Artificial Intelligence Review (2023) 56:8721-8814
https://doi.org/10.1007/510462-022-10351-w

®

Check for
updates

A survey of Bayesian Network structure learning

Neville Kenneth Kitson'® . Anthony C. Constantinou'2 - Zhigao Guo' - Yang Liu' -
Kiattikun Chobtham'

Published online: 17 January 2023
©The Author(s) 2023

Abstract

Bayesian Networks (BNs) have become increasingly popular over the last few decades as
a tool for reasoning under uncertainty in fields as diverse as medicine, biology, epidemiol-
ogy, economics and the social sciences. This is especially true in real-world areas where we
seek to answer complex questions based on hypothetical evidence to determine actions for
intervention. However, determining the graphical structure of a BN remains a major chal-
lenge, especially when modelling a problem under causal assumptions. Solutions to this
problem include the automated discovery of BN graphs from data, constructing them based
on expert knowledge, or a combination of the two. This paper provides a comprehensive
review of combinatoric algorithms proposed for learning BN structure from data, describ-
ing 74 algorithms including prototypical, well-established and state-of-the-art approaches.
The basic approach of each algorithm is described in consistent terms, and the similari-
ties and differences between them highlighted. Methods of evaluating algorithms and their
comparative performance are discussed including the consistency of claims made in the
literature. Approaches for dealing with data noise in real-world datasets and incorporating
expert knowledge into the learning process are also covered.

Keywords Causal discovery - Graphical models - Knowledge-based constraints - Structure
learning evaluation - Structure learning review

P4 Neville Kenneth Kitson
n.k kitson@qgmul.ac.uk

Anthony C. Constantinou
a.constantinou@qgmul.ac.uk

Zhigao Guo
zhigao.guo@qmul.ac.uk

Yang Liu
yangliu@qgmul.ac.uk
Kiattikun Chobtham
k.chobtham @qmul.ac.uk

Bayesian Artificial Intelligence Research Lab, Risk and Information Management (RIM) Research
Group, School of Electronic Engineering and Computer Science, Queen Mary University
of London (QMUL), London E1 4NS, UK

2 The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK

@ Springer

http://orcid.org/0000-0002-7970-1453
http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-022-10351-w&domain=pdf

8722 N. K. Kitson et al.

1 Introduction

The achievements of black-box machine learning, such as neural networks, are undeni-
able and have contributed to a renewed interest in machine learning and artificial intel-
ligence in general. Nevertheless, it is now well understood that black-box solutions that are
restricted to predictive optimisation are unsuitable to inform decision making in domains
that require transparency and tractability, such as in government policy and healthcare. The
recent book by Pearl and Mackenzie (2018) highlights the need for models to be capable of
reasoning under causal representation, in order to offer solutions that go beyond prediction.
They illustrate this by presenting a ladder of causation that consists of three levels:

e [evel 1: Models restricted to associational relationships, or are capable of generating
predictions only; e.g., “What symptoms should we expect to observe given disease A?”.

e Level 2: Models that involve some form of causal representation and can answer ques-
tions about interventions; e.g., “What effect would taking drug A have on symptoms B
given that they are caused by disease C?7”.

e Level 3: Models that offer a complete form of causal representation and can answer
questions about causation that extend to counterfactual reasoning; e.g., “If I had taken
drug B instead of drug A, would my symptoms caused by disease C be less severe?”

Pearl and Mackenzie also refer to the three above levels as seeing, doing and imagin-
ing, respectively. The Bayesian network (BN) framework that Pearl described a few dec-
ades back (Pearl 1985, 1988) enables us to answer questions up to and including Level
3, although this requires that the BN model is employed under causal assumptions; also
referred to as a ‘causal BN’

A BN is a probabilistic graphical model which provides a powerful general approach
especially suited to modelling complex non-deterministic systems. A BN offers a compact
probabilistic representation of the system and provides a means of applying probability
theory to large collections, sometimes thousands or more, of variables. They have been
used in many different domains, for example, in protein (Sachs et al. 2005) and gene (Imoto
et al. 2004) networks in biology, pyschosis (Moffa et al. 2017) and cancer care (Sesen et al.
2013) in healthcare, engineering fault diagnosis (Cai et al. 2017), and air pollution model-
ling (Vitolo et al. 2018). Koller and Friedman (2009) and Darwiche (2009) provide two
excellent introductions to the theory behind, and use of, BNs.

A BN consists of graph which shows the direct dependence relationships between vari-
ables, or in a causal BN, direct cause and effect relationships. The BN also defines param-
eters which specify the form and the strengths of these relationships. Determining these
parameters is generally much easier than recovering the graph accurately and so we focus
here on the latter. The graph may be specified by human experts in a domain of inter-
est, but here, we describe structure learning algorithms which aim to learn the graph from
data. We focus on combinatoric algorithms where the approach is to search or constrain the
finite discrete space of possible graphs in some way. This paper aims to provide intuitive
descriptions of a comprehensive range of these algorithms from the earliest, but often still
competitive, algorithms, to some of the most recent advances.

Inevitably, in a field as broad and rapidly developing as this, we have had to omit, or
only briefly refer to, some aspects of structure learning. Fortunately, there are other recent
survey papers that cover some of these aspects more completely. For example, the paper
by Glymour et al. (2019) provides more coverage of functional causal models where

@ Springer

A survey of Bayesian Network structure learning 8723

assumptions about the functional form of the effect, causes and noise relationships can be
used to deduce causal relationships. Vowels et al. (2021) concentrate on approaches which
treat structure learning as a continuous optimisation problem, optimising an objective
function and handling the acyclicity constraint as a continuous function, and Zanga et al.
(2022) cover algorithms which learn from mixed observational and experimental data, and
those which learn cyclic graphs. Moraffah et al. (2020) and Noguiera et al. (2022) deal
with structure learning from time-series data which we do not cover in this paper.

The paper is structured as follows: the next section covers some preliminaries about
BN, Sect. 3 covers constraint-based learning, Sect. 4 score-based learning, and Sect. 5
hybrid learning and some non-combinatorial approaches. Figure 6 provides an overview
of the evolution of structure learning algorithms that are covered in this paper, and will be
referenced in subsequent sections. Section 6 covers various practical considerations when
applying these algorithms to synthetic and real data, including how to evaluate their output,
as well as a discussion of comparative reviews of algorithm performance. Section 6 also
discusses some of the main approaches these algorithms may incorporate to handle noise
in the data, methods for incorporating expert knowledge into the structure learning process,
some open-source software packages, and some guidelines on choosing algorithms. Lastly,
we provide our concluding remarks in Sect. 7.

2 Preliminaries

A Bayesian Network, B, is defined by a tuple consisting of a Directed Acyclic Graph
(DAG) G, and a set of parameters @, defining the strength and the shape of the relation-
ships between variables (we shall denote sets in boldface throughout):

B=(G,0)

The DAG, G, consists of a set of nodes (also known as vertices) X, each of which cor-
responds to one of the n variables under consideration, X = {X,,..., X}, and a set of
directed edges (or arcs) E, so that:

G=X.E)

We will use plain capital letters to represent individual variables or nodes, e.g. A, Y, X;.
A directed edge, for example A — B, represents a direct conditional relationship between A
and B, or under a causal assumption, means that A is a direct cause of B. The BN may sim-
ply be considered as a compact representation of the conditional independence relations in
observational data, and in this non-casual interpretation, it may be used to infer conditional
and marginal distributions in the observational data to provide predictive analysis. How-
ever, if we interpret the BN to be a causal BN, then the BN is a unique DAG that enables
us to reason about intervention and understand the system being modelled at a deeper level.
Where we have a directed edge A — B in a graph, we say that A is a parent of B, or equiva-
lently, B is a child of A.

Figure 1 shows a DAG representing a simple model of two causes of (lung) cancer and
two effects of cancer. It encapsulates the relationships between the variables, in particu-
lar the conditional dependence and independence relations between the variables. Condi-
tional probability tells us, for example, the probability that the person will have a cloudy

@ Springer

8724 N. K. Kitson et al.

Fig. 1 Hypothetical DAG on
Cancer

!
0

Dyspnoea

L-B~0 G- “-Er-

(a) causal chain:tA L C|B (b) common cause:A L C|B (c) common effect: A L C|B

Fig.2 Causal classes containing three variables, and their corresponding conditional independence rela-
tionships

“ln

X-ray given that we know they have Cancer, written as P(XRay|Cancer)' where “I” means
“given”. Conditional independence tells us which variables are irrelevant to that probabil-
ity. For example,

P(XRay|Cancer, Smoker) = P(XRay|Cancer)

tells us that the probability of a cloudy X-Ray is independent of whether Smoker is true
given that we know the person has Cancer. The symbol “L1” means “is independent of”” and
so this is written as:

XRay L Smoker|Cancer.

Figure 2 shows the three causal classes possible with three variables, together with all
the conditional independence or dependence relations between A and C given B that they
entail. The DAGs in Fig. 2a and b entail the same conditional independence relationship
which means they cannot be distinguished by their conditional independence relations
solely from observational data. When this is the case, we say that they belong to the same
Markov Equivalence Class (MEC, but simply referred to as equivalence class from now
on). However, in Fig. 2c, A and C are independent but become dependent given B (indi-
cated by the symbol “£”). This kind of relationship is known as explaining away and can-
not be represented in undirected probabilistic graphs. A node which has multiple parents is
known as a collider. The configuration shown in Fig. 2c, where B is a collider, and there is
no edge between A and C, will be referred to here as a v-structure, although other authors
use the term unshielded collider.

Probabilistic graphical models represent conditional independence through the notion
of graphical separation. For example, Cancer “separates” Smoker from XRay in the
graph in Fig. 1. DAGs use a special form of graphical separation known as d-separation

' We use P(XRay|Cancer) as a shorthand for the conditional probability distribution over all values of
XRay and Cancer, that is, P(XRay = cloudy|Cancer = true), P(XRay = clear|Cancer = true) etc.

@ Springer

A survey of Bayesian Network structure learning 8725

T

XLy XLY|F XLY|FG XLY|D,EF

Fig. 3 Examples illustrating the application of d-separation. (Color figure online)

to represent conditional independence relationships. D-separation is defined as follows
(Pearl 1988): If X and Y are nodes in DAG G, a subset of the remaining nodes, S, d-sep-
arates X from Y if S blocks all paths between X and Y. Each path between X and Y is
blocked by S if at least one of the nodes between X and Y on that path meets one of the
following conditions, either:

e it is a collider and neither it, nor any of its descendants, are in S;
e or, it is not a collider and it is in S

If S does d-separate X and Y, we say that S is a Sepset (also referred to as cut-set or
separating set) for X and Y. Figure 3 presents four examples of applying the d-separa-
tion rules to examine whether X and Y are d-separated, where the different conditioning
sets are indicated by shaded nodes. Paths which are not blocked are known as active
paths and are shown by green arrows, and conditioning sets which are minimal Sepsets
are shaded in pink; otherwise, they are shaded in grey.

The BN represents the set of conditional independence relationships (and implicitly
therefore, the dependence relationships too) in the joint probability distribution over all
the variables, P(X). Two assumptions about the DAG in a BN are made:

e Markov Condition every variable X in G is conditionally independent of its non-
descendants given its parents. This is equivalent to saying that every conditional
independence implied by d-separation in the DAG is present in the joint probability
distribution P(X). Importantly, this condition means that the joint probability distri-
bution P(X) can be decomposed as follows (where Pa (X,-) are the parents of X,):

n
PX) = | | P(X;|Pacx,)
i=1

e Minimality Condition we cannot remove any of the edges in the DAG without the
graph implying a conditional independence relationship that is not present in P(X).

Pearl (1988) expresses these two conditions by saying that G is a minimal Independ-
ence-Map (I-map) of P(X). If the DAG represents the causal structure of the variables,

@ Springer

8726 N. K. Kitson et al.

Table 1 Number of directed graphs, directed acyclic graphs, and the percentage of directed graphs which
are acyclic for different number of variables

Number of vari- Number of directed Number of DAGs,|G, | Percentage of directed

ables,n graphs graphs which are acyclic
(3n(n—l)/2) (%)

2 3 3 100.0

3 27 25 92.59

4 729 543 74.49

5 59,049 29,281 49.59

6 1.4349x 107 3.7815x10° 26.35

7 1.0460% 10'° 1.1388x 10° 10.89

8 2.2877x 10" 7.8730x 10" 342

This calculation assumes that the directed graph has at most one arc between each pair of nodes

the Markov Condition is referred to as the Causal Markov Condition since it links the
probabilistic and causal interpretations of the DAG.

We wish to learn the BN from a set of data D, which consists of N data instances
D =1{d,,...,dy}, each of which defines the value of each of the variables X,..X,, that is
d = {x,,...,x,} (lower case letters denote values or states of a variable). Discrete BNs
allow variables which take discrete values each having a defined probability of occurring
dependent upon the value of the parents. For example, in Fig. 1, the probability of Dysp-
noea occurring might be 0.9 if Cancer were true, but only 0.05 if Cancer were false. This
set of conditional probabilities for a discrete variable is known as the Conditional Prob-
ability Table (CPT).

Linear Gaussian BNs are based on continuous variables which are assumed to follow
Gaussian distributions. Each value of a child variable is a linear combination of its parents’
values plus a local noise component. These networks are parameterised with Conditional
Probability Distributions (CPDs), as opposed to CPTs. Unless stated otherwise, we will
assume linear relationships when we use the term Gaussian BN. Hybrid BNs support both
discrete and continuous distributions. The most common form of hybrid BN is a Condi-
tional Linear Gaussian BN (CLGBN) which allows discrete variables to be parents of a
continuous variable, with a separate Gaussian Linear Model with different weighting coef-
ficients for each set of discrete parent values (Geiger and Heckerman 1994). While CLG-
BNs do not generally allow continuous variables to be parents of discrete ones, works such
as those by Andrews et al. (2018) describe hybrid BNs which remove this restriction.

Constructing a BN involves two main phases: (a) determining the graphical structure
and (b) determining the parameters ®. The graph and the parameters of a BN model can
be determined by expert knowledge, learnt from data, or a combination of both. This paper
focuses on the problem of learning the structure of BNs from data, or from both data and
expert knowledge.

Learning the structure of a BN represents an NP-hard problem partly because the solu-
tion space of graphs grows super-exponentially with the number of variables. Robinson
(1973) showed that the recurrence relation:

|Gn| — Z (_ l)i—l < ’: >2i(n—i)|Gn_i|
i=1

@ Springer

A survey of Bayesian Network structure learning 8727

(a) three DAGs with same (b) PDAG showing (c) CPDAG representing
dependency model skeleton and v-structures equivalence class

Fig. 4 Illustration of the equivalence classes, PDAGs and CPDAGs, based on an example in Verma and
Pearl (1990)

computes the number of possible DAGs for n variables, |G, |, with |G| defined as 1. Using
this recurrence formula, Table 1 illustrates how the number of possible DAGs grows super-
exponentially as n increases. Clearly, a naive exhaustive search is not a solution for any
problem with a reasonable number of variables.

In general, structure learning algorithms fall into two main classes. The first class is
constraint-based methods that eliminate and orientate edges based on a series of condi-
tional independence (CI) tests. The second class, score-based methods, represent a tradi-
tional machine learning approach where the aim is to search over different graphs maximis-
ing an objective function. The graph that maximises the objective function is returned as
the preferred graph. Additionally, hybrid algorithms that combine score-based and con-
straint-based approaches are often viewed as a third class of structure learning. Chickering
et al. (1994) demonstrate that score-based learning is NP-hard, and Chickering et al. (2004)
show that constraint-based learning is as well. This is true even under favourable condi-
tions such as limiting the number of parents to three and having a constant time method of
computing scores from the data.

3 Constraint-based learning

Constraint-based learning uses CI tests on the data to determine the conditional independ-
ence relationships between the variables under investigation, and hence construct a graph
consistent with the data. Constraint-based learning is often assumed to discover causal
relationships under the assumptions of causal faithfulness and causal sufficiency which we
cover later in this section. As the simple examples in Fig. 2 have already shown, a set of
independence relationships may be consistent with multiple DAGs. Hence, rather than pro-
ducing a single DAG, constraint-based algorithms return the set of DAGs consistent with
the independence relationships in the data. That is, the equivalence class referred to in
Sect. 1.

Verma and Pearl (1990) show that two DAGs belong to the same equivalence class if
they have the same adjacencies (same skeleton) and the same set of v-structures. The adja-
cencies and v-structures are represented by a Partially Directed Acyclic Graph (PDAG)
which has a mixture of directed and undirected edges, with the directed edges indicating
the v-structures. Figure 4a shows three DAGs which entail the same set of independence
relationships even though the arrow orientations vary between A, B and C. Figure 4b shows

@ Springer

8728 N. K. Kitson et al.

Fig.5 Example unfaithful
network

A=0| 1/4
B=0 1/2 1/3 A=1| 3/4

B=1| 1/2 213

1/16
116
1/32
3/32
316
116
3/32
13/32

C=0|1/2 1/4 314 3116
C=1/1/2 3/4 1/4 13116

alaaaocooeo
alaooaaoco
2loaolaoao

P(A=0,C=0)=3/32 P(A=0)xP(C=0)=1/4x3/8=3/32
P(A=0,C=1)=5/32 P(A=0)xP(C=1)=1/4x5/8=5/32
P(A=1,C=0)=9/32 P(A=1)xP(C=0)=3/4x3/8=9/32
P(A=1, C=1) =15/32 P(A=1)xP(C=1)=3/4x5/8=15/32

Thus, P(A, C) = P(A)xP(C) for all values of A
and C, henceALC

the corresponding PDAG, with directed edges indicating the v-structure B — D « C.
Implicit in that PDAG is that B— D — E and C — D — E are not v-structures, So we can
deduce that there must be a directed edge D — E, and filling in all the additional implicit
directed arrows such as this one creates a Complete PDAG (CPDAG), as shown inFig. 4c.?
The CPDAG represents the equivalence class. A directed edge in the CPDAG means that
all the equivalent DAGs must have that same directed edge, but undirected edges in the
CPDAG indicate that the equivalent DAGs can have a directed edge in either direction.

We noted in the Preliminaries that two assumptions are made when formally defining a
Bayesian Network: the Markov and Minimality Conditions. To recap, this means that all
conditional independence relationships implied from the DAG by d-separation are present
in the probability distribution. In general, however the converse is not necessarily true, in
that there may be conditional independence relationships present in the probability distri-
bution that are not reflected by the DAG. If this is the case, we say that the DAG and the
probability distribution are unfaithful to one another.

Figure 5 shows an example in which the network is unfaithful. Applying d-separation
rules to the DAG would indicate that A and C are not independent. However, the particu-
lar values chosen for the CPTs shown give rise to a probability distribution where A and
C are independent. Thus, there is an independence in the probability distribution which is
not reflected by the DAG, and so it is unfaithful. In other words, this example shows that
it is possible to have causation without association. Note that constraint-based algorithms
do often make the additional assumption that all independence relationships present in the
distribution are reflected in the DAG. In this case, we say that the DAG and distribution are
faithful to each other, or that the DAG is a perfect map (P-map) of the distribution.

2 PDAGs are also referred to as rudimentary patterns (Verma and Pearl 1990), and CPDAGs are referred to
as completed patterns (Verma and Pearl 1990), sometimes simply patterns (Spirtes and Glymour 1991), or
even essential graphs (Andersson et al. 1997) or maximally orientated graphs (Meek 1995).

@ Springer

A survey of Bayesian Network structure learning 8729

KEY

ALGORITHM TYPES

2010

015

220

Fig.6 The evolution of BN structure learning algorithms across all classes of learning. (Color figure
online)

The next subsection of this section describes the CI tests used to determine the set of
independence relationships, and the remaining three subsections each discuss a group
of constraint-based algorithms. Section 3.2 describes the prototypical constraint-based
algorithms that learn the graph structure globally and make the assumption of causal suf-
ficiency which is also explained there. Section 3.3 describes local learning algorithms
which learn the graph structure local to each variable which can then be merged to produce
the overall graph. Finally, Section 3.4 describes algorithms which assume the existence
of latent variables (i.e., causal insufficiency) and which are represented by a new kind of
graph covered in that subsection. The main constraint-based algorithms covered in these
subsections are shown in red hues in Fig. 6, which also illustrates the evolution of structure
learning algorithms covered in this review. Lastly, Table 2 summarises the constraint-based
algorithms covered in terms of whether they are global or local, the type of output’ they
produce, and the key assumptions the algorithms make. Note that faithfulness assumptions
that are stronger than the normal are marked in red text, and those that are weaker marked
in blue text.

3 Table 2 reports the type of output produced by the algorithm in the original paper cited as the refer-
ence in the table. For most of the local learning algorithms, this output was a set of local structures such
as Markov Blankets, rather than a whole integrated graph. However, when these algorithms have subse-
quently been incorporated into software packages, for example, Inter-IAMB in the bnlearn software pack-
age (Scutari 2021) these local structures may be merged, and the output would then be a whole graph, typi-
cally a CPDAG.

@ Springer

N. K. Kitson et al.

8730

ON aerdwo) DvVaddo [eqo[D (2TOT) PIeITA pue B[[RIRI skaamng xordwoy—npd $O-0d
ON appdwo) ovd [eqo[D (8107) '[B10 nuSey XVIN—IDA—I°POIN [eowder poxiy XVIN-IDA-INON
SOx a[dwo) ovado [2qO[D (9107) Kosurey XVIN—HE[D pue 10104 XeN-Dd
SOX 9[3uer1y, pojuswordwir JoN [eqo[H (#107) Sueyz pue soyndg SDS QATBAIISUOD) AIOA SOSDA
ON aerdwo) ovd [eqo[D (¥10T) SINYILRIN pUE 0qUIO[0) 2[qe1S OURIRJU] [esne)) 1Se] 21quIS-10d
payrew
SOX Jyerdwo) SAINONIS-A SUNIIPUOD YPIM DYAJD [eqo[H ($#107) sIyIee pue oquiojo)) 9[qRIS—TB[D PUB 1919 919®IS-Od
ON 9yordwo) Ovd 1eqorH (€£107) 'Te 12 uassee[) + 90uaIgyu] [esne)) ISeJ +104
ON Kouaoelpy ovd [eqo[D (Z107) 'Te 12 oquio[o) QOUIAJU] [BSNRY) IS, QANBAIISUOD) 104D
ON aordwo) Dvd [eqo[D (T100) Te 10 oquo[o) QouaIOJu] [esNE)) ISt A[[eay 1044
URIp[IyD2psIudIRd
SOx aopdwo) UQIP[IYd pue sjuaIEd [e20] (0100) T 10 sy UOIIH POABDLIAUL-IWDS Dd-NOLIH-IS
SOX Jyerdwo) ovdadd [eqo1H (6007) JoUIYT puR [9YZIYIX uonNeOYNUIP] AWOUOINY IAISINONY vy
SOK Kouaoelpy pedprew sordin nymprejun pism OVAJO [eqo[D (9007) Te 10 Aoswey Dd PATIEAISSUOD 2dO
SN qerdwo) sjoueg AONIRIAI 820 (S007) SHLIRSIEI pUE BlEYRWRIRX qINVI 1seq dINVI-Ise]
SOX arerdwo) sjoyuR[g AONIBIA o0 (£007) ‘Te 39 sourprewes], 1oy uR[g AOMIRIA UIA—XRIA! GINININ
SOX Jyerdwo) USIP[IYD PUE SjudIed [ed0] (£002) ‘Te 19 sourprewes], UIP[IYD) sjuared UTN—XBIA DdININ
SOX 9yordwo) sjoue[g AONIRIA 800 (€£007) ‘Te 10 sourprewes], JINVI-PaAeaIau] JINVI-Tou]
oquerg
SOX 9yerdwo) sjoyuR[g AONIRIA! 207 (£007) ‘Te 19 sourpIewes], AOYIRJA] UOTJBIOOSSY [BIUSWIIOU] JINVI
SOK 9yordwo) UIP[IYO pue sjuared 820 (q ‘8€007) ‘T8 10 SLI_JIY (19A09 10 19y UR[q 10] Y33I0)) UONH NOLIH
SOX SIUOJOUOIA DVAdo [eqo[D (200Q) Te 30 Suay) w03y Kouspuada(dseyd a1y, vadl
SOK aordwo) Dvado [2007] (6661) Uniy], pue sniesep JULIYS-MOID) SD
ON 9yerdwo) Ovd [®qo[D (S661) ‘T 10 sauds QJURIdJU] [esne)) ISt D4
SOK appdwo) DvVado [eqo[D (1661) MowA[H pue sorudg NIE[D PUE 110d od
SOK aerdwo) ovado [eqo[D (0661) T 12 seordg soureyog-mowk[y-sopdg SOS
pawnsse Aouord suondwnsse

-Jns [esne) ssaunyye ndino jo od£J, 1890 10 [eqO[D) QOUAIRY uonduosop/oweu WYILIoIy UoneIAIqQY

A[[e2130[0UO0IYO PIIOPIO ‘PIMITARI SWILIOS[E Paseq-JUTesuod d} JO sonsLoeIRy) ¢ d|qel

pringer

A s

A survey of Bayesian Network structure learning 8731

3.1 Determining conditional independence

CI tests check whether nodes A and B are conditionally independent given a conditioning
set of nodes § = {S},...,S,} where g ranges over the number of nodes in the conditioning
set. In other words, it decides whether S will be a Sepset for A and B in the learnt graph.
Although we generically describe these as tests of conditional independence, the same
tests are also used when S = @; that is, testing whether A and B are unconditionally inde-
pendent. These tests rely on setting an arbitrary threshold used to determine conditional
independence, and can only identify conditional independence relationships present in
the dataset which may not necessarily reflect those present in the true distribution. There-
fore, we must recognise that these CI tests can make “mistakes”, and that these errors are
more likely to occur with smaller sample sizes. Minimising the effects of these errors is an
important consideration when designing constraint-based algorithms because if an edge is
mistakenly removed from the graph at an early stage in the discovery process, this is likely
to cause the discovery of incorrect edges at a later stage.

The most commonly used CI tests for discrete BN are the G? and y? statistical tests and
mutual information (MI), whereas for Gaussian BNs, Fisher’s z-test is frequently used. CI
tests such as G2 and y? assume a null hypothesis that A and B are conditionally independ-
ent given S. The tests produce a test statistic which can then be used to estimate how likely,
defined by a p-value, that the observed data is, given the null hypothesis. If the p-value is
below a predefined significance level, a, typically chosen as 0.05, the null hypothesis is
rejected and it is assumed A and B are conditionally dependent given S. Conversely, if the
p-value is above a, the null hypothesis cannot be rejected and we assume A and B are con-
ditionally independent given S. The general form of the G? test statistic is:

G*=2- Z Observed - IH[M]

Expected

which when applied to test the conditional independence of discrete variables A and B
given conditioning set § = {S|, ..., S, } becomes (Spirtes et al. 2000):

Observed = N dExpected = o Nas 62 g > Nyl [N“”‘N‘}
servea = bs® an. xpec ead = ———, SO = n|——
abs Nv P abs NhsN

as

where a, b range over the values of A, B respectively, and s ranges over all the combinations
of values of the conditioning set S. N, is the number of data cases with specific values
A=a,B=b,S={s,... ,sq}. N, is the marginal count over all values of a for data cases
with B =b,8 = {sy,...,s,}, with N,, and N, being analogous marginal counts over b and
a, b respectively. The degrees of freedom, df, which is required to determine the p-value
from the test statistic is dependent upon the cardinality of the variables and is given by:

q
df = (1Al - DBl - D[] Isi
i=1

where [A|, |B|, |S,~| are the number of distinct values that nodes A, B, S; can take respec-
tively. df is defined here under the assumption that none of the values of N, is zero, that
is, every possible combination of values is present in the data. However, it is likely that
some combinations of values will be absent with limited sample sizes, and so Sprites et al.

@ Springer

8732 N. K. Kitson et al.

(2000) suggest a heuristic of reducing df by 1 for every combination of values where N
is zero. The y2 CI test is similar, but with the test statistic defined as:

(Observed — E)cpecz‘ed)2
=22
Expected

Another CI test for discrete BNs is mutual information (MI) which measures the amount
of information shared between two variables (Cheng et al. 1997). The mutual information
between two variables A and B is:

P(a,b
MIA.B)= Y Pa,b)-In Pab)
£ P(a)P(b)
where P(a, b) is shorthand for P(A = a, B = b), and similarly for P(a), and P(b). Condi-
tional mutual information is defined as:

MI(A, B|S) = Z P(a,b|s) - In

a,b,s

P(a,bls)
P(als) - P(bls)

where P(a, b|s) is shorthand forP(A = a,B = b|{S1 =5, ... ,Sq = sq}), and similarly for
P(als) andP(b|s). A value of O for MI(A, B|S) indicates that there is no information flow
between A and B when conditioned onS, that is, they are conditionally independent. In
practice a threshold value € is chosen so that if MI(A, B|S) < ¢, conditional independence
is assumed. Variable € may be given an arbitrary small value such as 0.01 (Cheng et al.
1997) or it may be estimated by comparing the predictive accuracy using different values
(Cheng and Greiner 1999). If we rewrite the frequencies used in the definition of the G?
test statistic as probabilities, we see that it only differs from mutual information by a scal-
ing factor:

1= T

ab,s

Gz=2-ZN-P(a,b,s)-ln

a,b,s

Nabs/Nv
Nas/Ns 'Nbs/Ns

G*=2-N- ZP(a,b,s)-ln

a,b,s

=2.N-MI(A,B|S)

P(a, bls)
P(als) - P(bls)

In the case of Gaussian BNs, Fisher’s Z-test is commonly used to test the null
hypothesis that the partial correlation coefficient is zero. Fisher’s Z-test uses Fisher’s
Z-transformation which is defined as:

I+ ﬁabls

2=t "2
2 1_pozbls

s

where p,,, is the partial correlation coefficient between values a of node A and values b
of node B, given values s of the conditioning set S. The value p,;, can be computed recur-
sively with conditioning sets of increasing size (Anderson 1962; de la Fuente et al. 2004).
This transformed version of the partial correlation 7 , follows a normal distribution with:

@ Springer

A survey of Bayesian Network structure learning 8733

1, 1+ 5w . 1
a mean of —ln—aIS and standard deviationo, of

~

L= Dapis \/m’

where g is the number of variables in the conditioning set. We can, therefore, use a normal
distribution Z-score to compute the p-value of obtaining the computed partial correlation
coefficient given the null hypothesis of zero partial correlation (Z, = 0):

-Z 1+,
Z=m’"—0=l N_q_31n—/\”h|s
o 2 1_pabls

The test statistics and associated p-values described in this section are usually used
in a binary decision to decide whether variables are conditionally independent or not.
However, some algorithms also use them as a measure of the degree of association, or
dependence or independence between variables. For example, a high mutual informa-
tion value indicates that two variables are strongly associated with each other.

3.2 Global discovery algorithms

This group of constraint-based algorithms are known as global discovery algorithms since
they attempt to learn the graph structure as a whole rather than first learning the local
structure relating to each variable separately as the local constraint-based algorithms do
(see Sect. 3.3). Both these global and the local constraint-based algorithms make one fur-
ther assumption known as causal sufficiency, which is of importance if we wish to interpret
the BNs causally. This assumption means there are no latent (unmeasured) variables that
would affect the causal relationships. For example, variables that are a common cause of
two or more of the measured variables X, which are widely known as latent confounders.

3.2.1 SGS algorithm

The SGS algorithm (Spirtes et al. 1990) is rather inefficient but is of interest since many
constraint-based algorithms build upon its approach. SGS relies on two key theorems
derived from the definition of Bayesian Networks (Verma and Pearl 1990) that apply to
faithful and causally sufficient BNs:

1. if A LB|S for every subset S C X \ {A, B} then A and B are adjacent in the graph
(“X\{A, B}” means set X with elements A and B removed);

2. if A and B, and B and C are adjacent in the graph, but A and C are not adjacent, and if
A L C|S UBforany subset S C X \ {A, B, C}inthe DAG, then A, B, C form a v-structure
A->B«C

SGS starts from a complete (i.e., there is an edge between every pair of nodes) undi-
rected graph on the node set X and learns the Markov equivalence class in three phases:

1. Adjacency phase: making use of rule 1 above, for each pair of nodes A, B this phase
performs a CI test on A and B conditional on every possible subset S of the remaining

@ Springer

8734 N. K. Kitson et al.

nodes. If conditional independence occurs for any set S, the edge between A and B is
removed. This phase produces the graph skeleton.

2. V-structure phase: using rule 2 above, for every triple A, B, C in the skeleton where A, B
and B, C are adjacent pairs, and A and C are not adjacent, perform CI tests on A and C
conditional on every possible subset S, of the remaining nodes where S contains B. If
A and C are conditionally dependent given for every subset S, then mark A — B — C as
a v-structure A — B « C. This phase produces the PDAG.

3. Orientation propagation phase: for every undirected edge in the PDAG, check if one of
the orientations would:

a. introduce a cycle into the graph, or
b. create a new v-structure.

If so, then that orientation is forbidden and so the opposite orientation can be assumed.
These rules are applied repeatedly until no more edges can be orientated, producing the
CPDAG.

