that of X =
‘burglary’, Y = ‘earth tremor’ and Z = ‘alarm’. An earth tremor and a real
burglary can both set off the burglar alarm. If the burglar alarm is ringing, the
information that there has been an earth tremor in the area will reduce one’s
fear that there may have been a real burglary. Information passes between X
and Y only if there is information on Z.

All connections between two variables via a third in a DAG are of these three
types: fork, chain or collider.

In a DAG, two nodes X and Y are said to be d-separated by a set S if all
trails between X and Y , have either a fork or chain connection in S, or a collider
connection not in S, with none if its descendants in S. The notation for this will be
X ⊥ Y ‖GS, where G denotes the graph in which the d-separation statement holds.

The main result used in Bayesian networks is that if X and Y are d-separated by
a set S in the DAG, written X ⊥ Y ‖GS, then the probabilistic statement X ⊥ Y |S
(X independent of Y given S) holds. There is a direct proof of this in Koski and
Noble [48]. This does not necessarily work the other way round; if X and Y are
d-connected by S (written X 6⊥ Y ‖GS), it does not necessarily hold that X 6⊥ Y |S.
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Definition 2 (Faithful) When d-separation statements for the DAG and indepen-
dence statements for the probability distribution are equivalent, the DAG is said to
be faithful. 2

An ordering of the variables gives a factorisation and a corresponding DAG. An
efficient factorisation is one where the d-separation statements of the DAG represents
as much of the independence structure as possible. If there is a causal structure, then
this provides a natural ordering of the variables, a factorisation and an efficient DAG
with a causal interpretation.

For a node in a DAG, an important feature is its Markov blanket.

Definition 3 (Markov blanket) The Markov blanket of a node X in a DAG,
denoted MB(X), is the set of parents and children and parents of children of the
variable. 2

The important feature of the Markov blanket is that X is d-separated from the
remaining variables in the network by its Markov blanket. This may be seen by
considering the various connections to X; for each variable in V \({X} ∪MB(X)),
any trail to X contains at least one fork or chain node in MB(X). This is the
smallest set that has this property.

2.2. Computing conditional probabilities. Once the network has been es-
tablished, consisting of a DAG and specifications of the conditional probabilities
corresponding to the factorisation, the network may be used for computation of ar-
bitrary conditional probabilities. This proceeds according to, for example, the Aal-
borg algorithm, by Lauritzen and Spiegelhalter [50]. The Aalborg algorithm proceeds
along the following lines:

1. The DAG is moralised. This means that, for each variable, undirected edges
are added between each pair of common parents and then all the edges are
undirected. The moral graph is the undirected graph where each variable /
parent set in the original DAG is a clique.

2. The moral graph is then triangulated efficiently. Various triangulation algo-
rithms are available; the choice depends on various factors.

3. An undirected graph is decomposable if and only if it is triangulated; the cliques
of an undirected graph may be organised to form a junction tree if and only if
the graph is decomposable. The cliques are then organised into a junction tree
and the probability distribution factorised over the junction tree.

Definition 4 (Junction Tree) Let C denote the collection of cliques. A junction
tree is a tree with node set C which satisfies the following property: if X ∈ C1 and
X ∈ C2 for C1, C2 ∈ C, then X is in every clique on the unique path between C1

and C2 in the tree. 2

Let C denote the collection of cliques and S the collection of separators. That is,
for two adjacent cliques Ci and Cj , their separator is Sij = Ci ∩ Cj , the variables
present in both cliques. The factorisation of a probability distribution p over the
junction tree is

p(x) =

∏
C∈C pC(xC)∏
S∈S pS(xS)

,
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where pC denotes the marginal distribution over the clique C and pS denotes the
marginal over the clique S, xS and xS denoting the instantiations of C and S re-
spectively.

The evidence, information that certain variables take specific values, is then in-
serted. Suppose the information is that variables in the set A are instantiated as y

A
.

This is done by setting

φC(xC) =
{
pC(xC) xC∩A = y

C∩A
0 otherwise.

and the same for φS(xS). The information is then propagated by the following mes-
sage passing algorithm: messages are passed from the leaf nodes to a designated root
and then back out to the leaf nodes, updating the probability distribution over each
clique.

The message passed from a clique C1 to an adjacent clique C2 with separator
S = C1 ∩ C2 is:

1. compute the update ratio λS(xS) =

∑
C1\S

φC1 (xC1
)

φS(x
S

) (where
∑
C1\S φC1(xC1

)
denotes: marginalise φC1 over those variables in C1 that are not in S)

2. update φS(xS) to φ∗S(xS) =
∑
C1\S φC1φC1(xC1

).

3. update φC2(xC2
) to φ∗C2

(xC2
) = λS(xS)φC2(xC2

).

The message passing has to be carried out according to a fully active schedule.
That is, messages are only passed from cliques that have received messages from all
neighbours except possibly the one to which they are passing, the root has received
messages from all its neighbours and then the schedule has been reversed so that all
the leaves have received messages.

After a fully active schedule, Lauritzen and Spiegelhalter [50] proved that the
marginalisation over each clique and separator gives the same value. Dividing through
by this value gives the conditional probability distribution, conditioned on the evi-
dence, hence giving the updated probabilities over each clique and separator. There
are modifications of this algorithm to deal with soft or virtual evidence, evidence
that alters the probability distribution over a variable, rather than instantiating it
with a particular value. One such algorithm is the big clique algorithm, which in-
volves putting all the variables on which soft evidence is received into one big clique,
which is the root and using iterative proportional fitting to find a distribution that
satisfies the soft evidence requirement closest to the original distribution in terms of
Kullback Leibler divergence.

The Aalborg method is useful for large numbers of variables, where each clique
on the junction tree is relatively small. It can deal with discrete variables, while
Lauritzen [51] extends its use to conditional Gaussian distributions.

Other algorithms are available for updating. For example, the sum product algo-
rithm, following Wiberg [92] and Markov chain Monte Carlo, following Pearl [65] are
implemented in Kevin Murphy’s MATLAB toolbox for Bayesian networks. Shafer [83]
contains a concise summary of message passing and introduces the arrow notations
for marginals. Hajek et. al. [36] contains much information about various schemes of



64 A Review of Bayesian Networks and Structure Learning

X1

!!

X2

�� !!

X3

��

X4

��}}

X5

}}

A

!!

B

��

C

}}

D

Figure 4: Epidemiology: A, B, C are minimal sufficient causes

message passing and describes the Czech contributions in the 1970’s to probabilistic
modelling in expert systems.

2.3. Context Specific Independence and Minimal Sufficient Causation.
There are modifications available to incorporate more of the independence structure;
if X,Y, Z,C are pairwise disjoint sets of variables, then X and Y are said to be
contextually independent given Z and the context c, a particular instantiation of C,
if

P(X = x|Y = y, Z = z, C = c) = P(X = x|Z = z, C = c)

∀x, y, z such that P(Y = y, Z = z, C = c) > 0.

Clearly, if the aim is to compute conditional probabilities of events given the instan-
tiation C = c, the contextual independence can be incorporated into the network
to reduce the number of edges that have to be considered in the graph and hence
reduce the sizes of the cliques. This modification can be incorporated into the Aal-
borg algorithm quite easily, increasing its efficiency. Context-specific independence is
discussed by Boutilier et. al. [3]. Recently, in Corander, Koski, Nyman, Pensar [20],
a structure learning algorithm is given using an extension of context-specific inde-
pendence.

Context specific independence arises in networks used for epidemiological mod-
elling. Suppose that X1, . . . , Xn denote various factors that can cause a condition,
Xi = 1 if the cause is present and 0 if the cause is absent. Let Xi = 1−Xi. Suppose
that certain combinations of the presence / absence of various factors cause the con-
dition. One example from Vanderweele and Robins [91] is where there are 5 factors
and the condition is caused if X1X2 = 1 or X2X3X4 = 1 or X4X5 = 1. Let D
denote the condition; D = 1 if present, D = 0 if absent. By adding in the variables
A = X1X2 and B = X2X3X4 and C = X4X5, the situation may be represented by
the ‘or’ gate in figure 4. If X1, . . . , X5 are the only causing factors and if they only
act through either A, B or C, then A,B,C are minimal sufficient causes.

If D = 0, then A = 0 and B = 0 and C = 0; A ⊥ B|{D = 0}, A ⊥ C|{D = 0}
and B ⊥ C|{D = 0}, while (for example) A 6⊥ B|{D = 1}.

3. The pioneering work of Arthur Cayley [8]. Arthur Cayley F.R.S. (16
August 1821 - 26 January 1895) was a British mathematician, known for his work in
pure mathematics. His contributions include the so-called Cayley-Hamilton theorem,
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that every square matrix satisfies its own characteristic polynomial, which he verified
in 1858 for matrices of order 2 and 3 (see [10]). He was the first to define the concept
of a group in the modern way, as a set with a binary operation satisfying certain
laws. From group theory, he is known for Cayley’s theorem published in 1854, which
states that every group G is isomorphic to a subgroup of the symmetric group acting
on G (see [9]).

We do not discuss these aspects of his work; our attention is drawn to a short
article by Arthur Cayley from 1853, where in an example that takes less than one
page, he seems to develop several principles that later formed the basis of the subject
of Bayesian networks. Perhaps it would not be going too far to state that each piece
of work listed in the bibliography of over ninety pieces at the end of this article
(excluding the works of Cayley) represents a corollary of the principles laid down by
Cayley. Yet at the time of writing, this article has, to our knowledge, been quoted
four times since its publication; this occasion may be the fifth.

We reproduce the article in its entirety.

XXXVII. Note on a Question in the Theory of Probabilities.

By A. Cayley*.

The following question was suggested to me, either by some of Prof.
Boole’s memoirs on the subject of probabilities, or in conversation with
him, I forget which; it seems to me a good instance of the class of ques-
tions to which it belongs.

Given the probability α that a cause A will act, and the probability p
that A acting the effect will happen; also the probability β that a cause
B will act, and the probability q that B acting the effect will happen;
required the total probability of the effect.

As an instance of the precise case contemplated, take the following: say
a day is called windy if there is at least w of wind, and a day is called
rainy if there is at least r of rain, and a day is called stormy if there is at
least W of wind, or if there is at least R of rain. The day may therefore
be stormy because of there being at least W of wind, or because of there
being at least R of rain, or on both accounts; but if there is less than W
of wind and less than R of rain, the day will not be stormy. Then α is the
probability that a day chosen at random will be windy, p the probability
that a windy day chosen at random will be stormy, β the probability
that a day chosen at random will be rainy, q the probability that a rainy
day chosen at random will be stormy. The quantities λ, µ introduced
in the solution of the question mean in this particular instance, λ the
probability that a windy day chosen at random will be stormy by reason
of the quantity of wind, or in other words, that there will be at least
W of wind, µ the probability that a rainy day chosen at random will be
stormy by reason of the quantity of rain, or in other words, that there
will be at least R of rain.

The sense of the terms being clearly understood, the problem presents
of course no difficulty. Let λ be the probability that the cause A acting
will act efficaciously; µ the probability that the cause B acting will act
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efficaciously; then
p = λ+ (1− λ)µβ

q = µ+ (1− µ)αλ,

which determine λ, µ; and the total probability ρ of the effect is given
by

ρ = λα+ µβ − λµαβ,

suppose, for instance, α = 1, then

p = λ+ (1− λ)µβ, q = µ+ λ− λµ, ρ = λ+ µβ − λµβ,

that is, ρ = p, for p is in this case the probability that (acting as a cause
which is certain to act) the effect will happen, or what is the same thing,
p is the probability that the effect will happen.
Machynlleth, August 16, 1853.
*Communicated by the Author.

