
A Primer on Deep
Learning for
Causal Inference

Bernard J. Koch1,2 , Tim Sainburg3,
Pablo Geraldo Bastías4, Song Jiang5,
Yizhou Sun5, and Jacob G. Foster6,7,8,9

Abstract

This primer systematizes the emerging literature on causal inference using
deep neural networks under the potential outcomes framework. It provides
an intuitive introduction to building and optimizing custom deep learning mod-
els and shows how to adapt them to estimate/predict heterogeneous treat-
ment effects. It also discusses ongoing work to extend causal inference to
settings where confounding is nonlinear, time-varying, or encoded in text, net-
works, and images. To maximize accessibility, we also introduce prerequisite
concepts from causal inference and deep learning. The primer differs from
other treatments of deep learning and causal inference in its sharp focus on
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observational causal estimation, its extended exposition of key algorithms, and
its detailed tutorials for implementing, training, and selecting among deep esti-
mators in TensorFlow 2 and PyTorch.

Introduction
This primer aims to introduce social science readers to an exciting literature
exploring how deep neural networks can be used to estimate causal effects. In
recent years, both causal inference frameworks and deep learning have seen
rapid adoption across science, industry, and medicine. Causal inference has a
long tradition in the social sciences, and social scientists are increasingly
exploring the use of machine learning (ML) for causal inference (Athey
and Imbens, 2016; Wager and Athey, 2018; Chernozhukov et al., 2018).
Nevertheless, deep learning remains conspicuously underutilized by social
scientists compared to other ML approaches, both for causal inference and
more generally.

The deep learning revolution has been spurred by the flexibility and
expressiveness of these models. Neural networks are nearly nonparamet-
ric and can theoretically approximate any continuous function (Cybenko,
1989), making them well-suited for both classification and regression
tasks. Furthermore, they can be configured with different architectures
and objectives to learn from a variety of quantitative data as well as
text, images, video, networks, and speech. These advantages allow
them to learn vector “representations” of complex data with emergent
properties. Simple examples of representation learning include the
Word2Vec algorithm that discovers semantic relationships between
words in texts, or face classification models that learn vectors describing
facial features (Mikolov et al., 2013). More recently, generative models
like DALL-E, Stable Diffusion, and ChatGPT have shown how life-like
images and coherent text passages can be reconstructed from learned
representations.

Here we explore the potential for leveraging these advantages to estimate
causal effects. Causal inference frameworks are nonparametric, but the linear
models traditionally used to estimate causal effects require strong parametric
assumptions. In contrast, the nearly nonparametric nature of neural networks
allows us to estimate smooth response surfaces that capture heterogeneous treat-
ment effects for individual units with low bias.1 The ability of these models to
learn from complex data means we can extend causal inference to new settings
where confounding is complicated, time-varying, or even encoded in texts,
graphs, or images (see Box 1 for hypothetical examples). Lastly, given the
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right objectives, neural networks promise to learn deconfounded representations
of data, presenting a new strategy for treatment modeling.

Box 1: Example Scenarios for Causal InferencewithNontraditional Data

Text. As a motivating example, Veitch, Sridhar, and Blei (2020) consider the effect of
the author’s reported gender (T) on the number of upvotes a Reddit post receives (Y).
However, gender may also “affect the text of the post, e.g., through tone, style, or topic
choices, which also affects its score [(X)].” Controlling for a representation of the text
would allow the analyst to more accurately estimate the direct effect of gender.
Images. Todorov et al. (2005) showed that split second-judgments of a politician’s
competence (T) from pictures (X) of their face is predictive of their electability (Y).
When attempting to replicate this study using machine learning classifiers rather
than human classifiers, Joo, Steen, and Zhu (2015) suggest that the age of the face
(Z) is a not-so-obvious confounder: while older individuals are more likely to
appear competent, they are also more likely to be incumbents. Even if age is
unknown, using neural networks to control for confounders implicitly encoded in
the image (like age) could reduce bias.
Networks. Nagpal et al. (2020) explore the question of which types of
prescription opioids (e.g., natural, semisynthetic, synthetic) (T) are most likely to
cause long-term addiction (Y). Because of predisposition to different injuries, type
of employment (X) could be a common cause of both treatment and outcome.
Suppose job type is unobserved, but we know that patients are likely to associate
with coworkers through homophily. To capture some of the effects of this latent
unobserved confounder, analysts might choose to control for a representation of
the patient’s position in their social network when estimating the causal effect.