The first phase in the SGS algorithm is particularly expensive. In the worst case, it
requires n(n — 1) - 2”73 CI tests, which makes it exponential in n and therefore infeasible for
a reasonable number of variables. However, SGS is relatively stable (Spirtes et al. 2000),
in that errors made in CI tests tend not to be highly amplified by subsequent steps. A CI
mistake in phase 1 may result in an extraneous or missing edge, but this would not affect
other decisions made in that phase. However, these adjacency errors and further errors in
identifying v-structures may propagate out to cause further orientation errors.

3.2.2 The PCalgorithm

The adjacency phase in SGS exhaustively tests every possible conditioning set for each
pair of nodes. This is computationally expensive and also means that many high order CI
tests (CI tests applied to large parent-sets) are performed which are unreliable because the
individual elements of the CI test are based on relatively few data instances. To counter
these issues, the PC algorithm by Spirtes and Glymour (1991) performs the adjacency
phase with conditioning sets of increasing size—checking all pairs of nodes A, B at a par-
ticular conditioning set size and removing edges A — B if a Sepset is found before moving
to higher conditioning sets. Moreover, the PC adjacency phase makes use of the result that
the minimum conditioning set that d-separates two nodes must be a subset of the union
of the parents of those nodes under the assumptions of faithfulness and causal sufficiency
(Verma and Pearl 1990). Thus, the algorithm need only consider conditioning sets of nodes
which are adjacent to A and B. This condition has no benefit initially since PC starts from
a complete graph, but it reduces the number and order of the CI tests that are performed as
the adjacency phase progresses and edges are removed.

To improve computational efficiency, the v-structure phase makes use of the Sepsets
identified in the adjacency phase; if the Sepset for A and C identified in the adjacency
phase for an unshielded triple A — B — C does not contain B, then this identifies it as the
v-structure A — B « C. The PC algorithm then performs orientation propagation using
the “Meek Rules” (Meek 1995). The complexity of the PC algorithm is bounded by
(Spirtes et al. 2000):

@ Springer

A survey of Bayesian Network structure learning 8735

n2(n — 1)yme"!
(Sppax = 1)!

where s,,,, 1s the maximum size of any Sepset. This complexity bound is hard to quantify,
but PC is polynomial given a limit on node degree (Claassen et al. 2013). Although far
more efficient, the PC algorithm is less stable than SGS. For example, edges mistakenly
removed in the adjacency phase can result in other edges being mistakenly retained later on
in the adjacency phase.

3.2.3 The conservative PC (CPC) algorithm

The PC and SGS algorithms assume complete faithfulness, and one direction in which
constraint-based algorithms have developed is to weaken this assumption. The Conserva-
tive PC (CPC) algorithm (Ramsey et al. 2006) does this by considering how faithfulness is
assumed in the adjacency and orientation phases of the PC algorithm separately, using the
terms adjacency-faithfulness and orientation-faithfulness respectively. It is shown that if
only adjacency-faithfulness is assumed, the v-structure phase can detect and mark unfaith-
ful v-structures. To do this, CPC considers all Sepsets of A and C to determine if A — B — C
is a v-structure—marking it as such only if none of the Sepsets contain B. Moreover, unless
the “vote” is unanimous, the triple is marked as unfaithful. Thus, CPC is more cautious
about orientating edges than PC, hence the name “conservative”. Simulations on a dataset
of sample size 1,000 showed CPC to be only slightly slower than PC, but generating fewer
erroneous edge orientations.

3.2.4 The very conservative SGS (VCSGS) algorithm

Zhang and Spirtes (2008) showed that a restricted assumption of faithfulness could be
applied to the adjacency phase too. This weakened faithfulness condition is a combina-
tion of the minimality condition described in the Introduction, and triangle faithfulness
which only assumes faithfulness on fully connected triples. With this weakened faithful-
ness assumption alone, it is possible to identify all other faithfulness violations. Spirtes and
Zhang (2014) describe a version of SGS, the Very Conservative SGS, which would imple-
ment this weaker faithfulness assumption, though it was left as an open question whether it
could be made efficient enough to be viable. It does not seem as though this algorithm has
been implemented.

3.2.5 The PC-stable algorithm

Colombo and Maathuis (2014) considered the effect of mistaken CI test decisions arising
from limited sample sizes and, in particular, their interaction with the order in which the CI
tests are performed. They showed that the output from all three phases of the original PC
algorithm (including related algorithms such as FCI and RFCI which we discuss below)
is sensitive to the order in which CI tests are performed. The order in which CI tests are
performed is generally an artefact of the way the algorithm is implemented; e.g., it may
be related to the lexicographic ordering of the node names, or in the order the variables
appear in the data. They proposed modifications to each phase of the original PC algorithm

@ Springer

8736 N. K. Kitson et al.

(Sect. 3.2.2) to remove this order dependence. Figure 7 presents the pseudo-code for the
PC-Stable algorithm which has the following three phases:

e Adjacency: in the original PC algorithm, mistaken deletions of edges propagate by
erroneously reducing the conditioning sets available in subsequent CI tests at a given
conditioning set size. This was remedied by only recomputing adjacencies before
processing all the CI tests at each conditioning set size, in contrast to the original
PC algorithm where edges are removed and adjacencies adjusted as soon as an inde-
pendence relationship is detected. This is accomplished by taking a copy of the adja-
cencies at lines 5 and 6 of the pseudo-code and using this stable copy to determine
possible conditioning sets ignoring the fact that edges might have been deleted in
lines 8 to 10.

e V-structure: the original PC algorithm re-uses the Sepset used to determine that the
triple is unshielded, to also decide whether that triple is a v-structure. Given that the
original algorithm can use invalid Sepsets in the adjacency phase, this also means its
sensitivity to node ordering can adversely affect v-structure orientation. PC-Stable fol-
lows the approach adopted by CPC (Sect. 3.2.3) by considering all the Sepsets of A and
C in triple A — B — C to decide where it is a v-structure. However, PC-Stable takes a
less conservative approach than CPC, which they term majority rule, whereby the triple
is marked as a v-structure if a majority of the Sepsets do not contain the middle node
B. Orientation conflicts are identified during this phase and marked by bi-directional
edges, as shown in line 13 to 19 in the pseudo-code.

¢ Orientation propagation: mistaken CI tests mean that situations like that shown in Fig. 8
can occur; i.e., the two v-structures imply conflicting orientations for edge B — E. The
original PC algorithm would arbitrarily choose one orientation based on node process-
ing order. PC-Stable instead marks this conflicted edge with a bidirectional arrow.

The authors compared PC-Stable to PC in a low-dimensional simulation with 50 vari-
ables, an average neighbourhood size of 2 or 4 and 1000 rows, and in a high-dimensional
simulation with 1000 variables, an average neighbourhood size of 2 and 50 rows. 250 ran-
dom graphs were generated in each setting. Synthetic Gaussian variable datasets were pro-
duced for each graph, and twenty random orderings of variables used with each dataset.
The CI test threshold was also varied.

The behaviour of PC and PC-Stable was very similar in the low-dimensional simulation.
However, in the high-dimensional one, PC-Stable learnt graphs with lower SHD from the
true graph, and with a much smaller variance in SHD across the different dataset orderings.
This demonstrated the improved accuracy and stability of PC-Stable over PC. PC-Stable
was between three and 13 percent slower than PC due to performing more CI tests. Most
recent implementations of algorithms in the PC (and FCI) family employ the order-inde-
pendence strategies used by PC-Stable.

Marella and Vicard (2022) provide a variant of PC, PC-CS, which addresses selection
biases introduced by complex survey designs by using modified independence tests based
on resampling techniques. The algorithm was evaluated using synthetic discrete variable
datasets generated from random graphs. However, rows with particular values for some
variables were preferentially included in the dataset in order to simulate the complex selec-
tion biases often found in survey data. The simulation then compared PC-Stable’s and PC-
CS’s ability to learn the random graph. PC-CS produced better SHD scores than PC-Stable,

@ Springer

A survey of Bayesian Network structure learning 8737

algorithm PC-STABLE is
input: dataset D
output: mixed-graph G

1 G := complete undirected graph

2 sepset_size := -1

3 repeat

4 sepset_size := sepset_size + 1

5 for each node in G do

6 adj[node] := neighbours(node, G)

7 for each edge (X, Y) in G where |adj[X]| > sepset_size do
8 for each possible sepset of X, Y of size sepset_size
9 if X and Y conditionally independent given sepset
10 delete edge from G
11 until all nodes have less than sepset_size number of neighbours

12 for each unshielded_triple (X, Z, Y) in G do

13 if majority of sepsets of X and Y do not contain Z

14 if P> X € Z in G for any P

15 orientate unshielded_triple as X €2 Z € Y in G

16 else if Z > Y € Q in G for any Q

17 orientate unshielded_triple as X > Z €2 Y in G

18 else

19 orientate unshielded_triple as X 2 Z € Y in G

20 repeat

21 for each triple X - Z - Y 1in G and X, Y not adjacent

22 orientate as X > Z > Y

23 for each pair X - Y in G with a parallel chain X > P 2> Y

24 orientate as X 2> Y

25 for each pair X - Y in G with parallel paths X - P - Y and
X - Q> Y and P, Q not adjacent

26 orientate as X 2> Y

27 until no more orientations possible

28 return G

Fig. 7 Pseudo-code for PC-Stable algorithm. Program code keywords are coloured blue, comments in grey,
key variables in red, and application-specific complex operations or conditions in black. Note, that for clar-
ity, this variant does not identify orientation conflicts in the orientation propagation phase. (Color figure
online)

but it should be noted that the simulations had at most 10 variables and so were somewhat
limited.

3.2.6 PC-MAX algorithm

Whereas PC uses the Sepset identified in the adjacency phase, and CPC and PC-Stable
use a voting scheme, to determine whether an unshielded triple is a v-structure, PC-MAX
(Ramsey 2016) uses the Sepset with the highest p-value to determine this. The intuition
here is that the Sepset with the highest p-value is the one which most strongly separates
the end nodes of the triple, and so should be used to decide whether it is a v-structure or
not. Similarly, when two overlapping v-structures would give rise to a bidirectional edge
as shown in Fig. 8§, PC-MAX avoids that conflict by only retaining the v-structure with
the highest p-value. PC-MAX also parallelises the adjacency and v-structure phases and

@ Springer

8738 N. K. Kitson et al.

Fig. 8 Orientation conflict

adopts the strategies used in PC-Stable to avoid sensitivity to the order of node processing.
The authors evaluated performance on Gaussian BNs with PC-MAX obtaining better arc
orientation than both PC and PC-Stable on a BN with 1000 variables. They demonstrated
scalability by learning graphs with 20,000 variables and sample size 1000 on a powerful
laptop with four dual-core processors in less than 5 min (Ramsey 2016), though observed
that the score-based Fast Greedy Equivalence Search described in Sect. 4.2.2 was faster
still and more accurate.

3.2.7 Three-phase dependency algorithm (TPDA)

The Three-Phase Dependency Algorithm (TPDA) by Cheng et al. (2002) focuses on reduc-
ing the number of statistical tests required, performing at most O(n*) of them. TPDA adopts
an information flow perspective to learn the graph adjacencies and differs from most con-
straint-based algorithms in that it uses MI tests quantitatively as a measure of information
flow along paths, as well as a basis for conditional independence decisions.

Figure 9, based on an example from Cheng et al. (2002), illustrates a subgraph of a
true network to demonstrate the basic principles behind TPDA. In particular, it shows
how TPDA determines if a new edge is required between X and Y during its adjacency
phase. We consider a point in time in the adjacency phase where TPDA has discovered that
{A,B, C,D} are the only shared neighbours of X andY. Note at this point, TPDA has not
determined the edge orientations. It checks whether X and Y are conditionally independent
by testing if MI(X,Y|S} < €, where € represents a threshold negligible information flow.
It starts by setting S = {A, B, C, D} and progressively removes one node at a time from S
so that each time MI(X, Y|S} is reduced by the greatest amount. It repeats this until either
a Sepset is found (in this example, it would find Sepset{A, B}), or no Sepset is found. The
latter situation means that the current graph is not sufficient to explain the information flow
between X andY, and hence a direct edge is required between X andY.

In this way, the skeleton of the graph is built up, but with a reduced bound on the num-
ber of CI tests. In order for this approach to be sound, a stronger form of faithfulness called
monotone-faithfulness must be assumed which corresponds to saying that blocking a path
between two nodes never increases the information flow between them. In more detail,
TPDA builds the skeleton in three phases:

1. Drafting: starts with an empty graph and progressively adds undirected edges between
pairs of nodes with the highest MI scores, if there is not currently an undirected path
between the pair. This creates a maximum spanning tree. That is, where there is one, and

@ Springer

A survey of Bayesian Network structure learning 8739
Fig.9 A graphical illustration
of the process TPDA follows to

determine whether to assign an
edge between X and Y e

only one, path between every pair of variables and the sum of edge scores is a maximum.
This tree is used as a good starting point for the next phase.

2. Thickening: adds edges between non-adjacent nodes if there is no Sepset in the set of
shared neighbours between the two nodes, as described above.

3. Thinning: the thickening phase adds edges greedily, and so it can happen that an edge
addition can render a previous edge addition superfluous by providing an alternative
information flow route. The thinning phase identifies these superfluous edges by looking
for direct edges which have parallel indirect routes that can carry the required informa-
tion flow, and then removes the superfluous direct edge.

TPDA then orientates edges using the v-structure and orientation phases described in
the SGS algorithm. Notwithstanding the reduced bound on the number of CI tests required,
Cheng et al. (2002) reported similar accuracy and efficiency results to the PC algorithm.

3.2.8 Recursive autonomy identification (RAI) algorithm

Yehezkel and Lerner (2009) also concentrated on reducing the number of CI tests, although
they focussed on the costly and unreliable high-order tests. Their Recursive Autonomy
Identification (RAI) algorithm assumes discrete variables and faithfulness, and starts with
a complete undirected graph. Like the PC algorithm, RAI uses CI tests of increasing order.
However, edge orientation is undertaken after edge removal at each conditioning set size,
and this can allow RAI to identify autonomous subgraphs. These can be learnt indepen-
dently of each other through recursive calls of the algorithm.

Figure 10, based on the example given in their paper, illustrates these concepts. It shows
the state of the graph whilst learning the DAG shown in the inset. In particular, it shows
the state after CI tests of order O have removed some edges and an orientation step has
been performed. At this point, RAI is able to decompose this particular graph into two
autonomous ancestor subgraphs marked in green, and a descendant autonomous subgraph
marked in orange, which can all then be further refined independently by recursive calls to
RALI The black arrows show the edges which have been orientated after CI tests of order 0,
and the red edges are undirected edges within the subgraphs which may be orientated after
higher-order CI tests remove more edges. This decomposition allows the overall structure
of the graph to appear early on in the learning process, and tends to avoid the higher cost
and less reliable high-order CI tests. Whether this decomposition is possible depends upon
the independence relationships in the data. If it is not possible, then RAI behaves like the
PC algorithm. Nonetheless, the authors reported that RAI demonstrated higher structural
and predictive accuracy than contemporaneous algorithms including PC, over a range of

@ Springer

8740 N. K. Kitson et al.

Fig. 10 Illustration of autono-
mous subgraphs within the RAI
algorithm (based on figure in
Yehezkel and Lerner 2009).
(Color figure online)

learnt

commonly evaluated BNs (Yehezkel and Lerner 2009). They also reported that RAI con-
ducts fewer CI tests and therefore has shorter runtimes.

3.3 Local discovery algorithms

In contrast to the global algorithms described in the previous subsection, the algorithms
covered in this subsection learn the local skeleton relating to each variable separately. The
local structure learnt can either be the parent and children (i.e., neighbours) of each node,
T say, denoted PC(T), or the Markov Blanket of T, denoted MB(T). The Markov Blanket
of node 7 is defined as the minimal conditioning set for which T is independent of all other
nodes besides those in MB(T). Thus, MB(T) shields T from the influence of all other vari-
ables. Assuming faithfulness, it can be shown that MB(T') consists of the parents, children,
and parents of children (also known as spouses) of T.

In some contexts, the individual local structure of a particular variable can be useful in
its own right. In particular, determining the Markov Blanket of a variable provides a prin-
cipled causal approach to feature selection, and much of the motivation for, and evaluation
of, these local discovery algorithms has been around this use in classification problems
(Aliferis et al. 2010). However, within BN structure learning, the local skeletons are learnt
for every node and then merged to form the whole skeleton. As we discuss here, this may
be done as part of overall constraint-based learning algorithm, with subsequent v-structure
and orientation phases producing a CPDAG. Local discovery algorithms may also be part
of hybrid approaches which are discussed in Sect. 5.

These local structures should be symmetric. That 1is, for example,
A € PC(B) < B € PC(A) where PC(B) denotes the parents and children of node B.
However, errors made by CI tests can mean that local structures may not be symmetric in
practice. Algorithms usually resolve these conflicts by applying the “AND-rule”, where
an edge will only be included in the global skeleton if the two nodes are in each other’s
parent-and-child sets. More sophisticated symmetry correction approaches can be used
however—see, for example, Sect. 5.1.5.

@ Springer

A survey of Bayesian Network structure learning 8741

3.3.1 Markov Blanket algorithms

The Grow-Shrink (GS) algorithm (Margaritis and Thrun 1999) was the first to exploit the
concept of a Markov Blanket to reduce the number of CI tests in the adjacency phase. It
consists of two steps:

1. Grow: for each node X in X\ {7}, GS tests whether X L T|MB(T). If not, X is immedi-
ately added to MB(T) which grows dynamically throughout this step. Nodes are tested
for inclusion in MB(T) in decreasing order of the strength of the association between
the node X and 7', which is calculated in a pre-processing step.

2. Shrink: the grow step may add unnecessary nodes in the Markov blankets, which this
step removes. It checks if X L T|MB(T)\{X} for all X € MB(T). If yes, X is removed
from MB(T).

Having constructed the Markov Blanket of all nodes in G, GS performs the following
steps:

1. Completes the adjacency determination by removing parents of children of 7 in each
Markov Blanket MB(T). These are identified by having the condition X L T|S for some
S CMB(T\{X}.

2. v-structure and orientation phases similar to SGS and PC.

Margaritis (2003) reported an overall complexity for GS of O(n? + nb*2?) CI tests,
where b = maxy(|MB(X)|) is the size of the largest Markov Blanket. For dense networks
where b = n, this means the GS algorithm has exponential complexity, although for the
more usual sparse networks b can be considered a small constant and in those cases the
complexity decreases to O(nz). Margaritis (2003) reported similar adjacency performance
to PC, although GS is said to produce better edge orientation.

The Incremental Association Markov Blanket (IAMB) algorithm optimises Markov
Blanket discovery so that it can handle thousands of nodes (Tsamardinos et al. 2003). The
authors argue that GS’s Markov Blanket grow phase is suboptimal because it is slow to dis-
cover spouses in the Markov Blanket MB(T) since these often have weak association with
T. This in turn leads to more CI tests in the grow and shrink phases. Instead, they propose
using conditional mutual information MI(X, T | MB(T)) to determine the order in which a
node X is considered for inclusion into MB(T) during the grow phase. They also propose a
variant on IAMB, called Inter-IAMB, which interleaves the grow and shrink phases. IAMB
and Inter-IAMB were able to handle synthetic networks with up to 1,000 nodes, offering
better accuracy in Markov Blanket discovery than GS.

Yaramakala and Margaritis (2005) suggested a further variant, Fast-IAMB. They pro-
posed using the y? test statistic as the metric for deciding which nodes to add to MB(T)
during the grow phase. Furthermore, they argued that recomputing the statistic each time
a node is added to MB(T) is expensive and so proposed adding groups of nodes to MB(T)
before the test statistics are recomputed. They demonstrated similar accuracy in Markov
Blanket identification to IAMB and Inter-IAMB, but with savings in execution time of
18-32% over the former, and 28-48% over the latter, together with a reduction in high-
order CI tests.

@ Springer

8742 N. K. Kitson et al.

3.3.2 Parents-and-children algorithms

The parents and children of node 7, PC(T) is more directly useful for skeleton learn-
ing than MB(T), and can be obtained by removing the spouses from MB(T). However,
Max—Min Parents Children (MMPC), HITON-PC and SI-HITON-PC algorithms learn
PC(T) directly (Tsamardinos et al. 2003: Aliferis et al. 2003a, b; and, Aliferis et al. 2010,
respectively). Aliferis et al. (2010) defined a sound generic framework for learning PC(T)
into which these three specific algorithms fit, and which consists of:

e a strategy for inclusion of a node X in PC(T), heuristically prioritised, for instance,
based on the strength of association between X and T’

e an elimination strategy for removal from PC(T), for example, removing X from PC(T)
if X L T|S for some S C PC(T)\{X};

e an approach for interleaving inclusion and elimination. For example, all candidate vari-
ables can first be included in PC(T), and then extraneous variables can be eliminated,
or variables can be added one at a time to in PC(T), with the elimination step per-
formed each time a new variable is added.

3.4 Algorithms assuming the existence of latent variables

The algorithms considered so far have assumed causal sufficiency, which is unreasonable
in many real-world situations. We now consider algorithms where this assumption is not
made. Explicitly including latent confounders into the DAG might be one approach to
avoiding this assumption, but since these confounders are unmeasured and often unknown,
this is formidably difficult. It also risks increasing the number of variables so that learning
becomes intractable.

Instead, the most common approach is to learn a graph consisting of only the observed
variables, while at the same time taking into account the potential existence of latent vari-
ables or confounders that might explain part of the effects or relationships between the
observed variables. However, the semantics of DAGs are not detailed enough to represent
this information. Figure 11a illustrates this issue using a causal graph of four observed
variables {A, B, C, D}, and a latent confounder L which would entail the dependence rela-
tionships A L D|B, A L D|C, and A L D|B, C. If we attempt to represent this with a DAG
of just the four observable variables, then there is no orientation of a directed edge between
B and C that could entail these dependence relationships. Figure 11b presents an ancestral
graph which, unlike DAGs, captures relationships due to latent confounders, and which we
describe in the subsection that follows below.

3.4.1 Ancestral graphs
Richardson and Spirtes (2002) introduced a new class of graph called an ancestral graph*

capable of capturing the relationships between observed variables in the presence of both
latent confounders and selection bias. The latter is the situation where the probability of

4 Earlier work by Spirtes et al. 1995 and 2000 represented the effect of latent and selection variables
through a similar kind of mixed graph called an inducing path graph (IPG). Ancestral graphs are a sub-
class of IPGs which reveal more causal information and are easier to parameterise (Zhang 2008a).

@ Springer

A survey of Bayesian Network structure learning 8743

Fig. 11 Latent confounder RN
() Ly (D)

(a) DAG with latent variable

(A) (D)
(B—(c

(b) corresponding ancestral graph

inclusion of a data instance in the dataset depends upon one or more latent selection vari-
ables. An example might be where patients in a clinical trial do not complete the trial if
they become seriously ill, and so are not present in the dataset. Crucially, DAGs are a spe-
cial case of an ancestral graph, and ancestral graphs are closed under conditioning and
marginalisation. This means that an ancestral graph can be used to represent the probability
distribution of a partially observed DAG. Ancestral graphs have three types of edge (Zhang
2008b):

e directed, e.g. A — B: The mapping between edge types in the ancestral graph and
relationships in the underlying DAG is given in Richardson and Spirtes (2002) but is
somewhat complicated. We first define “A is an ancestor of B” to mean that there is a
directed path from A to B with at least two directed edges. Directed edge A — B in the
ancestral graph means that A is an ancestor or parent of B and/or a selection variable,
and that B is not an ancestor or parent of A nor of a selection variable in the underlying
DAG. Note, for example, that this edge type does not preclude a latent variable being
the cause of both A and B as well (i.e., a latent confounder).

e bidirected, e.g. A <> B: indicates that A is not an ancestor or parent of B, B is not an
ancestor or parent of A, and neither are ancestors or parents of a selection variable. This
edge type arises in the presence of latent confounders.

e undirected, e.g. A — B: A is an ancestor or parent of B or a selection variable and B is an
ancestor or parent of A or a selection variable.

As the above shows, ancestral graphs primarily provide information about the ances-
tral and parental relationships in the underlying DAG, hence their name. Figure 11b shows
the ancestral graph which represents the relationships between the observed variables in
Fig. 11a. Richardson and Spirtes (2002) state two key conditions in the definition of an
ancestral graph:

e there are no partially directed cycles. A partially directed cycle consists of an anterior

path from A to B together with an edge B — A or B < A. An anterior path from A to B
consists of edges with no arrows pointing towards A;

@ Springer

8744 N. K. Kitson et al.

e for any undirected edge A — B, A and B should have no incoming arrows.

Many properties of ancestral graphs flow from these two conditions. In particular, that
there can be at most one edge between each pair of variables, and that marginalisation and
conditioning are closed. It also follows that ancestral graphs encode conditional independ-
ence relationships through a graphical criterion called m-separation which is analogous to
d-separation for DAGs. In an ancestral graph, S m-separates A from B if all paths between
A and B are blocked by S. A path is blocked if at least one node on the path is either:

e a collider, defined in an ancestral graph as having two arrowheads incident to it, and
neither it, nor any of its descendants, are in S;
e or, is not a collider and is in in S.

If two nodes are not adjacent in a DAG, this implies that there is a set of nodes which
d-separates them. However, this does not follow for ancestral graphs. Figure 12a based on
Zhang (2008b) illustrates this, since G and H are not adjacent, but there is no subset of the
other nodes that m-separates them. Therefore, a sub-class of ancestral graphs known as
Maximal Ancestral Graphs (MAG) is defined which does have the property that non-adja-
cent nodes can be m-separated. Equivalently, this means that every absent edge in a MAG
corresponds to a conditional independence relationship. A MAG can always be constructed
from an ancestral graph by adding bi-directional edges such as G < H in Fig. 12b.

In the same way that an equivalence class of DAGs may be consistent with a given
set of independence relationships, the independence relationships with latent and selection
variables present may be consistent with multiple MAGs. Analogously to a CPDAG, the
equivalence class of MAGs is represented by a Partial Ancestral Graph (PAG). Constraint-
based algorithms which take account of latent confounders and selection variables gener-
ally produce a PAG. There are three types of endpoint possible at each end of an edge in a
PAG:

e an invariant arrowhead, marked as “>”, indicating that all MAGs in the equivalence
class have an arrowhead at that endpoint;

e an invariant tail, marked as “-”, indicating that all MAGs in the equivalence class have
a tail at that endpoint;

e a variant endpoint, marked as “0”, indicating that some MAGs in the equivalence class
have an arrowhead, and others a tail, at that endpoint.

So, for example, an edge o — in a PAG indicates that MAGs in the equivalence class
may have — or < at that location, and similarly an edge o — o in the PAG indicates that
MAG:s in the equivalence class can have a —, <, <> or — edge at that location. Note that the
semantics of CPDAGs and PAGs are somewhat different. In particular, whereas a — edge in
a CPDAG indicates that the edge in equivalent DAGs can be either — or «, a — edge in a
PAG indicates that the edge is — in all equivalent MAGs.

3.4.2 Fast causal inference (FCI) algorithm
Spirtes et al. (1993, 2000) described the Fast Causal Inference (FCI) algorithm for

structure learning without assuming causal sufficiency, though the causal Markov and
causal faithfulness conditions are still assumed. FCI produces a Partially Orientated

@ Springer

A survey of Bayesian Network structure learning 8745

Fig. 12 Maximal Ancestral
Graphs (Zhang 2008b)

(a) non-maximal ancestral graph

(&)1

(b) maximal ancestral graph (MAG)

Inducing Path Graph (POIPG)—an earlier representation which is slightly less inform-
ative than a PAG. In broad overview, FCI is similar to PC in that it first determines the
adjacencies in the POIPG, and then orientates edges. We recall that the PC adjacency
phase is optimised by using conditioning sets of increasing size. The PC adjacency
phase also makes use of the fact that, for a DAG, a Sepset must be a subset of the
parents of A or B, and so it need only consider conditioning sets which are subsets
of the neighbours of A and B. The FCI adjacency phase also uses conditioning sets
of increasing size. However, Sepsets in a MAG are a subset of D-Sep(A, B) (Spirtes
et al. 2000, p. 134) which in general contains nodes which are not adjacent to A or B,
as well as those that are. This necessitates a more complex strategy for determining
adjacencies:

1. Firstly, an initial skeleton is estimated considering conditioning sets that are subsets of
the neighbours of A or B. In general, this skeleton will have some extraneous adjacen-
cies.

2. Secondly, a v-structure phase is performed to orientate some edges. The resulting graph
allows us to identify nodes that are definitely not in D-Sep(A, B) and so conversely define
a superset of D-Sep(A, B), denoted Possible-D-Sep(A, B).

3. Further edges may then be removed using subsets of Possible-D-Sep(A, B) as condition-
1ng sets.

V-structure identification is then repeated on this new skeleton, followed by an ori-
entation phase which is much more complex in POIPGs (and PAGs) than in PDAGs.
Zhang (2008b) augmented the process of Spirtes et. al (2000) by defining eleven ori-
entation rules that are said to produce a sound and complete PAG as the sample size
N — o0; i.e., all arrowheads and edge tails are said to be correct and the maximum
possible number of them are determined. Colombo and Maathuis (2014) applied the
same techniques used in PC-Stable to amend FCI to produce the FCI-Stable algorithm,
which removes the dependence of the result on node lexicographical ordering. FCI-
Stable is often used as the benchmark when assessing learning in the presence of latent
and selection variables.

@ Springer

8746 N. K. Kitson et al.

3.4.3 Really fast causal inference (RFCI) algorithm

Despite the presence of “Fast” in FCI’s name, its adjacency determination is typically
far more resource intensive than in the PC algorithm. Really Fast Causal Inference
(Colombo et al. 2012) seeks to address this by reverting back to considering only con-
ditioning sets that are the parents of nodes in the adjacency phase as PC does, and hav-
ing just one adjacency phase instead of two as in FCI. The v-structure phase and one
of the eleven orientation rules are also modified to avoid orientation errors that might
occur due to the fact that the PC adjacency step is used rather than the more accurate
FCI one. The authors showed that for a large class of graphs being learnt, this pro-
duced the same PAG that FCI would have. Moreover, when FCI and RFCI do produce
different results, RFCI produces PAGs with extra edges, thus slightly weakening the
meaning of an edge. On the other hand, the consequent reduction in CI tests, particu-
larly high-order ones, meant that RFCI was around 250 times faster for some synthetic,
sparse, high-dimensional graphs (n=500) with latent variables. It should be noted that
all structural accuracy evaluations given in Colombo et al. (2012) were done against
PAGs produced by FCI rather than against ‘ground-truth’ graphs.

3.4.4 Conservative fast causal inference (CFCI) algorithm

As well as developing the RFCI algorithm, Colombo et al. (2012) also investigated modify-
ing FCI by weakening the faithfulness assumption used to identify v-structures as Ramsey
et al. (2006) had done in the Conservative PC algorithm. They identified v-structures as either
ambiguous or unambiguous, and only used the latter in subsequent stages. This resulted in
fewer arrowheads, smaller possible conditioning sets, and hence extra edges in the resultant
PAG compared to FCI. The overall effect was to produce similar numbers of additional edges
compared to FCI as RFCI had produced, though with edge orientation closer to FCI.

3.4.5 Fast causal inference plus (FCI+) algorithm

Fast Causal Inference Plus (FCI+) centers around another approach to speeding up the adja-
cency phase of FCI (Claassen et al. 2013). It retains FCI's approach of using conditioning
sets for A, B that incorporate ancestors as well as just parents of A and B, but focuses on effi-
ciently identifying those cases where ancestors rather than just direct parents are in the Sepset.
In doing so, they demonstrate that learning sparse causal graphs can be performed in poly-
nomial time if a limit is placed on the node degree. In particular, in the worst case, FCI+
requires O(n*@+2) CI tests, where # is the number of observed variables, and d the maximum
node degree. This complexity is O(PC?), that is the square of what the PC algorithm requires.
Although detailed performance results are not given, the authors suggested that cases where
Sepsets do include non-parents are relatively rare, and so performance may in practice be rela-
tively close to PC.

3.4.6 Mixed variable types—MGM-FCI-MAX algorithm

Raghu et al. (2018) extended FCI to support a mixture of continuous and discrete variable
types in their MGM-FCI-MAX variant of FCI. They introduced regression-based tests to
detect conditional independence across different variable types. Orientation accuracy is also
improved using the Sepsets with the highest p-value to identify v-structures as described in the

@ Springer

A survey of Bayesian Network structure learning 8747

PC-MAX algorithm (see Sect. 3.2.6). This produces higher numbers of CI tests compared to
FCI, and so the adjacency and v-structure phases are parallelised to counteract this efficiency
drawback. The code parallelisation resulted in modest time savings of the order of 30% using
six processor cores instead of one core. The algorithm achieves more substantial savings by
another innovation of using a Mixed Graphical Model (MGM) undirected graph as input to
the adjacency phases rather than a complete undirected graph as is customary. An MGM is an
undirected graph which can represent conditional independence relationships between mixed
variable types and was generated by the algorithm described by Lee and Hastie (2015). Com-
bining all these innovations, MGM-FCI-MAX was said to achieve a better balance between
precision and recall than CFCI and FCIL, as well as significantly reduced runtimes when
applied to networks consisting of 500 variables.