In this short note, Cayley gives a prototype example of a causal network; rain and
wind both have causal effects on the state of the day (stormy or not), which may be
inhibited. He demonstrates the key principle of modularity, taking a problem with
several variables and splitting it into its simpler component conditional probabil-
ities, by considering the direct causal influences for each variable and considering
the natural factorisation of the probability distribution in this problem into these
conditional probabilities.

It should also be pointed out that Cayley was no stranger to graph theory; in
1889 he proved Cayley’s tree formula, that there are nn−2 distinct labelled trees
of order n (see [13]) and established links between graph theory and group theory,
representing groups by graphs. The Cayley graph is named after him.

The variables here may be taken as

C =
{

1 wind
0 no wind

D =
{

1 rain
0 no rain

with
α = pC(1) β = pD(1).

Let Y be the variable denoting whether there is a storm;

Y =
{

1 storm
0 no storm

Then, in Cayley’s notation, if there is rain, it causes a storm with probability µ; if
there is wind, it causes a storm with probability λ. The corresponding ‘network’, on
three variables, is seen in figure 5. The subscripts µ and λ on the arrows indicate
the probability that the cause, if active, will trigger the effect.

This is a noisy ‘or’ gate, which can be expressed as a logical ‘or’ gate by the
addition of two variables, R and W . The variable R denotes severe rain, that is
that the ‘rain’ variable reaches the threshold to trigger a storm. This happens if the
quantity of rain is above a threshold. The W variable denotes severe wind; that is,
that the ‘wind’ variable reaches the threshold to trigger a storm. This happens if the
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Figure 5: Rain and wind causing a storm
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Figure 6: Rain and wind: logical ‘or’ gate

strength of wind is above a threshold. The variables, to form the logical or gate have
conditional probability values given below; pW |C denotes the conditional probability
function for the variable W given C and pR|D denotes the conditional probability
function for the variable R given D.

pW |C =
C\W 1 0

1 λ 1− λ
0 0 1

pR|D =
D\R 1 0

1 µ 1− µ
0 0 1

The network may now be expressed graphically according to figure 6. This DAG
is a representation of the factorisation that Cayley is using;

pC,D,R,W,Y = pCpDpR|CpW |DpY |W,R

where pY |W,R denotes the conditional probability function for the variable Y , given
W and R. For Y = 1, these values are given in the following table:

pY |W,R(1|., .) =
W\R 1 0

1 1 1
0 1 0

.

From the factorisation,

pW (1) =
∑
x

pW |C(1|x)pC(x) = λα, pR(1) = µβ,
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From Cayley, p is the probability that a windy day, chosen at random, will be stormy;
p = pY |D(1|1).

p = pY |D(1|1) =
∑
x1

pA(x1)
∑
x2

pR|C(x2|x1)
∑
x3

pY |R,W (1|x2, x3)pW |D(x3|1)

= βλµ+ βµ(1− λ) + β(1− µ)λ+ (1− β)λ

= βµ− βλµ+ λ = λ+ (1− λ)βµ.

Similarly, q, the probability that a rainy day, chosen at random, will be stormy;
q = pY |C(1|1), is given by

q = µ+ (1− µ)αλ,

as computed by Cayley. Cayley is deriving the expression for the marginal probability
of a stormy day, ρ = pY (1);

pY (1) =
∑
x1

pC(x1)
∑
x2

pD(x2)
∑
x3

pR|C(x3|x1)
∑
x4

pW |D(x4|x2)pY |R,W (1|x3, x4)

=
∑
x3

pR(x3)
∑
x4

pW (x4)pY |R,W (1|x3, x4)

= pR(1)pW (1) + pR(1)pW (0) + pR(0)pW (1)

= αλ+ βµ− αβλµ.

This simple construction from 1853 represents, to our knowledge, the first example
of a causal network and the first construction of a noisy-or gate, with the concept
of an inhibitor.

4. Arthur Cayley and Judea Pearl’s intervention calculus. The rule of
Bayes, for computing a conditional probability is

P(A|B) =
P(A)P(B|A)

P(B)
. (4)

Starting with a well defined probability space (Ω,A,P), the probability of an event
A ∈ A has value P(A). An event B ∈ A is then observed and, using Bayes rule,
one may compute the probability of the event A given the information that event B
has been observed. The starting point is a probability space (Ω,A,P), where A, an
algebra or σ-algebra, is the space of events over which P has been defined.

Bayes rule, equation (4) is no longer applicable if B 6∈ A. The classic example is
‘sprinkler and wet grass’. If one observes that the sprinkler is on, one can infer that
the season has been dry. If one knows that the state ‘sprinkler on’ has been forced,
for reasons independent of the season or the amount of use (for example, if it is ‘on’
as a result of a regular maintenance procedure), then clearly no such inferences can
be made; the additional information that regular maintenance work is taking place
represents information above and beyond the simple observation that the sprinkler
is on. The conditioning is no longer simply on event B.

Judea Pearl [73] proposed the following framework for computing conditional
probabilities, when the conditioning is forced independently of other considerations
in the network rather than observed. Pearl’s framework requires two main assump-
tions:
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1. There is a causal structure between the variables, which may be represented
by a DAG, where the parent set represents the direct causes.

2. The intervention is made irrespective of the state of the system.

Pearl’s framework is of particular value for describing a controlled experiment
(as pointed out by D. Lindley [53]). Intervening to force the state of a variable,
independently of other factors, amounts to a controlled experiment; individuals are
randomly assigned to control group and treatment groups, irrespective of other con-
siderations. Links to other factors that may have been common causes for both the
‘treatment’ variable and chances of recovery have been removed.

Pearl’s method can be summarised as follows: if an intervention is carried out
whereby a variable X is forced to take a value x (written X ← x), irrespective of the
state of the other variables, then the variable X is removed from the graph. That is,
all edges to and from X are removed and the variable X is removed. For a variable
Y , if X ∈ ΠY (the parent set of Y ) in the original graph, the conditional probability
pY |ΠY with the instantiation X = x in the parent set ΠY is used.

In terms of the factorisation, suppose that

pX1,...,Xd =
d∏
j=1

pXj |Πj

is obtained from causal principles, where variables of lower order have causal effect
on variables of higher order. Then the probability after an intervention Xi ← xi is
defined as

pX1,...Xd‖Xi =
∏
j 6=i

pXj |Πj

where the instantiation xi is used for Xi when Xi appears in Πj . This is known in
the literature as ‘do’-conditioning. There is the cryptic remark towards the end of
Arthur Cayley’s paper, which indicates that he may already had this framework in
mind when considering causal probabilistic models. The phrase ‘ .... acting a cause
which is certain to act’ may be a clumsy way of expressing a brilliant insight into
the intervention calculus, if by ‘acting’ he means intervening to force the state of the
variable.

This reading may be somewhat strained; in Arthur Cayley’s example, no human
intervention is possible to force the states of the wind or rain variables. Since ‘wind’
and ‘rain’ are both ancestor variables, no links are removed from the DAG and in
Pearl’s framework, intervention conditioning is the same as the standard conditioning
on an observation. The wording suggests, though, that he understood, from causal
principles, that the two equations relating λ and µ to p and q remain valid if the
conditioning on an ancestor variable is forced by intervention, rather than simply
observed, one of the features of Pearl’s intervention calculus.

5. Arthur Cayley: the connection between algebraic geometry and
Bayesian networks. The emerging field of algebraic statistics (Pistone et al. [74],
Drton et. al. [23]) advocates polynomial algebra as a tool in the statistical analysis
of experiments and discrete data; the connection between algebraic geometry and
Bayesian networks is discussed by Garcia et. al. [33].
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For a probability distribution over a set of variables, the conditional independence
statements for subsets X,Y, Z,W satisfy the following logical relations, discussed by
Pearl [72]:

1. symmetry X ⊥ Y |Z ⇔ Y ⊥ X|Z

2. decomposition If X ⊥ Y ∪W |Z then X ⊥ Y |Z and X ⊥W |Z.

3. contraction If X ⊥ Y |Z and X ⊥W |Y ∪ Z then X ⊥W ∪ Y |Z.

4. weak union If X ⊥ Y ∪ Z|W then X ⊥ Y |Z ∪W .

A collection of sets V such that these statements are satisfied for any X,YW,Z ∈
V has come to be known as a semi-graphoid. Any independence model is a semi-
graphoid. A graphoid is a semi-graphoid that also satisfies the converse of weak
union, known as the intersection property.

5 intersection If X ⊥ Y |W ∪ Z and X ⊥W |Y ∪ Z then X ⊥W ∪ Y |Z.

Furthermore, a graphoid or semi-graphoid for which the reverse implication of
the decomposition property holds is said to be compositional, that is

6 composition

If X ⊥ Y |Z and X ⊥W |Z then X ⊥ Y ∪W |Z. (5)

The axioms for a compositional graphoid are discussed recently in Sadeghi and
Lauritzen [80].

d-separation statements for sets of variables in a DAG also satisfy these relations
(replace |, denoting conditioning, with ‖G , denoting d-separation in the DAG G).
The d-separation statements of a DAG also satisfy other relations. Let G = (V,D)
denote a DAG, X ⊆ V , Y ⊆ V and Z ⊆ V sets of nodes, α, β, γ, δ ∈ V \X ∪ Y ∪ Z
denote individual nodes. Then the following additional d-separation properties hold:

1. if X ⊥ Y ‖GZ and X ⊥ Y ‖GZ ∪ {γ} then either X ⊥ {γ}‖GZ or Y ⊥ {γ}‖GZ

2. if α ⊥ β‖G{γ, δ} and γ ⊥ δ‖G{α, β} then either α ⊥ β‖G{γ} or α ⊥ β‖G{δ}.

These last two implications may be found in Bromberg and Margaritis in [4]; they
hold as d-separation statements in a DAG, but do not necessarily hold for conditional
independence. In fact, it is not possible to axiomatise conditional independence, as
Studenỳ proved. The proof may be found in [88].

A factorisation is equivalent to a set of conditional independence statements;

{Xσ(j) ⊥ Ξσj |Πσ
j j = 1, . . . , d},

where Πσ
j ⊂ {Xσ(1), . . . , Xσ(j−1)} is the parent set of variable Xσ(j) when ordering

σ is employed and Ξσj = {Xσ(1), . . . , Xσ(j−1)}\Πσ
j .

Let V = {X1, . . . , Xd} denote the variable set, let X = (X1, . . . , Xd) the ran-
dom vector, let the state space for variable Xj be Xj = {x(1)

j , . . . , x
(kj)
j } and the

state space for X be X = ×dj=1Xj . Let Y = ×dj=1(1, . . . , kj) and R(Y) the ring of
polynomial functions on RY .
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A conditional independence statement A ⊥ B|C, where A,B and C are disjoint
subsets of V , translates using proposition 8.1 from Sturmfels [89], into a set of
homogeneous quadratic polynomials on R(Y), and these polynomials generate an
ideal. Let IA⊥B|C denote the ideal generated by the statement A ⊥ B|C. The ideal
for a collection of independence statements, for example those corresponding to a
factorisation, is defined as the sum of the ideals; let M = {Ai ⊥ Bi|Ci i =
1, . . . ,m}, then

IM = IA1⊥B1|C1 + . . .+ IAm⊥Bm|Cm .