This primer synthesizes existing literature on deep causal estimators, but it is
not a review; its goals are fundamentally pedagogical andprospective rather than
retrospective. In the “DeepLearning Fundamentals” section,we introduce social
scientists to the fundamental concepts of deep learning, as well as the basic
workflow for building and training their own deep neural networks within a
supervised learning framework. For readers unfamiliar with causal inference,
the “Causal Identification and Estimation Strategies” section introduces the
assumptions of causal identification and three fundamental estimation strategies
within the selection on observables design: Matching, outcome modeling, and
inverse propensity score weighting (IPW). ML models often perform poorly
in both theory and practice when only one of these strategies is employed, so
we also introduce the concept of double robustness.

The “Three Different Approaches to Deep Causal Estimation” section is the
main body of the article. Here we introduce three distinct approaches to deep
causal estimation—deep outcomemodeling, balancing through representation
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learning, and double robustness with IPW—alongside four related deep learn-
ingmodels for the estimation of heterogeneous treatment effects: the S-learner,
T-learner, Treatment Agnostic Regression Network (TARNet) and Dragonnet
(Shalit, Johansson, and Sontag, 2017; Shi, Blei, and Veitch, 2019). Although
this literature is rapidly evolving, these four models are sufficient to illustrate
how traditional estimation strategies can be used in creative ways that leverage
the key strengths of neural networks (i.e., deconfounding through representa-
tion learning, semiparametric inference). The “Confidence and Interpretation”
section deals with the practical considerations of building confidence intervals
and interpreting neural networks. These guidelines are concretized in the
companion online tutorials, which show readers how to implement and inter-
pret the models described in the “Three Different Approaches to Deep Causal
Estimation” section in both TensorFlow 2 and PyTorch.

In the “Beyond Traditional Data: Text, Networks, Images, and Treatment
over Time” section, we focus on the future of deep causal inference: estimators
that can disentange counfounding relationships embedded within texts,
images, graphs, or time-varying data. In the interest of clarity, we give hypo-
thetical examples of the types of questions social scientists might answer with
these models and briefly describe ongoing research on each of these modal-
ities. For fuller treatments of some of these models, see the Online
Appendix. We conclude with a discussion of how neural networks fit into
the broader literature on ML for causal inference (the “Conclusion: Deep
Causal Estimation in Context” section).

The primer makes multiple contributions. First, it is one of the first pieces
in the sociological literature to introduce the fundamentals of deep learning
not only at a conceptual level (e.g., backpropagation, representation learning)
but at a practical one (e.g., validation, hyperparameter tuning). Our recom-
mendations for training and interpreting neural networks are supported by
heavily annotated tutorials that teach readers without prior familiarity with
deep learning how to build their own custom models in TensorFlow 2 and
PyTorch. Second, we use this foundation and select examples to build intu-
ition on how the core strengths of deep learning can be leveraged for
causal inference. Finally, we highlight future directions for this literature
and argue why the future of causal estimation runs through deep learning.

Deep Learning Fundamentals

Artificial Neural Networks

Artificial neural networks (ANNs) are statistical models inspired by the
human brain (Brand, Koch, and Xu, 2020; Goodfellow, Bengio, and
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Courville, 2016). In an ANN, each “neuron” in the network takes the
weighted sum of its inputs (typically, the outputs of other neurons) and trans-
forms them using a differentiable (or almost everywhere differentiable), non-
linear function (e.g. sigmoid, rectified linear unit). Neurons are arrayed in
layers; an input layer takes in the raw data, and neurons in subsequent
layers take the weighted sum of outputs in previous layers as input. An
“output” layer contains a neuron for each of the predicted outcomes with
transformation functions appropriate to those outcomes. For example, a
regression network that predicts one real-valued outcome will have a single
output neuron without a transformation function so that it produces a real
number. A regression network without any hidden layers corresponds
exactly to a generalized linear model (Figure 1A). When additional
“hidden” layers are added between the input and output layers, the architec-
ture is called a feed-forward network or multilayer perceptron (Figure 1B). A
neural network with multiple hidden layers is called a “deep” network, hence
the name “deep learning” (LeCun, Bengio, and Hinton, 2015). A neural
network with a single, large enough hidden layer can theoretically approxi-
mate any continuous function (Cybenko, 1989).