4 Score-based learning

Score-based learning represents the other main class of BN structure learning and con-
sists of two elements: (a) a search strategy that determines which path to follow in the
search space of possible graphs, and (b) an objective function that can be used to eval-
uate each graph explored in the search space of graphs. The overriding challenge for
score-based learning is to find high, or ideally the highest, scoring graphs amongst the
vast number of possible graphs. As we have seen in the Introduction, a naive exhaustive
search where every possible graph is considered and scored is only feasible in problems
with a handful of variables.

We first describe the objective function, which is pertinent to all score-based algo-
rithms, in Sect. 4.1, followed by the algorithms themselves. Score-based algorithms are
the most diverse type of structure learning algorithms, and there are different ways one
might choose to categorise them. Here, we opt to primarily organise them according to
those which do not guarantee to return the highest scoring graph, known as approximate
algorithms and described in Sect. 4.2, and those which do offer that guarantee, known
as exact algorithms and described in Sect. 4.3. These different groups of score-based
algorithms, and their evolution, are shown in different shades of blue in Fig. 6.

The other defining characteristic of score-based algorithms is the search strategy.
This is a combination of what search space is used, how the algorithm traverses that
search space, and how that search space might be pruned (reduced). Perhaps the sim-
plest score-based algorithm one might imagine is one that starts with an empty graph
and greedily adds the arc which most increases the score subject to the restriction that
it does not create a cycle in the graph. This process continues until it is no longer pos-
sible to find an arc addition that increases the score. The search space in this simple case
would be DAG space (sometimes referred to as structure or graph space), and the tra-
versal method is add arc. Since the algorithm greedily adds arcs, there is no guarantee it
will find the highest scoring graph, and so it is an approximate algorithm.

Approximate algorithms which search DAG space are described in Sect. 4.2.1.
However, other kinds of search space have also been adopted. For example, Sect. 4.2.2
describes approximate algorithms which explore equivalence class space, and Sect. 4.2.3
covers those which explore node-ordering space. Node ordering is a topological order-
ing of the nodes in the DAG such that a node can only have parents which are higher up
the ordering than it. Note that a node ordering exists for a directed graph if and only if it

@ Springer

8748 N. K. Kitson et al.

is acyclic, and that in general a DAG may be consistent with multiple orderings as well
as an ordering may be consistent with multiple DAGs.

This categorisation by search space is also followed for the exact algorithms. Prun-
ing the search space is particularly important for exact algorithms where the pruning
rules must be sound so as to guarantee that the pruned space still contains the optimal
solution, whereas heuristic pruning does not offer this guarantee. Table 3 describes the
search space and the search space traversal method used by the score-based algorithms
covered in this paper, as well as whether they are approximate or exact algorithms. It
also includes the objective function used in the original paper proposing the algorithm.
Note that Scutari et al. (2019a) argued that the choice of algorithm and score used
should be independent, and indeed, many BN tools support using different score func-
tions for each algorithm. Thus, this column does not necessarily indicate a fundamental
restriction on the scores that can be used with each algorithm, rather it gives a histori-
cal view on preferred scores at the time of their introduction. Finally, Table 3 describes
the output graph type each algorithm produces. Approximate algorithms will typically
produce a single DAG with a locally optimum score, whereas exact search algorithms
will return a DAG with the globally optimum (that is, highest possible) score. Lastly,
algorithms searching in equivalence class space will return a CPDAG.

4.1 Objective functions

Objective functions fall under two categories: the Bayesian scores which generally focus
on the goodness of fit and allow the incorporation of prior knowledge, and information-
theoretic scores which explicitly consider model complexity in addition to the goodness
of fit, aiming to avoid model overfitting. Importantly, a score is said to be decomposable if
the score of a graph can be decomposed into a sum of scores each associated with a node
in the graph. Decomposable scores mean that only the scores for nodes affected by a graph
change in a search process need to be re-computed, rather than re-computing the score of
the whole graph for every single graph modification. As a result, a decomposable score
greatly improves computational efficiency and virtually all algorithms employ them.

As noted in the Introduction, all the DAGs in an equivalence class entail the same con-
ditional independence relationships, and therefore there is no reason for preferring one of
them above the others on the basis of the observational data alone.’ Therefore, the objec-
tive function is usually specified so it gives the same score to all DAGs in an equivalence
class—a property known as score equivalence. Most commonly used scores do have this
property. However, it is worth noting that approximate and exact algorithms that use
score equivalent objective functions often just return a single result DAG. In that case, we
should regard the output DAG as being a representative of the equivalence class to which it
belongs. Indeed, the particular DAG within an equivalence class that the algorithm returns
is usually just an artefact of the dataset (Constantinou et al. 2021b). It may depend on the
lexicographical ordering of the variable names, or the order in which the variables in the
dataset are encountered.

5 Note that if we have data that includes the effects of interventions then we may be able to orientate some
of the undirected edges in the equivalence class, and come closer to fully specifying the causal DAG.

@ Springer

8749

A survey of Bayesian Network structure learning

(6000)
ov(d rewndo oId 1o D1V sopoho e yderd mds ydein payoarig Sox ‘Te 10 sodwe)) aq punog pue youerg qa¥d
(L002) urey) AONIEI
Anqeqoid armyeaq noqg oI 9SIOAJI/QAOWRL/PPY ovd ON Aydinpy pue uojeq o) AUON PL9AH DINDIN PHAAH
(S002)
ovda noqg sapou juadelpe demg SuLI9pIO 9pON ON I9[[OY] pue IAISSA], [o1e3g pased SuropiQ sd0
Iopio (000
oy rewndo nogg Ul 9pOU IS SAOWAL/PPY SuLIOpIO 9PON SOX QIOOJA pue ysurg Surwwesdord srueukq p10¥dO
Anmqe (€002) ureyd
Apqeqoxd axmyesy -qoid Jor19)soq sapou juadelpe demg SuL19pI0 9pON ON JIO[[O3 puB UBWIPALL] AONIBJA O[IBD-9UOAl I9pIO DINDIN-19pIO
(TTr 1998
ovadd nQyg 99s) suonerado 9J9[o(J/1IOSU] SSB[O 90ud[eAInby ON (Z007) Suleypry) yoIea§ aoudfeAlnby Apoein Ners)
soIe u (1002) oIeas
ovd o 0) dn 9s19A1/0A0WRL/PPY ovd ON ®uang pue sodwe)) op POOUINOQUIION 9[qBIIBA SNA
(1002
ovda] Sunopio 9jeroudd A[wopuey] SuLI9pIO 9pON OoN ®ueng pue sodwe) ap SOPON FunJtos 10J 73 NSTI
sioyerado (q ‘©9661)
ovd [| UONBINW PUB JIAOSSOID) SuLIopIO 9pON ON ‘[e 10 eSeURLIR wyILIoS[e dNAUan) VD
Kiiqe ureq AO3IBIA
uonnquIsip Oy@ -qoid Jordsoq OIB QAOWRI/PPY ovda ON (S661) Te 10 ueSipe]y O[T SJUOIA 2IMoNNg O
(S661)
ovd aag 01 9SIOADI/IAOWRI/PPY ovda ON ‘Te 10 UBWISYOSH Surqui) [TH DH
ovda old® ¢l OIe 9SI9ARI/OAOWRI/PPY ovda ON (S661) 1eeyoNOg IST[NQE, Yim Surquir) [[1H ngavi
sore
ova TAN ® ¢ Jle ppy ova ON (¥661) 1oeyon0g Sutppe Aq Sulqui) [MeeYoNog-OH
(zT661)
ovda o Jle ppy ova ON SIAOYSIOH pue 10doo) o [%:
uon
ndino jo adKy, Ppasn $2100§ [es1oAeI) 9ords YyoIBOg qoeds yoreag 10Xy QouaIgjoy -drosep 1o sweu WYIIOT[Y wyLos|y

DV Y UIRJ] 0} pasn 1aseIep Al PNIm sy 2[qissod [[e 19A0 21095 1SaYS1Y oY) NIm DY) 03 SI9jal
uwnod [euy Yy ul Oy rewndQ,, “(2109s 1o[yoLq ueisaked jo 2dAy e st 73 1oyl 9jou) A[[edISO[oU0IYd PAISPIO ‘PIMIIADI SWIILIOS[E PISEQ-I0IS JO SONSIIAIRIRY) € d|qel

pringer

As

N. K. Kitson et al.

8750

(0200
ovda o1d OIe ppe udy) ‘19pI0 9PON ova ON A31og pue nelyog Suriopio paaoxdwr yum g pasoxdwy-z 3y
dTI
SOV Surods 1seySIH DI ® nedd SurwnwuerSoid resur] 1eSeu] ydern peparq sox (6107) 'Te 30 oer] Suisn Ng rewndQ £[[eqoy AHA-d TINGOD
(L109) (0]
ova oI1g SOpOU JO $Y00[q QAO]A SuLIopIO 9PON ON ‘[e 10 epeSeurdS UONII[AS OI[IAOY MOPUIA SAOSVNIM
(TTr 1998 REALEN
ovadd DIg 2 nog 99s) suonerado 9)9[oJ/Iosu] SSe[O doudfeamby ON (L107) Te 1 Keswey Qousrearnby Apeain) ise SO
JOA0SSOIO/UOTIEINW + SIPOU (L102) SO pooy
ova JIg » nedg juaoelpe dems/resug SuLIOpIO 9PON ON N9 UBA puB 9] -INOQUIION 1OSU] JNOWIN SAONIN
(L10D)
ovd DId % negg sopou juaoelpe dems/j1asuy SurIopIO 9pON ON Yoog ueA pue 99 SO POOYINOqUIIoN 11osuy SAONI
(L100) urey) AONIBI
ova ang uonnted oSrowardg suonnied ropip ON ‘[e 10 eneSeURdS ofIe)) AUOA uonnIed DNDIA uonnieq
$95pa PaldaIIp/Iq (9107) sourprewr
OVIN DVINIOJDIF 1OAUOD/ISIOADI/QAOWRI/PPY OVIN ON -BSL PU® no[[yejueri], SOV J0J YoIea§ ApaoIn OVINSD
ovd +OI9 sopou juadelpe demg SuLIopIO 9pON oN (S107) Ie 10 enedeueds SO uona9[as dILoy S9OSV
(S107) vew
ov(d rewndo D19 2 nedg sapou juadelpe demg SuLIOpIO 9PON SOX -JJOH pue Yoog UBA Surwei3o1d jurensuo)) sakegdD
IopIo (€100
ovd rewndo oI1d Ul 9pou JSI1J dAOWRAI/PPY SuLIopIo 9PON SOX QUO[RJA PUE UBNX oIeas 4V +V
sjuared dems
ovd oI 10 OJB 9SIOAQI/OAOWL/PPY ovd ON (€107) TR If uonestundQ Auojo) 29g 004
(TTH 1998 (z100) p1eag oouseAInby
ovadd JIg 99s) suonerodo 9Jo[o(J/11esU] SSB[O 90ud[eATnby ON UuueWYNg pue Iosnef [euOTjUSAIOIU] API9ID) SAID
dTI
v rewndo oqg Surwweidold tesuryleSoyu] ydelo pojoarq SOX (1102) suassn) Suisn Ng ewndQ A[jeqoin dTINGOD
uon
ndino jo odAJ, Ppasn sa100§ [es10oART) Q0RdS yoIeaS qoeds yo1eas 108Xy Q0URIRJY -dII0Sop IO SWRU WPLIOT[Y w03y

(ponunuoo) ¢ s|qey

pringer

A s

8751

A survey of Bayesian Network structure learning

(¢eo0) surquir)

ovd oI1d OIe 9SIOAI/QAOWRI/PPY ovd ON ‘T& 19 nounNuEeISu0)) [ITH Sur3esoay [opojN DHVIN
sakegdD ur

ov(d rewndo 019 2 nogg sapou juadelpe demg SuLIOpIO 9PON SOX (1207) 'Te 12 19SSQ1], S)OYD A3d1joKkoe paaoxduuy VST
(TTy P28 SHOA ym

ovdadd DI 99s) suonerado 9)9[o(J/1IosU] SSB[O 99ud[eAInbyg oN (0202 ‘Te 10 ejoeUIg jured] sydei3-qns 93O AZIN-SHDA

uon
ndino jo odAJ, Ppasn sa100§ [es10oART) Q0RdS yoIeaS qoeds yo1eas 108Xy Q0URIRJY -dII0Sop IO SWRU WPLIOT[Y w03y

(ponunuod) € sjqer

pringer

As

8752 N. K. Kitson et al.

4.1.1 Bayesian scores

Bayesian scoring functions return a relative posterior probability for a graph conditioned on
the data, taking into account prior beliefs about the graphical structure and/or dependence rela-
tionship parameters. The approach provides a theoretical underpinning to assign a posterior
probability to each possible structure, something that constraint-based approaches do not offer.
This in turn allows Bayesian Model Averaging (BMA) where, for instance, the posterior prob-
ability of a given feature such as a specific arc can be averaged across a set of likely structures.

Most commonly, one assumes that all graph structures are equally probable a priori. For
discrete data, we generally assume a Dirichlet prior for the parameters which gives rise to
the well-established general Bayesian Dirichlet (BD) score which, in its general form, is

not score equivalent (Heckerman et al. 1995). Formally, the general BD score is defined as:

O r(N';) < T(Nge + N)

Spp(G, D) = logP(G) + log——2" + Y jopg— L "/
22 D(N; +N';) /Zf T(N'5)

i=1 j=1

where I' is the Gamma function, i is the index over the n variables, j is the index over
the g; combinations of values of the parents of the node X;, and k is the index over the r;
possible values (states) of node X;. Further, Ny is the number of instances in the data D
where node X, has the kth value, and its parents have the jzh combination of values, and
Zk Nj; representing the total number of instances in the data D where the par-
ents of node X; have the jth combination of values. Lastly, N';; and N';; = Y77 N’ are
defined analogously based on prior beliefs of these values. P(G) is the prior probability
of a particular graph structure which is generally assumed to be the same for all graphs
and so can be ignored.
A drawback of the general BD score is that it requires the user to specify the values
of N';; individually, which renders it impractical. The K2 score is the BD score where
N’ = 1, (Cooper and Herskovits 1992) and simplifies the general BD score to:

noqg;
Sk2(G, D) = 10gP(G) +)\ Y llog ((i -+ Z log(N;;

i=1 j=1 N;+r,

The K2 score also is not score equivalent. Heckerman et al. (1995) introduced the
score equivalent BDe score, defined as

! - /
O r<N AZ:I o ijk> & D(Ny +N'0'y)
Sppe(G, D) = 1ogP(G) +))" | log——————

+ log——————
i=1 j=1 ’ e ' 1; F(Nlalijk>
r Nlj+N kg]@ ik

Here 'y is the prior conditional probability of node X; having the kth value given the
parents have the jth combination of values in the prior distribution. N' is the equivalent
sample size (ESS, also sometimes known as the imaginary sample size, ISS) and expresses
our confidence in the prior parameters.

The most commonly used Bayesian score is the BDeu score (Buntine 1991; Hecker-
man et al. 1995) which is a special case of BDe where the prior parameters are set to
gliik = 1/r,q, for all i, j, k leading to the following definition:

@ Springer

A survey of Bayesian Network structure learning 8753

’

" g r) SR +N—q)

. ijk
SBDeu(G’D) = IOgP(G) + 2 Z log# + Z logT
k=1 —

8|) AT

Yy 4qi

Cooper and Yoo (1999) define a variant of BDeu which is suitable for a mix of obser-
vational and interventional data where the terms that express the likelihood of the data
given a particular structure are left out for nodes that are intervened on. They showed
that using this approach, a combination of observational and experimental data was the
most effective at identifying causally-related nodes.

BDeu is score equivalent but requires the user to choose a suitable value for ESS
(i.e., N"). Unfortunately, BDeu, and hence the graphs learnt using it, are sensitive to the
value of ESS chosen, and it is difficult to decide what value to use for ESS. As might
be expected, large values of ESS will tend to regularise the parameter values (Hecker-
man et al. 1995). What is rather more surprising is the effect of ESS on the learnt graph
structure. Steck and Jaakkola (2002) found that as ESS tends to zero, arc deletion is
favoured producing sparser graphs. Similarly, Silander and Myllimaki (2006) observed
that the number of arcs rose as ESS was increased. Ueno (2010) provided a detailed
asymptotic analysis of BDeu supported by empirical experiments. This work showed
that different elements of BDeu responded differently to ESS, with the complex behav-
iour heavily influenced by sample size and the skewness of the parameters. This work
also showed that the K2 score approximates the BIC asymptotically as the sample size
tends to infinity. The author recommended that ESS be set to 1 for small sample sizes.

Correia et al. (2019) introduced the concept of a robustness interval defined as the
ESS range over which all the graphs generated are members of the same equivalence
class. They found that this range increased with sample size, but that large amounts of
data were required to achieve a reasonably wide robustness interval for ESS of [0.1,
4.0]. All 15 real-world datasets examined did not have sufficient data to achieve this
robustness interval, leading them to conclude that “almost every real-world dataset
might be too sparse for BDeu”. The robust interval calculated did not include the widely
adopted value of ESS=1 in 11/15 datasets.

Scutari (2016) introduced a new BD score, BDs, aiming to produce better results with
sparse datasets where some possible combinations of parental values are not present in the
dataset. BDs has the same algebraic form as BDeu given above, the difference being the
way ¢;, the number of parental value combinations, is calculated. As an illustration, sup-
pose node C has parents A and B, and A can take three possible values, and B two possible
values, giving 6 possible combinations of parental values, but suppose only 4 of these com-
binations are actually present in the data. BDs will use g; = 4, and BDeu will use g; = 6.
This paper also showed that the uniform structural prior usually used with BDeu favoured
the inclusion of arcs, and suggested a new structural prior named marginal uniform which
weighted arc addition and deletion equally. The combination of BDs and the marginal uni-
form prior outperformed the traditional BDeu and structural uniform prior combination in
terms of structural accuracy and the likelihood of the observed data given the learnt struc-
ture in all sixty combinations of BN and sample size tested. The improved structural accu-
racy resulting from using the combination of BDs and the marginal uniform prior instead
of BDeu was more pronounced at lower sample sizes. It should be noted that a disadvan-
tage of BDs is that it is not score equivalent when there are missing parental value combi-
nations, a situation likely to occur in all but very large sample sizes.

@ Springer

8754 N. K. Kitson et al.

The analogous score to the Bayesian Discrete equivalent scores for continuous variables
is the Bayesian Gaussian equivalent score (BGe) defined in Geiger and Heckerman (2002)
and subsequently corrected in Kuipers et al. (2014). The prior beliefs of the parameter val-
ues are encapsulated as the parameters of a Normal-Wishart distribution in an analogous
fashion to the Dirichlet prior for discrete Bayesian scores.

4.1.2 Information-theoretic scores

Information-theoretic scores aim to avoid over-fitting by balancing the goodness of fit with
model dimensionality given the available data. The most commonly used scores include
the Bayesian Information Criterion (BIC) which is also known as the Minimum Descrip-
tion Length (MDL) (Suzuki 1993, 1999), the Akaike Information Criterion (AIC) (Akaike
1974), the Mutual Information Test (MIT) (de Campos 2006), the Normalised Maximum
Likelihood (NML) (Rissanen 1996), the factorized Normalised Maximum Likelihood
(fNML)) (Silander et al. 2008), and the quotient Normalised Maximum Likelihood (QNML)
(Silander et al. 2018). The general form of these scores can be expressed as:

S(G,D) = log|p(D|G)| — AD,G)

where log [ﬁ(DlG)] denotes the goodness of fit as measured by the log likelihood of the
data given the graph, in the case where the distribution parameters, @, take their Maximum
Likelihood Estimation (MLE) values, and A(D, G) is a function which penalises graph
complexity. The detailed expression of log [ﬁ(D|G)] for discrete variables is

n q; ri

N;
log[pDIO)] = }, ¥ 3" Nyglog= = 5,,(G. D)
i=1 j=1 k=1 i

Setting A(D, G) = 0 removes the dimensionality penalty and makes the score equivalent to
the Log-likelihood score S;; (G, D). Since each arc addition increases S;; (G, D), this score
will favour denser graphs.

In the AIC score, the complexity penalty is just the number of free parameters in the
model, F, defined as:

F= Z (rl» - 1)q,-,
i=1

so that
Sc(G,D)=S,,(G,D)-F

The AIC score represents a rather soft penalty in terms of the number of free parameters.
As a result, the AIC score tends to favour networks with a higher number of free param-
eters compared to BIC which is represented by

logN

Spic(G,D) = 8;,(G,D) — F

where N is the sample size. Note that in BIC, and even more so AIC, the relative influence
of the complexity penalty decreases as N grows, implying that increasing sample size will
eventually allow LL to dominate the score. The BIC score is widely popular and has been

@ Springer

A survey of Bayesian Network structure learning 8755

found to be able to learn the true network faster than other scoring functions such as AIC,
BDeu and fNML (Liu et al. 2012).

While both the AIC and BIC scores can recover the underlying network when the sam-
ple size is sufficiently high, they are suboptimal with limited sample sizes. To that end,
Silander et al. (2010) proposed the factorized Normalized Maximum Likelihood (fNML)
score. fNML is based on the Normalised Maximum Likelihood (NML) distribution which
gives the probability of every possible dataset of sample size N for a specific graph G. An
NML-based score is not decomposable, so Silander et al. (2008) define a decomposable
variant:

noq;
Smi(G.D) = $,,(G. D)= " ¥ &l

i

B

;
=1 j=1

where ¢ 1:, is the stochastic complexity which reflects the amount of information required to

y
encode all possible combinations of N; values of a multinomial variable with r; different
possible values, where ¢’ ¢ is defined:

k.

) N r k- \ "
G= 2 mn(@

ky+ky -k, =N j=1

This stochastic complexity can be computed in linear time using a recursive formula
(Kontkanen and Myllyméiki 2007):

r o er—1 N r=2
é’N =6y + PR ’ CN

fNML was shown to perform well on small datasets (Silander et al. 2010; Liu et al.
2012). fNML is not score equivalent, and Silander et al. (2018) proposed another variant
of a NML-based score, quotient Normalised Maximum Likelihood (QNML) which is score
equivalent.

Finally, the MIT score was proposed by de Campos (2006) and is expressed as

n |P“(Xi)|
Sur(G. D)= Y, ON - MI(X,, Pa(X,)) = Y &, l
i=1 =t
Pa(X,))+ 0

where MI(X;, ;) is the mutual information between variable X; and its parents Pa(X). ¢,

is a threshold value for the mutual information between a parent and the variable X; below
which we assume independence between that parent and the variable conditional on the
remaining parents. €al; depends on the statistical significance level a chosen and /;; which is
the number of degrees of freedom based on the number of states of the parents. Thus, this
score might be regarded as a “hybrid” score since it involves considerations of conditional
independence. Furthermore, the summation of 2N - M1 (Xi, Pa (Xl-)) results in an expression
proportional to the log likelihood, so the MIT score is another example of a penalised log
likelihood score. Using a simple hill-climbing score-based algorithm (see Sect. 4.2.1), de
Campos (2006) showed that, according to their empirical experiments, MIT achieves better
structural accuracy and data fitting than K2, BIC and BDeu scores. Notice that, MIT score
is decomposable but not score equivalent.

@ Springer

8756 N. K. Kitson et al.

Compared with Bayesian scoring functions, information-theoretic scoring functions
(excluding MIT score which requires the significance level o) are objective and feature no
prior parameters, which avoids the sensitivity problems. Therefore, when users have little
background knowledge about the target network, information-theoretic scoring functions
may be preferred.

4.2 Approximate score-based algorithms

This section describes algorithms which do not guarantee to return the highest possi-
ble scoring graph. Instead, they tend to return a graph with a locally maximum score,
although it is still possible that they will return a graph with the globally maximum
score. It should also be noted that some approximate algorithms do offer a guarantee
to return the optimal graph with probability — 1 as the sample size N — oo, which is
known as (classical) consistency - or as the algorithm being asymptotically correct.
Furthermore, some algorithms also offer high-dimensional consistency which is where
they will return the optimal graph with probability — 1, as both the sample size and
number of variables grow N — co,n — 0.

4.2.1 Approximate search of DAG space

One of the earliest BN structure learning algorithms was the K2 algorithm by Cooper and
Herskovits (1992), which assumes that a node ordering is already known. The algorithm
works down the ordered list of nodes and greedily adds arcs from the candidate parents
higher up the list to increase the K2 score maximally. Note that K2 does not consider all
possible parent sets for each node and therefore cannot guarantee to find the highest scor-
ing DAG for a particular node ordering.

Bouckaert (1994) removed the restriction of having a predefined node ordering and
describes a general hill-climbing (HC) greedy search algorithm over the space of DAGs.
This is perhaps the simplest and the most commonly used search strategy. Pseudo-code
for HC is shown in Fig. 13. At each iteration, HC explores all the neighbouring DAGs G’
of the current DAG G which can be formed by adding an arc to G, or (in later variants)
removing or reversing an arc in G. The change in score corresponding to each G’ is stored
in the delta variable in the pseudo-code in Fig. 13, and the graph modification with the
largest delta applied. If no neighbouring DAGs increase the score, then we have reached a
local, or occasionally a global, maximum and the DAG is returned as the result. The start-
ing point for HC search can be any DAG such as a random one, one produced by another
structure learning algorithm, or even one based on expert knowledge. However, it typically
starts from the empty graph. HC is a very efficient algorithm, however it may ‘get stuck’ on
a poor local maximum score.

Several techniques are adopted to escape local maxima. Heckerman et al. (1995) used
local restarts where random perturbations are made to the DAG at the local maximum, and
hill-climbing restarted from the perturbed DAG. Bouchaert (1995) employs a tabu list to
prevent returning to DAGs recently visited, and permits some changes to the graph where
the score is allowed to decrease. Figure 14 shows the pseudo-code for the Tabu algorithm,
the key differences from HC being a tabu_list structure which maintains a list of the most
recently visited DAGs on line 9, and the fact that possible changes to a graph cannot result
in a DAG in tabu_list on line 4. This approach encourages moving into new regions that

@ Springer

A survey of Bayesian Network structure learning 8757

algorithm HC is
input: dataset D
output: DAG G

1 G := empty DAG

2 repeat

3 for each possible arc change in G do

4 if delta[change] needs calculating or recalculating
5 delta[change] := delta(G, change, D)

if max(delta[change]) > 0
change := change corresponding to max(delta[change])
G := G + change

N o

9 until max(delta[change]) < 0

10 return G

Fig. 13 Pseudo-code for hill-climbing (HC) algorithm. Program code keywords are coloured blue, com-
ments in grey, key variables in red, and application-specific complex operations or conditions in black.
(Color figure online)

may contain an improved local maximum. The tabu approach can make runtime less pre-
dictable and may be more susceptible to noise than plain hill climbing (Constantinou et al.
2021b). Despite its simplicity, HC remains a very competitive algorithm (Scutari et al.
2019a).

De Campos and Puerta (2001) used variable neighbourhood search (VNS) which wid-
ens the local neighbourhood explored by considering graphs resulting from changing sev-
eral arcs in the current graph. Thus, each iteration of the graph may contain multiple dif-
ferences from the previous iteration, whereas classic hill-climbing makes one change at a
time. De Campos and Puerta (2001) found that this approach achieved better results than
plain hill-climbing and hill-climbing with random restarts, although the results were based
on a small set of experiments learning the Alarm network (Beinlich et al. 1989). Model
Averaging Hill Climbing, MAHC (Constantinou et al. 2022) is a recent algorithm which
also considers the scores of graphs beyond one move ahead. However, it does so in a way
that averages scores across these more distant graphs, and makes a single change to move
to the neighbouring graph where the mean score of its neighbours is the highest.

Recognising the importance of providing a good node ordering to K2, Behjati and
Beigy (2020) focus on determining such an ordering. To do this, their improved K2 algo-
rithm first determines the highest scoring set of parents for each node separately and con-
structs the directed graph using these parent sets. This directed graph is generally cyclic,
and if so, it is decomposed into strongly connected components (SCCs). The graph of these
SCCs is itself a DAG of SCCs which defines an ordering of SCCs. This approach is used
recursively on SCCs until a node ordering is produced which is then used with the original
K2 algorithm. The authors evaluated this improved K2 algorithm against the original K2,
HC, GES (see Sect. 4.2.2), and an exact score-based algorithm, GOBNILP (Sect. 4.3.2).
The evaluation learnt well-known networks from the bnlearn repository (Scutari 2021)
with between 5 and 441 variables. GOBNILP is guaranteed to return the highest scoring
graph, but the enhanced K2 algorithm nearly always produced the highest scoring graphs
amongst the other algorithms and was generally the fastest algorithm. The authors did not
report the structural accuracy of the learnt graphs, however.

@ Springer

8758 N. K. Kitson et al.

algorithm TABU is
input: dataset D
output: DAG G

1 G := empty DAG
2 tabu_list := []

3 repeat

4 for each possible arc change in G do

5 if delta[change] needs calculating or recalculating
6 delta[change] := delta(G, change, D)

7 change := change corresponding to max(delta[change])

8 G := G + change

9 add G to tabu_list

10 until stop_condition

11 return G

Fig. 14 Pseudo-code for Tabu algorithm. Program code keywords are coloured blue, comments in grey, key
variables in red, and application-specific complex operations or conditions in black. (Color figure online)

The approximate score-based algorithms considered so far have focussed on learning a
single high-scoring graph. This can be a reasonable approach for small networks with large
amounts of data where the highest scoring DAG may be much more likely than any other
model (Heckerman et al. 1997). However, it is less appropriate for complex models with
small amounts of data. Friedman and Koller (2003) argued that for the gene expression
data they studied, there might be many models with similar high scores, and that any single
model selected might be very sensitive to the actual data instances used for learning. In this
circumstance, an approach which generates a sample of plausible DAGs, and which reflects
the posterior probability distribution across all possible DAGs, may be more appropriate.
This might also show how “peaked” the distribution is, and so offer some insight into how
confident one might be in any particular DAG.

Markov Chain Monte Carlo (MCMC) is a well-established technique for sampling from
complex high-dimensional probability distributions, such as the posterior distribution of
DAGs. In the context of structure learning, each state in the Markov chain represents a
different model, such as a DAG or node ordering. The Metropolis—Hastings (MH) algo-
rithm is the most common MCMC variant used. MH has a proposal distribution which
defines the probability of specific state changes such as a particular edge addition or node
order swap at each step in the chain. A change is randomly selected according to the pro-
posal distribution and then accepted or not using a stochastic acceptance condition. The
proposal distribution and acceptance condition are chosen so that models with high pos-
terior probabilities are preferred. Provided certain conditions are met, the states generated
by the Markov chain stabilise to a stationary distribution of models which represents a
sample of the true posterior distribution. These conditions include that the chain must be
irreducible such that every model is reachable from every other model in a finite number
of steps. Madigan et al. (1995) used MH to sample DAGs in the MC? algorithm. The pro-
posal distribution used gives the same non-zero probability for each possible single edge
addition or deletion, and one of these changes is randomly selected. The acceptance condi-
tion always accepts a change that increases the posterior probability of the DAG, but may

@ Springer

A survey of Bayesian Network structure learning 8759

reject the change if it decreases the posterior probability. The more the posterior probabil-
ity decreases, the more likely the change is to be rejected.

A concern with MC? is slow convergence to the stationary distribution, a prob-
lem known as slow mixing. Eaton and Murphy (2007) therefore proposed a Hybrid
MCMC® algorithm that uses an exact score-based algorithm, Dynamic Programming (see
Sect.4.3.1), to develop a global proposal distribution. They showed that the Hybrid MCMC
method converges faster than both the MC? and Order-MCMC methods (see Sect. 4.2.3).
Grzegorczyk and Husmeier (2008) also improved the convergence of DAG sampling using
the REV-MCMC algorithm that adds a new edge reversal proposal that re-samples all pos-
sible parents of the two endpoints of the reversed edge.

Goudie and Mukherjee (2016) used a special case of Metropolis—Hastings known as
Gibbs Sampling, where proposed changes are always accepted. Gibbs sampling can lead
to slow mixing which they counteracted with a broader proposal distribution that consid-
ers all possible changes made to the parents of a block of nodes. Experiments showed that
this Gibbs sampling mixed better than MC> and REV-MCMC, as well as producing more
accurate DAGs than both of them, and the constraint-based PC algorithm. Goudie and
Mukherjee (2016) evaluated the DAG with the highest posterior probability, the Maximum
A Posteriori (MAP) DAG, as being the single ‘best’ DAG from the sample. However, they
also evaluated a single DAG constructed using arcs which have a marginal posterior edge
probability above 0.5 across the sample, an example of model averaging whereby a single
DAG is constructed from a collection of DAGs.

The Birth-and-Death algorithm (Jennings and Corcoran 2018) treats structure learning
as a continuous time Markov chain process where the waiting times (intervals) between
changes to the DAG follow exponential distributions. At any given point in the learning
process there is a ‘birth’ rate for each possible edge addition, and a ‘death’ rate for deleting
edges. The proportion of time each edge exists represents the posterior probability of that
edge. The authors demonstrated superior mixing to Metropolis—Hastings approaches but
did not report any accuracy evaluations.