Cayley is using the expression of the conditional independence statements that define
the factorisation in terms of polynomials to obtain the two polynomial equations{

p = λ+ (1− λ)µβ
q = µ+ (1− µ)λα

(6)

and writes, ‘.... which determine λ and µ’. This amounts to finding roots of the two
polynomials in λ, µ {

f1(λ, µ) = λ+ (1− λ)µβ − p
f2(λ, µ) = µ+ (1− µ)λα− q

In terms of algebraic geometry, equation (6) defines the affine variety

V (f1, f2) =
{

(λ, µ) ∈ R2|f1(λ, µ) = f2(λ, µ) = 0
}
.

In his brief note, Cayley has pointed out the connections between Bayesian networks
and algebraic geometry, a subject that he knew well. Cayley did much to clarify a
large number of interrelated theorems in algebraic geometry and is known for the
Cayley surface introduced in 1869 (see [11]).

6. Learning.

Notations. V = {X1, . . . , Xd} denotes the variable set, which may be organised as
a random vector X = (X1, . . . , Xd), taken as a row vector. The state space of variable
Xj is Xj = (x(1)

j , . . . , x
(kj)
j ) and the state space of X is X = ×dj=1Xj . In a DAG, Πj

denotes the parent set of variable Xj , with state space XΠj = (π(1)
j , . . . , π

(qj)
j ). The

conditional probability values are denoted by

θjil = P
(
Xj = x

(i)
j |Πj = π

(l)
j

)
for an n × d data matrix x, which contains n instantiations of X, n(x(i)

j , π
(l)
j ) de-

notes the number of times that the variable / parent configuration (x(i)
j , π

(l)
j ) ap-

pears, n(π(l)
j ) denotes the number of times the π(l)

j instantiation of the parent set
Πj appears. The entire collection of parameters is denoted θ.

6.1. Learning the parameters, graph structure given. We only mention in
passing the second of the tasks listed, learning the parameters for a given structure.
If the data matrix x contains n complete instantiations, estimates θ̂jil of θjil may be

obtained in the obvious way; θ̂jil =
n(x(i)

j
,π

(l)
j

)

n(π(l)
j

)
, the probability being estimated by

the observed proportion.
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The situation lends itself, though, to Bayesian inference, exploiting the fact that
the Dirichlet distribution is a conjugate family. A prior distribution Θ =

∏
j,l Θj,l is

placed over the parameter space, where Θj,l is the distribution over (θj1l, . . . , θjkj ,l),
given by Dir(αj1l, . . . , αjkj l). The parameters α are chosen to represent prior assess-
ment. After observing x, an n × d data matrix with n complete instantiations, Θ
updates, using Bayes rule, to Θx =

∏
j,l Θj,l;x, where

Θj,l;x = Dir(αj1l + n(x(1)
j , π

(l)
j ), . . . , αjkj l + n(x(kj)

j , π
(l)
j )).

Information from incomplete instantiations is incorporated by approximate updating
techniques, to retain the convenient product form and to remain within the conjugate
family of Dirichlet distributions. Fading may also be accommodated within this
framework, to accommodate dynamic situations where the parameter values change
and older information has less value. Parameter learning for a given DAG may
be found in Heckerman, Geiger and Chickering [37], approximate updating when
learning from incomplete data in Ramoni and Sebastiani [76]. Another treatment of
learning is found in Neapolitan [61].

6.2. Structure learning. A structure may be determined by causal reasoning,
or formally constructed by engineering considerations. This is not considered here;
the problem considered is the task of locating a structure purely from data. That is,
learning a structure that encodes the key features of the dependence structure be-
tween the d variables of the data set, when presented with n complete or incomplete
instantiations. This is the task of structure learning.

Markov equivalence. The following definitions, which are standard, are found
in Koski and Noble [48]. Two DAGs that have the same d-separation properties are
said to be Markov equivalent. If two DAGs are Markov equivalent, then a probability
distribution that factorises along one of the DAGs also factorises along the other.

In a DAG, a vee structure is a configuration of three nodes, α, β and γ, where
α ∼ β and β ∼ γ, but α 6∼ γ (the symbol ∼ denotes that there is an edge between
the two nodes, but does not indicate its direction). An immorality is a vee structure
where α→ β ← γ. This is the ‘burglary’ example; information can pass from α to γ
through β only if information is received on β. The term ‘immorality’ derives from
the fact that two parents of a node are not linked.

An important result is that two DAGs are Markov equivalent if and only if they
have the same skeleton (that is the undirected versions of the graphs are the same)
and the same immoralities.

The essential graph of a Markov equivalence class is a graph that has both di-
rected and undirected edges (known as a p-DAG), where the directed edges are those
that retain the same direction for all DAGs within the Markov equivalence class, the
other edges being undirected.

Methods for structure learning. Based only on data, structure learning tech-
niques will locate a suitable equivalence class, either by finding a DAG within the
equivalence class or by finding the essential graph. Structure learning methods tend
to fall generally into three categories: search and score techniques, where a score
function is used and the algorithm attempts to find the structure that maximises
the score function, constraint based methods, where conditional independence tests
are carried out and independence relations thus established provide constraints that
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the d-separation statements of the output graph should satisfy and hybrid algorithms
that use both constraint based and search and score techniques.

6.3. Search and score. Search and score algorithms operate by selecting var-
ious structures for examination and scoring them. The structure with the highest
score from among those considered is selected. Several score functions have been
considered in the literature. They all have the feature of giving higher scores to
those where the best fitting distribution, given the graph structure, is closest to
the empirical distribution, with a penalty for the number of parameters. The like-
lihood function for a graph structure D, given an n × d data matrix x, where the
rows, (xi1, . . . , xid) for i = 1, . . . , n represent n instantiations of the random vector
X = (X1, . . . , Xd), is given by the formula

L(D; x) =
d∏
j=1

qj∏
l=1

Γ(
∑kj
i=1 αjil)

Γ
(
n(πlj) +

∑kj
i=1 αjil

) kj∏
i=1

Γ(n(xij , π
l
j) + αjil)

Γ(αjil)
, (7)

where αjil represents virtual information, the weight given to the (xij , π
l
j) configu-

ration before the data is received. Formula (7) is known as the Cooper Herzkovitz
likelihood and was first derived in [17].

Using this as the basis of a score function has some practical difficulties; a large
number of hyper-parameters α have to be specified. The log likelihood is more prac-
tical

LL(D; x) =
d∑
j=1

kj∑
i=1

qj∑
l=1

n(π(l)
j , x

(i)
j ) ln

n(π(l)
j , x

(i)
j )

n(π(l)
j )

. (8)

This cannot be used directly as a score function; it will favour graphs with many
edges. A penalisation is usually introduced to favour graphs with fewer parameters.
The most common score function considered is the Bayesian Information Criterion:

BIC(D,x) = LL(D; x)− 1
2

(lnn)|θ| (9)

where D represents the DAG along which the factorisation is made and |θ| =∑d
j=1 qj(kj − 1) is the number of independent parameters required (recall that∑kj
i=1 θjil = 1 for each (j, l)). The BIC was developed in 1978 by Gideon E. Schwartz [81],

who described Bayesian principles for using it. The negative of this score function is
known as the minimum description length (MDL); MDL = −BIC. The MDL was
introduced in 1978 by Jorma Rissanen [77] independently and simultaneously.

Other score functions may be used, such as the Akaike Information Criterion
(AIC), which is similar to the BIC, except that for the penalisation, 1

2 lnn is replaced
by n. The AIC was introduced in 1974 by Hirotugu Akaike [1].

The simplicity of the function in equation (8) as the basis of a score function is
appealing, but the hyper-parameters of the Cooper Herzkovitz likelihood give the
possibility to input prior information. The parameters α represent the prior assess-
ment of the probability values for a given network, but prior information can also be
placed over the graph structures. If a prior distribution pD is placed over the space
of DAGs with d nodes, denoted D, then the posterior distribution, given data x,
may be written as
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pD|X(D|x) =
L(D; x)pD(D)

pX(x)
∝ L(D; x)pD(D),

where L(D; x) is the Cooper Herskovitz likelihood of equation (7). The subject of
constructing appropriate prior distributions is discussed for example by Castelo and
Siebes [7] and by Flores, Nicholson, Brunskill, Korb and Mascaro [27]. This may be
used to construct a score function based on equation (9), where the log posterior is
used in place of LL(D; x).

The approach of testing each possible structure is not computationally feasible.
This is because the number of possible DAGs grows super exponentially in the num-
ber of nodes. In [79], Robinson gave the following recursive function for computing
the number N(d) of DAGs with d nodes:

N(d) =
d∑
i=1

(−1)i+1
(
d
i

)
2i(d−1)N(d− i). (10)

For d = 5 it is 29000 and for d = 10 it is approximately 4.2 × 1018. Here N(d) is a
very large number, even for small values of d. It is not feasible to test all possible
graphs, even for modest values of d.

Search and score methods usually deal with this by running a Markov process
through the search space. One example is the Markov chain Monte Carlo model
composition algorithm introduced by Madigan and York [55] in 1995 and developed
by Madigan, Andersson, Perlman and Volinsky [54] in 1997. These algorithms choose,
as search space, the space of essential graphs.

An efficient Markov chain Monte Carlo algorithm for searching the model space
was developed by Corander, Ekdahl and Koski [18] in 2008, for families of models
for which the marginal likelihood can be calculated analytically, either exactly or
approximately, given any fixed structure. The model space is explored by a finite
number of interacting parallel stochastic processes.

The use of ‘Markov chain Monte Carlo’ with reference to structure learning is
misleading. The term McMC has a well defined standard mathematical meaning,
which is to build up an empirical distribution that approximates the stationary
distribution of the Markov chain. In structure learning for Bayesian networks, the
stationary distribution of the Markov chain is irrelevant. The aim of producing a well
constructed process is to visit the most promising candidate graphs within the search
space. The search space is so large that very few graphs will be visited more than
once and the overwhelming majority will not be visited at all. There is insufficient
information to build up an empirical distribution over graph space. The decision
is made purely by computing the score functions and choosing the graph visited
which gives the largest score. The only consideration in constructing a process is to
ensure that the process will visit structures that give a good representation of the
data; properties of the search process, such as the Markov property, reversibility,
convergence of the empirical distribution to a certain stationary distribution are all
irrelevant.

Sparse Candidate Algorithm. The sparse candidate algorithm has been devel-
oped by Friedman, Nachman and Pe’er [29] in 1999. The main idea of the technique
is to identify a relatively small number of candidate parents for each variable. This
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is based on simple local statistics, such as correlation. Attention is then restricted
to networks in which the parent set is a subset of the candidate parent set.

The algorithm proceeds as follows: let Dn denote the DAG chosen at iteration
n, let Π(n)

i denote the parent set for variable Xi in Dn.

• For i = 1, . . . , d, choose the candidate set C(n)
i = {Y1, . . . , Yk} of candidate

variables for Πi, the parent set for variable Xi. The set C(n)
i is chosen as

Π(n−1)
i together with children and parents of children of Xi in Dn, and all

those variables Y 6∈MB(Xi) such that the score

∑
(x,y,z)∈XXi×XY ×XΠ(n−1)

i

n
Xi,Y,Π

(n−1)
i

(x, y, z) ln
n
Xi,Y,Π

(n−1)
i

(x, y, z)nΠ(n−1)
i

(z)

n
Y,Π(n−1)

i

(y, z)n
Xi,Π

(n−1)
i

(x, z)

is sufficiently high. Here MB denotes Markov blanket (definition 3). Also, for
a set W , nW (w) denotes the number of appearances of configuration w in the
data matrix x. If the test statistic is low, it supports Xi ⊥ Y |Π(n−1)

i and hence
Y is not a candidate parent.