Neural networks are trained to predict their outcomes by optimizing a loss
function (also called an objective or cost function). During training, the back-
propagation algorithm uses the chain rule from calculus to assign portions of
the total error in the loss function to each neuron in the network. An opti-
mizer, such as the stochastic gradient descent algorithm or the popular
ADAM algorithm (Kingma and Ba, 2015), then moves each parameter in
the opposite direction of this error gradient. Neural networks first rose to
popularity in the 1980s but fell out of favor compared to other ML model
families (e.g., support vector machines) due to their expense of training.
By the late 2000s, improvements to backpropagation, advances in computing
power (i.e., graphic cards), and access to larger datasets collectively enabled a
deep learning revolution where ANNs began to significantly outperform other
model families. Today, deep learning is the hegemonic ML approach in
industries and fields other than social science.

Deep Learning in Practice

This section focuses on the practice of training neural networks within a
supervised learning framework. While the principles behind supervised ML
are universal, the workflow for neural networks differs substantially from
other ML approaches (e.g., random forests, support vector machines) in prac-
tice. Figure 2 presents this workflow in four different parts: Set up, Training,
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Figure 1. A: Generalized linear model (GLM) represented as a computational graph.
Observable covariates X1, X2, X3 and treatment status T depicted in rounded purple
boxes. Each of the lines between the rounded purple inputs and the textured box
represents a parameter (i.e., a β in a GLM equation). The textured box is an “output
neuron” that sums its weighted inputs, performs a transformation g (the link function
in GLM; in this case the identity function), and predicts the conditional outcome Ŷ(T).
Instead of theoretically interpreting these parameters from an inferential statistics
perspective, ML approaches typically use the predicted observed and unobserved
potential outcomes for plug-in estimation of causal estimands (e.g., the ˆCATE). After
training, setting T to 1− T for each observation can predict the unobserved potential
outcome Ŷ(1− T). Because this operation occurs after prediction and does not feed
a gradient back to the network to optimize the parameters, it is depicted here with a
dotted line. Plug-in calculation of ˆCATE is similarly shown with a dotted line. B:
Feed-forward neural network (S-learner). In a feed-forward neural network, additional
fully connected (parameterized) layers of neurons are added between the inputs
(rounded purple) and output neuron. The size of the input covariates and hidden
layers are generically abstracted as boxes (orange). The final hidden layer before the
output neuron is denoted Φ because the hidden layers collectively encode a
representation function (see the “Representation Learning and Multitask Learning”
section). In causal inference settings, this architecture is sometimes called as
S(ingle)-learner because one feed-forward network learns to predict both potential
outcomes.
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Figure 2. Supervised Deep Learning Workflow. (1) Set Up: The first step in training a
deep learning model is splitting the data into a training set, validation set, and
optionally a test set. Initial hyperparameters are then selected from a set of choices
specified by the user. (2) Training: In each iteration of the training process (called an
epoch), the training set is randomly divided into small minibatches For each
minibatch, the network makes predictions for all units, and calculates the error
gradients to be assigned to each neuron in the network based on those predictions.
An optimizer then moves the network’s parameters in the opposite direction of the
error gradient. After all minibatches have been trained (one epoch), error is
calculated on the entire validation set. This whole process is repeated up until the
validation error stops decreasing (to avoid overfitting). (3) Model Evaluation: A
criterion (typically the validation error) is used to evaluate the performance of this
hyperparameterization. New hyperparameters are then selected using a
hyperparameter optimization algorithm (eg. Grid search, Bayesian hyperparameter
optimization, genetic algorithms) and steps 1 and 2 are repeated. Once the
hyperparameter optimization algorithm has completed its search, the “best” model is
selected for inference. (4) Inference and interpretation: With a model selected, the
analyst is now ready to apply it to their test data (or in the case of statistical
inference, potentially the full dataset). Predictions of the outcomes and/or propensity
score can then be used to compute the CATE (conditional average treatment effect)
and calculate confidence intervals. Feature importance algorithms like SHapley
Additive exPlanations (SHAP) or Integrated Gradients can also be used to interpret
the CATE estimates.
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Model Evaluation, and Interpretation. We delve into each of these topics in
more detail below. Box 2 contains a basic introduction to supervised learning
for unfamiliar readers.