Many approaches inspired by biological systems have also been proposed and include
Genetic Algorithms (Larranaga 1996b), Ant Colony (de Campos et al. 2002), and Bacte-
rial Foraging (Yang et al. 2016). These explore multiple DAGs and therefore are similar to
the sampling approaches in that respect. They employ methods adopted from biology, for
example, genetic mixing, mutation, swarming, foraging and selection of the fittest, to gen-
erate and select a high scoring graph. Genetic mixing, in other words breeding, is typically
implemented by a merge operation where edges are taken from two graphs to create a new
graph. Mutation is implemented by making random changes to the graph edges. To take
one biological inspired algorithm in a little more detail, Bee Colony Optimisation (Ji et al.
2013) models the roles of real bees in a hive to search DAG space:

e employed bees perform local search in a DAG neighbourhood moving to the first neigh-
bour with an increased score using add, delete, and reverse arc, and swap parents opera-
tors;

e onlooker bees perform more knowledgeable searches by moving to the best scoring
neighbour which can be viewed as a form of hill climbing;

® Note that, following normal usage, we use “hybrid” in this paper to mean a combination of constraint-
based and score-based approaches, whereas, although this algorithm is named “Hybrid MCMC”, it uses a
combination of exact and approximate score-based approaches.

@ Springer

8760 N. K. Kitson et al.

e if abee gets stuck on a local maximum it becomes a scout bee and moves to a randomly
generated DAG to begin searching in a new region, which is analogous to a random
restart in hill climbing;

e pheromone is deposited on the best solution at each iteration to attract bees to high
scoring regions.

4.2.2 Approximate search of equivalence class space

Chickering (2002) introduced the Greedy Equivalence Search (GES) algorithm which
searches across the space of Markov equivalence classes rather than DAGs. A Markov
equivalence class may contain several DAGs and hence the search space of Markov equiva-
lence graphs is always smaller than the corresponding DAG space. Although Gillispie and
Perlman (2002) suggest that most equivalence classes contain few DAGs, this is still suf-
ficient to speed up search considerably.

GES has an insert and then a delete phase. In the first phase, each insert operation per-
forms a change equivalent to determining all the DAGs consistent with the current CPDAG
(equivalence class), adding whichever arc increases their individual score the most, and
then selecting the CPDAG corresponding to highest scoring DAG of all. This logic means
that each insert operation on the CPDAG represents the addition of either a directed or
an undirected edge, and may be accompanied by several other edge (re)orientations. Note
that GES implements this process more efficiently than this explanatory description would
suggest. The insert phase continues until there is no further insert operation which would
increase the score. The delete phase then proceeds in an analogous fashion until a final
maximum scoring CPDAG is produced. Importantly, and surprisingly for an approximate
algorithm, GES offers a guarantee of classical consistency. That is, it is guaranteed to pro-
duce a CPDAG which perfectly matches the conditional independence relationships in the
data as N — oo. Ramsey et al. (2017) described fast GES (FGES) which optimises GES by
parallelising operations and caching scores where possible.

Greedy Interventional Equivalence Search (GIES) by Hauser and Biihlmann (2012) is a
generalisation of GES which supports learning from datasets’ which all have the same set
of variables and an assumed common underlying causal model, but where interventions
have been performed on different sets of variables in each dataset. One of the datasets may
be observational, that is, have no intervention variables. Like GES, GIES searches equiva-
lence space in an addition and then deletion phase, but the equivalence graphs (which they
term interventional essential graphs) are all consistent with the intervention targets across
all datasets. The authors evaluate GIES against GES, learning random Gaussian graphs
with number of variables, n = {10, 20, 30,40}, and a sample size between 50 and 10,000,
and using a modified SHD suitable for interventional settings (Kalisch and Biihlmann
2007). The evaluation uses one, two or four intervention nodes, and varies the number of
intervention datasets, each having a different randomly chosen set of intervention nodes.
The authors find that GIES orientates more edges and has increasingly better accuracy

7 In their paper, Hauser and Biihimann (2012) describe the problem that GIES is tackling as structure
learning from a single dataset, but where different intervention targets can be specified for different sets of
rows. In this review, we prefer to describe this as learning from multiple datasets where each dataset has the
same variables and assumed causal model, but with different intervention targets for each dataset. We do
this so that the problem description is as common as possible across different algorithms.

@ Springer

A survey of Bayesian Network structure learning 8761

than GES as the number of different intervention datasets or number of intervention targets
Srows.

Bernaola et al. (2020) introduce FGES-Merge which is focussed on learning very large
networks, with tens of thousands of variables, some with very large degree, typical of those
encountered when modelling gene regulation networks. FGES-Merge uses FGES to learn
sub-graphs around each node and then merges these to create the whole graph. The nodes
chosen to be in each sub-graph learnt separately by FGES are those which have the largest
BIC scores when treated as parents of the particular node. The number of nodes in each
sub-graph is limited to a specified maximum, and so some edges for high degree nodes
may be omitted, but they may be re-introduced from neighbouring nodes when the sub-
graphs are merged. The union of the sub-graphs forms the final graph, with cycles and
weaker arcs being eliminated. FGES-Merge was found to be more accurate than all but
one of the other BN structure learning algorithms evaluated in the DREAMS5 gene network
modelling challenge (Marbach et al. 2012).

Madigan et al. (1996) noted that MCMC sampling over DAG space may be inefficient
since DAGs in the same equivalence class have the same posterior probability, and instead
proposed using Metropolis—Hastings sampling over equivalence classes. In this case, the
proposal distribution must include one and two edge changes so that the chain is irreduc-
ible and can therefore sample the whole equivalence class space.

4.2.3 Approximate search of node-ordering space

Searching over a node ordering space offers some potential benefits (Teyssier and Koller
2005):

e ordering-based space has complexity 200*%¢™ which is considerably smaller than 2807
for DAG space;

e cach change to the ordering represents a larger change to the current hypothesis than
those typically performed in DAG space, and so may be better at avoiding local max-
ima;

e since node ordering imposes acyclicity, the algorithms can select the parents of one
node independently of any other node.

Larranaga et al. (1996a) used a genetic algorithm where the individual’s chromosomes
represented the node ordering. The fitness of an individual is assessed using the K2 algo-
rithm and score (see Sect. 4.2.1) to determine a high scoring DAG consistent with the
ordering. An initial population of individuals is created which is then iterated through gen-
erations as follows:

1. pairs of high scoring parents are selected, and their children are created through a
crossover operator which forms a new ordering from parts of each parent’s ordering;

2. children have a small probability of the node ordering mutating so that new regions are
explored;

3. low scoring individuals are pruned from the population to return it to its original size.

The K2SN algorithm by de Campos and Puerta (2001) uses a very simple strategy to

explore node-ordering space. It randomly generates orderings and then uses the K2 algo-
rithm to find a high scoring DAG consistent with that ordering. The Ordering Based Search

@ Springer

8762 N. K. Kitson et al.

(a) ground-truth DAG (b) parents of each node strictly (c) parents of each node largely
consistent with node oréring consistent with node ordering
"ABCED" in OBS algorithm "ABCED" but allowing 'back-links’

(shown in red) in ASOBS algorithm

Fig. 15 Example illustrating the relaxed node ordering consistency used by the ASOBS algorithm. (Color
figure online)

(OBS) algorithm employs a more systematic search of ordering space (Teyssier and Koller
2005) and moves through ordering space by swapping adjacent nodes in the ordering. OBS
uses an exhaustive approach to find the highest scoring DAG consistent with each order-
ing. At each iteration, all n — 1 node swaps are scored, and the ordering that has the highest
scoring DAG is adopted for the next iteration. This process is repeated until a local maxi-
mum is reached. Note that the swap adjacent operator only changes the possible parents of
two nodes and so the score of the new ordering can be computed cheaply. OBS used a sim-
ple sound pruning rule based on the observation that if Pa(X;) and Pa’(X;) are two possible
sets of parents of node X; and Pa(X;) C Pa’(X;) and score(Xl-lPa(Xl-)) > score(X;|Pa’ (X)),
then Pa’(X;) cannot possibly be the best set of parents of X; and can be removed (pruned)
from further consideration in any ordering.

The pruning rule used in OBS is applicable to any decomposable score, but has the
drawback that it is necessary to compute the score for the superset Pa’(X;) before it can be
discounted. Other rules, typically specific to a particular score such as BIC or BDeu, are
more powerful in that conditions applying for a set of parents can be used to prune super-
sets of parents without having to score these supersets. This makes the algorithm more
efficient, and these scores often remove large portions of the search space. The ASOBS
algorithm (Scanagatta et al. 2015) uses the BIC* score which approximates BIC to accom-
plish this. Like OBS, ASOBS uses a primary search over node orderings using the swap
adjacent operator. However, when generating a DAG from the ordering, ASOBS relaxes
the restriction that a node can only have parents earlier in the ordering, whilst continuing to
ensure the DAG is acyclic. Figure 15 illustrates a situation that might occur when learning
the DAG shown in Fig. 15a. OBS would select parent sets for node ordering “ABCED” that
are strictly consistent with the ordering as shown in Fig. 15b. In contrast, ASOBS allows
some ‘back-links’, shown in red in Fig. 15c, where nodes “C” and “E” have parent “D”
from lower down the ordering. ASOBS will find a DAG with a score at least as high as
OBS would find for any given ordering. The authors used ASOBS to model networks with
more than 1,000 nodes and removed the restriction on the number of parents for a node.

The fact that the swap adjacent operator changes few parents makes it relatively inex-
pensive, but it does mean that there may be many relatively weak local maxima close to
one another. The INOBS algorithm introduces an insert operator which causes larger steps
in changing the order of a node in the node ordering input to address this (Lee and van
Beek 2017). The authors also investigated a variant of INOBS, called IINOBS, which
employs iterated local search. This is an extension to hill-climbing that adds a perturbation
operator of swapping nodes in the ordering so that when a local maximum is reached, hill-
climbing is restarted in a relatively close neighbourhood. The perturbation operator chosen

@ Springer

A survey of Bayesian Network structure learning 8763

should not be so weak that restarted hill-climbing just finds the same local maximum, and
nor should it be so strong that hill-climbing is starting all over again in a completely new
region. Iterated local search is based on the intuition that local maxima may occur in clus-
ters. Similarly, Lee and van Beek (2017) combined INOBS with genetic algorithm tech-
niques to create the memetic algorithm, MINOBS. Hill-climbing search is performed on
an initial population of orderings to get a population of locally maxima orderings. Crosso-
ver, mutation and population pruning genetic techniques then operate on this population of
locally optimum orderings to produce a new population to perform hill-climbing on.

WINASOBS (Scanagatta et al. 2017) employs a yet more impactful window operator
which changes the position of a group of nodes in the node ordering, and uses the same
relaxation as ASOBS when generating a DAG from the ordering. The authors evaluated
WINASOBS against IINOBS and MINOBS when learning from 24 real-world datasets
with between 16 and 1556 variables and synthetic networks with up to 10,000 variables.
The learnt graphs were evaluated only on the basis of their BIC score. WINASOBS pro-
duced higher scoring graphs than the other algorithms except for being on par with MIN-
OBS when execution time was limited to 1 h.

Sampling in node-ordering space can be implemented using MCMC approaches. This
seeks to counter the slow convergence to a stationary distribution, also known as slow mix-
ing, that can be encountered when sampling DAG space, for example, in the MC? algo-
rithm. Friedman and Koller (2003) sampled ordering space in the Order-MCMC algorithm.
They derived a closed-form expression for the probability of specific graph features, such
as an individual edge, occurring with a particular ordering. They then used MCMC to
sample over the space of orderings and hence obtain the overall probability of a particu-
lar feature occurring. A DAG can then be constructed using only edges with a probability
above a specified threshold in another example of model averaging. Niinimiki et al. (2011)
proposed the Partial Order-MCMC method, where nodes are grouped into ordered buck-
ets which demonstrated better mixing than Order-MCMC. A disadvantage of order-based
MCMC approaches arises because a given DAG may be consistent with many node orders
and different DAGs will be consistent with different numbers of node orders. It is there-
fore difficult to define priors on node orders which do not bias the posterior distribution of
DAGs. This problem is more pronounced with small sample sizes where the priors have
more influence.

Kuipers and Moffa (2017) introduce Partition-MCMC to address the bias issue dis-
cussed in the previous paragraph. It searches in the space of partitions, illustrated as the
set of light blue ellipses in Fig. 16b, which is the partial topological ordering of the nodes
of the DAG shown in Fig. 16a. The algorithm assigns a score to each partition which is
the sum of scores over all DAGs consistent with that partition, thus taking into account
the number of DAGs in the partition and therefore removing the bias discussed previously.
Partition-MCMC samples the partitions using operators which split or merge an element
within the partition as illustrated in Fig. 16c and d. They also assess the more impactful
reverse operator proposed by Grzegorczyk and Husmeier (2008).

4.2.4 Approximate search of ancestral graph space
The majority of algorithms that assume the presence of latent variables are constraint-

based, some of which were discussed in Sect. 3.4. However, Triantafillou and Tsamardinos
(2016) proposed the Global Search for Maximal Ancestral Graphs (GSMAG) algorithm

@ Springer

8764 N. K. Kitson et al.

@ ®
/ / \ ~ A~ ~ / A\
| @ L)L L B © [
® | @ | PRECRONOENBIRINNCO
® U U U ® @
0 J 7) 7 / A\
(a) DAG (b) order partition (c) partition SPLIT (d) partition MERGE

corresponding to DAG operation operation

Fig. 16 Partitions used in Partition-MCMC (adapted from figure in Kuipers and Moffa 2017). Note that
other authors refer to this partitioning of the nodes as a (topological) partial ordering. (Color figure online)

which searches in the space of ancestral graphs containing directed or bidirected edges.
That is, it allows latent, but not selection variables. It explores the search space using
greedy search in which directed and bidirected edges are added, removed, reversed or
converted between each other. A BIC score is defined based on the probability distribu-
tion factorisation for Gaussian MAGs described in Richardson (2009), which allows the
score to be decomposed into a likelihood for each c-component in the MAG given the data.
C-components are the fragments connected by bidirected edges that result from remov-
ing all directed edges in a MAG. Thus, only scores for the c-components affected by any
edge change need to be recomputed. The authors evaluated GSMAG against FCI and CFCI
constraint-based algorithms on synthetic random Gaussian networks of up to 50 variables,
10% of which are latent variables. They found that GSMAG had better recall (see Sect. 6.1
for explanation of recall and precision) than FCI and CFCI (slightly), but worse precision
than CFCI. It was also considerably slower than both FCI and CFCI.

4.3 Exact score-based algorithms

In contrast to the algorithms considered so far, exact algorithms guarantee to return the
highest scoring DAG. Note that whilst some approximate algorithms can guarantee to
return the highest scoring graph as N — oo (Chickering 2002; Chickering and Meek 2002),
exact algorithms guarantee to return the highest scoring graph for the input dataset, how-
ever small the sample size might be. They usually make use of sound pruning rules to avoid
searching over the whole search space. Whilst these algorithms produce the DAG with the
highest score, this may not be the graph which best matches the underlying ground-truth
for reasons such as:

e limitations in the data learnt from, particularly sample size and any form of noise;
e biases introduced by the score used, for example, towards sparser or denser graphs.

Note that some authors refer to exact algorithms as global algorithms since they guaran-
tee to return the graph with the globally maximum score. However, in this paper, we apply
the term “global” to constraint-based algorithms that consider the global structure, and so
we prefer “exact” to “global” here. Exact algorithms typically treat structure learning as a
constrained combinatorial optimisation problem which involves determining the optimally
scoring combination of parents for each node subject to the constraint that the graph is
acyclic.

@ Springer

A survey of Bayesian Network structure learning 8765

1,2,3,4
DAG generated from blue { } DAG generated from red

search path in lattice

search path in lattice

Score(4/{1,2})=4 Score(2|{3})=3 P ,(]:2‘-3“4; S5
Score(3l{2})=5 Score(1}{3))=7
a2 [a3 | es |[aa | e | ca |
Score(2]{1})=2 SC\‘"C (1Hn=t Score(3|(4})=7
o [&][& | @]
Score({1})=1 Score({2})=4 Score({4})=2

Fig. 17 Lattice of all sub-DAGs for a hypothetical four node network based on Singh and Moore (2005),
illustrating the dynamic programming approach using sink nodes. (Color figure online)

4.3.1 Exact search of node-ordering space

Dynamic programming was an early technique used in exact algorithms (Koivisto and
Sood 2004; Ott et al. 2003) searching in node-ordering space. Dynamic programming is
an algorithm paradigm which solves small sub-problems first and uses these results to
solve larger problems built on them. Singh and Moore (2005) and Silander and Myllymaki
(2006) applied this paradigm to structure learning using the insight that every DAG must
have at least one sink node (a node with no children, also referred to as a leaf node). So, any
DAG with nodes X can be constructed from a sink node X;,; and a sub-DAG with nodes

X — {X,;x }- The maximum graph score can thus be expressed as a recurrence relation:
score,,, (X) = score,,,, (X - {Xsmk}) + score,, . (X | Pa(X 1))

Note that which nodes in the sub-DAG are chosen to be the parents of the sink node,
Pa(X;,.), does not affect the score of the sub-DAG itself, and so this element of the score
can be maximised independently. Also, since the end of a node ordering is always a sink
node, recursively finding sink nodes represents a way of traversing node ordering space.

Figure 17 based on Singh and Moore (2005) shows how dynamic programming exploits
this recurrence relationship. Each box in this ordering lattice represents one of the possible
sub-DAGs in a small network with nodes {1, 2, 3, 4}. The optimal DAG is determined by a
depth first search of this lattice. Starting at the top with the DAG containing all nodes, the
search moves down the first blue arrow to sub-DAG {1, 2, 3} with node 4 left behind as the
sink node. The highest scoring parents for node 4 in sub-DAG {1, 2, 3} are determined, in
this illustration assumed to be {1, 2} with a score of 4. The search continues down the blue
arrows, determining the highest scoring parents for each local sink node until we reach the
bottom sub-DAG on the blue path, {1}. This blue search path represents node ordering
{1,2,3,4}, and the DAG corresponding to the path is shown to the left of the lattice, where
the concentric dashed ellipses represent the sub-DAGs encountered, and arcs showing the
highest-scoring parents determined for each sink node. Having reached the bottom, the
search backtracks to sub-DAG {1, 2} to then score the purple path. At this point, all search
paths below {1, 2} have been followed, so a maximum score can be assigned to sub-DAG
{1, 2} and the paths below {1, 2} never need to be revisited, illustrating the ‘self-pruning’

@ Springer

8766 N. K. Kitson et al.

nature of this approach. The search is guaranteed to find the highest scoring DAG, illus-
trated in this example by the red search path.

Yuan and Malone (2011) noted that dynamic programming is inefficient because it
needed to fully evaluate the exponential solution space and that, by ignoring acyclic con-
straints, Branch and Bound (covered below in Sect. 4.3.2) made the search space unneces-
sarily large. They proposed that navigating the lattice in Fig. 17 be performed by the gen-
eral-purpose graph algorithm A* which finds optimal weighted paths. As with the dynamic
programming technique explained above, the algorithm maintains a current best score
down to the current sub-DAG reached in the lattice, but it also estimates the best score
obtainable down the currently unexplored paths below the sub-DAG. At any one time, A*
explores the paths which have the highest estimated score from top to bottom, a so-called
‘best-first’ approach. As long as the estimated score is admissible (i.e., never underesti-
mates the score obtainable), A* guarantees to find the highest-scoring path and the hence
highest-scoring DAG. Their approach proved to be several times faster than dynamic pro-
gramming and much faster than Branch & Bound which we cover later in Sect. 4.3.2.

Another recent exact score-based algorithm called CPBayes (Van Beek and Hoffman
2015) adopts the constraint programming paradigm. In this paradigm, constraints are
defined across the variables and a domain of possible values maintained for each variable.
Note that these are not conditional independence constraints, and so this approach should
not be confused with the constraint-based structure learning described in Sect. 2. As the
algorithm explores possible solutions by changing one variable, the constraints mean that
the possible values of other variables are altered; a process known as constraint propaga-
tion. A simple application of constraint programming to the Sudoko game may serve to
illustrate the concept. The domains for each square are the numbers 1 to 9, but as a number
is chosen for one square, this reduces the domains of possible values for other squares,
according to the constraints of the game that each number can only occur in one row, col-
umn or 3 X 3 block.

For application to BN structure learning, CPBayes defines three classes of variables
describing: the node ordering; the parent set of each node; and depth, defined as the longest
path of any source vertex to the node. Several types of constraints are defined, and the ones
that relate the three classes of variables include acyclicity constraints, symmetry breaking
constraints which avoid redundant solutions which belong to the same equivalence class
or node ordering, for example, and dominance constraints which apply cost-based prun-
ing. CPBayes is a depth-first branch-and-bound algorithm that explores the node-ordering
space by swapping nodes in the order, with the constraints and score bounds used to reduce
the search space. The authors argued that the inclusion of the depth variable together with
the extensive set of constraints reduces the search space compared to other exact algo-
rithms, though without quantifying this. Results obtained at the time showed that runt-
imes were comparable to the Integer Linear Programming approach in GOBNILP (refer to
Sect. 4.3.2).

Troser et al. (2021) introduce the ELSA algorithm which enhances CPBayes by includ-
ing linear programming techniques similar to GOBNILP to provide more efficient acy-
clicity checking. It uses a more specialised greedy, and therefore efficient, algorithm than
GOBNILP to solve the linear programming problem. ELSA is able to find the optimal
graph within a time limit of 10 h (for datasets with between 61 and 111 variables) in con-
siderably more cases than either GOBNILP and CPBayes. Note that this time limit applies
to the graph search only; it does not include the pre-computation of parent set scores.

Tan et al. (2022) propose two variable partitioning approaches which they demonstrate
can improve learning times in algorithms such as A*, often by orders of magnitude. The

@ Springer

A survey of Bayesian Network structure learning 8767

first heuristic is ancestral partitioning which assumes a partial ordering as illustrated in
Fig. 16 to greatly prune the number of nodes in the order graph. Note that, with this heuris-
tic, the structure learning algorithm can only guarantee to return the optimal scoring graph
if the partial ordering that is assumed is consistent with the ordering of the true graph. The
second heuristic, heuristic partitioning, splits the variables into partitions in such a way
that more paths in the order graph can be ruled out during the search phase. This heuristic
does not invalidate the guarantee of returning the highest scoring graph.

4.3.2 Exactsearch of DAG space

The Branch & Bound algorithm uses another recursive approach but starting from a larger
problem which it decomposes (de Campos et al. 2009). The algorithm first creates a cache
of the highest scoring parents for each node. As the algorithm proceeds, it maintains a
queue of candidate graphs ordered by score, and a record of the highest scoring DAG found
so far. Initially, the queue is populated with the graph where each variable is assigned its
optimally scoring parents without regard to acyclicity. The algorithm proceeds by consid-
ering the top scoring graph on the queue. If it is a DAG, it checks its score and updates the
best scoring DAG if needed. If the graph contains a cycle, it breaks the cycle at each arc
in the cycle creating several sub-graphs which it places back on the queue. The algorithm
continues until the queue is empty by which time the globally optimal DAG will have been
identified.

Most exact search algorithms, including Branch & Bound, maintain a cache of possi-
ble parent sets for each node together with their associated score. If done for every par-
ent set this cache would have 2"~ entries which quickly becomes prohibitive. Research
into pruning (Cussens 2012; Suzuki 2017; de Campos et al. 2018; Correia et al. 2020)
which can reduce the size of this cache whilst maintaining the guarantee of optimality has
been important to the development of exact search. Most of the later pruning approaches
are specific to a particular score (e.g. BIC or BDeu) and can have a dramatic effect on
the cache size and search space considered. De Campos and Ji (2010) reported cache size
being reduced by between approximately 10> and 107 times depending upon the network
and specific score considered. In the most dramatic cases, this resulted in a reduction of the
search space by hundreds of orders of magnitude. Guo and Constantinou (2020) show that
pruning candidate parent sets simply by removing those with low scores can offer consider-
able runtime saving, particularly for larger networks. This type of pruning means that pre-
viously exact algorithms no longer guarantee to return the graph with the highest possible
score, that is, they become approximate algorithms. Nonetheless, this often does not reduce
the accuracy of the learnt graph by very much.

Integer Linear Programming (ILP) approaches treat structure learning as a constrained
integer programming problem (Jaakkola et al. 2010; Bartlett and Cussens 2017). Figure 18
illustrates some of the concepts of integer linear programming with reference to a sim-
ple optimisation problem. Suppose we wish to maximise y where the following constraints
apply: 3y <2x+ 6,3y < 15— 5x,x > 0.5, and y > 0.5. This is a linear programming (LP)
problem, and the shaded space in the figure shows the feasible solutions which meet the
constraints. With three variables the feasible solutions would be bounded by a polyhedron,
and with n variables they are bounded by an n-polytope. The LP solutions are always at
vertices of the polytope, in this case at x = 9/7,y = 20/7. However, if we restrict the solu-
tions to integer values then the problem becomes an integer linear programming (ILP)
problem. The feasible integer solutions are shown as the black circles in the figure.

@ Springer

8768 N. K. Kitson et al.

Fig. 18 Simple Integer Linear y A
Programming Example. (Color B
figure online)

4. Optimal
integer solution

2.1 - —.—l — e — — — - -

] \ 2 3. Cutting plane
removes non-integer

solutions above line

11~ 0 | o]
| SN
| 2. Branching splits problem in two

. .
1 2 3 x

The ILP problem is tackled by first using the well-established simplex algorithm
(Dantzig 2016) to solve the LP problem, which is referred to as solving the linear relax-
ation of the ILP program. The problem is then split into two by looking at the two solu-
tion spaces either side of one of the non-integer solution values; for example, either side
of the dashed blue line in the figure. This branching is repeated, forming a branch-and-
bound search of the solution space. The search can be made more efficient by including
extra constraints at each step so that the search becomes branch-and-cut. These extra
constraints cut off part of the polytope between the LP solution and the integer solu-
tions and are therefore known as cutting planes, illustrated by the dashed red line in the
figure.

The GOBNILP algorithm (Cussens 2011) represents a DAG by binary integer vari-
ables, called family variables denoted I(Pa(X) — X), each family variable representing
a possible parent set Pa(X) for node X where Pa(X) C X\{X}. IPa(X) > X)=1for a
particular value of Pa(X) indicates that X has that set of parents in the DAG. Learning
the optimal DAG can be cast as an ILP problem in the family variable space where we
wish to maximise the DAG score, given by:

Y score(X|Pa(X)) - I(Pa(X) — X)
X,Pa(X)

Convexity constraints are imposed to ensure that each variable can only have one of
the possible parent sets:

VX Z I(Pa(X) —» X) = 1,
Pa(X)

and cluster constraints to enforce acyclicity, where any subset X’ of all the nodes X
must contain at least one node that has no parent in the subset:

@ Springer

A survey of Bayesian Network structure learning 8769

vX Z Z I(Pa(X) » X) > 1

xeX' Pa(X):PaCOnX =@

GOBNILP employs an off-the-shelf optimisation program such as SCIP (Achterberg
et al. 2008) to solve this ILP problem. GOBNILP uses whether a particular family varia-
ble is 0 or 1, that is, whether a node has a particular parent set, as its branching strategy.
There are a huge number of cluster constraints possible for reasonably sized networks,
and so these are only applied where necessary as the search progresses. Even so, it is
usually necessary to place a limit on the maximum number of parents for any node in
most applications.

The exact algorithms discussed in these subsections also naturally support BMA
where the probability of specific features such as arcs, ancestral relations and Markov
Blankets can be calculated by summing their posterior probability over all graph struc-
tures. This capability is explored by Koivisto and Sood (2004), Tian and He (2009) and
Pensar et al. (2020). The latter two search over DAG structures and so avoid the bias
that can arise because different numbers of DAGs are associated with each node-order-
ing, for example. Recently, Liao et al. (2019) proposed an adaption of the GOBNILP
algorithm called GOBNILP-DEV which rather than returning a single highest scoring
DAG, returns all the DAGs which have score(G) meeting the condition that:

(1—¢)- score(GOPT) < score(G) < score(Gppr)

where G py is the DAG with the highest possible score; i.e., all DAGs within a frac-
tion € of optimal. This provides a principled algorithm for obtaining a set of plausible
graphs.

4.3.3 Exact search of equivalence class space

Chen et al. (2016a) proposed an exact algorithm for searching equivalence class space by
defining an Equivalence Class Tree (EC Tree) where each node represents a CPDAG, and
which has a unique path to each CPDAG. The algorithm uses A* search to explore the
EC Tree efficiently. Chen et al. (2016a) compared this algorithm with an earlier dynamic
programming based approach proposed by Chen and Tian (2014) aimed to find the k-best
equivalence classes. They found the EC Tree search to be always faster than the dynamic
programming approach, and occasionally orders of magnitude faster. Interestingly, they
also found that the highest scoring equivalence classes represented very different numbers
of DAGs in the eleven networks studied which had between 14 and 23 variables. Whilst
some networks had values around the 3.7 DAGs per CPDAG (Gillispie and Perlman 2002)
often quoted in the literature, others had hundreds or even thousands of DAGS in the high-
est scoring equivalence classes.

5 Hybrid learning and other approaches

Hybrid algorithms combine constraint-based and score-based approaches in an attempt
to offer the best characteristics of each. Perhaps the most common way of combining the
approaches is to use a constraint-based approach to restrict the search space in which a
subsequent score-based approach finds a graph with a local or globally maximum score.

@ Springer

8770 N. K. Kitson et al.

We refer to these as Restrict/Maximise hybrid algorithms and discuss them in Sect. 5.1. A
diverse set of other hybrid approaches is described in Sect. 5.2. We then further group the
algorithms according to which space they search in, to provide some commonality with the
score-based section of this paper. Figure 6 shows the evolution of hybrid algorithms which
are shown in yellow colours, and in particular how developments in score and constraint-
based algorithms have informed that evolution. Table 4 presents the key characteristics of
the hybrid algorithms reviewed here.

5.1 Restrict/maximise algorithms
5.1.1 Restrict/maximise in DAG space

Early hybrid algorithms tended to have a constraint (restrict) and score-based (maximise)
step in each iteration. For example, each iteration of the Constraint-Bayesian (CB) algo-
rithm (Singh and Valtorta 1993) had a restrict step in which the PC algorithm learnt a
CPDAG, but only using conditioning sets up to a specified size for that iteration. The max-
imise step then firstly orientates undirected edges so that the product of the K2 score asso-
ciated with the two endpoints is maximised, producing a DAG. The maximise step then
uses the score-based K2 algorithm to construct the optimum-scoring DAG consistent with
that DAG’s ordering. The restrict and maximise steps are then repeated at increasing con-
ditioning set size until the resulting DAG’s score no longer improves.

Similarly, each iteration of the Sparse Candidate (SC) algorithm (Friedman et al. 1999)
had a restrict step which used Mutual Information Independence tests to determine can-
didate parents for each node, followed by a maximise step using the Tabu algorithm con-
strained by those parent sets. The parent sets of the DAG produced in one iteration were
always included as candidate parents for the next iteration, ensuring that each iteration
would find a DAG with at least as high a score as the previous iteration.

Wong and Leung (2004) also interleaved score and constraint-based operations,
although in the context of an evolutionary algorithm. Their Hybrid Evolutionary Algo-
rithm (HEA) begins by using low-order CI tests to evaluate the possible parents of each
node, maintaining a record of the p-value indicating the likelihood of each CI relationship,
and then creates a population of random DAGs. At each iteration, new DAGs are generated
through genetic mutation and merge operations (see Sect. 4.2.1), and then the population
reduced back to its original size by removing the lowest scoring DAGs. Each individual
DAG is assigned its own, dynamic, conditional independence significance level which is
used in conjunction with the CI test p-values to restrict parent sets in individual creation,
mutation and merge operations. This individualised significance level helps maintain popu-
lation diversity.