There are other ways of determining the candidate parents; anything in the
current Markov blanket not d-separated from the variable by the Markov blan-
ket should be included as a candidate parent.

• Find a high scoring network Dn where ΠDn
i ⊂ C(n)

i for i = 1, . . . , d.

This is the method successfully used for analysis genetic expression data by
Friedman et. al. [30].

Optimal Reinsertion. The optimal reinsertion algorithm, introduced by Moore
and Wong [59] in 2003, is a search-and-score algorithm that works along the following
lines: at each step a target node is chosen, all edges entering or leaving the target are
deleted, and the optimal combination of in-edges and out-edges is found, the node
is re-inserted with these edges. This involves searching through the legal candidate
parent sets and, for each candidate parent set, the legal child sets. The optimal
reinsertion may be combined with sparse candidate.

Greedy Search and Greedy Equivalence Search. The Greedy Search, intro-
duced by Chickering [15] in 2002, works along the following lines to produce a DAG,
along which the probability distribution factorises, starting from the graph with no
edges:

• Forward phase Let E0 denote the graph with no edges. Let En denote the
essential graph from stage n of the forward phase. Consider all possible DAGs
within the Markov equivalence class, all possible DAGs obtained by adding
exactly one edge to a DAG from this equivalence class and consider the set
of essential graphs corresponding to this collection of DAGs. Let En+1 denote
the essential graph with the highest score if it has a higher score than En and
continue to forward phase stage n+1. Otherwise, terminate the forward phase,
with output En.
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• Backward phase Let Ẽ0 denote the output graph from the forward phase. Let
Ẽn denote the output graph from stage n of the backward phase. Consider all
possible DAGs corresponding to the equivalence class Ẽn, all possible DAGs
formed by an edge deletion from these DAGs and consider the set of essential
graphs corresponding to this collection of DAGs. Let Ẽn+1 denote the essential
graph with the highest score if it is higher than that for Ẽn and continue to
backward phase stage n + 1. Otherwise terminate; Ẽn is the output of the
backward phase and of the greedy equivalence search algorithm.

After the forward and backward phase, this algorithm is guaranteed to return an op-
timal structure provided there exists a faithful DAG (definition 2). The faithfulness
assumption may be relaxed; the algorithm returns a suitable structure provided the
weaker composition condition holds (axiom 6 of compositional graphoid, equation 5).
The compositional axiom is essential for the algorithm to return the correct graph.

6.4. Constraint Based Methods. Constraint based methods carry out tests,
for triples (X,Y, S) where X and Y are variables and S is a subset of variables, to
decide whether or not X ⊥ Y |S. The results of these tests are the constraints and
a graph is then chosen that satisfies as many of the constraints, thus established, as
possible.

For larger numbers of variables, these are overwhelmingly faster than search
and score algorithms; for each structure tested, a search and score algorithm has to
compute a score function that involves the entire data set. Testing whether X ⊥ Y |S
only requires the variables X,Y and those in S. In most applications, locating the
structure only requires examining conditioning sets S that have a maximum of three
or four variables.

The main problem is that these algorithms usually require that there exists a
graph faithful to the distribution and use the following result:

Theorem 1 Let X = (X1, . . . , Xd) be a random vector, with probability distribution
p. A faithful DAG D contains an edge between two distinct variables Xi and Xj if
and only if Xi 6⊥ Xj |S for any S ⊆ V \{Xi, Xj}, where V = {X1, . . . , Xd} is the
variable set. 2

The following example illustrates a typical situation where constraint based algo-
rithms in general perform rather badly.

Example 1

Let Y1, Y2, Y3 be independent binary variables, each with probability function

pY (0) = pY (1) =
1
2
.

Let

X1 =
{

1 Y2 = Y3

0 Y2 6= Y3
X2 =

{
1 Y1 = Y3

0 Y1 6= Y3
X3 =

{
1 Y1 = Y2

0 Y1 6= Y2

The events {X1 = 1}, {X2 = 1} and {X3 = 1} form the classic illustration in any
first course in probability of three events that are pairwise independent, but not
mutually independent. The variables (X1, X2, X3) satisfy Xi ⊥ Xj for i 6= j, but
X1 6⊥ X2|X3. In fact, the joint probability distribution for (X1, X2, X3) is
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Figure 7: DAG for the natural factorisation; it is not faithful


pX1,X2,X3(1, 1, 1) = 1

4 ,
pX1,X2,X3(1, 1, 0) = pX1,X2,X3(1, 0, 1) = pX1,X2,X3(0, 1, 1) = 0,
pX1,X2,X3(1, 0, 0) = pX1,X2,X3(0, 1, 0) = pX1,X2,X3(0, 0, 1) = 1

4 ,
pX1,X2,X3(0, 0, 0) = 0.

Note that

pX1,X2(1, 1) = pX1,X2(1, 0) = pX1,X2(0, 1) = pX1,X2(0, 0) =
1
4

pX1(1) = pX1(0) =
1
2
.

Many constraint based algorithms assume that there exists a faithful DAG and re-
move an edge X ∼ Y as soon as they encounter a set S such that X ⊥ Y |S.
Since X1 ⊥ X2, X1 ⊥ X3, X2 ⊥ X3, the graph for the three variables {X1, X2, X3}
returned by such a procedure will be the empty graph; in other words, the graph cor-
responding to three mutually independent random variables. The fitted distribution
will be

pX1,X2,X3(x1, x2, x3) =
1
8

(x1, x2, x3) ∈ {0, 1}3.

This situation can loosely be described as follows; X1 by itself gives no infor-
mation about X3 and X2 by itself gives no information about X3, but X1 and X2

taken together give everything about X3. As Edward Nelson put it in ‘Radically
Elementary Probability Theory’ in 1987 (see [62] page 11), ‘this is the principle on
which a good detective story is based.’ Constraint based algorithms that assume
faithfulness will be unable to solve the mystery.

If the set of six variables (Y1, Y2, Y3, X1, X2, X3) is considered, then a suitable
DAG to describe the distribution is given in figure 7, but since Yi ⊥ Xj for all
(i, j), an algorithm based on the principle of theorem 1 would again produce an
empty graph. Y1 by itself gives no information about X3 and Y2 by itself gives no
information about X3, but Y1 and Y2 taken together give full information about X3.

Note that (X1, X2, X3) do not satisfy composition; X1 ⊥ X2 and X1 ⊥ X3, but
X1 6⊥ {X2, X3}. The search-and-score greedy equivalence search algorithm will fail
with this distribution.
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Some examples of constraint based methods, described in more detail below, are
Chow Liu tree, three phase dependency analysis, the PC and MMPC algorithms,
Fast algorithm and RAI algorithm. They all operate according to the principle of
removing an edge X ∼ Y whenever a set S is located such that X ⊥ Y |S.

Chow Liu Tree. In many problems, the aim is not so much to find a structure that
represents every aspect of the independence structure of the distribution; rather, it
is to locate a part of the independence structure that can be used in applications.
The Chow Liu tree, introduced by Chow and Liu [16] in 1968, finds the best fitting
tree, which is used in the problem of classification. The application discussed by
Chow and Liu is the automated recognition of hand written characters.

The mutual information

I(X,Y ) =
∑

p̂X,Y (x, y) ln
p̂X,Y (x, y)
p̂X(x)p̂Y (y)

is computed for each pair of variables (X,Y ), where p̂ denotes the empirical proba-
bility. The tree of maximal weight, i.e. the tree with the largest sum of mutual infor-
mation is then obtained using Kruskal’s algorithm, which amounts to first choosing
the pair (Xi, Xj) such that I(Xi, Xj) is largest and in subsequent steps choosing
the pair with the largest mutual information available provided that addition of the
edge does not form a cycle. This is one of the earliest structure learning algorithms
and it is well known that Kruskal’s algorithm returns the tree of maximal weight.

The algorithm for learning the Chow Liu tree has quadratic time and space
complexity in the number of variables. If, to a good approximation, the probability
distribution has a factorisation

pX1,...,Xd = pXσ(1)

d∏
j=2

pXσ(j)|Xσ(j−1)
(11)

for a permutation σ of {1, . . . , d}, then the algorithm by Kłopotek [43] in 2002
locates the Chow-Liu tree and represents a substantial improvement both in storage
and run time; the space consumption grows linearly with the number of variables d
while the execution time is proportional to d ln(d), by both measures a substantial
improvement over the Chow - Liu algorithm for large numbers of variables. The
economy comes from the tree common sense assumption, introduced by Kłopotek,
which is satisfied if a distribution has a factorisation along a tree. The assumption
is that if X is on the path from Z to A and X is on the path from Z to B, then
I(A,Z) > I(B,Z) if and only if I(A,X) > I(B,X).

A distribution over four binary variables A,B,X,Z that factorises along the
DAG in figure 8, factorisation given by equation (12) produces situations where the
‘common sense tree assumption’ is not satisfied.

pA,B,X,Z = pApBpZ|ApX|A,B,Z . (12)

Clearly, there is no factorisation along a tree of the form given in equation (11)
that accurately describes this distribution; (Z,X,B) and (B,X,A) are immoralities,
which appear in any Markov equivalent factorisation, while a Chow-Liu tree has
no immoralities. Here A ⊥ B and B ⊥ Z, so that I(A,B) = I(B,Z) = 0. It is
straightforward to construct distributions on {0, 1}4 (four binary variables) that



T. J. T. Koski, J. M. Noble 79

Z

  

X Aoo

gg

B

OO

Figure 8: DAG for distribution that does not satisfy ‘tree common sense’ assumption

satisfy I(B,X) > I(A,X), but I(A,Z) > I(B,Z). It is debatable whether a Chow-
Liu tree is appropriate for such distributions. Kłopotek’s algorithm will produce the
same result as Kruskal’s algorithm when there is a Chow-Liu tree that accurately
fits the distribution. In other situations, the results may be different.

The reader is referred to Kłopotek [43] for a complete description of the algorithm
and proofs of efficiency. Briefly, Kłopotek seeks to construct a junction tree where
the cliques are the edges of the Chow Liu tree. For a variable set V = {X1, . . . , Xd},
the algorithm considers consecutively the sets Vj = {X1, . . . , Xj} for j = 2, . . . , d. At
stage j, it forms a rooted junction tree for the variables in Vj , each clique of size 2.
The position of the root is chosen in order to balance the tree (definition of ‘balanced’
in this context found in [43]). The choice of root, together with appropriate focal
nodes in the edge tree (rooted junction tree) enable a reduction in the number of
mutual informations I(X,Y ) that have to be computed, under the common sense
tree assumption.

In ‘Extended Structure Bayesian Networks’ [44] in 2003, Kłopotek develops an
efficient algorithm for finding a rooted junction tree for a probability distribution. In
the Aalborg algorithm, where the Bayesian network is moralised, triangulated and
then a junction tree is constructed from the triangulated graph, the most computa-
tionally expensive phase can be the triangulation. Kłopotek [44] presents a different
approach, based on mutual information, for constructing a suitable Markov tree.

In 2010 Corander, Gyllenberg and Koski [19] consider a Bayesian approach to
learning a Chow Liu tree, based on the principle of minimising stochastic complexity,
for learning a genetic population structure where potential patterns of dependence
are a priori unknown.