Box 2: Basic Introduction to Supervised Learning

Deep learning algorithms have most commonly been adapted for causal inference
using supervised machine learning, the most popular learning framework within
the field.2 The goal of supervised learning is to teach a model a nonlinear function
that transforms covariates/features X into predicted outcomes Ŷ in unseen data.
The model learns this function from labeled examples of Xtr and Ytr in a training
dataset.

As in traditional statistical analyses, the function is learned by optimizing the
model’s parameters such that they minimize the error between its predictions Ŷtr
and the true values Ytr using a loss function (e.g., a likelihood). In a traditional
social science analysis focused on inference, we would stop here and interpret
these parameters. In supervised machine learning where the focus is on
generalization to unseen data, the model is ultimately used to predict outcomes Yte
in a test dataset of previously unseen covariates/features Xte. This framework can
be generically applied to cases where Y is categorical (called classification
problems), and where Y is continuous (called regression problems).

Statistical learning theory articulates the central challenge of supervised
learning as a balance between overfitting and underfitting the training dataset.
This is also called the “bias-variance” tradeoff. In a regression context, bias
error is the difference between the expected value of Y and the expected value of
the mapping function learned by the model.3 High bias typically results from an
algorithm that has not sufficiently learned the relationships in the training dataset
(i.e., underfit the data). In contrast, an algorithm that has learned the training
dataset so closely that it is fitting noise in the sample (i.e., overfitting) is likely to
generalize poorly, producing out-of-sample predictions with high variance.
Underfitting can be easily diagnosed and addressed by increasing the complexity of
the model. In the case of deep learning, model complexity can be increased by
adding additional layers or parameters/neurons.

Diagnosing and addressing overfitting is a more challenging problem. In
supervised learning, overfitting is diagnosed after training (but before testing) by
assessing predictive performance in a reserved portion of the training set called the
validation set. If the model fits the training dataset well but performs poorly in
the validation set, it is likely to generalize poorly to the test set as well. To prevent
overfitting, regularization techniques can be used to simplify the complexity of
the model. Training and regularization of neural networks is discussed in detail in
the “Deep Learning in Practice” section. For a full treatment of supervised learning
and statistical learning theory, see Hastie, Tibshirani, and Friedman (2009).
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Set Up and Hyperparameters. The first step in training a neural network, as in
other types of supervised ML, is to split your dataset into training, validation,
and testing datasets (Figure 2A). If the network is being used for statistical
inference, as here, the testing dataset is optional, and inference may be con-
ducted on just the validation set or the full dataset.

While the computational graph and loss function define a deep learning
architecture (Box 3), actual implementations can vary significantly due to
the choice of hyperparameters. In supervised ML, hyperparameters are para-
meters that are not learned automatically when training the model but must be
specified by the analyst. In deep learning, architectural hyperparameters
include the number of layers to use for each section of the computational
graph, the number of neurons to use in each layer, and the activation functions
to be used by neurons. While some basic rules of thumb apply (e.g., use fewer
layers than neurons), these choices remain poorly understood theoretically4 ;
decisions are generally made by comparing empirical performance on the val-
idation set, a practice called hyperparameter tuning.

Box 3: Reading Machine Learning Papers: Computational Graphs and
Loss Functions

Within the machine learning literature, novel algorithms are often presented in
terms of their computational graph and loss function. A computational graph (not
to be confused with a causal graph) uses arrows to depict the flow of data from the
inputs of a neural network, through parameters, to the outputs. Layers of neurons
or specialized sub-architectures are often generically abstracted as shapes. In our
diagrams, we use rounded purple shapes to represent observables, orange rectangles
for representation layers of the network, rounded white shapes for produced
outputs, and textured rectangles for outcome modeling layers. Operations that are
computed after prediction (i.e., for which an error gradient is not calculated) are
shown with dashed lines (e.g., plug-in estimation of causal estimands).