However, most Restrict/Maximise approaches do not interleave restrict and maxim-
ise operations. Rather, they use a constraint-based algorithm to define a restricted search
space, and then a score-based algorithm operates within that restricted space. Max—Min
Hill Climbing (MMHC) proposed by Tsamardinos et al. (2006) is a widely-used example
of this. In the restrict phase, MMHC uses the MMPC local constraint-based algorithm (see
Sect. 3.3.2) to construct the graph skeleton. The subsequent maximise phase uses Tabu
hill-climbing (see Sect. 4.2.1) to learn the output DAG, but is constrained to only use edges
in the graph skeleton produced in the restrict phase. The author conducted a detailed evalu-
ation of MMHC against leading constraint and score algorithms at the time with MMHC

@ Springer

8771

A survey of Bayesian Network structure learning

yoreag
sagpe Qoudreainbyg Apeain

ovadd SOX JUSLIO + 93 P3 AOWRL/PPY sse[o oouoeanbyg QSTWIXBIA/IOLISIY (8107) 'Te 39 ApueN paLNSay Aeandepy SADYY
DV pAALIoosse uone)

ovd SOX UT 018 PIISAOD JSIAJY SuropIo 9poN ReliiTe} (L107) Te10 snoS -nuidd 1sosredg Apaain dso
(TTP 1998 QoUdIdJU]

Ovd ON 99s) suoneiado a1o[a/11asuy sse[o aousealnbyg hEliiTe) (9107) ‘Te 10 oLLIe3(Q [esne)) 158 ApaaIn 104D
suorn
(§107) sourp -uoatoyu] SurddeproaQ

Ovd ON e/u SIUTRNSUOD [D 1Py)Q -Jewes], pue nof[yejueLL], wol1j AI9A00SI(] [esne)) ANIqUOD
Suruwrerdoid 19§
Jomsuy ym pastundo

ydeis poxtur o10£) ON B/u SIUTRNSUOd D) 00 (#107) Te10 UUMAH SIUTENSUOD [PAIYSTOM dsv
[USHvite]
pue syuareq pLqiAq

ova SOA OIe 9SI9AI/2A0WRI/PPY ova OSTWIXBIA/1OLISY (¥100) T8 19 9ssen st OdH) OdH PU9AH JdcH
K19A00
(z100) -SI [esne)) paseq

ovd ON e/u ovda 0010 SOYSOH pue UasSEe) -JUTeIISUO)) UeIsokeq aood
uersokeq

ovda SOX. QI 9SIOAI/IAOWI/PPY ovda QSTWIXBIA/IOLISIY (1107) ‘T8 10 Suex Uone[aLI0)) [enied qa0d
yoreas

ovda SOA 9pOU YUIS AOWAY/PPY ovda OSTWIXBIA[/AOLNSY (8007) 'Te 19 JorLg rewndQ paurensuo) SOD
Surquir)
[IIH pue uaIp[iys

ova SOX OIE 9SIOAQI/QAOWI/PPY ova SSTWIXBIN/IOINSTY (900T) ‘T® 10 SOUIpIBWES], pue S)udTEq UTW—XBIA DHININ
wypLos|y

ovd SOA DV 1999s ‘deinuu ‘9T ovd QSTWIWERIA/OISYY ($007) SunaT pue Suopy Kreuonnjoaq pUqAH vdH

ovd SO OIE 9SIOARI/QAOWIRI/PPY ovd ASTWITXEIA/ILISY (6661) ‘Te 10 UBWPALL] qeprpue)) asredg oS

(€661)
ovda SOX JIE 9SIOAQI/QAOWI/PPY ovda OSTWIXBIA[/AOLNSY 'lI0)[BA pUE ySuIg ue1sakeq Jurensuo) a0
pawmnsse
Kouaroyjns uondrosap
ndino jo od£7, Tesne) [es1oaeT) 90rds yoreog Qoeds yoreas dnoi3 w03y Q0OURIJY 10 Qweu WLIOI[Y UONBIAIQQR WIILIOS[Y

A[Teo1S0[OUOID PIISPIO ‘PIMITADI SWYILIOS[E PLIGAY JO SONSTIOOBIRY) d|qel

pringer

As

N. K. Kitson et al.

8772

Sur100§ ueIsokeq pue

DOVd ON e/u oI PAIYSIoM PYO (20?) e WEmqoy) SO yim oI Kiofejy Sg-SHJW
DINDIN uon
suonnred oS1ow -1Ied 10 19p1Q Aq pasn
ova sox Nds 1o sopou juooelpe demsg ova OSTUITXBIA /IS (220?) Te 10 s1odmy ooeds yoreas s1omsa1 DJ DINDIN +Dd
DVIA 10§ Surquurfd
(0z07) noun -[ITH 109J§2 Tesne)
OVIN ON PRJORIIP JUSLIO + JAOWAI/PPY OVIN ASIWIXEIA/OLISAY -UBISUOD) PUB WEYIqOyD) pUE O[T SATIRAIISUOD) WHDD
sjurensuo)) Jo SuLod§
Ovd ON e/u OVIN Pmo (L107) 'Te 19 1reqqef uersaked YA DY JSg-ID4d
ova SOX JIB ISISAQI/SAOWI/PPY ova Y10 (0Z07) nounue;suo) PLIQAH uekreg Huekres
DVIAQ pAILIosse
OVIN ON UL YOJIMS PIJOAIIPIq/PRIIIT SuLIPIQ 9PON Y10 (0202) ‘Te 10 ujsuIg 1950 Jsasredg Kpaain) 0dSD
Suiquiiy
$93pa pajoaIIpun/pajoAIP [ITH Pue UaIp[ry) pue
DOVIN ON JUSLIO + dAOWRL/PPY DOVIN OSIWIXEIN/ILISIY (8100) 'Te 19 SIMISL SISIRd UIN-Xe]N DVIN OHN
pownsse
Kouaroyjns uonduosop
ndino jo odK, [esne) [es1oAeT) 90eds yoreog Qoeds yoreas dnoiS w03y QOURIRJY 10 dweu WPLIOS[y UOIBIAQIqQE WYILIOSY

(ponunuod) 4 3jqer

pringer

A s

A survey of Bayesian Network structure learning 8773

producing more accurate graphs than GES, PC and TPDA, and demonstrating the ability
to learn networks with 1,000 variables. Gasse et al. (2014) proposed Hybrid HPC (H2PC)
which uses a Hybrid Parents and Children (HPC) algorithm to create a skeleton in the
restrict phase with a focus on avoiding false missing edges. HPC uses an ensemble of weak
parent-and-children algorithms to achieve this, and the maximise phase of H2PC uses Tabu
hill-climbing. H2PC produced graphs with better structural accuracy and data fitting than
MMHC across 10 networks with up to 1836 variables. However, H2PC was considerably
slower than MMHC, being around 10 times slower at large sample sizes.

Whilst most hybrid algorithms use an approximate score-based approach, Perrier et al.
(2008) proposed Constrained Optimal Search (COS) which used an exact score-based
dynamic programming approach (see Sect. 4.3.1) in the maximise phase operating within a
reduced search space defined by the skeleton returned by the restrict phase. Like MMHC,
COS uses the MMPC algorithm to generate the skeleton, but uses a deliberatively high
CI significance level so that the skeleton is denser than usual to increase the chances of
the restricted search space including the globally optimal graph. COS was compared with
MMHC and produced more accurate structures and data fitting scores, although compari-
sons were limited to n = 20 due to runtime constraints of dynamic programming at that
time. It is noteworthy that the authors found that using the output from either MMHC or
COS as the initial graph for a further score-based hill-climbing phase improved graph qual-
ity for both algorithms.

The papers introducing the hybrid algorithms discussed so far focussed on discrete vari-
ables, but Yang et al. (2011) described the Partial Correlation Bayesian (PCB) algorithm
which considers continuous variables. The restrict phase uses partial correlation CI tests
to determine the graph skeleton, followed by a hill-climbing maximise phase. The authors
showed that their approach is applicable whenever a continuous variable is a linear func-
tion of its parents, not just the usual special case when the variables follow a Gaussian
distribution. PCB produced more accurate graphs than Sparse Candidate, MMHC, PC and
TPDA.

5.1.2 Restrict/maximise in equivalence class space

Nandy et al. (2018) proposed Adaptively Restricted GES (ARGES) for continuous vari-
ables which uses MMPC for the restrict step and then a modified GES (see Sect. 4.2.2) for
the maximise step. As is usual in restrict/maximise algorithms, they generally restrict GES
to the skeleton produced in the restrict phase. However, they relax this restriction slightly
to allow it to add shielding edges on v-structures whilst the CPDAG is being learnt. These
extra shielding edges automatically disappear as the algorithm progresses, and so do not
appear in the final CPDAG, hence why the algorithm is known as “adaptively restricted”.
The authors provide theoretical arguments showing that temporarily allowing these extra
edges means that the ARGES algorithm can offer both classical and high-dimensional
consistency.

5.1.3 Restrict/sampling in ordering space
Kuipers et al. (2022) describe a hybrid MCMC algorithm which creates a restricted search

space using the PC constraint-based algorithm (see Sect. 3.2.2) followed by MCMC
sampling in the node ordering space (see the Order-MCMC algorithm in Sect. 4.2.3), or

@ Springer

8774 N. K. Kitson et al.

sampling in the partition space (see the Partition-MCMC algorithm in Sect. 4.2.3). The
sampling is done in a space that initially corresponds to that identified by the PC algo-
rithm, but each node is allowed an additional parent outside the initial space, so that the
restriction is relaxed. The authors claim a large improvement in efficiency with the com-
plexity to find the Maximum A-Posteriori (MAP) DAG reduced from n* to 2% where 7 is
the number of variables, and k the maximum in-degree, making the algorithm suitable for
high-dimensional problems. The authors find that accuracy is improved by allowing the
sampling phase to add another parent node to the parent sets found during the constraint
phase. Using PC in combination with Order-MCMC, the authors demonstrate considerably
better SHD scores than GES or PC on random graphs with n = {20, 80, 140,200} and sam-
ple size N = {2n, 10n}.

Viinikka et al. (2020) build upon the approach described in Kuipers and Moffa (2017)
and Kuipers et al. (2022) but reduce time and memory requirements to support much
higher maximum in-degrees. They also improve the selection of candidate parent sets
which they formulate as an optimisation problem which they solve exactly for smaller net-
works and heuristically for larger networks. The authors evaluated accuracy in predicting
pairwise ancestral relationships and found improved accuracy over Partition-MCMC.

5.1.4 Restrict/maximise in ancestral graph space

The MAG Max-Min Hill Climbing (M*HC) algorithm proposed by Tsirlis et al. (2018)
uses MMPC in its restrict phase, and GSMAG (see Sect. 4.2.4) in the maximise phase so
that causal sufficiency is not assumed. MMPC produces a superset of the true adjacencies
in the presence of latent variables and so is a suitable candidate for the restrict phase in
causally insufficient settings. The empirical results of M*HC outperform GSMAG, FCI,
CFCI and GFCI on standard BNs with up to 1041 variables (Tsirlis et al. 2018).

CCHM (Chobtham and Constantinou 2020) follows the approach used by the CFCI
constraint-based algorithm (see Sect.3.4.4) to learn the skeleton and classify unshielded tri-
ples of nodes as either definitely a v-structure, definitely not a v-structure, or an ambiguous
triple. It then uses a greedy hill-climbing search to further orientate edges in the MAG to
maximise the BIC score for MAGs which is employed by M*HC and GSMAG. Since this
score is score equivalent, some edges remain un-orientated, and so CCHM applies Pearl’s
do-calculus to orientate the remaining edges. Chobtham and Constantinou (2020) found
that CCHM is generally more accurate than MHC, FCI, CFCI and GFCI on both ran-
dom and well-known BNs. Both MHC and CCHM were generally slower than FCI and
GFCI while M?HC was faster than GSMAG, and CCHM is faster than CECL Note that
GSMAG, M?HC and CCHM currently assume linear GBNs and so the data must be con-
tinuous values.

5.1.5 Symmetry correction

As noted in Sect. 3.3, skeletons produced by local discovery constraint algorithms, such
as MMPC, are subject to errors arising from asymmetries in local structures where one
node is in another’s local structure but not vice versa, making it unclear whether there
should be an edge between the two nodes. In this situation, Zhao and Ho (2019) proposed
Symmetry Correction which involves relearning the combined local structure of the two
nodes using a score-based algorithm, and deciding whether to include the questionable
edge dependent upon whether the local score-based search generates a graph including

@ Springer

A survey of Bayesian Network structure learning 8775

that edge. Incorporating Symmetry Correction, itself a hybrid approach, can improve the
results of both constraint-based local discovery algorithms, and hybrid algorithms which
use them. The paper evaluated the technique across 16 BNs with the number of variables
up to n = 724, discovering that local structure asymmetries were commonly produced by
MMPC, SI-HITON-PC, IAMB and GS algorithms. In the majority of cases, Symmetry
Correction produced structurally more accurate and better fitting graphs, particularly when
used in the restrict phase of a hybrid algorithm.

5.2 Other hybrid approaches
5.2.1 Other hybrid approaches which search in DAG space

Structure learning algorithms often produce graphs with several isolated components with
no edges between them. Constantinou (2020) argued that this is undesirable in real-world
settings since it prevents the propagation of evidence between the variables in the different
components if the learnt graph is subsequently parameterised and used for inference. The
author therefore proposed the SaiyanH hybrid algorithm which guarantees to produce a
DAG with a connected skeleton not containing independent components. SaiyanH begins
by creating a connected undirected graph containing edges between pairs of nodes which
have the strongest relationships between them according to a novel associational score. A
second phase orientates all the edges in three steps: firstly, using a sequence of CI tests;
secondly, using a score-based orientation heuristic; and thirdly, seeing which orientation
maximises the effect of interventions. The resultant DAG is used as the initial graph for
a third Tabu hill-climbing phase which is constrained to not violate independence rela-
tionships discovered in the first two phases, nor generate isolated components. Hence, the
final DAG skeleton is guaranteed to be connected. SaiyanH ranked 4™ when evaluated for
structural accuracy against 12 other leading constraint, score and hybrid algorithms when
learning six BNs with up to n = 109 variables, whilst always achieving its aim of produc-
ing a connected skeleton.

5.2.2 Other hybrid approaches which search in node-ordering space

The Greedy Sparsest Permutation (GSP) algorithm (Solus et al. 2017) is an approximate
algorithm building upon the exact Sparsest Permutation (SP) algorithm (Raskutti and
Uhler 2013, 2018) which was only viable up to 10 variables. Both are hybrid algorithms
which search node ordering (which the authors referred to as a permutation) space and
use a constraint-based approach within the overall algorithm to generate a minimal I-MAP
DAG associated with each node ordering encountered. This constraint-based approach
generates a DAG, denoted G_, associated with node ordering <= (<, <p, ..., <j ... » <),
using the following rule to generate the edges in G_:

Jj<kandX_ EX HXo s X }\{X<j } ®arcX, — X inG,
where X_ is the node at position i in the node ordering. That is to say, it generates an arc
A — B in the associated DAG if B is lower down the ordering than A, and if A is depend-

ent on B conditional on any subset of the nodes higher up the ordering than B. Pearl (1998)
showed that this creates a minimal I-MAP DAG for that node ordering.

@ Springer

8776 N. K. Kitson et al.

Solus et al. (2017) proposed the Triangle Sparsest Permutation (TSP) algorithm which
traverses ordering space in a depth-first search, by flipping a covered arc in the associ-
ated DAG and then moving to the new ordering associated with that DAG. A covered arc
is one where the two endpoint nodes have the same set of parents (ignoring the endpoint
node that is the parent of the other endpoint). Solus et al. (2017) demonstrated that TSP is
asymptotically consistent, the first ordering space algorithm to offer this guarantee. GSP
limits the depth of the search but restarts the search, and so offers shorter runtimes than
TSP. Comparisons showed GSP was on par with GES and PC in high sample size set-
tings (n = 10, N = 10, 000) and produced more accurate graphs in low sample size settings
(n =100,N = 300).

Bernstein et al. (2020) applied a similar approach to GSP but their Greedy Sparsest
Poset (GSPo) algorithm targets causally insufficient problems. A poset is a partial node
ordering associated with a directed MAG (DMAG), a MAG that has only directed and
bidirected but no undirected edges, and so supports latent variables but not selection vari-
ables. Analogously to GSP, they provided a mapping from a poset to a minimal I-MAP
DMAG and traverse poset space by making changes in the associated DMAG, mov-
ing to the poset associated with that new DMAG. In this case, the allowed change in the
DMAG is changing a single bidirected edge into a directed one, or vice versa. Each of
these moves in poset space results in a DMAG with the same or fewer edges. The authors
conjectured, and supported with empirical evidence, that this algorithm produces a DMAG
that is Markov equivalent to the true graph as N — oo. Results on synthetic Gaussian net-
works with between 10 and 50 variables, three of which are latent, showed better structural
accuracy than FCI and FCI+. Runtime is sensitive to the initial poset provided to GSPo,
although provided a good starting poset is used (for instance using GSP to produce an ini-
tial DAG), GSPo is faster than FCI in all cases and slower than FCI+ when there are more
than 30 — 40 variables.

5.2.3 Other hybrid approaches which search in equivalence class space

Ogarrio et al. (2016) also aimed to produce a hybrid algorithm that provides asymptotic
guarantees of correctness in the presence of latent variables. They observed that constraint-
based algorithms for causally insufficient settings such as FCI, RFCI and FCI+ are asymp-
totically correct, but low sample size performance is poorer, especially returning graphs
with too many bidirected edges. The score-based GES and FGES are asymptotically cor-
rect in causally sufficient situations, although they produce extra adjacencies and incorrect
orientations when there are latent variables present. Thus, they proposed the Greedy Fast
Causal Inference (GFCI) algorithm which first uses GES to produce a CPDAG. GFCI then
employs CI tests to remove extraneous adjacencies in this skeleton, followed by modified
FCI orientation rules to produce a PAG. The authors evaluated GFCI on synthetic Gauss-
ian BNs with number of variables, n = 100, 1,000 with either 5% or 20% of those being
latent variables. GFCI was shown to generally have better recall and precision on adjacen-
cies and arrow end marks than FCI, RFCI and FCI+, and in the cases where it was worse,
it was only slightly worse. GFCI has worse recall of bidirected edges but much better preci-
sion of them, supporting the theoretical argument advanced that FCI, RFCI and FCI+ tend
to produce too many adjacencies. GFCI was around 23% slower than RFCI and faster than
FCI+ (comparisons were not provided for FCI).

@ Springer

A survey of Bayesian Network structure learning 8777

5.2.4 Other hybrid approaches which search in ancestral graph space

The Bayesian Constraint-based Causal Discovery (BCCD) algorithm (Claassen and Heskes
2012) is a hybrid algorithm which does not assume causal sufficiency and produces a PAG.
It assigns a Bayesian score to CI constraints to reflect the reliability of each constraint,
rather than the binary true/false judgement made by most constraint-based approaches. The
score is used to rank CI constraints, helping to prevent unreliable decisions being propa-
gated, and providing a principled means to resolve orientation conflicts.

BCCD follows the approach of PC and FCI and starts with a complete undirected graph
and then uses conditioning sets of increasing size in the adjacency phase. The probability
of CI constraints is incremented during this adjacency phase and if the probability exceeds
a threshold the relevant edge is removed from the evolving skeleton. The ranked CI con-
straints are used to orientate unshielded triples and then further orientation rules applied
using the CI constraint ranking to resolve conflicts. Claassen and Heskes (2012) evaluate
BCCD on small random graphs with six or twelve variables and find that it is slightly more
accurate than FCI and CFCIL.

Hyttinen et al. (2014) use a similar approach that associates a cost with each independ-
ence and dependence constraint. However, the algorithm is targeted at learning a causal
model from multiple datasets with different but overlapping sets of variables, with inter-
ventions on different sets of variables, in a causally insufficient setting. The problem is
tackled as a constrained optimisation problem which is solved using an off-the-shelf
Answer Set Programming approach. Performance is evaluated on small randomly gener-
ated graphs with six continuous variables and demonstrated better accuracy than PC and
CPC for causally sufficient tests, and FCI and CFCI for causally insufficient tests.

The COmbINE algorithm (Triantafillou and Tsamardinos 2015) also assigns probabili-
ties to CI statements and is applied to the same causally insufficient setting with multiple
interventional datasets with overlapping variables. COmbINE uses FCI to learn the PAG
for each interventional dataset. It merges these using an open-source Boolean satisifiability
application, MINISAT (Sorensson and Een 2005), to produce a summary graph showing
the edges and orientations that are invariant across the individual PAGs.

Jabbarri et al. (2017) proposed a hybrid variant of the RFCI constraint-based algorithm
which supports latent and selection variables, known as RFCI-BSC. It assigns a novel
Bayesian Scoring of Constraints (BSC) score to each CI test which reflects the probability
that the variables are indeed conditionally independent. The RFCI algorithm is then modi-
fied so that it stochastically decides whether each CI is true or not according to its BSC
score. The algorithm is not deterministic because it uses a different random seed each time
it runs.

The overall RFCI-BSC algorithm repeats this stochastic learning process to produce a
series of PAGs. It then re-uses the BSC score concept to generate an overall BSC score
for each PAG based on the BSC scores for the CI relationships used to generate that PAG.
This BSC score is reflective of the posterior probability of that PAG. Finally, model aver-
aging produces a single, non-deterministic, output PAG by considering the probability of
each edge across all the PAGs. Jabbarri et al. (2017) found that the structural accuracy
of RFCI-BSC was generally better than RFCI, with up to n = 70 variables and relatively
small sample sizes of N = {200,2000}, though it had worse adjacency accuracy with the
largest number of variables.

Chobtham et al. (2022) describe the mFGS-BS hybrid algorithm which learns a PAG
from one observational dataset and one or more interventional datasets. The datasets must

@ Springer

8778 N. K. Kitson et al.

all have the same variables, but causal sufficiency is not assumed. FGES is used to learn
a CPDAG from each dataset, and probabilities are then assigned to individual arcs based
on their frequency in the different CPDAGSs, a majority-voting constraint-based approach
to arc orientation in unshielded triples, and from do-calculus considerations around inter-
vened variables. A final arc orientation phase removes cycles and resolves any orientation
conflicts to produce a single PAG. The authors find that mFGS-BS outperforms COmbINE,
as well as GFCI and RFCI-BSC which are baselines that do not account for interventions.

5.3 Other structure learning approaches

We discuss some algorithms in this sub-section which take a different approach to the algo-
rithms already discussed.

5.3.1 Functional causal models

Functional Causal Models (FCMs) can be used to model causal systems where it is
assumed that a variable’s value can be expressed as some deterministic function of its par-
ents plus a noise term that is independent of all the causes, that is:

X = f(Pa(X),)

where f is a deterministic function, and € is a noise term which is independent of Pa(X)
and all the other variables’ noise terms. This approach is mostly used with continuous vari-
ables, though it can be used to model, for example, noisy-OR relationships between dis-
crete variables. Given some assumptions about the form of f and ¢, it is possible to learn
the complete causal structure from observational data alone, including the case of identify-
ing the arc orientation with just two variables.

One set of assumptions is the Linear Non-Gaussian Acyclic Model (LINGAM) (Shimizu
et al. 2006) which assumes f is linear, € is independent but non-Gaussian noise, and that
the system is causally sufficient. With these assumptions, the authors show that structure
learning can be undertaken by performing independent component analysis (ICA) on the
data using well-established approaches (Hyvirinen and Oja 2000). Hoyer et al. (2008b)
extend LINGAM to support latent variables.

Zhang and Hyvirinen (2009) propose a more general type of FCM called the Post Non-
Linear (PNL) Causal Model which has the form:

X =fmes(fnl(Pa(X)) + 8)

where f,, defines the variable’s value as a non-linear function of its causes, f,,,, is a non-
linear function that can represent measurement error, and ¢ is the independent noise term.
This more general formulation of FCMs incorporates LINGAM and Additive Noise Mod-
els (Hoyer et al. 2008a; Gretton et al. 2009) as special cases. Zhang and Hyvérinen (2009)
show that arc orientations are identifiable in the PNL model with five exceptions. The most
important exception is when f,, is the identity function, f,; is linear, and € is Gaussian.
This is the linear Gaussian setting which is the usual assumption made by algorithms in
the rest of this paper when modelling systems with continuous variables, and hence why, in
that case, it is only possible to learn up to an equivalence class from observational data. We

@ Springer

A survey of Bayesian Network structure learning 8779

have only presented a brief overview of FCMs here and would encourage interested readers
to read recent reviews of the area such as the one by Glymour et al. (2019).

5.3.2 Continuous optimisation

Another recent development in structure learning is the continuous optimisation approach.
In the combinatoric approaches discussed so far, a DAG can be represented as an adja-
cency matrix where a 1 at a particular position (i,j) indicates the presence of an arc from
node X; to node X;, whereas a 0 would indicate the absence of an arc. In contrast, continu-
ous optimisation treats the adjacency matrix as a real-valued matrix. As with non-continu-
ous score-based methods the goal of continuous optimisation is to maximise how well the
DAG fits the data, but the requirement for acyclicity is expressed as an equality constraint
on real values making the method an equality constrained problem (Vowels et al. 2021).
One of the key advantages of this approach is that it is much closer to approaches used
in mainstream machine learning and allows the use of powerful off-the-shelf optimisation
approaches.

The Non-Combinatoric Optimization via Trace Augmented Lagrangian Structure
(NOTEARS) (Zheng et al. 2018) algorithm was perhaps the first to use continuous optimi-
sation for structure learning. NOTEARSs represents the DAG as a n X n weighted adjacency
matrix W with elements w;; so that the value of any variable X; is given by:

Xi = ZWUX]+21
J#E

where X; iterates over the other variables, and z; is noise for the variable which can be non-
Gaus51an If w;; is zero this indicates that there is no arc from X; to X;. Therefore, matrix W
encapsulates both the DAG structure and the strength of relatlonsh1ps associated with each
arc. This representation naturally fits where the variables take continuous values, but can
be extended to discrete ordinal valued variables by using a logistic regression approach to
obtain ordinal discrete values from continuous values. The objective function, F(W), to be
minimised is given by:

1
FW) = 5= 11X - XWI* + AW,

where X is the complete dataset over n variables and N instances, and therefore XW is the
predicted data values derived from the weighted adjacency matrix and values of parent-
less variables. Thus, the first term in F (W) is the least square error of the predicted values
minus actual data values and therefore a measure of data fitting. The second term is an L1
regulariser with ||W||, being the sum of the absolute weight values. Its inclusion therefore
has the effect of penalising complex DAGs.

The key contribution of Zheng et al. (2018) is to formulate the acyclicity requirement as
the following continuous function constraint 2(W):

h(W) = tr(eW°W) —-n

where O is Hadamard matrix multiplication, ¢4 is matrix exponentiation which may be
expressed as a power series of matrix products, and ¢r(matrix) is the matrix trace operation

which is the sum of the diagonal elements. The derivation of this expression relies on the

@ Springer

8780 N. K. Kitson et al.

fact that the trace of a normal binary adjacency matrix raised to power g equals the number
of cycles of length ¢ in a directed graph, and this must be zero for all g for a DAG. The
constraint /(W) has desirable properties such as being zero for a DAG, with lower values
being closer to a DAG, and it is continuous and differentiable. This means that the problem
can be solved by off-the-shelf optimisers, with NOTEARS using an augmented Lagrangian
approach. Note that the problem is non-convex meaning that it has local minima so that
NOTEARS is an approximate algorithm.

The authors compare NOTEARS with PC, LINGAM and FGES in learning both Erdos-
Rényi (Erdos and Rényi 1960) and scale-free® random graphs (Barabési and Albert 1999)
which the authors argue can be more representative of real-world networks. They use
n € {10,20,50,100} variables and N = 20 as a low sample size, and N = 1000 as a high
sample size, and simulate Gaussian, Exponential and Gumbel noise. FGES and NOTEARS
had comparable accuracy on sparser graphs, but NOTEARS was more accurate on denser
networks across all noise types. We recommend that interested readers consult the review
by Vowels et al. (2021) which covers continuous optimisation methods much more broadly.

6 Practical considerations

This section deals with some of the practical considerations when using BN structure
learning algorithms in real world applications. The first subsection discusses some of
the methods used to evaluate BN structure learning algorithms, and the second subsec-
tion describes the performance of these algorithms in terms of the quality of the networks
they produce and their computational efficiency, and how their real performance compares
to the theoretical or synthetic performance. The third subsection discusses how various
forms of noise in the data can affect the quality of the learnt graph including some tech-
niques which can mitigate those effects. Section 6.4 considers how expert knowledge can
be incorporated into the learning process to improve the learnt networks, Sect. 6.5 provides
details of open-source packages and datasets relevant to structure learning, and the final
subsection provides some guidelines for choosing and using algorithms.

6.1 Algorithm evaluation

Evaluating structure learning algorithms can be a straightforward or a complicated pro-
cess, depending on the selected evaluation approach. Indeed, it is fair to say there is no
agreed process to determine the effectiveness of these algorithms (Korb and Nicholson
2011), partly because of the different types and aims of the algorithms. The relevant lit-
erature consists of various evaluation criteria and, whilst many are similar, others represent
entirely different concepts. In the absence of an agreed evaluation method, it is difficult to
reach a consensus on the effectiveness of an algorithm. As a result, it is not infrequent to
observe conflicting conclusions about which algorithm is ‘best’.

8 Scale-free graphs have a power law probability distribution for the node degree, d, of the form P(d) « d~"
where y is typically between 2 and 3. The resulting network has a small number of nodes with many tens
or more of neighbours which are known as hubs. Biological networks such as gene regulation or metabolic
networks are often scale-free, for example.

@ Springer

A survey of Bayesian Network structure learning 8781

Two main factors that tend to determine the evaluation criteria involve (a) the learn-
ing class of the algorithm, each of which is described in Sects. 2 to 4, and (b) the data
generation process. As shown in Table 5, there are two main types of evaluation, each of
which is largely determined by the two above factors. Graphical evaluations correspond to
scoring metrics that measure the differences between the learnt and ground truth graphs,
whereas inference-based evaluations generally focus on how well the learnt distributions fit
the observed distributions.

When the algorithms are applied to real data, the evaluation is generally not based on
graph comparisons since the true graph is unknown. However, graphical-based evaluations
are occasionally used when a knowledge-based graph is produced that can be compared to
a learnt graph, as in (Kitson and Constantinou 2021). As a result, most real-world applica-
tions of BN structure learning are evaluated in terms of inference.

Constraint-based learning tends not to be assessed with inference-based scores, at least
in the case of synthetic experiments, because this learning class focuses on causal discov-
ery which can only be effectively measured by means of graphical structure. On the other
hand, inference-based evaluation is predominantly based on functions that only score-
based algorithms employ. Therefore, while it makes sense to judge score-based algorithms
in terms of the highest scoring graph achieved, it might be less appropriate to judge con-
straint-based algorithms by the same standards since they are based on a learning process
that does not aim to maximise the global score of the learnt graph.

Metrics that focus on measuring the relationship between two graphical structures can
be viewed as variants, often with modifications, of a confusion matrix that consists of:

(a) True Positives (TP), corresponding to the number of true edges/arcs present in the
learnt graph; i.e., number of corrects edges/arcs discovered,

(b) False Positives (FP), corresponding to the number of false edges/arcs present in the
learnt graph; i.e., number of incorrect edges/arcs discovered,

(c) True Negatives (TN), corresponding to the number of true absent edges in the learnt
graph; i.e., number of correct independence relationships discovered, and

(d) False negatives (FN), corresponding to the number of false absent edges in the learnt
graph; i.e., number of incorrect independence relationships discovered.

Two of the most commonly used metrics are Precision (P) and Recall (R), defined as

4
p=—1P nar=_1P
TP + FP TP + FN

respectively. Specifically, Precision represents the rate of correct edges discovered across
all edges discovered, whereas Recall represents the rate of edges discovered across all true
edges that could have been discovered. Independently, however, these metrics can be mis-
leading in judging the performance of an algorithm, which is why the F1 score is often
preferred since it provides the harmonic mean of Precision and Recall. The F1 score is
defined as:

P-R

Fl=2—-—
P+R

A frequent alternative, or an additional, metric, is the Structural Hamming Distance
(SHD) proposed by Tsamardinos et al. (2006). The SHD score represents the number of

@ Springer

8782 N. K. Kitson et al.

Table 5 The most common

type of evaluation for different
combinations of learning class Synthetic Real
and data generation process

Learning class Data

Constraint-based Graphical Inference

Score-based Graphical, Inference
Inference

Hybrid Graphical, Inference
Inference

edge insertions, deletions and arc reversals needed to convert the learnt graph into the true
graph, and is defined as

SHD = FN + FP

Tsamardinos et al. (2006) originally proposed using SHD to compare CPDAGs (rep-
resenting equivalence classes) and this is the setting in which it is usually used, though it
may also be applied to comparing DAGs. Variants of SHD are often applied and focus on
assigning different penalty weights for edge insertion, deletions and arc reversals. The most
frequent modification involves assigning a lower weight to arc reversals on the basis that an
arc reversal corresponds to the discovery of an edge, albeit one with an incorrect direction
(de Jongh and Druzdzel 2009; Constantinou 2019a).

Other structural metrics have focused on assessing the learnt graph in terms of causal
effects, such as the Structural Intervention Distance (SID) by Peters and Buhlmann (2015)
which measures the closeness of two DAGs in terms of their corresponding causal infer-
ence statements. More specifically, it is the number of ordered pairs of nodes (X, X;) where
an intervention on X; produces a different intervention distribution in node X; in the two
graphs G, G, being compared. The SID of DAG G, from DAG G,, denoted SID(G,, G,), is
computed as the number of pairs of nodes (A, B) where:

B € Pa®(A) and B € De® (A)
plus the number of pairs of nodes (A, B) where:

B ¢ Pa®(A) and Pa® (A) meets one or both of the following conditions:

e some Z € Pa® is a descendant of any W # A on a directed path from A to B
in G,
e Pa®(A) does not d-separate A and B in G,

where A and B represent nodes, Pa%(A) are the parents of node A in graph G, and DeC1(A)
are the descendants of node A in graph G,. Peters and Buhlmann (2015) also proposed
a variant of SID which can be used to compare CPDAGs which only considers those
pairs of nodes where the intervention is identifiable in the CPDAG. They also note that
the SID metric only takes account of interventions on single nodes and that, in general,
SID(G,, G,) # SID(G,,G)).