Three phase dependency analysis. The three phase dependency analysis algo-
rithm (denoted TPDA) was introduced by Cheng, Greiner, Kelly, Bell and Liu [14]
in 2002, who write, ‘this TPDA algorithm is correct (i.e., will produce the perfect
model of the distribution) given a sufficient quantity of training data whenever the
underlying model is monotone DAG faithful.’ The algorithm requires the faithfulness
assumption to hold and relies on theorem 1. The TPDA algorithm works in three
phases; draughting, thickening and thinning, outlined in Algorithm 1.

This outlines the main steps of the algorithm; a precise description of the algo-
rithm and proof that it returns a faithful DAG when it exists, is given in [14].
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Algorithm 1 The Three Phase Dependency Analysis Algorithm
Stage 1: Draughting Locate the Chow - Liu tree
This stage is simply Kruskal’s algorithm

Stage 2: Thickening Add edges
for i = 1, . . . , d− 1, j = i+ 1, . . . , d do
Let Ci,j be the set of neighbours Z of Xi or Xj such that Z lies on a path between
Xi and Xj
if Xi 6⊥ Xj |C for any subset C ⊆ Cij then
add an edge Xi ∼ Xj
else
do not add an edge Xi ∼ Xj
and let Si,j denote the set such that Xi ⊥ Xj |Sij
end if
end for
Stage 3: Thinning Removing unnecessary edges
for i = 1, . . . , d− 1, j = i+ 1, . . . , d do
Let Cij denote common neighbours of Xi and Xj
if Xi ∼ Xj and there is a set C ⊆ Cij such that Xi ⊥ Xj |C then
remove the edge between Xi and Xj .
end if
end for
Stage 4: Directing edges For each vee structure Xi ∼ Xk ∼ Xj , (Xi, Xk, Xj) is an
immorality if Xk 6∈ Sij , otherwise it is not. Once the immoralities have been added, the
additional compelled edges are obtained using Meek’s rules (described later).

PC and MMPC algorithms. The PC algorithm was introduced by Spirtes,
Glymour and Scheinesin [87] in 1993 and was modified to produce the MMPC algo-
rithm by Tsamardinos, Brown and Aliferis [90] in 2006. It is algorithm for locating
the skeleton of a faithful DAG, which may be used to construct the essential graph if
the separating sets, sets SX,Y such that X ⊥ Y |SXY are recorded. It works in three
stages. Firstly, a forward stage starts with an empty graph and proceeds according
to Algorithm 2.
Note that edge removal is on the principle of theorem 1. Assuming faithfulness and
a perfect oracle (that is, tests always give the correct results), there are possibly too
many edges after this stage. Secondly, a backward stage removes some of the edges;
Algorithm 3.

The algorithm may return false positives. Suppose a probability distribution
may be represented by the DAG in figure 9. Working from T , the node C may enter
the output, and remain in the output. This is because C 6⊥ T |S, for any subset S of
parents and children of T ; namely, φ (the empty set) and {A}. Note that the collider
connection TAB, is opened when A is instantiated so that, when A is instantiated
and B is uninstantiated, T is d-connected with C. The connection TAC is a chain
connection. Therefore, when A is uninstantiated, T is d-connected to C.

T and C are d-separated if and only if A and B are simultaneously instantiated;
that is, T ⊥ C|{A,B}. But B is independent from T given the empty set, so the
node B will be removed from the parent / child set of T and therefore the algorithm
will not remove C from the set; the link TC will remain.

A third stage is implemented to remove the false positives; Algorithm 4.
This returns the complete parent / child set for Xi. The sep-sets for the variables
removed in the third stage have already been established. The sep-set for a pair of
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Algorithm 2 The MMPC Algorithm, Stage 1
for j = 1, . . . , d do

Set Zj,0 = φ (the empty set)
for i = 1, . . . , d do

if i = j then
Set Zj,i = Zj,i−1

else
if Xi ⊥ Xj |Zj,i−1 then

Set Zj,i = Zj,i−1 and Si,j = Zj,i−1 (Si,j the sep-set)
else

Set Zj,i = Zj,i−1 ∪ {Xi}
end if

end if
end for
Set Zj = Zj,d

end for

Algorithm 3 The MMPC Algorithm, Stage 2
for j = 1, . . . , d do

Set Yj,0 = Zj .
for k = 1, . . . , d, do

if Xk ∈ Yj,k−1 and ∃S ⊆ Yj,k−1\{Xk} such that Xj ⊥ Xk|S then
Set Sj,k = S and set Yj,k = Zj,k−1\{Xk}.

else
Set Yj,k = Yj,k−1.

end if
end for
Set Zj = Yj,d

end for

Algorithm 4 The MMPC Algorithm, Stage 3
for j = 1, . . . , d do

Set Yj,0 = Zj .
for k = 1, . . . , d do

if Xk ∈ Yj,k−1 but Xj 6∈ Zk then
Set Yj,k = Yj,k−1\{Xk}

else
Set Yj,k = Yj,k−1

end if
end for
Set Zj = Yj,d

end for
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Figure 9: Min Max Parent Child: A False Positive

variables X,Y is the set SX,Y such that X ⊥ Y |SX,Y , which caused the algorithm
to remove the edge X ∼ Y .

Establishing the Essential Graph. Having recorded the sep-sets, it is now
straightforward to construct the essential graph. For each vee structure (X,Z, Y )
(that is a structure such that {X,Y } ⊂ Z(Z), but X 6∈ Z(Y )), check whether or not
Z ∈ SXY . If Z ∈ SXY , then (X,Z, Y ) is not an immorality; the edges X − Z − Y
remain undirected at this stage. If Z 6∈ SXY , then (X,Z, Y ) is an immorality.

Finally the additional directed edges in the essential graph are known as com-
pelled edges and may be established using a straightforward set of rules known as
Meek’s rules from Meek [58]. These are that once the immoralities have been estab-
lished, if the edge α−β appears in any of the structures in figure 10, it is directed as
α 7→ β. Immoralities are determined by the results of the conditional independence
tests. In the first of these structures, if the edge γ → α is present and (γ, α, β) is not
an immorality, then the direction α→ β is force. In the second, if α→ γ and γ → β
are present, then α→ β is forced to prevent a cycle. In the third, if the immorality
(γ1, β, γ2) is present, but (γ1, α, γ2) is not an immorality, then α → β is forced to
prevent cycles.

γ

��

β α

��

β γ1

��

α γ

@@

α β

γ2

??

Figure 10: Meeks rules: the undirected edge α− β is given the direction α 7→ β if it
appears in one of these configurations.

Constraint based algorithms and hypothesis testing. One serious problem
with constraint based algorithms is that even if the data is generated by a probability
distribution with a faithful graphical representation, the power of the χ2 tests used to
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establish independence decreases rapidly as the size of the conditioning sets increases,
according to the inverse of the size of the conditioning set. With a test H0 : X ⊥ Y |S
versus H1 : X 6⊥ Y |S, independence is accepted and hence the edge X − Y removed
from the skeleton whenever the null hypothesis of independence is not rejected.
This, of course, violates an elementary statistical principle that is taught whenever
the subject of hypothesis testing is introduced, even at the most basic level; a null
hypothesis is never accepted. This can have rather serious consequences; an edge
X − Y can be removed simply because the test is unsatisfactory due to a large
conditioning set, even if this results in a graph where X and Y are d-separated and
it has been established through previous tests, where the null hypothesis has been
rejected and the alternative hypothesis accepted, that X 6⊥ Y . Other algorithms
have been developed with this in mind, to keep the size of the conditioning sets as
small as possible.

The FAST algorithm. The FAST algorithm, due to Andrew Fast [26], takes this
into account. It starts with the complete undirected graph. Suppose the variable set
is X1, . . . , Xd, then the algorithm is described in Algorithm 5.

Algorithm 5 The FAST algorithm
output the essential graph
initialisation complete undirected graph with d nodes
for k ­ 0 do

for 1 ¬ i ¬ d− 1, i+ 1 ¬ j ¬ d do
if there is an edge Xi ∼ Xj then

test for Xi ⊥ Xj |C for all sets C such that |C| = k. If there is a set C
such that the conditional independence statement holds, remove the edge
Xi ∼ Xj and set Sij = C

end if
end for

end for
Termination: the algorithm terminates either when all pairs Xi, Xj have fewer
than k common neighbours, or else a pre-assigned value of k is reached.
Edge direction For vee structures Xi − Z − Xj , if Z 6∈ Sij , direct the edges
Xi → Z ← Xj . If Z ∈ Sij , then leave the edges unaltered
Compelled edges After locating the immoralities, apply Meek’s rules to find all
the directed edges of the essential graph

The algorithm is run either until all variable pairs have fewer than k common neigh-
bours, or until some pre-determined level of k is reached (usually 3 or 4), beyond
which the conditional independence tests are considered unreliable.

As with the MMPC algorithm a vee-structure X−Z−Y in the resulting graph is
declared an immorality if Z 6∈ SX,Y (the sep-set for X,Y ) and is not an immorality
otherwise. Meek’s rules are then used to locate the other compelled edges.

Recursive Autonomy Identification. The Recursive Autonomy Identification
algorithm, introduced by Yehezkel and Lerner in [96], proceeds under the assumption
that there is a faithful graphical model and removes an edge X − Y whenever there
is a test result X ⊥ Y |S for some S. Like the Fast algorithm, it starts with the
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smallest conditioning sets first and works upwards. It employs more of the structure
than Fast’s algorithm, which reduces the number of tests that have to be performed.

The additional structure used is that of the essential graph. At each stage of
the algorithm, the immoralities produced by edge deletions in the current round are
inserted. The essential graph is a chain graph. This means that the variable set V may
be split into p disjoint subsets; V = V1∪ . . .∪Vp, where the graph, restricted to Vj , is
undirected for each j and, for i 6= j, α ∈ Vi and β ∈ Vj , there is no cycle containing
both α and β. (With a cycle, the direction of the edges is observed. (α0, . . . , αm) is
a cycle if α0 = αm, αi 6= αj for all other pairs (i, j) and for each i, i + 1 there is
either an undirected edge αi − αi+1 or a directed edge αi → αi+1). The essential
graph also satisfies the condition that the chain components are triangulated.

The first step of the RAI algorithm is given by Algorithm 6.

Algorithm 6 The RAI algorithm, step 0
Initialization Starting with a variable set V = {X1, . . . , Xd}, the initial graph is
the complete graph, with undirected edges between each pair of variables
for 1 ¬ i < j ¬ d do

Test whether or not Xi ⊥ Xj . If true, the edge Xi ∼ Xj is removed.
Record Si,j = φ, the empty set (Si,j is the separator or sep-set).
for each vee structure Xi − Z −Xj where there is no edge Xi −Xj do

direct edges so that the triple (Xi, Z,Xj) is an immorality X → Z ← Y .
end for

end for
Apply Meek’s rules, to direct the additional compelled edges

This produces a graph that is an essential graph. After this initialisation (stage
0), the algorithm proceeds recursively. Algorithm 7 gives the nth stage of the RAI
algorithm. For a graph G = (V,E), the notation GD denotes the sub-graph (D,E ∩
D ×D).

The RAI proceeds either until the size of the largest neighbour set in the undi-
rected graph is equal to n (the size of the conditioning set in the current round) or
until the algorithm has performed a pre-assigned number of rounds, governed by the
reliability of the conditional independence tests. The output is the resulting essential
graph.

This additional use of the structure by the RAI algorithm can reduce the number
of tests required in comparison with the Fast algorithm.