Along with the architecture, the loss function of a neural network is the
primary means for the analyst to dictate what types of representations a neural
network learns and what types of outputs it produces. In multitask learning
settings, we denote joint loss functions for an entire network as a weighted sum of
the losses for constituent tasks and modules. These specific losses are weighted by
hyperparameters. For example, we might weight the joint loss for a network that
predicts outcomes and propensity scores as:

arg min
h,π

L = Lh + λLπ = MSE(Y, h(X, T))+ λBCE(T, π(X, T))

where h(X, T) is the predicted potential outcome, π(X, T) is the predicted
propensity score, λ is a hyperparameter and MSE and BCE stand for mean squared
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error and binary cross entropy (i.e., log loss), common losses for regression and
binary classification respectively (Box 6).

Training and Regularization. Neural networks are trained by repeatedly
making predictions from the training set, calculating error gradients for
each parameter, and backpropagating small fractions of those error gradi-
ents. (Figure 2 B). A full pass-through examples in the training set is called
a training loop or epoch. At the beginning of each epoch, the training set is
divided into mini-batches of 2 to 1024 units, randomly sampled without
replacement. This practice not only aids in memory management, it also
improves optimization. Using small random samples effectively intro-
duces noise into the training process, making it less likely for the model
to get stuck in local minima.

The size of mini-batches can be considered a hyperparameter.5 Because a
mini-batch of data is only a sample of a sample (the training dataset), the opti-
mizer only adjusts weight parameters by a fraction of the error gradient (the
learning rate) to avoid overfitting. The learning rate is also a hyperparameter,
which typically varies between 0.0001 and 0.01.

The nonconvex nature of most loss functions6 mean that optimization
often requires hundreds to potentially millions of epochs of training.
Moreover, neural networks are highly susceptible to overfitting because it
is easy to overparameterize them with excessive neurons/layers. To ward
against overfitting, error metrics on the complete validation set are computed
at the end of every epoch. In a regularization practice called “early stopping,”
analysts usually stop training once validation metrics stop improving. Other
common regularization techniques include weight decay (i.e., ℓ2 norm,
ridge, or Tikhonov) penalties on the parameters, dropout of neurons during
training, and batch normalization.

Dropout is a regularization technique in deep learning where certain nodes
are randomly silenced from training during a given epoch (Srivastava et al.,
2014). The general idea of dropout is to force two neurons in the same
layer to learn different aspects of the covariate/feature space and reduce over-
fitting. Batch normalization is another regularization technique applied to a
layer of neurons (Ioffe and Szegedy, 2015). By standardizing (i.e.
z-scoring) the inputs to a layer on a per-batch basis and then rescaling
them using trainable parameters, batch normalization smooths the optimiza-
tion of the loss function. The addition and extent of each of these regulariza-
tion techniques can be treated as hyperparameters.
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Model Selection. (Tutorial 2 )
After the model has been trained, the analyst compares models assembled

with different hyperparameterizations or initial parameter values (Figure 2C).
Hyperparameterizations can be chosen using random search, an exhaustive
grid search of all possible combinations, or strategic search algorithms like
Bayesian hyperparameter optimization or evolutionary optimization (Snoek,
Larochelle, and Adams, 2012). Validation loss metrics on the final epoch are
commonly used for these comparisons.

Model selection for causal estimators is complicated by the fundamental
problem of causal inference: we are not actually interested in the observed
“factual” outcomes and propensity scores, but the CATE and
ATE (average treatment effect). In the case of algorithms like Dragonnet
where the validation loss explicitly targets a causal quantity, we use that as
the model selection criterion. In cases where the algorithm is only trained
for outcome modeling or propensity modeling, other solutions are needed.
In the Online Appendix, we describe Johansson et al. (2020)’s proposal to
use matching on a nearest neighbor approximation of the Precision in
Estimated Heterogeneous Effects (PEHE), a measure of CATE bias, as an
alternative model selection metric (Online Appendix A).

The development of more sophisticated methods for model selection of
causal estimators through data simulation is an active area of research
within this literature.7 For example, Parikh et al. (2022) use deep generative
models to approximate the data generating distribution under weak, non-
parametric assumptions. Alaa and Van Der Schaar (2019) independently
model each outcome and the propensity score before using influence func-
tions to assess model error.