Lastly, the Balanced Scoring Function (BSF) proposed by Constantinou (2019a) takes
into consideration the complete confusion matrix to eliminate score imbalance by adjusting
the reward function relative to the difficulty of discovering an edge, or the absence of an
edge, proportional to their occurrence rate in the true graph. The BSF is defined as:

@ Springer

A survey of Bayesian Network structure learning 8783

BSF=<E+E_E_@>/2

|El M| M| |E|

where |E| and |M| represent the number of edges present and the number of edges absent
(compared to the complete graph) in the true graph respectively, and

nXn-1)
2

On the other hand, the BD/e/u, Log-Likelihood, and BIC scores described in subsec-
tions 3.1.1 and 3.1.2 are the approaches most commonly used as an alternative to metrics
of graphical discrepancy. Specifically, they are used to judge algorithms in terms of the
highest scoring graph discovered with reference to the input data, according to the pre-
ferred scoring function. Although often less desirable than structural metrics, inference-
based approaches can be extended to include other types of evaluation, such as predictive
accuracy as determined by the Area Under the Curve (AUC) of the Receiving Operating
Characteristic (ROC) (Fawcett 2004).

In general, the BIC score is the most widely used metric across the various inference-
based approaches, especially in real-world applications of BN structure learning. A prob-
lem with BIC, however, and which applies to most inference-based scores, is that it is
score-equivalent; implying that it will generate the same score for multiple DAGs that are
part of the same Markov equivalence class (refer to Fig. 5). While this is not an issue when
comparing CPDAG:s, it is an issue when comparing DAGs which are generally required
when applying structure learning to real problems.

An important limitation of inference-based scores is that a higher scoring graph, or
higher predictive accuracy, do not necessarily reflect a more accurate causal structure
(Constantinou et al. 2021b). For example, the highest BIC scoring graph across all pos-
sible graphs is often not the ground truth graph that generated the data. This limitation is
exaggerated with limited and noisy data that distort the scores, and relaxed with big and
clean data that increase our confidence in the scores generated. Despite their imperfections,
inference-based evaluations are considered reasonably effective and represent an important
metric for structure learning.

Lastly, a further limitation of most structural and inference metrics is that they scale
with the number of variables in the graph, and in the case of inference metrics, with the
sample size also. This makes comparisons between learning performance on different net-
works and datasets problematic. Several authors have attempted to address this by using
scaled variants of the metrics. For example, Scutari et al. (2019a) used SHD divided by the
number of arcs in the true graph in their comparative review of algorithms, and Malone
et al. (2015) employed the Log-Likelihood divided by the product of the number of varia-
bles and sample size in their review of the generalisability of score-based algorithms. Note
that BSF is one structural metric that has the advantage of not scaling with the number of
variables.

M| = - |E|

6.2 Algorithm performance

In this subsection, we consider the quality of the graphs that the algorithms produce, as
well as their computational efficiency. Table 6 summarises some of the noteworthy papers
which provide insights into algorithmic performance, and the type and scale of the data and
networks to which they have been applied. Most papers which introduce a new structure

@ Springer

8784 N. K. Kitson et al.

learning algorithm tend to only evaluate it against previous algorithms of the same type,
making it hard to get a picture of how they perform against the broad range of algorithms
available. For this reason, we focus on comparative studies which cover a decent range of
different types of algorithms, either studied as an end-goal in itself, or as part of study into
some aspect of structure learning such as the effect of the objective function (Scutari 2016)
or noisy data (Constantinou et al. 2021b). Table 6 does include some papers which intro-
duced a new algorithm: MMHC (Tsamardinos et al. 2006); PC-Max (Ramsey 2016) and
FGES (Ramsey et al. 2017) where this has extended the scale of problems that have been
tackled.

6.2.1 Accuracy comparisons between algorithms

The wide range of algorithmic approaches discussed in Sects. 2,3 and 4 and the varied ways
in which performance has been evaluated shown in Table 6, make it difficult to make defin-
itive statements about the optimal approach to use in a particular context. As Table 6 sug-
gests, the algorithms selected for comparison vary considerably between studies, though
we note that most include an algorithm from the PC family, hill-climbing or Tabu, one
from the GES family, and a hybrid algorithm, usually MMHC. These may thus be regarded
as a ‘benchmark’ set of algorithms to which performance can be usefully compared. It
seems rare for comparative studies to include sampling or genetic algorithms, presumably
because they tend to be non-deterministic and produce a slightly different result each time
they run, which makes it difficult to judge how these different kinds of approaches rank
against the more established algorithms.

Comparisons between algorithms usually consider datasets with either discrete or con-
tinuous variables, though Scutari et al. (2019a) considered both discrete and continuous
variable networks, and Raghu et al. (2018) is one of the few studies that examines algo-
rithms capable of learning networks containing a mixture of discrete and continuous vari-
ables. With discrete data, Scutari et al. (2019a) found that Tabu was the most accurate
algorithm (14/20 cases) especially for large sample sizes (10/10 cases where sample size
was equal to, or greater than, the number free parameters), and Constantinou et al. (2021b)
similarly found that Tabu and hill-climbing ranked highest, overall. However, Scutari et al.
(2019a) found that Tabu was less accurate than the constraint and hybrid algorithms stud-
ied when learning Gaussian BNs, tending to produce too dense a graph.

Within score-based algorithms, Scutari (2019a) found that Tabu is more accurate than
FGES (lower SHD in 18/20 cases), a finding echoed by Constantinou et al. (2021b). The
study by Scutari (2019a) included a variant of the Order-MCMC sampling algorithm
referred to as Simulated Annealing which fared poorly in terms of accuracy being the least
accurate in 11/20 cases. Constantinou et al. (2021b) found that Tabu and hill-climbing
ranked more highly in graphical accuracy than the exact GOBNILP algorithm, suggesting
that the latter’s theoretical advantages may be diminished with realistic sample sizes and/or
noisy data, and that the highest scoring graph will not necessarily be closer to the ground
truth graph than some other lower scoring graph. However, Malone et al. (2015) found evi-
dence that exact algorithms (A* search and Integer Linear Programming) generalise better
to unseen data than approximate algorithms do.

Scutari et al. (2019a) found that there was “no systematic difference in accuracy” when
comparing constraint-based and hybrid algorithms, though they and Constantinou et al.
(2021b) found that H2PC tended to perform better than other non-score-based algorithms.
Many of the papers comparing constraint-based algorithms have considered only Gaussian

@ Springer

8785

A survey of Bayesian Network structure learning

00t
—007T

€6'1
—00'1

B/u

80°C
“LT'T

0000C
0001 —000I1

oy

01 XTTO0I~ -8

09
000°0T-1€ - LI

000°02-00S 108-0T

0c

ol

6C €l

o1

(910
Koswrey])

wyILx
-03[y
XeN-Od

Qonponuy

910C
LeInog)
sIoLId
[ean)
-onng
pue uon
-oung
Sunioog

(stoT
‘e
QUOTRIA)
swyL
-o3[e
paseq
-21098
Jo uon
-BSI[RIOUD)

(9002

‘Te 39 sou
-IpIewes])

wyIL

-031Y

OHININ
Qonponuy

pringer

As

Sun SUWIYILL
fouoro [esnes-[en -ly-en [em -o3[e
-g -UQIOJU] -USIQJU] -onnS PUQAH

SwyLx
poseq SDA A Ar -o3pe
-9100s /SHDOJ nqe], -wej -weq JOI3q
wexg /SHO /OH D4 Od -wnN

Qo130p
a3e
-IOAY

so[qe
-LIBA JO
ozig ojdwres IoqUINN

soqe
-LIBA

PXIN

so[qe
-LIBA

-nun
-uo)

so[qe
-1IeA
91

-SIa

SYIOM SYIOM
SEN SN -1N
-ejeq pre wop
ey -puels -uey

uonen[ead jo odKJ,

pajen[eAd SWLIOSTy

SONSTIAOBILYD JoseIR(]

uon
-e3nseAur

Jo vare
redioung

Psn UONRUWLIOJUT 2OUBWLIOJIAd JO SONSLIOIOLIRYD PUE SOJINOS 9 d|qe]

N. K. Kitson et al.

8786

00C
—00'T

009
—007T

B/Uu

0001

0001-001

000°01-T1

01
-0001

005-0S

001
- 01

(L10T

Te 1R
Kasurey])

Wy

-03[v

Sd54

¢yy oonponuy
(L10T
SMAIpUY

pue

Koswrey])

Sy IomIU
J[qerIeA
snonurn

-uod
Surures|

0Lz Anpqeress
(L1oz

‘e 19

y3urs)
S9[0KD

pue so[qe
-LIBA

juoye] Sur
-130ddns

T [swyLosy

Sun
Kouord [esned-[en -1y - [en [einy
- -UQIQJU] -UQIQJU] -Onng

SwyILL
-o3[e
pLgky

SWIyILI
paseq $DA fr Ap o3
-9100s /SHOJ nqe], -wej -wej JO Idq
wexg /SHD /OH IDd Od -wnN

d0139p
o3e
-IOAY

az1g ojdweg

so[qe
-LIeA JO
Joquinn

so[qe
-LIeA
POXIN

so[qe
-1IeA

-nun
-uo)

so[qe
-LIBA
EiEa)

-sia

SYIOM SyIoMm
SEN SN -1N

-ereq pre wop uon

[eoy -puvls -uey -esnsoAut

uonen[ead jo odKJ,

pajen[eAd swyLIoSy

JO vare
sonsuaoeIeyd Joseeq [edioung

(ponunuod) 9sjqer

pringer

A s

8787

A survey of Bayesian Network structure learning

B/Uu

G~
—¢~

§97°8S
4

000$
=001

LS
—01

001
-0

0c 9

el

(610C
Te1R
oer)
Sy
-o3e
paseq
-01008
108X
prm
sydeid
rewndo
A[reqor3
Surureay

(810C
‘e 19
nySey)
SyIoMIQU
adK 91qe
-LIeA
paxTwt
Surures|
Q1e3nsaAuf

Sun
g - 1eh
-UQIQJuU

Koudro [esned - [en
-y -uaropuy

Teanm
-onng

SUIyILL
-o3[e
Jo1q
-wnN

SwyILL
-o3[e
pLgky

paseq SOJ v A
-9100s /SO Nqe], -Wej -wWeqj
wexg /SO /OH D4 Od

d0139p
o3e
-IOAY

az1g ojdweg

so[qe
-LIeA JO
Joquinn

so[qe
-LIeA
POXIN

so[qe
-1IeA

-nun
-uo)

so[qe
-LIBA
EiEa)

-sia

SyI0M
SEN -1ON
-ereq pe
ey -puels

SyI0M
ON
wop
-uey

uonen[ead jo odKJ,

pajen[eAd swyLIoSy

SONSIIA)OBIRYD JoseIR(]

uon
-e3nsoAur

Jo vare
rediounig

(ponunuod) 9sjqer

pringer

As

N. K. Kitson et al.

8788

A A A 6

B/u

90°C
—8I'1

LOIXt'S
- 401

OIX6€E
-€C

LE
-6l

(444
-0T

A

A

A

14!

Q6102
‘e
LeInog)
S9ZIS
ordures
a31e uo
wyIL
-o3e
Suiquurpo
-
Suneneag
(86102
‘e 19
LIRINog)
STy
-o3e
PrqAy
pue
jurens
-uod
21098
Surredwo)

Sun
Ay - en
-uQIoyu[

Koudro [esned - [en
-y -uaropuy

Teanm
-onng

SwyILL
-o3[e
pLgky

SUIyILL
-o3[e
Jo1q
-wnN

SOA v A
-we] -weq
D4 od

paseq
-01005 /SADA NqeL
wexg /sAD /OH

d0139p
o3e
-IOAY

az1g ojdweg

so[qe
-LIeA JO
Joquinn

so[qe
-LIeA
POXIN

sa[qe
-1IeA

sno
-nun
-uo)

so[qe
-LIBA
EiEa)

-sia

SyI0M
ON
wop
-uey

SyI0M

SEN -1ON
-ereq pe
ey -puels

uonen[ead jo odKJ,

pajen[eAd swyLIoSy

SONSIIA)OBIRYD JoseIR(]

uon
-e3nsoAur
Jo vore
rediounig

(ponunuod) 9sjqer

pringer

Qs

8789

A survey of Bayesian Network structure learning

8¢°¢
—007T

401
- 001

601
-8

(arzoz
Te1
nounue)s
-10D)
SuyIL
-o3e
JUSIYIP
uo Byep
Asiou Jo
joedwt oy,

Sun
g - 1eh
-UQIQJuU

Koudro [esned - [en
-y -uaropuy

Teanm
-onng

SwyILL
-o3[e
pLgky

paseq

SOd

-01005 /SADA NqeL

joexg

/SHD

/OH

SUIyILL
-o3[e
Jo1q
-wnN

v A
-we -weq
D4 od

d0139p
o3e
-IOAY

az1g ojdweg

so[qe
-LIeA JO
Joquinn

so[qe
-LIeA
POXIN

sa[qe
-LIeA SI[qe

SNO -LIBA
EiEa)
-sia

-nun
-uo)

SyI0M
SEN -1ON
-ereq pe
ey -puels

SyI0M
ON
wop
-uey

uonen[ead jo odKJ,

pajen[eAd swyLIoSy

SONSIIA)OBIRYD JoseIR(]

uon
-e3nsoAur

Jo vare
rediounig

(ponunuod) 9sjqer

pringer

As

8790 N. K. Kitson et al.

networks. Singh et al. (2017) noted that all the constraint-based algorithms they investi-
gated tended to learn a similar skeleton. Ramsey (2016), Ramsey and Andrews (2017) and
Singh et al. (2017) all found that constraint-based algorithms obtained better edge preci-
sion than score-based approaches, but worse edge recall. The weaker faithfulness assump-
tions made by the CPC algorithm resulted in better arrowhead precision than the PC algo-
rithm achieved, but arrowhead recall was worse (Raghu et al. 2018; Ramsey and Andrews
2017). Raghu et al. (2018) and Ramsey (2016) found that algorithms from the PC and FCI
family performed better than score-based algorithms on real data sets suggesting that they
may perform better in the presence of latent variables and other forms of noise. On the
other hand, Constantinou et al. (2021b) found that the algorithms that accounted for latent
variables (FCI, GFCI and RFCI-BSC) did not offer improved graphical accuracy relative to
other algorithms, in experiments which incorporated latent variables.

6.2.2 Efficiency comparisons between algorithms

As with accuracy comparisons, the literature provides a complex picture as to which algo-
rithms are fastest. Tabu is found to be faster than both constraint-based and hybrid algo-
rithms by Scutari et al. (2019a) when learning discrete networks, whereas Constantinou
et al. (2021b) found some hybrid (MMHC) and constraint (Grow-Shrink) algorithms have
runtimes closer to Tabu than other constraint-based and hybrid algorithms. As might be
expected, exact score-based algorithms are considerably slower than approximate score-
based algorithms (Constantinou et al. 2021b) and are generally limited to problems with
less than 100 variables. In general, approximate score-based algorithms can tackle much
higher dimensional problems, with Ramsey et al. (2017) using the FGES algorithm to learn
both discrete and Gaussian BNs with 30,000 variables in a few minutes with parallel pro-
cessing on a powerful laptop, and learning a Gaussian network with one million variables
on a supercomputer. Scutari et al. (2019a) found that FGES was always faster than Tabu in
the 20 discrete BN cases considered, whereas Constantinou et al. (2021b) found that FGES
was considerably slower than Tabu and hill-climbing over the cases they considered.

Considering Gaussian networks only, the study by Ramsey and Andrews (2017) pro-
vides evidence about the importance of the implementation of an algorithm, such as which
programming language is used, showing an order of magnitude speed difference between
two implementations of the CPC algorithm. Tsamardinos et al. (2006) reported clear effi-
ciency advantages of the MMHC algorithm being 41.35 and 10.09 times faster than the
author’s implementation of PC and Tabu respectively, whereas subsequent studies such as
by Scutari et al. (2019a) have not borne out these advantages.

6.2.3 Other factors affecting performance

Many other factors, beside the choice of algorithm, affect the accuracy and speed of the
structure learning process. One factor where there seems to be consistency across the dif-
ferent studies is that increasing sample size improves the accuracy of the learnt graph. For
example, Malone et al. (2015) find that increasing sample size both improves the predictive
likelihood of test datasets and reduces the variability of the predicted likelihood between
different test datasets for both Tabu and exact score-based algorithms. Similarly, Liao et al.
(2019) used the exact GOBNILP-DEV algorithm to show that the number of graphs within

@ Springer

A survey of Bayesian Network structure learning 8791

a certain factor of the global optimally scoring graph reduces as sample size increases;
i.e., the highest scoring graphs become more differentiated as the sample size increases.
Scutari et al. (2019b) investigated learning with very large sample sizes where a 24 vari-
able CLGBN is learnt accurately with sample sizes of 5 million cases and above, though it
is not clear how accuracy behaves with sample size in the general case.

The objective function chosen for score-based algorithms, as well as the CI test used in
constraint-based algorithms, can have a large effect on the accuracy of the learnt graphs.
Scutari (2016) showed that the choice of scoring function and structural priors within the
hill-climbing algorithm affects the accuracy of the learnt graph as described in Sect. 4.1.1.
Indeed, Scutari et al. (2019a) argued that the choice of objective function and CI tests are
confounding factors when comparing algorithms. Hence, they used equivalent objective
functions and CI tests across all the algorithms they compared in their study. Raghu et al.
(2018) showed that the choice of CI test had a large effect on structural accuracy when
learning mixed variable type networks, and an even more dramatic effect on algorithm
runtime with over three orders of magnitude difference in runtime of the CPC algorithm
between using the fastest and slowest CI test. The choice of hyperparameters used, such as
the ESS for Bayesian scoring functions (see Sect. 4.1.1) and the significance level chosen
for CI tests (Sect. 3.1) affect performance too.

A further factor affecting performance is the dimensionality and quality of the data used.
As Table 6 indicates, many studies make use of randomly generated networks or standard
networks to provide a reference graph to which the learnt graph can be compared. In these
cases, data is randomly generated synthetically to be consistent with the global probability
distribution implied by the network parameters (e.g., the entries in the CPTs in discrete
networks). Less commonly, real-world datasets are used but these generally suffer from
having no reference ground-truth graph with which to compare the learnt graph. Structural
learning has been investigated with a handful of variables right through to one million vari-
ables, with higher dimensionality studies generally using synthetically generated graphs
and data. The sparsity of graphs used in structure learning tends to be much more consist-
ent, with most studies investigating graphs with an average degree between one and six.
The preponderance of synthetic graphs and synthetic data in evaluation studies raises the
concern that they may not reflect real world performance. This was the motivation behind
Constantinou et al.’s (2021b) evaluation of algorithms in the presence of synthetically gen-
erated noise, which did indeed find that graph accuracy in the presence of different forms
of synthetic noise could decrease by up to 37%.

Lastly, comparative performance is strongly affected by the metrics chosen to evaluate
the learnt graph. This includes the choice of the broad class of metrics used which typically
include structural comparisons with a reference graph or inferential metrics based upon the
likelihood of the data being generated by the learnt BN. In the latter approach, the same
data is generally used to evaluate the graph that was used to learn the graph. This does not
capture how well the learnt graph might generalise to new data. Malone et al. (2015) are
relatively unique in having tried to assess the generalisability of the learnt graph by report-
ing metrics on subsets of test data. Also, notable from Table 6, is the lack of evaluation
of the causal inferential properties of the learnt graph, such as how well it can predict the
effect of interventions, or perform counterfactual inferences. This is surprising given that
presumably one often wishes to learn causal BNs from data for these kinds of purposes. It
should also be noted that, even within the same broad type of metric, different metrics can
alter the ranking of algorithms. For example, Constantinou et al. (2021b) report different
rankings according to whether the SHD or F1 metric is used.

@ Springer

8792 N. K. Kitson et al.

6.3 Noise

The structural learning algorithms considered so far implicitly assume that the input data
is a perfect sample from the underlying true distribution. However, there are often multiple
types of noise in real-world observed data sets. For example, instrumental error or a survey
respondents’ unwillingness to respond to a question may mean that some of the values in
a data instance may be missing, which we refer to as missing data. Even if the value is
recorded in the data set, it may not be exactly same as the true value which is known as
measurement error. This section will describe these two main types of noise in observed
data and introduce algorithms that aim to handle these forms of noise in structure learning
with discrete or continuous variables.

6.3.1 Missing data

Missing data is a common and serious problem in many real-world scientific research areas
such as medical research and gene analysis. Rubin (1976) categorised missing data into
three types: Missing Completely At Random (MCAR), Missing At Random (MAR) and
Missing Not At Random (MNAR). In the MCAR case, the missingness of data is a purely
random process and is not dependent on any other substantive variables. This type of miss-
ing data pattern is often caused by instrumental failure and normally would not bias the
learnt graph. In the MAR case, the probability of a particular data value being missing
is dependent on observed values. For example, in an investigation between age and fre-
quency of smoking, data is MAR if younger respondents are more likely to not disclose
their smoking frequency. Finally, data is MNAR if it is neither MCAR nor MAR. In this
case, the probability of being missing may be related to missing values of other observed
variables or even unobserved variables. In the above example, data is MNAR if the age
variable also contains missing values.

One of the earliest algorithms which specifically deals with MAR missing data for
structure learning is the structural EM algorithm (Friedman 1997). Structural EM is an
iterative process making the MAR assumption, which consists of two steps: an Expectation
(E) step and a Maximisation (M) step. In the E step, Structural EM infers the missing val-
ues to produce a complete data set based on the current learned graph. Then, in the M step,
Structural EM applies a standard structure learning algorithm using the inferred complete
dataset to update the learned graph. Although Structural EM has the advantage of being
able to work with any standard structure learning algorithm, and with both discrete and
continuous variables, it is computationally inefficient due to the inference process in the E
step.

More recently, several algorithms based on constraint-based structure learning have
been proposed for handling missing data for continuous variables. Strobl et al. (2018)
treated missing data as a type of selection bias and justified using test-wise deletion of the
missing data in CI tests. Test-wise deletion is an approach which ignores data cases with
missing values among the variables involved in a CI test. They showed that this a sound
approach for handling missing data in the FCI and RFCI algorithms.

Gain and Shpitser (2018) proposed a modified version of PC called CBR-PC which uses
the Inverse Probability Weighting (IPW) method (Horvitz and Thompson 1952) on test-
wise deleted data to construct an IPW-based CI test. IPW is an approach which allevi-
ates distributional bias in data by reweighting each data case. By replacing the original
CI test with IPW-based CI tests, CBR-PC maintains the consistency offered by PC but

@ Springer

A survey of Bayesian Network structure learning 8793

with missing data. However, IPW-based CI tests rely on knowing the causal relationships
between observed variables and missing data, which is unlikely to be known in real-world
problems. Tu et al. (2019) tackled this issue by firstly detecting the causal relationship
between variables and missing data with a constraint-based process, and then used IPW-
based CI tests in the PC algorithm.

Liu and Constantinou (2022) propose a modified version of HC called HC-alPW
which applies the test-wise deletion and IPW method to the score-based HC algorithm to
deal with missing data in discrete variables. They utilised pairwise deletion and the IPW
method with the HC algorithm, thus extending the approaches applied to constraint-based
algorithms described in the previous paragraph to a greedy search score-based algorithm.
The experimental results in their paper show that the HC-aIPW algorithm outperforms the
commonly used Structural EM algorithm both when data are missing at random, and miss-
ing not at random.

6.3.2 Measurement error

Measurement error is the discrepancy between the measured value of a variable and its true
value, which can be treated as a disturbance from its underlying distribution. For continu-
ous variables, the simplest way to model measurement error on measured variable Y,, is
to add a noise term €y on its underlying error-free variable Y, i.e., ¥,, = Y + €. Under the
presence of measurement error, the conditional independence relation detected from the
measured variables may be different from the relation derived from their error-free vari-
ables. Consider the BN presented in Fig. 19 and suppose we can acquire the true values of
variables X and Z, but only the measured values of variable ¥ with measurement error ey .
When €, # 0, and assuming faithfulness, the underlying independence relation X L Z|Y
does not hold on the measured variables since the measured variable Y,, does not d-sep-
arate X and Z. The following three approaches apply to measurement error in continuous
variables.

Scheines and Ramsey (2016) studied the effect of Gaussian measurement error on the
score-based FGES algorithm (Ramsey et al. 2017). They generated synthetic data based on
Linear Gaussian models with additional random Gaussian noise to simulate the measure-
ment error. Their results indicate that minor levels of measurement error can considerably
worsen the learning accuracy of FGES on small sample sizes. However, when the sample
size is 5,000, the accuracy of FGES remains relatively high, even when 80% of the vari-
ance of each variable is due to the measurement error.

Zhang et al. (2018) investigated the identifiability conditions for Linear Non-Gaussian
Models in the presence of measurement error. Their theoretical result shows that under cer-
tain assumptions, the causal DAG remains fully identifiable learnt from noisy data by uti-
lising overcomplete Independent Component Analysis (ICA) to learn the adjacency matrix.
The assumptions used for their result include the causal Markov assumption, faithfulness
assumption, non-linear noise assumption and two other assumptions that imply a sparse
graphical structure.

Blom et al. (2018) proposed a method to detect the upper bound of the variance of ran-
dom measurement error in observed variables for linear Gaussian models. Their method
is based on the tetrad constraints (Silva et al. 2006) which can identify sets of four vari-
ables that are mutually d-separated by a common latent variable. After obtaining the upper
bound, the conditional independence can be corrected based on the minimal and maxi-
mal partial correlation that lie within that bound. The measurement error upper bound was

@ Springer

8794 N. K. Kitson et al.

Fig. 19 Example of measurement
error

€Y

wrongly computed in just three cases and could not be detected in 39 cases in 200 simula-
tion experiments.

Liu et al. (2020) studied the measurement error in discrete BNs and proposed a method
called Spurious Edge Detection (SED) to remove spurious edges from the learned graph
caused by measurement error. As illustrated in Fig. 19, conditional independence relation-
ships between error-free variables may not exist for measured variables in the presence
of measurement error. Therefore, structure learning algorithms may learn spurious edges
representing dependence relationships that do not exist in the true distribution. The SED
algorithm firstly detects the candidate spurious edges that could form a 3-vertex clique,
then assesses each candidate edge for removal based on an EM process. Their experimental
results show that post-processing by the SED algorithm is able to generally improve the F1
and SHD performance of four different structure learning algorithms (HC, GOBNILP, PC-
stable and H2PC) in the presence of measurement error.

6.4 Knowledge

The fusion of expert knowledge into the structure learning process provides a promising
approach for improving performance and counteracting the effects of noise discussed in
the previous two subsections. We discuss those approaches which seek to influence the
learning process, known as soft constraints, and those which enforce requirements that
the learnt structure must conform to, known as hard constraints. In both these cases, the
knowledge is provided by experts to the algorithm before it starts the learning process. We
also discuss active learning where the algorithm interacts with a human expert during the
learning process.

6.4.1 Soft constraints

Bayesian objective functions (see Sect. 4.1.1) for score-based algorithms explicitly
include terms for both the prior beliefs of the BN parameters and for a prior belief of
each possible graph structure. These priors provide a Bayesian approach to incorporat-
ing expert knowledge into the learning process as a soft constraint. However, the vast
numbers of possible graphs and resulting configurations of parameters make it impracti-
cable to specify priors for individual parameters or graphs. As discussed in Sect. 4.1.1,
a standard conjugate prior (e.g. Dirichlet prior for discrete variables) is assumed for
parameter priors, typically with a single hyperparameter value ESS. Likewise, it is not
practical to provide a prior for each possible DAG, and therefore several approaches

@ Springer

A survey of Bayesian Network structure learning 8795

have been proposed where the human expert can provide priors on selected features,
such as the presence or absence of a particular arc.

Castelo and Siebes (2000) provided a mechanism for an expert to assign a prior to
the presence or absence of an arc between any number of pairs of variables. The remain-
ing priors for the pair are assigned uniformly. For example, if an expert specifies a prior
of 0.8 for arc A — B, then arc B — A and no arc between A and B are both assigned a
prior of 0.1. This scheme defines priors over the space of directed graphs that allow
cycles. This represents a bigger space than DAG space, and so the approach redistrib-
utes probability mass from cyclic graphs to DAGs to correct for this. The approach
was validated by showing that these priors could recover the true graph from synthetic
noisy data. Eggeling et al. (2019) evaluate more general structure priors which influence
the overall characteristics of the learnt graph. This includes priors which are uniform
across all DAGs, those which model each edge as having a defined uniform probability
of existing, a prior which balances the probabilities for nodes with different in-degrees,
and one which limits the maximum in-degree. The authors evaluate these priors with
the GOBNILP algorithm for moderately sized networks, and Tabu for larger networks.
The results show that priors which favour sparser graphs produce more accurate graphs
especially at low sample sizes.

As well as constraints on particular arcs, it also possible to place constraints on the node
ordering within the learnt structure. We have already encountered algorithms such as K2
(in Sect. 3.2.1) where an ordering of all the nodes is specified. It is also possible to spec-
ify ordering constraints on a partial set of variables referred to as ancestral constraints,
or since they are often derived from considerations of time and causality, temporal con-
straints. For example, Borboudakis and Tsamardinos (2013) allowed experts to specify a
probability distribution over the possible ancestral relationships between a pair of variables
(A is an ancestor or parent of B, B is an ancestor or parent of A, they have a common ances-
tor or parent, or they have no ancestral relationship). They combined the resulting joint
prior probability distribution of ancestral relationships with an approximation of the num-
ber of DAGs consistent with each configuration of ancestral relationships to define a prior
on DAGs. The authors incorporated this prior into a standard hill-climbing algorithm (see
Sect. 3.2.1) and also augmented the standard add/remove/reverse arc operations with a new
swap-equivalent operator which swaps the current DAG for one in the same equivalence
class with the highest ancestral prior. Experiments showed that modest amounts of prior
ancestral knowledge, involving 12 out of 37 nodes, and using the new swap-equivalent
operator could reduce the SHD error by around 15 to 20%.

Amirkhani et al. (2016) modified the objective function to include an explicit extra
component representing the opinion of several, possibly conflicting, expert views on the
presence and direction of arcs. The accuracy of each expert can also be specified. An
Expectation—-Maximisation variant of hill-climbing is described with the Expectation
step adding, removing or reversing an arc to increase the score as usual, and the Maxi-
misation step modifying the expert accuracy parameters to maximise the score of the
current graph. The approach is evaluated using three synthetic sets of experts with their
opinions generated from ground-truth graphs with three levels of accuracy: weak, medi-
ocre and good. Using the ‘good standard’, experts halved SHD on the Alarm network
(Beinlich et al. 1989) commonly used in evaluations, although improvement was limited
when the weak set of experts were used.

Specification of the initial graph used in score-based algorithms can also be considered
a form of soft-constraint since it may well influence the final learnt graph whilst not rep-
resenting a hard constraint. Surprisingly, there seems to have been relatively little research

@ Springer

8796 N. K. Kitson et al.

undertaken into the influence of the initial graph in general, though Constantinou et al.
(2021a) do investigate it. This is despite several hybrid algorithms using one algorithm
to create a good starting point for a subsequent algorithm. Examples of such algorithms
include SaiyanH and GSPo described in Sects. 4.2.1 and 4.2.2, respectively.

6.4.2 Hard constraints

Early work with hard constraints involved specifying features (arcs or edges) that were
either required or prohibited in the learnt graph, or specifying a topological ordering that
the learnt graph must be consistent with. De Campos and Castellano (2007) modified the
score-based hill-climbing algorithm and the constraint-based PC algorithm to produce
graphs consistent with hard constraints. Simulations involved specifying between 10 and
40% of possible required or prohibited features. In general, increasing the number of con-
straints improved all structural accuracies in graphs learnt by the modified hill-climbing
algorithm. However, increasing the number of constraints, whilst improving most struc-
tural metrics, sometimes increased the number of extraneous arcs in the learnt graph with
the PC algorithm. It was suggested this may have been because more constraints led to less
CI tests being performed and hence less arcs being removed.

The Branch & Bound algorithm (de Campos et al. 2009) discussed in Sect. 4.2.1 sup-
ports hard constraints to represent expert knowledge. These include specifying arcs which
must appear in the result, and ones which are prohibited, as well as being able to limit the
number of parents on an individual node basis. More unusually, it also supports parameter
constraints which place restrictions on how parental values influence child values. These
restrictions affect structural learning by changing the best scores achievable by different
sets of parents.

More recent work has supported ancestral relationships as hard constraints. Borbouda-
kis and Tsamardinos (2012) apply ancestral constraints to PDAGs and PAGs produced by,
for example, the PC and FCI algorithms respectively. They developed a set of algorithms
which can determine variant endpoints in PDAGs and PAGs, or identify when the ances-
tral constraints are not consistent with the learnt graph. They found that even small num-
bers (around 10) of ancestral constraints can orientate around 30% of variant endpoints.
This orientation effect is generally larger in PDAGs than PAGs, since constraints propagate
more in the absence of confounding variables.

Li and van Beek (2018) described the MINOBSx algorithm which supports arc and
edge, as well as ancestral, constraints which they claimed to be the first approximate
score-based algorithm to do so. It is based on the approximate MINOBS algorithm which
searches in ordering-based space (see Sect. 4.2.3). They modified the parent set pruning
rules and the approach used to determine a high-scoring DAG for each order, in order to
take account of ancestral constraints. Li and van Beek (2018) compared MINOBSx with
a MCMC approach which also supports constraints called CaMML (Korb and Nicholson
2011), when learning well-known BNs of up to 48 variables. Li and van Beek (2018) found
MINOBSx to be more robust than CaMML as it was always able to satisfy all the knowl-
edge constraints specified. They noted that ancestral constraints reduced the number of arcs
erroneously missing or mis-orientated in the learnt graph. However, ancestral constraints
tended to encourage additional extraneous edges in the learnt graph. Ancestral constraints
were more effective than simple arc/edge constraints in obtaining correct causal paths as
measured by the SID metric (discussed in Sect. 6.1).