Resolving contradictions. The constraint based algorithms discussed so far, the
TPDA, MMPC, Fast and RAI, all rely on the results of conditional independence
tests. There are two difficulties that can arise: firstly, the independence structure may
not satisfy a faithfulness condition. Secondly, even if it does, with a finite data set,
there is not a perfect oracle; the results of the CI (conditional independence) tests
are not entirely reliable. A. Fast discusses the issues raised by the second of these
difficulties at length in [26]. For example, the MMPC, Fast and RAI algorithms
may produce contradictory immoralities; X → Y ← Z and Y → Z ←W .

Tsamardinos, Brown and Aliferis [90] in 2006 propose the following solution: after
running the MMPC algorithm, they do not try to direct the edges and simply take
the skeleton. To produce a DAG, they take the skeleton from MMPC as the candidate
edge set and run the MMHC (Maximum Minimum Hill Climbing) algorithm, a search
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Algorithm 7 The RAI algorithm, step n for n ­ 1
Starting with a chain component that has no descendants and proceeding back-
wards, consider in turn each chain component GC and the sub-graph GD formed
by taking the chain component GC = (C,UC) together with the chain components
that have parent variables of GC and all all the directed edges connecting these
chain components.
for each Y ∈ C and each neighbour X of Y (consider first the parents in different
connected components, and then the undirected neighbours in the component GC)
do

check whether there is a set SXY ⊂ D of size n such that X ⊥ Y |S.
if true then

remove the edge between X and Y and record SXY .
For each new vee structure (X,Z, Y ), declare it to be an immorality if and
only if Z 6∈ SXY . Find the additional compelled edges generated by the
immorality.

end if
Remove the chain component GC

end for
proceed recursively until the whole graph has been considered.

and score algorithm. Starting with an empty graph, at each stage the best add /
delete / reverse edge is chosen, where only edges from the skeleton obtained by the
MMPC algorithm are considered, according to which operation gives the highest
scoring graph. The results in that article indicate that, for the largest test network
attempted, the search and score edge orientation phase takes 10 times as long as the
constraint based MMPC skeleton finding phase.

Fast takes a different approach, largely on philosophical grounds. Search-and-
score presents one criterion for deciding on the best graph, the one that produces
the highest score. Constraint based presents an entirely different criterion. The result
of each independence test is a ‘yes’ or a ‘no’ and the best fitting graph is the graph
that satisfies as many of these constraints as possible. To deal with contradictory
immoralities, Fast develops the ‘EDGE-OPT’ algorithm, which finds the graph that
satisfies the largest number of constraints.

The results of conditional independence tests should be consistent, in the sense
that they should satisfy decomposition, contraction, weak union and intersection.
If different CI tests produce results that contradict these relations results, then
Bromberg and Margaritis [4] in 2009 propose a system of argumentation, based on
the power of the tests for deciding which results to accept into the set of constraints.
These systems of argumentation seem to be in their initial stages; an assumption
in Bromberg and Margaritis is that the random variables corresponding to different
test statistics are independent.

The Xie - Geng Algorithm. The Xie - Geng algorithm, by Xie and Geng [95]
is a constraint based algorithm that takes a different approach. It is not suitable
for sets of discrete variables, because the conditioning sets for the CI tests are too
large, but works well with multivariate Gaussian variables that satisfy a faithfulness
assumption.

The algorithm first constructs the independence graph, an undirected graph,
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which contains an undirected edge X − Y for each pair of variables such that
X 6⊥ Y |V \{X,Y } (X not independent of Y conditioned on all the other variables
in the network). In the case of Gaussian variables, this simply reduces to testing
whether or not the conditional covariance between the two variables is significant.
The authors suggest considering the inverse of the statistical covariance matrix and
adding an edge corresponding to each entry that is significantly different from zero.
This can be unstable if the number of data is small compared with the number of
variables or if the statistical covariance matrix is singular (or close to singular) for
some other reason. A generalised inverse is unreliable for this procedure. The condi-
tional covariance for the two variables conditioned on the other variables can always
be computed, even when the sample covariance matrix is close to singular.

The independence graph, containing an edge if and only if X 6⊥ Y |V \{X,Y }, has
the property that graphical separation implies independence. (Note, this is separa-
tion in the usual sense for undirected graphs and not d-separation).

Recall that in a Bayesian network, a variable X is d-separated by its Markov
blanket MB(X) (definition 3) from all the other variables in the network and hence
independent of the rest of the network, conditionally on MB(X). Therefore, in the
moral graph of a Bayesian network (the undirected graph obtained by linking all the
parents of a variable for each variable with undirected edges and then un-directing
all the edges), a variable is graphically separated from all the other variables in the
network by its Markov blanket.

The edge set of the independence graph is therefore a subset of the moral graph
of any DAG corresponding to a factorisation of the distribution; the independence
graph and moral graph are equal if the DAG is faithful. The Xie - Geng algorithm
takes the view that the independence graph is the moral graph of a faithful DAG.
It starts by recursively decomposing the graph, until it has decomposed it into
cliques. It then uses the ‘faithfulness’ principle when dealing with the cliques to locate
immoralities, delete unnecessary edges in the cliques and direct the vee-structures
corresponding to immoralities. For a clique C and set S ⊆ C\{X,Y }, if X ⊥ Y |S,
then the edge X − Y is removed and for each W ∈ C\(S ∪ {X,Y }), the directions
X →W ← Y are given to remaining vee structures X −W − Y .

It then re-assembles the pieces according to the following principle: an edge X−Y
belonging to a structure is removed at re-assembly if it has already been removed
from one of the two structures being merged; for any variable W that is not in the
sep-set SX,Y (the set that caused X − Y to be removed) where edges X −W and
Y −W are present, these edges are directed to form an immorality X →W ← Y .

6.5. Hybrid Algorithms. Hybrid algorithms combine constraints with search
and score. One example is the MMHC algorithm of Tsamardinos, Brown and Alif-
eris [90], which starts with the constraint based MMPC stage to locate the skeleton
and then carries out a search and score based MMHC stage, using the skeleton
obtained from MMPC as the candidate edge set.

L1-Regularisation. One method, introduced by Schmidt, Niculescu-Mizil and
Murphy [82] in 2007, places constraints on the model and then uses an L1 score
function, described below, as the basis of a search and score within the constrained
space.

The method can be employed with Gaussian or binary variables. The binary case
is outlined here.
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In this algorithm, there is no restriction on the number of parents that a variable
may have, but there is a constraint on the way in which the parents influence the
variable. The state space of variable Xj is {−1, 1} for each j and the conditional
probabilities are modelled so that the logit function is linear:

ln
(

pXj |Πj (1|πj)
1− pXj |Πj (1|πj)

)
=

(
θj,0 +

pj∑
k=1

θj,kπj,k

)
(13)

where πj = (πj1, . . . , πjpj ), the configuration of Πj , is a sequence of±1 corresponding
to the states of the parent variables. The parent variables are only permitted to
influence ln p

1−p linearly; no interactions are permitted. This permits a large number
of parents, since the number of parameters is linear, rather than exponential, in the
number of parents.

The algorithm works in two stages: like the MMPC, it first produces candidate
parent children sets for each variable. Having constrained the search space, it then
uses a search and score algorithm to determine the candidate parent / children
sets. Having determined the parent / children sets, it runs the hill climbing part of
the MMHC algorithm of Tsamardinos, Brown and Aliferis to obtain the structure,
keeping the conditional probabilities of the form in equation (13). For a vector x =
(x1, . . . , xd) of 1’s and −1’s, let Πj denote all the variables without j. That is, all
variables permitted as possible parents for j at this stage. Let x̃(j) denote the vector
x without xj . Let

LL(j, θj , x) = log pXj |Πj (xj |x̃
(j))

denote the log likelihood function and, for x the data matrix with rows x(1), . . . , x(n),
let

LL(j, θj ,x) =
n∑
k=1

LL(j, θj , x(k)).

The parameters θj are chosen to maximise the L1 regularisation score function,

L1R(θj ,x) = LL(j, θj ,x)− λ‖θj‖1,

where ‖θj‖1 =
∑d−1
k=1 |θjk| and λ is chosen appropriately. The sum is over the pa-

rameters corresponding to dependence on parent variables; the parameter θj,0 is not
included. The article [82] has some discussion about the appropriate choice of λ.

The L1 regularisation, if λ is appropriately chosen, has the effect of choosing
vectors θj with a substantial number of zero components. Because of this property,
it tends to favours a lower number of parameters in the model. For this reason, L1

regularisation is a technique that is developing increasing importance.

Gibbs sampling. A related approach to the problem of structure learning is found
in 2005 by Bulashevska and Eils [5]. The structure learning algorithm is intended
for analysis of gene expression data, to locate gene regulatory interactions. As with
Schmidt, Niculescu-Mizil and Murphy [82], the parents influence the offspring inde-
pendently of each other and the algorithm forms ‘noisy OR’ and ‘noisy AND’ gates.
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The parent sets are chosen using Gibbs sampling. The generic techniques of Gibbs
sampling are found by Gammerman and Lopes [32] in 2007.

6.6. Faithfulness and ‘real world’ data. The Recursive Autonomy Identi-
fication algorithm was analysed by B. Barros [2] in 2012, applying it both to data
simulated from test networks and to a financial data set. When applied to simulated
data, simulated from the ALARM network, the algorithm performed very well; the
performance was consistent with the results described by Yehezkel and Lerner [96].
For a data set generated by a probability distribution for which there exists a faith-
ful DAG, the results verified that the algorithm is efficient and produces a graph
that corresponds well to the distribution that generated the data, with low compu-
tational overheads. The feature of the algorithm of making all required tests with
smaller conditioning sets before moving on to larger increases accuracy over methods
that do not do this. The additional use made of the structure, identifying the chain
components of the essential graph at each stage, ensures that fewer statistical calls
(references to the data set) are required.

Some features were noted in the performance of the algorithm. In earlier stages,
some contradictory directions appeared. That is, pairs of immoralities X → Y ← Z,
Y → Z ← W , in situations where the edge Y ∼ Z would be deleted in subsequent
rounds of the algorithm following tests with larger conditioning sets. The direction
chosen for the edge during that round was dictated by which immorality appeared
first. If the test X ⊥ Z|SX,Z , yielding a sep-set SX,Z was carried out first, then
the edge would take the direction Y ← Z. After carrying out the CI tests and
determining the directions, Meek’s orientation rules were applied to determine the
structures for the next round of the algorithm.

The algorithm worked very well; with 10000 observations, it produced a graph
that had the correct skeleton and only 4 edges with incorrect orientation.

The test of performance of an algorithm, MMHC, RAI, TPDA, or any other al-
gorithm, is based on the ability of the algorithm to recover a probability distribution
used to simulate data. There are several standard networks, including the ALARM
network, that are used. Data is simulated from the network and the algorithm ap-
plied to the simulated data. Freedman and Humphreys [28], p 33,34, are somewhat
scathing in their assessment of this procedure for verifying the utility of an algo-
rithm, of using simulated data from a distribution known to have good properties.
They write,

The ALARM network is supposed to represent causal relations between
variables relevant to hospital emergency rooms, and Spirtes Glymour
Scheines (1993) [85] p 11 claim to have discovered almost all the adja-
cencies and edge directions ‘from sample data’. However, these ‘sample
data’ are simulated; the hospitals and patients exist only in the computer
program. The assumptions made by SGS (1993) [85] are all satisfied by
fiat, having been programmed into the computer: the question of whether
they are satisfied in the real world is not addressed. After all, computer
programs operate on numbers, not on blood pressures or pulmonary ven-
tilation levels (two of the many evocative labels on nodes in the ALARM
network).