@ Springer

A survey of Bayesian Network structure learning 8797

Chen et al. (2016b) applied ancestral constraints to their exact score-based algorithm
which searches an EC Tree (Chen et al. 2016a) described in Sect. 4.3.3. To do so, they
pruned CPDAGSs prohibited by the ancestral constraints from the EC Tree and converted
ancestral constraints into decomposable edge constraints which can then be used by the
A* search heuristic. They found that their constrained A* search was typically orders of
magnitude faster than the GOBNILP integer linear programming approach described in
subsection (Sect. 4.3.2), when it applied the same ancestral constraints to sub-graphs of
well-known BNs with up to 20 variables.

Wang et al. (2021) have also implemented ancestral constraints in an exact score-based
algorithm named ACOG from the space it searches, the Ancestral Constraint Order-
ing Graph (ACOG). The ACOG space is a modified version of the order graph shown in
Sect. 4.3.1, but where nodes in the graph have multiple DAGs associated with them to
account for the effect of ancestral constraints, and pruning is applied using a novel revenue
function that accounts for the ancestral constraints.

Constantinou et al. (2021a) provided a review of the effect of different forms of soft
and hard constraint knowledge on the graphs learnt by Hill climbing, Tabu and SaiyanH
algorithms. They found that specifying required arcs had the greatest effect followed by
specifying an initial graph with edges in common with the true graph. Conversely, prohib-
iting arcs seemed to have little effect. This may be because graphs tend to have many more
edges absent than edges present, and this reduces the impact of prohibiting, compared to
enforcing, a given number of edges.

6.4.3 Active learning

Active learning identifies relationships between the variables which the algorithm finds dif-
ficult to adjudicate on the basis of the data alone, and so where it may be advantageous to
ask for human input during the learning process. This may require less human input than
the normal approach of inputting expert knowledge before the algorithm begins, since it
avoids supplying knowledge which merely duplicates something that the data also clearly
implies.

Active learning was applied to an MCMC algorithm by Cano et al. (2011). They
assumed a node ordering was known, and used a MCMC approach to generate a prob-
ability distribution over all possible parent sets for each variable. The algorithm asks the
human expert to specify whether arcs having a probability close to 0.5 actually existed or
not in their opinion. Two variations were explored, one where the expert was consulted
after the MCMC learning algorithm had completed, and another where the expert was con-
sulted during the MCMC learning process. Simulations were conducted on standard BNs
containing between 23 and 56 variables with sample sizes N = {50, 100, 500, 1000}. Cano
et al. (2011) found that expert specification of uncertain edges improved structural accu-
racy metrics, and to a lesser extent but perhaps more surprisingly, improved data fitting.
The algorithm identified relatively few edges as uncertain, so that typically between 10 and
16 queries were directed at the expert after processing was completed with N = 50, and
around 5 with N = 1,000. In these cases, expert specification of uncertain edges reduced
SHD by around a quarter. Interacting with the expert during the MCMC learning process
made similar structural improvements, but required fewer judgements from the expert.

Masegosa and Moral (2013) proposed a new hybrid restrict/maximise algorithm
designed to support active learning which has three phases. The first phase constructs a
probability distribution of plausible skeletons built from Markov Blankets, and the second

@ Springer

8798 N. K. Kitson et al.

phase builds a distribution of plausible DAGs using hill-climbing constrained by sampling
from the first phase skeletons according to the relative probability of each skeleton. The
distribution of plausible DAGs is improved in a third phase of unconstrained hill-climb-
ing. A human expert can be asked about the existence of variables in Markov Blankets,
or edges during hill-climbing if the algorithm judges that the answer would provide an
information gain above a specified threshold. Masegosa and Moral (2013) evaluated their
approach on standard networks with the number of variables varied between 23 and 56 and
sample size N = {100, 500, 1000, 5000}. SHD improved by around 10% when knowledge
was used. The number of queries asked of the expert ranged from 13 to 15 with N = 100,
to 1-4 with N = 5000. Results were slightly better if knowledge was requested in both the
Markov Blanket and DAG learning phases rather than just in the DAG learning phases.

6.5 Structure learning software packages and datasets

This subsection lists some of the open-source software packages that are freely available
for BN structure learning and datasets which are often used to evaluate structure learning
algorithms. The lists are not meant to be exhaustive but focus on the algorithms described
in this paper, and datasets commonly used to evaluate them.

Table 7 provides details of some software packages that may be of interest and which
provide algorithms described in this paper. The location where the software can currently
be found is included in the references section at the end of this paper. Only the algorithms
described in this paper are included, but note that these packages may include other algo-
rithms. The programming language is given as this may be relevant for readers wishing to
invoke them from their own software or learn the details of the algorithm from the program
code. Note that we only list the ‘primary’ programming language, but some packages may
provide ‘wrappers’ allowing easy access from other languages. Moreover, lower-level func-
tions that need to be very performant are often written in languages such as C or C++.

Table 8 lists some repositories of networks and datasets commonly used to evaluate
structure learning algorithms. Perhaps the most common evaluation approach is to gener-
ate synthetic data from a known BN, attempt to learn the DAG from that data, and then
compare the learnt DAG with the DAG used to generate the data. This approach is appro-
priate for the entries in Table 8 where reference graphs are available. Another approach to
obtaining a reference graph is to generate random graphs, for example Erdos-Rényi graphs
(Erdos and Rényi 1960) or scale-free networks (Barabasi and Albert 1999), typically with
some specified characteristic such as expected node degree. An alternative to generating
a dataset from a reference graph is to learn from a ‘real-world’ dataset where the underly-
ing reference graph is unknown. In that case, the learnt graph is typically evaluated using
model selection functions that take into consideration both data fitting and model dimen-
sionality; for example, the BIC score. Another possibility when there is no reference graph
available, is to compare the predictive abilities with other machine learning approaches.

6.6 Guidelines on choosing and using structure learning algorithms

This subsection is aimed mostly at practitioners who want to learn the structure of BNs but
are not necessarily familiar with the mechanics of learning algorithms. Thus, this section
focuses on the capabilities of the algorithms available in the packages listed in Table 7,
which tend to be well-maintained and documented. In our view, there is little consensus

@ Springer

A survey of Bayesian Network structure learning 8799

in the literature on what might be the best algorithm in any particular context, so the
focus here is on providing some guidelines to choosing and using algorithms, rather than
attempting to provide a definitive guide. Note that some of the content in this subsection
depends upon what software packages currently provide and is subject to change.

One factor which might affect algorithm choice is the data types of the variables. Fig-
ure 20 shows whether the algorithms offered by the software in Table 7 support continu-
ous or discrete variables or both. Note that whether a particular algorithm supports a var-
iable type is often not a fundamental property of the algorithm, but rather whether the
software implementation supports CI tests or scores that support that variable type. We
classify algorithms that support both continuous and discrete variables in three categories
of increasing flexibility. Firstly, those algorithm implementations that support continuous
or discrete variables, but not both in the same network, are shown in the lightest green
area in Fig. 20. Secondly, those algorithm implementations that support mixtures of con-
tinuous and discrete variables in the same network, but with the restriction that continuous
variables cannot be parents of discrete variables. This kind of restricted mixed network in
known as a Conditional Linear Gaussian network, and the algorithms which support it are
shown in the mid-green area in the figure. Most flexibly of all, there are algorithms which
support mixtures without that restriction. To our knowledge, only the Tetrad package offers
this for some of its algorithms through the use of the Conditional Gaussian (Andrews
et al. 2018) and Degenerate Gaussian (Andrews et al. 2019) scores or CI likelihood tests
(Andrews et al. 2018).

With score-based approaches a further choice is whether to opt for an approximate or
exact algorithm. Exact algorithms can be feasible up to around one hundred variables and
would therefore seem to be preferred in low to medium dimensional settings. However,
they may not offer improved accuracy where latent confounders, selection bias or meas-
urement error is present, a finding supported by some of the results in Constantinou et al.
(2021b). It is also often necessary to place a limit on in-degree for exact algorithms to be
tractable, and this may not be appropriate where dense or scale-free graphs are expected.

Another consideration is whether the system may have latent confounders or selection
variables present. The Tetrad software package focuses on this area and provides the FCI,
CGCI, RFECI and FCI-Max algorithms that account for latent confounders and selection
variables. FCI+ provided by the Pcalg software supports latent confounders too. Despite
the theoretical advantages of these algorithms in causally insufficient settings, the study
by Constantinou et al. (2021b) found that algorithms which did not account for latent con-
founders fared as well as those which did in simulated settings with latent confounders.

Another decision point is whether to choose an algorithm which returns a single
graph, usually referred to as model selection, or one which returns multiple graphs. Even
where the algorithm produces a single graph this generally represents multiple DAGs (or
MAGs) when they are learning from observational data. This is explicit for constraint-
based approaches which return a CPDAG (or PAG). However, most hybrid or score-based
approaches return a DAG, but since they invariably use equivalent scores, this graph might
be best regarded as an example from the equivalence class. We note that even in caus-
ally sufficient settings, interpretation of CPDAGs may be problematic as many constraint-
based algorithms mark arcs as ambiguous if they encounter conflicts in the orientation
phase, for example. Interpretation of PAGs is rather more difficult given that edge types
can have several meanings. Generally speaking, causal inference applications (Noguiera
et al. 2022) require a BN model with a well-defined DAG to be able to do causal inference.
Incorporation of human knowledge either before the learning process, during the learn-
ing process (active learning) or by orientating undirected edges in the CPDAG can help

@ Springer

N. K. Kitson et al.

8800

SoLIaS-W)
pue s9[qeriea judle] Suntoddns Surpnjour

DSH-1DdY ‘104D :PUakH
dd ‘+V ‘SHDA ‘SAD :01008
1049 0dO “XVIN-Od

(ure9[-Tesned Surpnfour)

(uoypAd Jo) eaef SwIILI0S[e Paseq-Jurensuod Jo aguer a31e| QI1qe1S-Od ‘Od ‘XVIN-IDA ‘IDA urensuo) (8107) e 10 Aoswey penay,
SHOYYV ‘PHALH
SHID ‘SHD 21008
EJEp [eUONUSAIIUL PUE SI[qE +104d ‘T04¥ @19®1S-1D4
¥ -Hea)use] 1oddns yorym swyiLIoSe sopnfouy TO4D 104 @198IS-Dd DdD Dd Hurensuo) (2100 T8 10 yosiey S[eod
wyLogde
uoykd 10 D Paseq-2109S JOBXI YIBWYIUAQ SE Pasn UajjO dTINGOD :9100§ (0207) suassn) d[ruqon
od
SONBULIOJUIOIQ UO SNO0J B 1M ‘Od-NOLIH-IS ‘NOLIH ‘dINININ ‘OdININ
qeple]N Swy)LIoS[e paseq-jurensuod [eqo[3 pue [ed0] ‘VAd.L ‘GINVI-IOU] ‘gINVI ‘SO surensuo) (q ‘eg0g) e 19 Sy Joroidxgresne)
OHINI ‘PHafH
uoneinduw ejep Sursstw Jurpnour Surwwres3o1g orueukq ‘QH :9109S
d eyep SuIssiul SuIpuey Uuo sasnooj a3eyoed DdINIA :urensuo) (L107) 'Te 19 urzuesy jonnsug
DdZH ‘DHININ :PHakH
nqgeJ, ‘QH :9100§
SWYILIOS[e yreu Dd-NOLIH DdININ ‘N VI-1u]
A -Yyoudq se pasn ud)jo oFexoed paysqeISA-[OM ‘GINVI-ISEd ‘dINVI ‘SO 9IqeIS-Dd Jurensuo) (0107) 1reIMdg uresqug
sypomidu o8 e ut A[[eradse OVA dVIA U (2T0?) " 30 s1adiyy) DINDIN PLAAH :PLakH
¥ Surureop pue Surjdues 1of swyose HNDN DINDIN-uonnIed ‘DNDN-I9PIQ 91008 (1200) T8 10 1omMg ovarid
a8paymouy Jorid jo uonerodioour pue HueAres :pLqAH
eAR(SWILIOS [PIsEq-2I09S JO UOISIdA SUISeIoAy DHVIA ‘NQel, ‘OH 21008 (q6107) nounueisuo)) sksakegq
OHININ :PHakH
QOUSTISOINAU ISIIN-SADH ‘DJ-UOIYH ‘nge], ‘OH :2100S
ur Aprernonaed SN 9AISSBUW UO PassNd0, “san DdININ ‘GINVI-Iu
uoykq pue ydrroseaer -11qeded 90UIJUI PUB UONESI[ENSIA SIPN[OUT pue gINVI-Ise] ‘gINVI ‘SO ‘Od surensuo) (1707) ‘Te 19 S[OIYOIA AIngsakeg
a3en3ue| Surwel3old snooj 1o uondrosaq swyIo3y ERlicIEIEN | QuIeN

1oded sy ur paquIosop swiyiose Surpraoxd aremijos domos-uadQ / d|qel

pringer

Qs

8801

A survey of Bayesian Network structure learning

SuruIes] YI0MION AONIBIA

I0J P9)O9[[09 A[[eUISLIO $)aSeIEpP PLIOM-TERY ON 966191 0z Kreurg (g107) StAe(pue USIEBRH UBA agaa
Surure9|
QUIYDBW SSOIOL PAsN SJASEIEP PLIOM-eY ON 196°1€7°€—¢ 779 PAXIW puE JJAIOSIP ‘SNONUTIU0D) (6107) peap pueeng TN IDN
“ISN{ [euolsuswip
-y31y ur pasn uvjo ejep A10je[n3or ouag [eoy SO 1996—€+91 b snonunuo)) (Z102) ‘T8 12 yorqielN SINVAIA
TSN UI pasn U)o JSOW SYIOMIOU SUTeIuo)) SOX 1701-S LT POXIW PuE 9)2I0SIP ‘SNONUNUO)) (1207) 1endg uredqug
9SIOU JTJOYIUAS YIIM SJOSLIep Sopnjou] SOX. 601—8 L JRI0SI(T (0207) e 10 nounueisuo) sAsokeq
JIqe SyIoM
-[reae sydeid -)au jo
SOION Q0UQIRJOY SO[qelIeA JO Ioquny JoquunN sodAT, o1qerrep QOURIRJY QweN

SwILIOS e SUIUIRI] AINJONIS 9)BN[BAD 0) Pasn AJUOWIWOD SIASBIBP PUE SYI0MIAU JO saLio)isoday g djqel

pringer

As

8802 N. K. Kitson et al.

Discrete only

r — Gobnilp-dev
MAHC | Gobnilp B

[saiyanH |

RFCI-BSC |

BayesSuites

] w
o
2
>
ol
m
=
m
] =<

Discrete or continuous
| Bayesys

FGES-Merge

Mixed - restrictions

i J Mixed - no restriction .
C Jcre I pc-wax | Eiz;c‘l % e T Gobnilp
: =
L= H LINGAV | Continuous only | ASTAR |

Fig.20 Supported variable types for algorithms in open-source software. Note that where an algorithm is
implemented by more than one package, we show the package with the most flexible variable type support.
(Color figure online)

towards obtaining a DAG for inference purposes. Inclusion of interventional data is another
approach which can help orientate arcs, and we note that GIES (Hauser and Biihlmann
2012) is provided in the Tetrad package.

In some cases, a practitioner’s aim may be to identify the major causal effects rather
than try to learn a complete causal graph. Here, approaches such as those provided by
the BiDAG package which produce a sample of the most probable graphs may be use-
ful. Model averaging over the sample graphs allow the most probable examples of features
such as arcs or Markov Blankets to be identified. The approach can also be useful in under-
standing the uncertainty associated with particular graphs or features.

One of the most common and perhaps most robust method for evaluating the result of
a learning algorithm is to compare the learnt graph structurally with the true causal graph.
However, this is generally only possible in simulation studies, as a reference causal struc-
ture is not usually available in practical problems. If a reference graph is not available,
then one may perform sensitivity studies to gain some understanding of the confidence one
might have in the result. These can examine the sensitivity of the results to the choice of
algorithm, score or CI test, and hyperparameters. Recent work by Kitson and Constantinou
(2022) find that some competitive algorithms such as Tabu and MMHC are sensitive to the
order of columns in the dataset and therefore this might also warrant investigation. Using
a bootstrapping approach whereby graphs are learnt from sub-samples of the data can also
cast light on the reliability of the result and provide some indication of whether the sample
size is adequate.

To conclude, we note that no structure learning algorithm is perfect and that the litera-
ture is quite inconsistent about which algorithms are the most accurate. We note that algo-
rithm ranking is probably quite sensitive to the metrics used, and the scale and nature of
the system being modelled. In these circumstances we recommend using a range of suita-
ble algorithms where possible, and considering model averaging across algorithms to iden-
tify those features which are most reliably identified. Finally, we note that the involvement
of a domain expert to input some constraints into the learning process or review the learnt
graphs is liable to be beneficial.

@ Springer

A survey of Bayesian Network structure learning 8803

7 Concluding remarks

Causal discovery is fundamental to understanding our world and predicting the effects
of our interventions in it. BNs are an important tool for modelling causal relationships
between variables, and hence inferring the effects of our interventions. This paper aims to
provide a comprehensive review of the algorithms used to learn the graphical structures of
BNs from data, and the ways in which knowledge can be incorporated into that process.
We acknowledge that this is a large and rapidly advancing field but aim to have described
the major developments over the past 30 years, many of which are still relevant today. Cur-
rent state-of-the-art and pioneering algorithms are also described.

We begin with a brief introduction to Bayesian Networks including the concepts of
DAG:s, conditional independence, causal classes, equivalence classes and graphical separa-
tion. This aims to be a succinct but accessible introduction for someone relatively new to
the field. The bulk of the paper then describes structure learning algorithms broken down
into the standard categories of score-based, constraint-based and hybrid algorithms. For
each algorithm covered, we present detail for the reader to understand the basic principles
that the algorithm employs, and the assumptions it makes. The review is relatively compre-
hensive and covers 24 constraint-based, 22 score-based and 15 hybrid learning algorithm.
Our goal is to highlight the similarities and differences between algorithms and, to that
end, we use a consistent set of terms and emphasise the evolution of the algorithms and the
relationships between them.

Constraint-based algorithms use CI tests to learn the structure, and we describe these
tests next. Constraint-based algorithms that assume causal sufficiency are then covered,
categorised into global algorithms that learn the graph skeleton as a whole, and local algo-
rithms that learn the skeleton around each variable and then merge them. The end of this
section covers algorithms which do not assume causal sufficiency and the ancestral graphs
needed to represent the relationships between observed variables in that context. Score-
based algorithms follow a more traditional machine learning route of assigning a score
to each graph and exploring possible graphs to find a high, or ideally, the highest, scor-
ing graph. The relevant section describes common choices for the scoring function before
discussing exact algorithms which guarantee to return the highest scoring graph for the
training dataset, and approximate algorithms which do not offer this guarantee. Sampling
algorithms which provide a sample of the higher scoring graphs are also covered under
approximate algorithms. We highlight the commonalities across score-based algorithms by
grouping them according to the type of search space they explore. We then discuss hybrid
algorithms which combine constraint-based and score-based approaches. The most com-
mon hybrid approach is to use a “restrict” constraint-based phase to define a reduced search
space for the subsequent score-based “maximise” phase to explore. These are described in
the first subsection. A second subsection describes other ways in which score-based and
constraint-based approaches are combined. As with score-based algorithms, the search
space employed is used as a way of categorising hybrid algorithms.

Our final substantive section discusses practical considerations when applying and
evaluating the learning performance of these algorithms. We discuss the metrics used
to evaluate structure learning, both in terms of graphical discovery and inference,
and review the accuracy and runtime performance of algorithms by examining recent
papers that focus on large scale comparative analyses. This provides an indication of
the increasing scale of problems that can be tackled by the various algorithms and
highlights inconsistencies within the literature about which algorithms might be ‘best’

@ Springer

8804 N. K. Kitson et al.

for a given problem. Whilst papers proposing new algorithms generally include simu-
lations demonstrating superior performance to previous algorithms, generally of the
same type, we note that early approaches such as hill-climbing, GES and PC remain
competitive in many comparative reviews.

We note that whilst many algorithms offer theoretical guarantees of accuracy such
as asymptotically correct behaviour, these guarantees generally rely on unrealistic
assumptions about the input data. We note that some or all of these assumptions are
generally made for algorithms of all classes: exact and approximate score-based, con-
straint-based and hybrid ones. The quality of the learnt graphs is dependent on many
complex interacting factors including the algorithm chosen, score or CI test employed,
hyperparameter values, data size and quality, and the underlying graph. We note, too,
that different evaluation metrics can paint different pictures about the superiority of
one algorithm over another. This all makes algorithm comparisons rather problem-
atic. Much of the evaluation of the algorithms is performed using synthetic graphs,
and even more so, with synthetically generated clean data. Constantinou et al. (2021b)
found that forms of noise likely to be found in real world data can have a consider-
able impact on learning performance. These forms of noise included latent variables,
missing data, and measurement or discretisation error. Hence, we include a section on
modifications that can be made to algorithms to account for various forms of noise.

Given the huge diversity of algorithms and factors affecting their performance,
incorporating expert knowledge into the learning process may be helpful in many situ-
ations and hence, we conclude by reviewing approaches for doing this. The relevant
subsection discusses hard constraints where expert knowledge is used to restrict the
graphs which the algorithm can consider, as well as soft constraints which less rigidly
influence the learning process. Approaches to active learning, whereby the algorithm
itself identifies which knowledge would be most beneficial, are also discussed.

In conclusion, BN structure learning has become a vibrant research area. However,
several key open questions remain, amongst which we would highlight:

e a huge diversity of structure learning approaches with little consensus on the most
appropriate algorithm in any given real-world context;

e an absence of real-world datasets with accompanying causal graphs validated by
experts, or ideally randomised controlled trials or experiments;

e aneed to identify the best ways of incorporating knowledge and interventional data
into the learning process;

e many confounding factors making algorithmic comparisons difficult, including
sample size, distributional assumptions, faithfulness, linearity, choice of score or
Cl/test, hyperparameter values, data dimensionality, data noise, and the evaluation
metrics.

@ Springer

A survey of Bayesian Network structure learning 8805

Appendix

A: glossary of symbols

Symbol Meaning
1 Independent of, e.g. A L B means “A is independent of B”
L Not independent of, e.g. A L B means “A is not independent of B”
Given or conditional on, e.g. A|B means “A conditional on (or given) B”
\ Substract from set. e.g. X\ {A, B} means set X with elements A and B removed
C Is a strict subset of, e.g. § C X means that all the elements of S are in X, and X contains

one or more elements not in S

C Is a subset of, e.g. § C X means that all the elements of S are in X, but X may be the same
as S

B A Bayesian Network

G A graph, typically the DAG in a Bayesian Network

0 The set of parameters defining the strength of the relationships between variables

F The number of free parameters in the Bayesian Network, that is, in |@|

n Number of nodes (vertices) in the DAG

|G,| Number of possible different graphs containing n nodes

X Set of nodes in a DAG, X = {X|,X,, ..., X, } representing the variables being modelled

X;,A, B, etc An individual node in the Bayesian Network’s DAG representing a variable

X;, a,b The value of the variable X;, A, B respectively

P(X) The joint probability distribution over the variables represented by the nodes

E Set of edges in a graph

|E| Number of edges in the graph

|M| Number of missing (absent) edges, that is, the number of edges in the complete graph
minus |E|

S Set of nodes in a separating set,S = {sy,...,s,}

Pa(X;) The set of nodes that are direct parents of node X;

De(X;) The set of nodes that are descendants of node X;

MB(T) The Markov Blanket of node T

PC(T) The parents and children of node T

D Dataset from which the graph will be learnt

d, Individual data instance (i.e. row or case) within the dataset

N Number of data instances (cases) in the data set,D

a Significance level used in Conditional Independence tests

€ Threshold level used in Mutual Information tests

df Degrees of freedom used in statistical tests

i Index over nodes in the DAG,i = 1..n

r; Number of different values (states) at node (variable)X;

k Index over possible values at a node, k = 1..r; at node X;

q; Number of unique combinations of values of the parents z; of node X;

Jj Index over combinations of parental values, j = 1..g; at node X;

@ Springer

8806 N. K. Kitson et al.

Symbol Meaning

N,_-/-k Number of data instances with kth value, and jth combination of parental values at node
X, in data set D
The conditional probability of node X; having value x, conditional on the parents of X;
having the jzh combination of parental values

Ok

NN i 0 i As N, Ny, 0 but applying to a prior belief of the parameters

Pab Partial correlation between values a and b

TP,FP,TN,FN True positive, false positive, true negative and false negative metrics

P Precision metric

R Recall metric

G? The G-squared test statistic

1 The Chi-squared test statistic

MI(A, B) The mutual information between random variables A and B

iy The stochastic complexity of N values of a discrete variable with r states

Acknowledgements This research was funded by the EPSRC Fellowship project EP/S001646/1 on Bayes-
ian Artificial Intelligence for Decision Making under Uncertainty, and by the Alan Turing Institute in the
UK under the EPSRC Grant EP/N510129/1, and by the Royal Thai Government Scholarship offered by
Thailand’s Office of Civil Service Commission (OCSC).

Data availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Achterberg T, Berthold T, Koch T, Wolter K. C (2008) Constraint integer programming: A new approach to
integrate CP and MIP. In: International Conference on Integration of Artificial Intelligence (Al) and
Operations Research (OR) Techniques in Constraint Programming, Springer, Berlin, Heidelberg, pp
6-20

Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control
19(6):716-723

Aliferis CF, Tsamardinos I, Statnikov A (2003a) HITON: a novel Markov Blanket algorithm for optimal
variable selection. In: AMIA annual symposium proceedings, vol. 2003a. American Medical Infor-
matics Association, p 21

Aliferis CF, Tsamardinos I, Statnikov AR, Brown LE (2003b) Causal explorer: a causal probabilistic net-
work learning toolkit for biomedical discovery. In: METMBS, vol 3, pp 371-376

Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD (2010) Local causal and markov blanket
induction for causal discovery and feature selection for classification part i: algorithms and empirical
evaluation. J Mach Learn Res 11(1):171-234

Amirkhani H, Rahmati M, Lucas PJ, Hommersom A (2016) Exploiting experts’ knowledge for structure
learning of Bayesian networks. IEEE Trans Pattern Anal Mach Intell 39(11):2154-2170

Anderson TW (1962) An introduction to multivariate statistical analysis (No. 519.9 A53). Wiley, New York

@ Springer

http://creativecommons.org/licenses/by/4.0/

A survey of Bayesian Network structure learning 8807

Andersson SA, Madigan D, Perlman MD (1997) A characterization of Markov equivalence classes for acy-
clic digraphs. Ann Stat 25:505-541

Andrews B, Ramsey J, Cooper GF (2018) Scoring Bayesian networks of mixed variables. Int J Data Sci
Anal 6(1):3-18

Andrews B, Ramsey J, Cooper GF (2019) Learning high-dimensional directed acyclic graphs with mixed
data-types. In: The 2019 ACM SIGKDD workshop on causal discovery, PMLR, pp 4-21

Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509-512

Bartlett M, Cussens J (2017) Integer linear programming for the Bayesian network structure learning prob-
lem. Artif Intell 244:258-271

Behjati S, Beigy H (2020) Improved K2 algorithm for Bayesian network structure learning. Eng Appl Artif
Intell 91:103617

Beinlich IA, Suermondt HJ, Chavez RM, Cooper GF (1989) The ALARM monitoring system: a case study
with two probabilistic inference techniques for belief networks. In: AIME 89. Springer, Berlin, pp
247-256

Bernaola N, Michiels M, Larrafiaga P, Bielza C (2020) Learning massive interpretable gene regulatory net-
works of the human brain by merging Bayesian Networks. bioRxiv. https://doi.org/10.1101/2020.02.
05.935007

Bernstein D, Saeed B, Squires C, Uhler C (2020) Ordering-based causal structure learning in the presence
of latent variables. In: International conference on artificial intelligence and statistics, PMLR, pp
4098-4108

Blom T, Klimovskaia A, Magliacane S, Mooij JM (2018) An upper bound for random measurement error in
causal discovery. arXiv preprint arXiv:1810.07973

Borboudakis G, Tsamardinos I (2012) Incorporating causal prior knowledge as path-constraints in Bayes-
ian networks and maximal ancestral graphs. In: Proceedings of the 29th international conference on
machine learning, pp 427-434

Borboudakis G, Tsamardinos I (2013) Scoring and searching over Bayesian networks with causal and asso-
ciative priors. In: Proceedings of the twenty-ninth conference on uncertainty in artificial intelligence,
pp 102111

Bouckaert R (1994) Properties of Bayesian belief network learning algorithms. In: Proceedings of 10thcon-
ference on uncertainty intelligence, pp 102-109

Bouchaert R (1995) Bayesian belief networks: from construction to inference. Ph.D thesis, University of
Utrecht

Buntine W (1991) Theory refinement on Bayesian networks. In: Proceedings of the 7th conference on
uncertainty in artificial intelligence, pp 52-60

Cai B, Huang L, Xie M (2017) Bayesian networks in fault diagnosis. IEEE Trans Industr Inf
13(5):2227-2240

Cano A, Masegosa AR, Moral S (2011) A method for integrating expert knowledge when learning Bayesian
networks from data. IEEE Trans Syst Man Cybern B 41(5):1382-1394

Castelo R, Siebes A (2000) Priors on network structures. Biasing the search for Bayesian networks. Int J
Approx Reason 24(1):39-57

Chen Y, Tian J (2014) Finding the k-best equivalence classes of Bayesian network structures for model aver-
aging. In: Proceedings of the AAAI conference on artificial intelligence, vol 28, no. 1

Chen EYJ, Choi AC, Darwiche A (2016a) Enumerating equivalence classes of Bayesian networks using EC
graphs. In: Artificial intelligence and statistics, PMLR, pp 591-599

Chen EYJ, Shen Y, Choi A, Darwiche A (2016b) Learning Bayesian networks with ancestral constraints.
Adv Neural Inf Process Syst 29:2325-2333

Cheng J, Bell DA, Liu W (1997) Learning belief networks from data: an information theory based approach.
In: Proceedings of the sixth international conference on Information and knowledge management, pp
325-331

Cheng J, Greiner R (1999) Comparing Bayesian network classifiers. In: Proceedings of the fifteenth confer-
ence on uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc., pp 101-108

Cheng J, Greiner R, Kelly J, Bell D, Liu W (2002) Learning Bayesian networks from data: An information-
theory based approach. Artif Intell 137(1-2):43-90

Chickering D (2002) Learning equivalence classes of Bayesian-network structures. J Mach Learn Res
2:445-498

Chickering DM, Meek C (2002) Finding optimal Bayesian networks. In: Proceedings of the eighteenth con-
ference on uncertainty in artificial intelligence, pp 94-102

Chickering DM, Geiger D, Heckerman D (1994) Learning Bayesian networks is NP-hard, Technical Report
MSR-TR-94-17, Microsoft Research, vol 196

@ Springer

https://doi.org/10.1101/2020.02.05.935007
https://doi.org/10.1101/2020.02.05.935007
http://arxiv.org/abs/1810.07973

8808 N. K. Kitson et al.

Chickering DM, Heckerman D, Meek C (2004) Large-sample learning of Bayesian networks is NP-hard. J
Mach Learn Res 5:1287-1330

Chobtham K, Constantinou AC (2020) Bayesian network structure learning with causal effects in the pres-
ence of latent variables. In: Proceedings of the 10th international conference on probabilistic graphi-
cal models, in proceedings of machine learning research, vol 138, pp 101-112

Chobtham K, Constantinou AC, Kitson NK (2022) Hybrid Bayesian network discovery with latent variables
by scoring multiple interventions. arXiv preprint arXiv:2112.10574

Claassen T, Heskes T (2012) A Bayesian approach to constraint based causal inference. In: Proceedings
of the twenty-eighth conference on uncertainty in artificial intelligence, pp 207-216

Claassen T, Mooij JM, Heskes T (2013) Learning sparse causal models is not NP-hard. In: Proceedings
of the twenty-ninth conference on uncertainty in artificial intelligence, pp 172-181

Colombo D, Maathuis MH (2014) Order-independent constraint-based causal structure learning. J Mach
Learn Res 15(1):3741-3782

Colombo D, Maathuis MH, Kalisch M, Richardson TS (2012) Learning high-dimensional directed acy-
clic graphs with latent and selection variables. Ann Stat 40:294-321

Constantinou A (2019a) Evaluating structure learning algorithms with a balanced scoring function.
arXiv:1905.12666 [cs.LG]

Constantinou A (2019b) The Bayesys user manual. Queen Mary University of London, London, UK.
Software http://bayesian-ai.eecs.qmul.ac.uk/bayesys/

Constantinou A (2020) Learning Bayesian Networks that enable full propagation of evidence. IEEE
Access 8:124845-123856

Constantinou AC, Liu Y, Chobtham K, Guo Z, Kitson NK (2020) The Bayesys data and Bayesian net-
work repository. Queen Mary University of London, London, UK. http://bayesian-ai.eecs.qmul.ac.
uk/bayesys/

Constantinou AC, Guo Z, Kitson NK (2021a) The impact of prior knowledge on causal structure learn-
ing. arXiv preprint arXiv:2102.00473

Constantinou AC, Liu Y, Chobtham K, Guo Z, Kitson NK (2021b) Large-scale empirical valida-
tion of Bayesian Network structure learning algorithms with noisy data. Int J Approx Reason
131:151-188

Constantinou AC, Liu Y, Kitson NK, Chobtham K, Guo Z (2022) Effective and efficient structure learn-
ing with pruning and model averaging strategies. Int J Approx Reason 151:292-321

Cooper G, Herskovits E (1992) A Bayesian method for the induction of probabilistic networks from
data. Mach Learn 9:309-347

Cooper GF, Yoo C (1999) Causal discovery from a mixture of experimental and observational data. In:
Proceedings of the fifteenth conference on uncertainty in artificial intelligence, pp 116-125

Correia AHC, de Campos CP, van der Gaag LC (2019) An experimental study of prior dependence
in Bayesian network structure learning. In: International symposium on imprecise probabilities:
theories and applications, pp 78-81

Correia AHC, Cussens J, de Campos CP (2020) On pruning for score-based Bayesian network structure
learning. In: International conference on artificial intelligence and statistics, pp 2709-2718

Cussens J (2011) Bayesian network learning with cutting planes. In: Proceedings of the 27th conference
on uncertainty in artificial intelligence (UAI 2011), AUAI Press, pp 153-160

Cussens J (2012) An upper bound for bdeu local scores. In: Proceedings of 20th European conference on
artificial intelligence, workshop of algorithmnic issues for inference in graphical models, IOS Press.