Freedman and Humphreys continue by stating,
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These kinds of simulations tell us very little about the extent to which
modelling assumptions hold true for substantive applications.

The constraint based algorithms TPDA, MMPC, Fast and RAI all depend crucially
on the modelling assumption that there is a DAG that is faithful to the set of condi-
tional dependence / independence statements that can be established. We pinpoint
two difficulties that can arise in the ‘real world’; interaction effects without main
effects and hidden common causes.

Interaction effects without main effects. Example 1 gives an example of a
situation where these constraint based algorithms will miss key associations between
the variables. Any situation where factors taken individually give no information, but
where there are two-factor, or higher order factor interaction without main effects,
will not be detected. If applied to genetic data, for example, the algorithm will not
be able to detect situations where a single gene by itself has no apparent effect, but
where the genome pathway may be opened by two genes acting together.

This situation will not lead to internal inconsistencies in the functioning of the
algorithms; associations of this type will simply be missed and the output will be a
DAG that does not show these associations, but it may not lead to reversed edges
(situations where the algorithm has to choose between two contradictory directions
for an edge).

Hidden variables. In a ‘real world’ situation, there may well be hidden variables
which are not measured and the experimenter may be unaware of their existence.
This can lead to reversed edges, as the following example illustrates. Suppose that
X,Y, Z,W are variables that are recorded, while H is a hidden variable, a common
cause of X and Y , whose presence is not suspected by the researcher. Suppose that
the causal relations between H,X, Y, Z,W are given by figure 11.

X Hoo // Y

W

OO

// Z

>>

Figure 11: H is hidden and does not appear in the data matrix

If the RAI algorithm is applied to the variables X,Y, Z,W , whose associations are
described by the d-connection statements of the DAG in figure 11, then X ⊥ Z|W ,
giving X → Y ← Z and Y ⊥ W |Z, giving the immorality Y → X ← W . Even if
there is a perfect oracle (sufficient data to give correct results for each CI test so
that the results are consistent with the probability distribution over (X,Y, Z,W )),
the edge between X and Y is a reversed edge, X ↔ Y . This notation means that,
from the CI tests, one test gives a direction X → Y ; the other gives a direction
X ← Y and the algorithm will choose the direction depending on the order in which
the tests are carried out.
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In the RAI algorithm, the direction that an edge takes in the output graph,
under such circumstances is determined by the order of the variables; if the test
results X ⊥ Z|W appears first, the output graph will contain X → Y and thus
the graph will contain the false d-separation statement W ⊥ Y |{X,Z}, while if the
result W ⊥ Y |Z appears first, the output graph will contain the edge Y → X and
the false d-separation statement X ⊥ Z|{W,Y }. The two possibilities are given in
figure 12.

X // Y X Yoo

W

OO

// Z

OO

W

OO

// Z

OO

Figure 12: Possible outputs applying constraint based algorithm to variables
(X,Y, Z,W ) from figure 11

Contradictory results from CI tests. Suppose that the test results giveX 6⊥ Y .
One would therefore hope that X and Y are d-connected in the output graph. The
decision to remove an edge X ∼ Y as soon as a test result ‘do not reject X ⊥ Y |S’
appears can lead to a situation where the edge X ∼ Y is removed, even if it leads
to a graph where X ⊥ Y ‖Gφ (X and Y are d-separated by the empty set). The
constraint based algorithms discussed here do not have a mechanism to ensure that
the final graph contains those d-connection statements that have been established
through rejecting independence.

The scope of structure learning. Algorithms can detect associations, at the
level of ‘descriptive statistics’, without reference to the process that generates the
data and the nature of randomness. At the level of descriptive statistics, the scope of
constraint based algorithms is viewed along the following lines: from the n× d data
matrix, an empirical distribution can be established (or, at least, if d is very large,
empirical probability distributions of the marginalisation to subsets of the variables
can be established). Any test result that produces X 6⊥ Y |S corresponds to a d-
connection statement that is to be retained in the output graph; any test result
where X 6⊥ Y |S is not rejected does not have to be retained in the output graph.
The output graph attempts to have as few edges as possible, while retaining all the
d-connection statements that were established through rejecting independence.

For large numbers of variables, there are clear difficulties that make serious infer-
ential statistics impossible. The assumption is that the n× d data matrix represents
n independent instantiations of a d-random vector X. This assumption, together
with an assumption that n is sufficiently large for a central limit theorem effect to
hold is required for the test statistics to be approximately χ2. Even if the nominal
significance level α chosen for rejecting a null hypothesis can be considered as a mea-
sure of a probability in any serious way the number of tests required is large that the
overall significance level could be close to 1. In terms of descriptive statistics, the
output graph can be informative, but it is difficult to reach inferential conclusions
from the output of these algorithms.
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Application of Fast and RAI to financial data. After testing the Fast and
RAI algorithms on the training example of the ALARM network, where it performed
well, the work of Barros [2] proceeded to run these algorithms on a financial data
set, composed of the closing values of 18 stock market indices (Amsterdam stock
index, Austrian traded index, Brussels stock index, etc ...) from 1st January 2005
to 1st January 2011, approximately 1000 instantiations of 18 variables.

The aim of the thesis was to detect changes in associations between the variables,
to learn a structure, detect when the structure was no longer appropriate and update.

In the financial data set, the raw RAI algorithm gave no independence state-
ments after the first round; for each pair of variables (X,Y ), the result was ‘reject
independence’. Therefore, any pair of variables should be d-connected in the output
graph. Yet the output graph, following application of the raw RAI algorithm, gave
pairs of d-separated variables, which indicates that conditional independence was
falsely accepted due to weak tests.

In order to deal with the situation where ‘accept independence’ from tests with
large conditioning sets contradicted d-connection statements with lower order condi-
tioning sets, Barros adopted a more conservative approach than the argumentation
of Bromberg and Margaritis [4] and modified the algorithm so that it did not ac-
cept an independence statement that resulted in a d-separation in the output graph
contradicting a dependence statement that has already been established. This mod-
ification worked well.

The output still gave a large number of ‘reversed edges’. While the ALARM
network gave one or two, the financial data set gave approximately 28 reversed
edges, indicating situations that appeared in the DAG in figure 11, with possible
output graphs corresponding to figure 12.

The presence of a substantial number of ‘common cause’ hidden variables would
explain this.

This was a randomly chosen ‘real world’ data set and probably not appropriate for
an algorithm based on a ‘faithfulness’ assumption. The variables here do not satisfy
one of the motivating features of the faithfulness assumption, that the variables stand
in causal relation to each other; their association is more likely to be a result of hidden
common causes, such as government policies, or global financial considerations that
influence the various stock markets.

The same difficulties seemed to arise in other applications. The RAI algorithm
was applied to the genetic data found in Friedman et. al. [27]. Tentative results seem
to give substantially different output depending on the input order of the variables,
suggesting hidden common causes.

Conclusion. Constraint based algorithms offer a fast approach, which is conve-
nient with data matrices when d, the number of variables, is very large. They can
be many times faster than search and score algorithms. Unfortunately, these algo-
rithms tend to assume ‘faithfulness’ and work on the principle of removing an edge
whenever a conditional independence test gives the result ‘do not reject X ⊥ Y |S’.
This leads to several difficulties. Firstly, since tests with larger conditioning sets are
weaker, it can lead to situations where deletion of an edge can contradict earlier
d-connection statements. This difficulty is present even if there is a faithful DAG
corresponding to the independence structure. Secondly, two-factor, or higher order
interactions are not detected if there are no ‘main effects’. Thirdly, hidden variables
can lead to contradictory edges, resulting in d-separation statements not present in
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the probability distribution. If there is no faithful DAG that describes the underlying
independence structure, this can manifest itself in other ways.

Modifications to remove the first of these difficulties have been considered, for
example by Bromberg and Margaritis [4] using argumentation and the more con-
servative approach of Barros [2] retaining all dependence statements that have been
established through rejecting independence.

The second and third of these difficulties have not been fully addressed by con-
straint based algorithms.

7. The ‘Causal Discovery’ Controversy. The discussion about structure
learning has described various methods to locate structures that represent the inde-
pendence relations within a data set. All these methods, search and score, constraint
based, hybrid, yield results that fall under the heading of descriptive statistics. The
search and score methods simply examine some of the available structures and choose
the structure with the highest score of those examined. On the ‘classical’ side, there
is no measure of confidence for the structure chosen; on the ‘Bayesian’ side, even
if a prior distribution is placed over the structure space and the posterior used as
the basis of a score function, there is no posterior assessment of the probability for
the structure to lie in a certain subspace of the set of possible structures; only a
small number of structures are visited and the structure chosen is the one visited
that gives the largest score. With constraint based methods, even if the hypothesis
that the data matrix represents n instantiations of i.i.d. random vectors holds, the
number of tests is so large that even with a small nominal significance level for each
test, the overall significance level approaches 1.

The output structure can give useful information at the level of descriptive statis-
tics, but little or no formal inference can be made. This is generally the case in
multivariate statistics, where methods are often more successful as descriptive than
inferential tools.

Assume, though, that statistical associations have been established. Substan-
tial parts of the literature suggest claims that a rigorous engine for inferring cau-
sation from association has been established. For example, Spirtes, Glymour and
Scheines [85] (further references as SGS) claim to have algorithms for discovering
causal relations based only on empirical data. The underlying assumption seems to
be that, for a large class of problems, when immoralities are learned from data and
Meek’s rules then applied, cause to effect can be inferred for the directed edges of the
essential graph. In 2007 Schmidt, Niculesu-Mizil and Murphy [82] write, explaining
why they are constructing techniques to produce directed graphs,

‘... undirected models cannot be used to model causality in the sense of
Pearl [69], which is useful in many domains such as molecular biology,
where interventions can be performed.’

The thrust of the quote is that directed edges whose direction can be interpreted
as cause to effect, can be learned from data. But placing a causal interpretation on
a directed arrow in a p-DAG that has been learned purely by applying a structure
learning algorithm to data can be misleading.

In a situation where interventions can be performed, a causal directed graph
can be obtained from the undirected graph through further controlled experiments.
Consider the situation on three variables (X,Y, Z) where X ⊥ Z|Y , but X 6⊥ Y ,
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X 6⊥ Z, Y 6⊥ Z, Y 6⊥ X|Z and Y 6⊥ Z|X. There are three DAGs along which the
distribution pX,Y,Z may be factorised, given in figure 13.

Y
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Y
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>>

Z

Y

~~

X Z

``

Figure 13: Three Markov equivalent DAGs

Suppose that an intervention may be carried out on the variable Y , forcing its state.
This has the effect of removing arrows from parents of Y to Y . If the state Y ← y is
forced, this gives the graphs in figure 14. If all the states of Y can be explored, in a
controlled experiment, by randomly assigning levels of the ‘treatment’ variable Y , the
causal structure can be determined from the Markov structure, but not otherwise.

Y = y

|| ""
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""

X Z X Z

Y = y

||

X Z

Figure 14: Intervention Y ← y in figure 13

Markowetz and Spang [57] discuss the application of intervention calculus for
perturbation experiments that are inferring gene function and regulatory pathways.

As Freedman and Humphreys [28] point out in 1999, commenting on automated
causal learning, ‘these claims are premature at best and the examples used in SGS
to illustrate the algorithms are indicative of failure rather than success.’ They point
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out that ‘the gap between association and causation has yet to be bridged.’