Cussens J (2020) GOBNILP: learning Bayesian network structure with integer programming. In: Inter-
national conference on probabilistic graphical models, PMLR. pp 605-608. https://bitbucket.org/
jamescussens/gobnilp/

Dantzig G (2016) Linear programming and extensions. Princeton University Press, Princeton

Darwiche A (2009) Modeling and reasoning with Bayesian networks. Cambridge University Press,
Cambridge

de Campos L (2006) A scoring function for learning Bayesian networks based on mutual information
and conditional independence tests.] Mach Learn Res 7:2149-2187

de Campos LM, Castellano JG (2007) Bayesian network learning algorithms using structural restric-
tions. Int J Approx Reason 45(2):233-254

de Campos CP, Ji Q (2010) Properties of Bayesian Dirichlet scores to learn Bayesian network structures.
In: Twenty-fourth AAAI conference on artificial intelligence

de Campos LM, Puerta JM, (2001) Stochastic local and distributed search algorithms for learning belief
networks. In: Proceedings of the III international symposium on adaptive systems: evolutionary
computation and probabilistic graphical model, pp 109-115

@ Springer

http://arxiv.org/abs/2112.10574
http://arxiv.org/abs/hep-th/1905.12666
http://bayesian-ai.eecs.qmul.ac.uk/bayesys/
http://bayesian-ai.eecs.qmul.ac.uk/bayesys/
http://bayesian-ai.eecs.qmul.ac.uk/bayesys/
http://arxiv.org/abs/2102.00473
https://bitbucket.org/jamescussens/gobnilp/
https://bitbucket.org/jamescussens/gobnilp/

A survey of Bayesian Network structure learning 8809

de Campos LM, Fernandez-Luna JM, Gamez JA, Puerta JM (2002) Ant colony optimization for learning
Bayesian networks. Int J Approx Reason 31(3):291-311

de Campos CP, Zeng Z, Ji Q (2009) Structure learning of Bayesian networks using constraints. In: Pro-
ceedings of the 26th annual international conference on machine learning, pp 113-120

de Campos CP, Scanagatta M, Corani G, Zaffalon M (2018) Entropy-based pruning for learning Bayes-
ian networks using BIC. Artif Intell 260:42—50

de la Fuente A, Bing N, Hoeschele I, Mendes P (2004) Discovery of meaningful associations in genomic
data using partial correlation coefficients. Bioinformatics 20(18):3565-3574

de Jongh M, Druzdzel MJ (2009) A comparison of structural distance measures for causal Bayesian network
models. In: Klopotek M, Przepiorkowski A, Wierzchon ST, Trojanowski K (eds) Recent advances in
intelligent information systems, challenging problems of science, computer science series. Academic
Publishing House EXIT, Cambridge, pp 443-456

Dua D, Graff C (2019) UCI machine learning repository [http://archive.ics.uci.edu/ml]. University of Cali-
fornia, School of Information and Computer Science, Irvine

Eaton D, Murphy K (2007) Bayesian structure learning using dynamic programming and MCMC. In: Pro-
ceedings of the 23rd conference on uncertainty in artificial intelligence, pp 101-108

Eggeling R, Viinikka J, Vuoksenmaa A, Koivisto M (2019) On structure priors for learning Bayesian
networks. In: The 22nd international conference on artificial intelligence and statistics, PMLR, pp
1687-1695

Erdos P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5(1):17-60

Fawcett T (2004) ROC graphs: notes and practical considerations for researchers. Mach Learn 31(1):1-38

Franzin A, Sambo F, Di Camillo B (2017) bnstruct: an R package for Bayesian Network structure learning
in the presence of missing data. Bioinformatics 33(8):1250-1252

Friedman N (1997) Learning belief networks in the presence of missing values and hidden variables. In:
ICML, vol 97, pp 125-133

Friedman N, Koller D (2003) Being Bayesian about network structure. A Bayesian approach to structure
discovery in Bayesian networks. Mach Learn 50(1-2):95-125

Friedman N, Nachman I, Peér D (1999) Learning Bayesian network structure from massive datasets: the
"sparse candidate" algorithm. In: Proceedings of the fifteenth conference on uncertainty in artificial
intelligence, pp. 206-215

Gain A, Shpitser I (2018) Structure learning under missing data. In: International conference on probabilis-
tic graphical models, PMLR, pp 121-132

Gasse M, Aussem A, Elghazel H (2014) A hybrid algorithm for Bayesian network structure learning with
application to multi-label learning. Expert Syst Appl 41(15):6755-6772

Geiger D, Heckerman D (1994) Learning gaussian networks. In: Uncertainty proceedings 1994, Morgan
Kaufmann, pp 235-243

Geiger D, Heckerman D (2002) Parameter priors for directed acyclic graphical models and the characteriza-
tion of several probability distributions. Ann Stat 30(5):1412-1440

Gillispie SB, Perlman MD (2002) The size distribution for Markov equivalence classes of acyclic digraph
models. Artif Intell 141(1-2):137-155

Glymour C, Zhang K, Spirtes P (2019) Review of causal discovery methods based on graphical models.
Front Genet 10:524

Goudie R, Mukherjee S (2016) A Gibbs sampler for learning DAGs. J Mach Learn Res 17:1-39

Gretton A, Spirtes P, Tillman R (2009) Nonlinear directed acyclic structure learning with weakly additive
noise models. Adv Neural Inf Process Syst 22:1847-1855

Grzegorczyk M, Husmeier D (2008) Improving the structure MCMC sampler for Bayesian networks by
introducing a new edge reversal move. Mach Learn 71:265-305

Guo Z, Constantinou AC (2020) Approximate learning of high dimensional Bayesian network structures via
pruning of candidate parent sets. Entropy 22(10):1142

Hauser A, Biithimann P (2012) Characterization and greedy learning of interventional Markov equivalence
classes of directed acyclic graphs. J Mach Learn Res 13(1):2409-2464

Heckerman D, Geiger D, Chickering D (1995) Learning Bayesian networks: the combination of knowledge
and statistical data. Mach Learn 20:197-243

Heckerman D, Meek C, Cooper G (1997) A Bayesian approach to causal discovery. Technical report MSR-
TR-97-5, Microsoft Research

Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from a finite universe.
J Am Stat Assoc 47(260):663-685

Hoyer P, Janzing D, Mooij JM, Peters J, Scholkopf B (2008a) Nonlinear causal discovery with additive
noise models. In: Advances in neural information processing systems, p 21

@ Springer

http://archive.ics.uci.edu/ml

8810 N. K. Kitson et al.

Hoyer PO, Shimizu S, Kerminen AJ, Palviainen M (2008b) Estimation of causal effects using linear non-
Gaussian causal models with hidden variables. Int J Approx Reason 49(2):362-378

Hyttinen A, Eberhardt F, Jéarvisalo M (2014) Constraint-based causal discovery: conflict resolution with
answer set programming. In: UAI, pp 340-349

Hyvirinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw
13(4-5):411-430

Imoto S, Higuchi T, Goto T, Tashiro K, Kuhara S, Miyano S (2004) Combining microarrays and bio-
logical knowledge for estimating gene networks via Bayesian networks. J Bioinform Comput Biol
2(01):77-98

Jaakkola T, Sontag D, Globerson A, Meila M (2010) Learning Bayesian network structure using LP relaxa-
tions. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics,
pp 358-365

Jabbari F, Ramsey J, Spirtes P, Cooper G (2017) Discovery of causal models that contain latent variables
through Bayesian scoring of independence constraints. Joint European conference on machine learn-
ing and knowledge discovery in databases. Springer, Cham, pp 142-157

Jennings D, Corcoran J (2018) A birth and death process for Bayesian network structure inference. Probab
Eng Inf Sci 32:615-625

JiJ, Wei H, Liu C (2013) An artificial bee colony algorithm for learning Bayesian networks. Soft Comput
17(6):983-994

Kalisch M, Biihlman P (2007) Estimating high-dimensional directed acyclic graphs with the PC-algorithm.
J Mach Learn Res 8(3)

Kalisch M, Michler M, Colombo D, Maathuis MH, Biithlmann P (2012) Causal inference using graphical
models with the R package pcalg. J Stat Softw 47(11):1-26

Kitson NK, Constantinou A (2021) Learning Bayesian networks from demographic and health survey data.
J Biomed Inform 113:103588

Kitson NK, Constantinou AC (2022) The impact of variable ordering on Bayesian Network Structure Learn-
ing. arXiv preprint arXiv:2206.08952

Koivisto M, Sood K (2004) Exact Bayesian structure discovery in Bayesian networks. J Mach Learn Res
5:549-573

Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT Press,
Cambridge

Kontkanen P, Myllyméki P (2007) A linear-time algorithm for computing the multinomial stochastic com-
plexity. Inf Process Lett 103(6):227-233

Korb K, Nicholson A (2011) Bayesian artificial intelligence, 2nd edn. CRC Press, London

Kuipers J, Moffa G (2017) Partition MCMC for inference on acyclic digraphs. J Am Stat Assoc
112(517):282-299

Kuipers J, Moffa G, Heckerman D (2014) Addendum on the scoring of Gaussian directed acyclic graphical
models. Ann Stat 42(4):1689-1691

Kuipers J, Suter P, Moffa G (2022) Efficient sampling and structure learning of Bayesian networks. J Com-
put Graph Stat 31:639-650

Larranaga P, Kuijpers CM, Murga RH, Yurramendi Y (1996a) Learning Bayesian network struc-
tures by searching for the best ordering with genetic algorithms. IEEE Trans Syst Man Cybern A
26(4):487-493

Larranaga P, Poza M, Yurramendi Y, Murga RH, Kuijpers CMH (1996b) Structure learning of Bayesian
networks by genetic algorithms: A performance analysis of control parameters. IEEE Trans Pattern
Anal Mach Intell 18(9):912-926

Lee JD, Hastie TJ (2015) Learning the structure of mixed graphical models. J Comput Graph Stat
24(1):230-253

Lee C, van Beek P (2017) Metaheuristics for score-and-search Bayesian network structure learning. In:
Canadian conference on artificial intelligence. Springer, Cham, pp 129-141

Li A, van Beek P (2018) Bayesian network structure learning with side constraints. In: International confer-
ence on probabilistic graphical models, pp 225-236

Liao ZA, Sharma C, Cussens J, van Beek P (2019) Finding all Bayesian network structures within a factor
of optimal. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 7892-7899

Liu Y, Constantinou AC (2022) Greedy structure learning from data that contain systematic missing values.
Mach Learn 111(10):3867-3896

Liu Z, Malone B, Yuan C (2012) Empirical evaluation of scoring functions for Bayesian network model
selection. BMC Bioinform 13:1-16

Liu Y, Constantinou AC, Guo Z (2020) Improving Bayesian network structure learning in the presence of
measurement error. arXiv preprint arXiv:2011.09776

@ Springer

http://arxiv.org/abs/2206.08952
http://arxiv.org/abs/2011.09776

A survey of Bayesian Network structure learning 8811

Madigan D, York J, Allard D (1995) Bayesian graphical models for discrete data. In: International statistical
review/revue internationale de statistique, 1995 Aug 1 pp 215-232

Madigan D, Andersson SA, Perlman MD, Volinsky CT (1996) Bayesian model averaging and model
selection for Markov equivalence classes of acyclic digraphs. Commun Stat-Theory Methods
25(11):2493-2519

Malone BM, Jérvisalo M, Myllyméki P (2015) Impact of learning strategies on the quality of Bayesian net-
works: an empirical evaluation. In: UAI, pp 562-571

Marbach D, Costello JC, Kiiffner R, Vega NM, Prill RJ, Camacho DM, Allison KR, Kellis M, Col-
lins JJ, Stolovitzky G (2012) Wisdom of crowds for robust gene network inference. Nat methods.
9(8):796-804

Marella D, Vicard P (2022) Bayesian network structural learning from complex survey data: a resampling
based approach. Stat Methods Appl. https://doi.org/10.1007/s10260-021-00618-x

Margaritis D (2003) Learning Bayesian network model structure from data (no. CMU-CS-03-153). Carne-
gie-Mellon Univ Pittsburgh Pa School of Computer Science

Margaritis D, Thrun S (1999) Bayesian network induction via local neighborhoods. In: Proceedings of the
12th international conference on neural information processing systems, pp 505-511

Masegosa AR, Moral S (2013) An interactive approach for Bayesian network learning using domain/expert
knowledge. Int J Approx Reason 54(8):1168-1181

Meek C (1995) Causal inference and causal explanation with background knowledge. In: Proceedings of the
11th UAI conference on uncertainty in artificial intelligence, pp 403410

Michiels M, Larranaga P, Bielza C (2021) BayeSuites: an open web framework for massive Bayesian net-
works focused on neuroscience. Neurocomputing 428:166—181

Mofta G, Catone G, Kuipers J, Kuipers E, Freeman D, Marwaha S, Lennox BR, Broome MR, Bebbington P
(2017) Using directed acyclic graphs in epidemiological research in psychosis: an analysis of the role
of bullying in psychosis. Schizophr Bull 43(6):1273-1279

Moraffah R, Karami M, Guo R, Raglin A, Liu H (2020) Causal interpretability for machine learning-prob-
lems, methods and evaluation. ACM SIGKDD Explor Newsl 22(1):18-33

Nandy P, Hauser A, Maathuis MH (2018) High-dimensional consistency in score-based and hybrid struc-
ture learning. Ann Stat 46(6A):3151-3183

Niiniméki T, Parviainen P, Koivisto M (2011) Partial order MCMC for structure discovery in Bayesian
networks. In: Proceedings of the twenty-seventh conference on uncertainty in artificial intelligence,
pp 557-564

Nogueira AR, Pugnana A, Ruggieri S, Pedreschi D, Gama J (2022) Methods and tools for causal discovery
and causal inference. Wiley Interdiscip Rev: Data Min Knowl Discov 12(2):e1449

Ogarrio JM, Spirtes P, Ramsey J (2016) A hybrid causal search algorithm for latent variable models. In:
Conference on probabilistic graphical models, pp 368-379

Ott S, Imoto S, Miyano S (2003) Finding optimal models for small gene networks. In: Biocomputing 2004,
pp 557-567

Pearl J (1985) Bayesian networks: a model of self-activated memory for evidential reasoning. In: Proceed-
ings of the 7th conference of the cognitive science society, pp 329-334

Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kauf-
mann, Burlington

Pearl J, Mackenzie D (2018) The book of why: the new science of cause and effect. Basic books, New York

Pensar J, Talvitie T, Hyttinen A, Koivisto M (2020) A Bayesian approach for estimating causal effects from
observational data. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, No. 04,
pp 5395-5402

Perrier E, Imoto S, Miyano S (2008) Finding optimal Bayesian network given a super-structure. J Mach
Learn Res 9:2251-2286

Peters J, Buhlmann P (2015) Structural intervention distance (SID) for evaluating causal graphs. Neural
Comput 27(3):771-799

Raghu VK, Ramsey JD, Morris A, Manatakis DV, Sprites P, Chrysanthis PK, Glymour C, Benos PV (2018)
Comparison of strategies for scalable causal discovery of latent variable models from mixed data. Int
J Data Sci Anal 6(1):33-45

Ramsey J (2016) Improving accuracy and scalability of the pc algorithm by maximizing p-value. arXiv
preprint arXiv:1610.00378

Ramsey JD, Andrews B (2017) A comparison of public causal search packages on linear, gaussian data with
no latent variables. arXiv preprint arXiv:1709.04240

Ramsey J, Spirtes P, Zhang J (2006) Adjacency-faithfulness and conservative causal inference. In: Proceed-
ings of the twenty-second conference on uncertainty in artificial intelligence, pp 401408

@ Springer

https://doi.org/10.1007/s10260-021-00618-x
http://arxiv.org/abs/1610.00378
http://arxiv.org/abs/1709.04240

8812 N. K. Kitson et al.

Ramsey J, Glymour M, Sanchez-Romero R, Glymour C (2017) A million variables and more: the fast
greedy equivalence search algorithm for learning high-dimensional graphical causal models, with an
application to functional magnetic resonance images. Int J Data Sci Anal 3(2):121-129

Ramsey JD, Zhang K, Glymour M, Romero RS, Huang B, Ebert-Uphoff I, Samarasinghe S, Barnes EA,
Glymour C (2018) TETRAD—a toolbox for causal discovery. In: 8th international workshop on cli-
mate informatics

Raskutti G, Uhler C (2013) Learning directed acyclic graphs based on sparsest permutations. arXiv preprint
arXiv:1307.0366

Raskutti G, Uhler C (2018) Learning directed acyclic graph models based on sparsest permutations. Stat
7(1):e183

Richardson TS (2009) A factorization criterion for acyclic directed mixed graphs. In: Proceedings of the
twenty-fifth conference on uncertainty in artificial intelligence, pp 462-470

Richardson T, Spirtes P (2002) Ancestral graph Markov models. Ann Stat 30(4):962-1030

Rissanen J (1996) Fisher information and stochastic complexity. IEEE Trans Inf Theory 42(1):40—47

Robinson RW (1973) Counting labeled acyclic digraphs. In: Harary F (ed) New directions in the theory of
graphs. Academic Press, Cambridge, pp 239-273

Rubin DB (1976) Inference and missing data. Biometrika 63(3):581-592

Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling networks derived
from multiparameter single-cell data. Science 308(5721):523-529

Scanagatta M, de Campos CP, Corani G, Zaffalon M (2015) Learning Bayesian networks with thousands of
variables. In: Advances in neural information processing systems, pp 1864—1872

Scanagatta M, Corani G, Zaffalon M (2017) Improved local search in Bayesian networks structure learning.
In: Advanced methodologies for Bayesian networks, pp 45-56

Scheines R, Ramsey J (2016) Measurement error and causal discovery. In: CEUR workshop proceedings,
NIH Public Access, vol 1792, p 1

Scutari M (2010) Learning Bayesian networks with the bnlearn R Package. J Stat Softw 35:1-22

Scutari M (2016) An empirical-Bayes score for discrete Bayesian networks. In: Conference on probabilistic
graphical models, pp 438—448

Scutari M (2021) Bayesian network repository. https://www.bnlearn.com/bnrepository/

Scutari M, Graafland CE, Gutiérrez JM (2019a) Who learns better Bayesian network structures: accuracy
and speed of structure learning algorithms. Int J Approx Reason 115:235-253

Scutari M, Vitolo C, Tucker A (2019b) Learning Bayesian networks from big data with greedy search: com-
putational complexity and efficient implementation. Stat Comput 29(5):1095-1108

Sesen MB, Nicholson AE, Banares-Alcantara R, Kadir T, Brady M (2013) Bayesian networks for clinical
decision support in lung cancer care. PLoS ONE 8(12):e82349

Shimizu S, Hoyer PO, Hyvirinen A, Kerminen A (2006) A linear non-Gaussian acyclic model for causal
discovery.] Mach Learn Res 7:2003-2030

Silander T, Myllymaki P (2006) A simple approach for finding the globally optimal Bayesian network struc-
ture. In: Proceedings of the 22nd conference on uncertainty in artificial intelligence, pp 445-452

Silander T, Roos T, Kontkanen P, Myllymaki P (2008) Factorized normalized maximum likelihood criterion
for learning Bayesian network structures. In: Proceedings of the 4th European workshop on probabil-
istic graphical models, pp 257-264

Silander T, Roos T, Myllymaki P (2010) Learning locally minimax optimal Bayesian networks. Int J Approx
Reason 51:544-557

Silander T, Leppa-aho J, Jaasaari E, Roos T (2018) Quotient normalized maximum likelihood criterion for
learning Bayesian network structures. In: Proceedings of the 21st international conference on artificial
intelligence and statistics, pp 948-957

Silva R, Scheines R, Glymour C, Spirtes P, Chickering DM (2006) Learning the structure of linear latent
variable models.] Mach Learn Res 7(2):191-246

Singh A, Moore A (2005) Finding optimal Bayesian networks by dynamic programming. Technical report
CMU-CALD-05-106, Carnegie Mellon University

Singh M, Valtorta M (1993) An algorithm for the construction of Bayesian network structures from data. In:
Uncertainty in artificial intelligence. Morgan Kaufmann, Burlington, pp 259-265

Singh K, Gupta G, Tewari V, Shroff G (2017) Comparative benchmarking of causal discovery techniques.
arXiv preprint arXiv:1708.06246

Solus L, Wang Y, Uhler C (2017) Consistency guarantees for greedy permutation-based causal inference
algorithms. arXiv preprint arXiv:1702.03530

Sorensson N, Een N (2005) Minisat v1. 13-a sat solver with conflict-clause minimization. SAT 2005(53):1-2

Spirtes P, Glymour C (1991) An algorithm for fast recovery of sparse causal graphs. Soc Sci Comput Rev
9(1):62-72

@ Springer

http://arxiv.org/abs/1307.0366
https://www.bnlearn.com/bnrepository/
http://arxiv.org/abs/1708.06246
http://arxiv.org/abs/1702.03530

A survey of Bayesian Network structure learning 8813

Spirtes P, Zhang J (2014) A uniformly consistent estimator of causal effects under the k-triangle-faithfulness
assumption. Stat Sci 29(4):662—-678

Spirtes P, Glymour C, Scheines R (1990) Causality from probability. In: Conference proceedings: advanced
computing for the social sciences, Williamsburgh

Spirtes P, Glymour C, Scheines R (1993) Causation, prediction, and search, 1st edn. Springer, New York

Spirtes P, Meek C, Richardson T (1995) Causal inference in the presence of latent variables and selection
bias. In: Proceedings of the eleventh conference on uncertainty in artificial intelligence, pp 499-506

Spirtes P, Glymour C, Scheines R (2000) Causation, prediction, and search, 2nd edn. The MIT Press,
Cambridge

Steck H, Jaakkola TS (2002) On the dirichlet prior and Bayesian regularization. In: Proceedings of the 15th
international conference on neural information processing systems, pp 713-720

Strobl EV, Visweswaran S, Spirtes PL (2018) Fast causal inference with non-random missingness by test-
wise deletion. Int J Data Sci Anal 6(1):47-62

Suter P, Kuipers J, Moffa G, Beerenwinkel N (2021) Bayesian structure learning and sampling of Bayesian
networks with the R package BiDAG. arXiv preprint arXiv:2105.00488. https://CRAN.R-project.org/
package=BiDAG

Suzuki J (1993) A construction of Bayesian networks from databases based on an MDL principle. In: Pro-
ceedings of the ninth international conference on uncertainty in artificial intelligence, pp 266-273

Suzuki J (1999) Learning Bayesian belief networks based on the minimum description length principle:
basic properties. IEICE Trans Fundam Electron Commun Comput Sci 82(10):2237-2245

Suzuki J (2017) An efficient Bayesian network structure learning strategy. N Gener Comput 35(1):105-124

Tan X, Gao X, Wang Z, Han H, Liu X, Chen D (2022) Learning the structure of Bayesian networks with
ancestral and/or heuristic partition. Inf Sci 584:719-751

Teyssier M, Koller D (2005) Ordering-based search: a simple and effective algorithm for learning Bayesian
networks. In: Proceedings of the 21st conference on uncertainty in artificial intelligence, pp 584-590

Tian J, He R (2009) Computing posterior probabilities of structural features in Bayesian networks. In: Pro-
ceedings of the twenty-fifth conference on uncertainty in artificial intelligence, pp 538-547

Triantafillou S, Tsamardinos I (2015) Constraint-based causal discovery from multiple interventions over
overlapping variable sets.] Mach Learn Res 16(1):2147-2205

Triantafillou S, Tsamardinos I (2016) Score-based vs constraint-based causal learning in the presence of
confounders. In: CFA@ UAL pp 59-67

Trosser F, de Givry S, Katsirelos G (2021) Improved acyclicity reasoning for bayesian network structure
learning with constraint programming. In: 30th international joint conference on artificial intelligence
(IUCAI-21)

Tsamardinos I, Aliferis CF, Statnikov A (2003) Time and sample efficient discovery of Markov blankets
and direct causal relations. In: Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp 673-678

Tsamardinos I, Brown LE, Aliferis CF (2006) The max-min hill-climbing Bayesian network structure learn-
ing algorithm. Mach Learn 65(1):31-78

Tsirlis K, Lagani V, Triantafillou S, Tsamardinos I (2018) On scoring maximal ancestral graphs with the
max—min hill climbing algorithm. Int J Approx Reason 102:74-85

Tu R, Zhang C, Ackermann P, Mohan K, Kjellstrom H, Zhang K (2019) Causal discovery in the presence
of missing data. In: The 22nd international conference on artificial intelligence and statistics, PMLR,
pp 1762-1770

Ueno M (2010) Learning networks determined by the ratio of prior and data. In: Proceedings of the 26"
conference on uncertainty in artificial intelligence, pp 598-605

Van Beek P, Hoffmann HF (2015) Machine learning of Bayesian networks using constraint programming.
In: Proceedings of the international conference on principles and practice of constraint programming,
pp 429-445

Van Haaren J, Davis J (2012) Markov network structure learning: a randomized feature generation approach.
In: Twenty-sixth AAAI conference on artificial intelligence

Verma T, Pearl J (1990) Equivalence and synthesis of causal models. In: Proceedings of the sixth annual
conference on uncertainty in artificial intelligence, Elsevier Science Inc, pp 255-270

Viinikka J, Hyttinen A, Pensar J, Koivisto M (2020) Towards scalable bayesian learning of causal dags. Adv
Neural Inf Process Syst 33:6584-6594

Vitolo C, Scutari M, Ghalaieny M, Tucker A, Russell A (2018) Modeling air pollution, climate, and health
data using Bayesian Networks: a case study of the English regions. Earth and Space Sci 5(4):76-88

Vowels MJ, Camgoz NC, Bowden R (2021) D’ya like DAGs? A survey on structure learning and causal
discovery. arXiv preprint arXiv:2103.02582

@ Springer

http://arxiv.org/abs/2105.00488
https://CRAN.R-project.org/package=BiDAG
https://CRAN.R-project.org/package=BiDAG
http://arxiv.org/abs/2103.02582

8814 N. K. Kitson et al.

Wang Z, Gao X, Yang Y, Tan X, Chen D (2021) Learning Bayesian networks based on order graph with
ancestral constraints. Knowl-Based Syst 211:106515

Wong ML, Leung KS (2004) An efficient data mining method for learning Bayesian networks using an evo-
lutionary algorithm-based hybrid approach. IEEE Trans Evol Comput 8(4):378-404

Yang J, Li L, Wang A (2011) A partial correlation-based Bayesian network structure learning algorithm
under linear SEM. Knowl-Based Syst 24(7):963-976

Yang C, JiJ, Liu J, Liu J, Yin B (2016) Structural learning of Bayesian networks by bacterial foraging opti-
mization. Int J Approx Reason 69:147-167

Yaramakala S, Margaritis D (2005) Speculative Markov blanket discovery for optimal feature selection. In:
Fifth IEEE international conference on data mining (ICDM’05). IEEE, p 4

Yehezkel R, Lerner B (2009) Bayesian network structure learning by recursive autonomy identification. J
Mach Learn Res 10(7):1527-1570

Yuan C, Malone B, Wu X (2011) Learning optimal Bayesian networks using A* search. In: Twenty-second
international joint conference on artificial intelligence

Zanga A, Ozkirimli E, Stella F (2022) A survey on causal discovery: theory and practice. Int J] Approx Rea-
son 151:101-129

Zhang J (2008a) Causal reasoning with ancestral graphs. J] Mach Learn Res 9:1437-1474

Zhang J (2008b) On the completeness of orientation rules for causal discovery in the presence of latent con-
founders and selection bias. Artif Intell 172(16-17):1873-1896

Zhang K, Hyvirinen A (2009) On the identifiability of the post-nonlinear causal model. In: 25th conference
on uncertainty in artificial intelligence (UAI 2009, AUAI Press, pp. 647-655

Zhang J, Spirtes P (2008) Detection of unfaithfulness and robust causal inference. Mind Mach
18(2):239-271

Zhang K, Gong M, Ramsey J, Batmanghelich K, Spirtes P, Glymour C (2018) Causal discovery with lin-
ear non-gaussian models under measurement error: structural identifiability results. In: UAI pp
1063-1072

Zhao J, Ho SS (2019) Improving Bayesian network local structure learning via data-driven symmetry cor-
rection methods. Int J Approx Reason 107:101-121

Zheng X, Aragam B, Ravikumar PK, Xing EP (2018) DAGs with NO TEARS: continuous optimization for
structure learning. Adv Neural Inf Process Syst 31:9472-9483

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

	A survey of Bayesian Network structure learning
	Abstract
	1 Introduction
	2 Preliminaries
	3 Constraint-based learning
	3.1 Determining conditional independence
	3.2 Global discovery algorithms
	3.2.1 SGS algorithm
	3.2.2 The PC algorithm
	3.2.3 The conservative PC (CPC) algorithm
	3.2.4 The very conservative SGS (VCSGS) algorithm
	3.2.5 The PC-stable algorithm
	3.2.6 PC-MAX algorithm
	3.2.7 Three-phase dependency algorithm (TPDA)
	3.2.8 Recursive autonomy identification (RAI) algorithm

	3.3 Local discovery algorithms
	3.3.1 Markov Blanket algorithms
	3.3.2 Parents-and-children algorithms

	3.4 Algorithms assuming the existence of latent variables
	3.4.1 Ancestral graphs
	3.4.2 Fast causal inference (FCI) algorithm
	3.4.3 Really fast causal inference (RFCI) algorithm
	3.4.4 Conservative fast causal inference (CFCI) algorithm
	3.4.5 Fast causal inference plus (FCI+) algorithm
	3.4.6 Mixed variable types—MGM-FCI-MAX algorithm

	4 Score-based learning
	4.1 Objective functions
	4.1.1 Bayesian scores
	4.1.2 Information-theoretic scores

	4.2 Approximate score-based algorithms
	4.2.1 Approximate search of DAG space
	4.2.2 Approximate search of equivalence class space
	4.2.3 Approximate search of node-ordering space
	4.2.4 Approximate search of ancestral graph space

	4.3 Exact score-based algorithms
	4.3.1 Exact search of node-ordering space
	4.3.2 Exact search of DAG space
	4.3.3 Exact search of equivalence class space

	5 Hybrid learning and other approaches
	5.1 Restrictmaximise algorithms
	5.1.1 Restrictmaximise in DAG space
	5.1.2 Restrictmaximise in equivalence class space
	5.1.3 Restrictsampling in ordering space
	5.1.4 Restrictmaximise in ancestral graph space
	5.1.5 Symmetry correction

	5.2 Other hybrid approaches
	5.2.1 Other hybrid approaches which search in DAG space
	5.2.2 Other hybrid approaches which search in node-ordering space
	5.2.3 Other hybrid approaches which search in equivalence class space
	5.2.4 Other hybrid approaches which search in ancestral graph space

	5.3 Other structure learning approaches
	5.3.1 Functional causal models
	5.3.2 Continuous optimisation

	6 Practical considerations
	6.1 Algorithm evaluation
	6.2 Algorithm performance
	6.2.1 Accuracy comparisons between algorithms
	6.2.2 Efficiency comparisons between algorithms
	6.2.3 Other factors affecting performance

	6.3 Noise
	6.3.1 Missing data
	6.3.2 Measurement error

	6.4 Knowledge
	6.4.1 Soft constraints
	6.4.2 Hard constraints
	6.4.3 Active learning

	6.5 Structure learning software packages and datasets
	6.6 Guidelines on choosing and using structure learning algorithms

	7 Concluding remarks
	Appendix
	A: glossary of symbols
	Acknowledgements
	References