7.1. Faithfulness and the great leap of faith. One of the leading assump-
tions behind ‘causal discovery’ is the assumption that distributions of interest satisfy
the faithfulness assumption, that there is a DAG G with variable set V = (U,O)
where U denotes the unobserved variables and O the observed variables and a prob-
ability distribution P over (U,O) such that P factorises along G and G gives a faithful
graphical representation of the independence structure.

This is described as follows;

‘ .... the faithfulness condition can be thought of as the assumption that
conditional independence relations are due to causal structure rather
than to accidents of parameter values.’ Spirtes et. al. (2000) [86]

Another statement of the same principle is found in in 1995 by Meek [58]

In cases where P(G) (the set of distributions that factorise along a graph
G) can be parametrised by a family of distributions with a parameter of fi-
nite dimensions, the set of unfaithful distributions typically has Lebesgue
measure zero. (Spirtes et. al. (2000) [86] pp 42 - 2)

This assumption, that the set of observable variables O may be extended to a set
V = (U,O) where U represents unobserved common causes, or confounders, and
that there will exist a DAG over V that is faithful to the probability distribution
over V , is re-stated in Robins, Scheines, Spirtes and Wasserman [78]. There is strong
interest in classes of faithful distributions in the literature; the work of Zhang and
Spirtes [97] requires that the class of distributions under consideration satisfy a
stronger assumption than faithfulness in order to obtain uniform consistency in
causal inference for a certain class of problems; Robins et. al. [78] illustrates non-
existence of uniform consistency when only faithfulness is assumed, because of the
possibility of non-faithful distributions in the closure of the set of distributions under
consideration.

Example 1 gives an instance of a situation where the probability distribution does
not have faithful graphical representation. For the variables (Y1, Y2, Y3, X1, X2, X3),
the DAG that best represents the associations between the variables is given by fig-
ure 7. For these variables, X1 ⊥ Y2 and X1 ⊥ Y3, but X1 6⊥ {Y2, Y3}, composition is
not satisfied. In this situation the influence of Y2 and Y3 on X1 is not seen if the vari-
ables are considered separately, but the interaction effect is decisive. Suppose that
O = (X1, X2, X3), the values for (X1, X2, X3) are observable and U = (Y1, Y2, Y3),
the results of (Y1, Y2, Y3) are hidden. Clearly, the set of distributions over 6 binary
variables that factorises over the DAG in figure 7 can be described by a finite param-
eter space; 15 parameters are required to describe the entire set of distributions; the
parameter space is [0, 1]15. Furthermore, it is clear that the parameters to describe
the distribution over (Y1, Y2, Y3, X1, X2, X3) in example 1 correspond to exactly one
point in the parameter space, which has Lebesgue measure zero. Nevertheless, ex-
amples where knowledge of two causes is required to explain the effect and where
knowledge only of a single cause tells you nothing about an effect arise all the time
in practise, in the real world.

Furthermore, the parametrisation of any distribution that has an independence
structure has Lebesgue measure zero in the parameter space of all distributions over
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the variables in question. Meek’s argument can equally well be used to argue against
searching for any independence structure at all.

Faithfulness appears a convenient hypothesis to produce beautiful mathematics
(and the relation between DAGs and probability distributions under this assumption
has produced a very elegant and attractive mathematical theory), but it is difficult
to see that it necessarily applies to real world situations; the real world does not
respect the fact that the set of parameters that describe the situation have Lebesgue
measure zero in a mathematical parameter space. Divergence between ‘real world’
behaviour and the assumption that it should fit into a convenient mathematical
framework has been termed ‘The Mind Projection Fallacy’ by E.T. Jaynes [39].

7.2. Inferring non-causation and causation. In 2003 Robins, Scheines,
Spirtes and Wasserman [78] describe situations where non-causation can be inferred.
A situation where such an inference can be made is given by figure 11 representing
the causal associations between variables, where H is hidden and X,Y,W are ob-
servable. In this example, X is not a cause of Y , neither is Y a cause of X. This
can be inferred from the CI tests; from the results X ⊥ Z|W and Y ⊥ W |Z, it is
possible to infer that the relation between X and Y is not cause to effect in either
direction and that a common cause H would explain the test results.

The discovery of an immorality, though, does not necessarily imply causation.
Suppose H1 and H2 are hidden and X,Z, Y are observable in figure 15. The distri-
bution over (X,Z, Y ) factorises according to figure 16.

H1

~~   
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X Z Y

Figure 15: H1 and H2 hidden

X

  

Y

��

Z

Figure 16: DAG for (X,Y, Z) from figure 15

If one were using immoralities as a guide to causation, one would conclude that X
and Y were common causes of Z. As Freedman and Humphreys point out in [28],
commenting in SGS on a DAG produced from a sociological data set,

The graph says, for instance, that race and religion cause region of resi-
dence.
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In the context, this illustrates very well that inferring causality from directed arrows
leads to non-sensical conclusions and raises a timely note of caution when inferring
causality.

7.3. Summarising causal discovery. Freedman and Humphreys go on to
summarise the attempts to automate ‘causal discovery’ with the example of smoking
and lung cancer,

The epidemiologists discovered an important truth - smoking is bad for
you. The epidemiologists made this discovery by looking at the data and
using their brains, two skills that are not readily automated. .... The
examples in SGS (1993) [85] count against the automation principle, not
for it.’

The conclusion drawn by the authors of this article is that the output produced
by structure learning algorithms provides invaluable information. It can give good
information about associations and can certainly point towards the possibility of
causal relations, but they do not even begin to automate the process of learning
causality; it is still necessary for researchers to use their brains to design experiments,
examine the data and use their brains again, taking into account circumstances and
contexts additional to the raw data, to reach conclusions. As the example from SGS,
extended by Freedman and Humphreys [28] shows, causation cannot be deduced
from the presence of an immorality and, indeed, cannot be inferred from the output
of structure learning algorithms alone.

8. Conclusion. The subject of Bayesian networks arguably has its origins in
the short article from 1853 by A. Cayley [8]. Cayley presents a causal network and
exploits the factorisation of a joint probability distribution into its component parts
based on causal principles. Cayley introduces the idea of the ‘or’ gate and points
towards the use of techniques of algebraic geometry in Bayesian networks.

Graphical models provide an interaction between probability and graph theory,
where separation statements in a graph imply independence statements in a proba-
bility distribution, so that certain independence statements can be established simply
from d-separation statements in the corresponding DAG. Human intelligence finds in
graphs a very natural and lucid (or graphic!) way of expressing connections between
variables.

Bayesian networks are a versatile tool of artificial intelligence, as any artificial
intelligence in real life must be able to reason probabilistically, in order to cope with
uncertainty. They have a wide range of applications; for example, reliability theory,
system security and in bioinformatics, where Bayesian network structure learning
techniques are used to locate genome pathways. A potentially important field of
applications is expert systems in medical diagnostics. Bayesian networks are useful
in machine learning, i.e. supervised classification when the ‘näıve Bayes’ assumption
is dropped.

If there are causal relations between variables, then the DAG provides a natural
tool for representing a natural factorisation of the probability distribution, which has
been exploited by Pearl to develop the so-called intervention calculus. This provides
a natural language for describing controlled experiments.

One topic where further development is necessary is that of structure learning,
learning the independence structure from data. The discussion of constraint based
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versus search and score algorithms indicates that, while constraint based algorithms
have a substantial advantage in terms of computational speed, some of the assump-
tions on which these algorithms are based mean that there are certain important
classes of association that the algorithms simply cannot detect. An important task
is to relax these assumptions without increasing the computational complexity too
drastically.

The problem of learning from data a graph that expresses the independence
structure continues to be a major challenge. The number of possible graphs increases
super-exponentially in the number of nodes, so that it is not possible to examine
all structures available. There are two main philosophies behind structure learning
techniques; search-and-score and constraint based. There are also hybrid algorithms,
which use ideas from both. Search-and-score tend to employ a stochastic process to
run through the space of structures, scoring each structure and then choosing the
structure visited that has the highest score. Constraint based algorithms set up
constraints through tests for conditional independence. If conditional independence
is rejected, the corresponding d-connection statement should be present in the output
graph; the output tries to give the graph with fewest edges that respects all the
connection statements that have been established.

While constraint based algorithms tend to be overwhelmingly faster and less
computationally demanding, they tend to have restrictive assumptions. Those that
rely on faithfulness tend to perform rather poorly when the underlying distribution
does not satisfy this assumption. This happens, for example, if there are hidden com-
mon causes. The algorithms also fail to detect situations where there are interaction
effects without main effects; X1 by itself gives no information about X3 and X2 by
itself gives no information about X3, but {X1, X2} together give full information
about X3.

The main challenge in structure learning is to develop algorithms that have the
computational efficiency of the constraint based algorithms, while relaxing assump-
tions such as faithfulness, or composition, for the underlying distribution.

Closely connected with the assumption of faithfulness is the idea of causation.
Constraint based algorithms assuming faithfuless will work well in situations where
there are cause - to - effect relations between the variables. Learning causality from
associations, though, seems premature without a substantial number of additional
assumptions on the nature of the data available.
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Sieci bayesowskie i ropoznawanie zależności strukturalnych

Streszczenie. Artykuł jest przeglądem problemów analizowanych przy pomocy sieci
bayesowskich. Sieć bayesowska jest acyklicznym grafem skierowanym, w którym wę-
zły oznaczają zmienne, a krawędzie prawdopodobieństwa warunkowe czyli wpływy
jednych zmiennych na inne. Autor przedstawia zależność między d-separowalnością
a niezależnością. Znaczna część pracy poświęcona jest dyskusji idei zawartych w
pracy Arthura Cayley’a [8], która zawiera szereg pojęć i pomysłów wykorzystywa-
nych w teorii sieci bayesowskich takich jak faktoryzacja rozkładu, zaszumione bramki
„LUB” oraz zastosowanie geometrii algebraicznej. Autor omawia również „calcu-
lus of intervention”, pomysł pochodzący od Pearla, gdy acykliczny graf skierowany
(DAG) przedstawia przyczynowo-skutkową strukturę zależności, oraz związki pomię-
dzy pracami Cayley’a i Pearla.

Większość zawartego w artykule materiału poświęcona jest rozpoznawaniu i wy-
krywaniu zależności między zmiennymi w oparciu o dwie główne metodologie: prze-
szukiwania i klasyfikacji oraz realizacji ograniczeń. Algorytmy oparte na kontroli
ograniczeń często opierają się na założeniu, że dane do których algorytm jest stoso-
wany pochodzą z rozkładu spełniającego założenie wierności oznaczającego równo-
ważność d-separowalności i niezależności. W pracy prezentowane są rozważania dla
algorytmów opartych na realizacji ograniczeń w przypadkach gdy założenie wierno-
ści nie jest spełnione. Przeprowadzono krótką dyskusję kontrowersji związanych z
wykrywaniem przypadkowych powiązań.

Słowa kluczowe: sieci bayesowskie, graf acykliczny skierowany, wyznaczanie
przyczyn, ocena przyczyny, ocena znaczenia czynnika, graficzny model Markowa,
drzewa markowskie, rownoważność Markowa, uczenie maszynowe, systemy uczące
się, sztuczna inteligencja, systemy eksperckie, wyszukiwarki internetowe, wykrywa-
nie zależności (structure learning), rozpoznawanie struktury (structure learning).
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