Representation Learning and Multitask Learning

One comparative advantage of deep learning over other ML approaches
has been the ability of ANNs to encode and automatically compress
informative features from complex data into flexible, relevant “represen-
tations” or “embeddings” that make downstream supervised learning
tasks easier (Goodfellow, Bengio, and Courville, 2016; Bengio, 2013).
While other ML approaches may also encode representations, they
often require extensive preprocessing to create useful features for the
algorithm (i.e., feature engineering). Through the lens of representation
learning, a geometric interpretation of the role of each layer in a super-
vised neural network is to transform its inputs (either raw data or
output of previous layers) into a typically lower (but possibly higher)
dimensional vector space. As a means to share statistical power,
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encoded representations can also be jointly learned for two tasks at once
in multitask learning.

The simplest example of a representation might be the final layer in a
feed-forward network, where the early layers of the network can be under-
stood as nonlinearly encoding the inputs into an array of latent linear fea-
tures for the output neuron (Goodfellow, Bengio, and Courville, 2016)
(Figure 1B). A famous example of representation learning is the use of
neural networks for face detection. Examining the representations pro-
duced by each layer of these networks shows that each subsequent layer
seems to capture increasingly abstract features of a face (first edges,
then noses and eyes, and finally whole faces) (LeCun, Bengio, and
Hinton, 2015). A more familiar example of representation learning to
social scientists might be word vector models like Word2Vec (Mikolov
et al., 2013). Word2Vec is a neural network with one hidden layer and
one output layer where words that are semantically similar are closer
together in the representation space created by the hidden layer of the
network.

The novel contribution of deep learning to causal estimation is the pro-
posal that a neural network can learn a function Φ that produces representa-
tions of the covariates decorrelated from the treatment. Fundamentally, the
idea is that Φ can transform the treated and control covariate distributions
into a representation space such that they are indistinguishable (Figure 3).
To ensure that these representations are also still predictive of the outcome

Figure 3. Balancing through representation learning. The promise of deep learning
for causal inference is that a neural network encoding function Φ can transform the
treated and control covariate distributions into a representation space such that they
are indistinguishable. Used with permission from Johansson and Shen (2018).
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(multitask learning), multiple loss functions are generally applied simultan-
eously to balance these objectives. This approach is applied in a majority
of the algorithms presented in the “Three Different Approaches to Deep
Causal Estimation” section.

Causal Identification and Estimation Strategies

Identification of Causal Effects

The papers described in this primer are primarily framed within the Potential
Outcomes causal framework (Neyman-Rubin causal model) (Rubin, 1974;
Imbens and Rubin, 2015). This framework is concerned with identifying
the “potential outcomes” of each unit i in the sample, had it received treatment
(Y(1)) or not received treatment (Y(0)). However, because each unit can only
receive one treatment regime in reality (being treated or remaining untreated),
it is not possible to observe both potential outcomes for each individual (often
termed “the fundamental problem of causal inference”) (Holland, 1986).
While we cannot thus identify individual treatment effects τi = Yi(1)−
Yi(0) for each unit, causal inference frameworks allow us to probabilistically
estimate average treatment effects (ATEs) and ATEs conditional on select
covariates (CATE) across samples of treated and control units. Within this lit-
erature, the motivation of many papers is to present algorithms that can both
infer CATEs from observational data, but also predict them for out-of-sample
units where treatment status is unknown. For readers unfamiliar with causal
inference, a short introduction is glossed in Box 4 with a concrete example,
used in the tutorials, in Box 5.

Box 4: Basic Introduction to Causal Inference

Correlation does not equal causation, and causal inference is concerned with the
identification of causal relationships between random variables. Many causal
questions we would like to ask about social data (What is the causal effect of T on Y
for units with characteristics X?) can be unpacked as counterfactual questions with
the general format: “What would have been the outcome Y for a unit with X
characteristics, if T had happened or not happened?”.

Randomized control trials (RCTs, also known as A/B testing in data science
and industry applications) are usually understood to be the ideal approach to
answering this type of question: each unit with covariates or features X is
randomly assigned to the treatment or control groups and outcome Y is
subsequently measured. But in many scenarios, it is prohibitively expensive or
unethical (e.g., randomly assigning students to attend college or not) to collect
experimental data. In these cases, we can statistically adjust observational data
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(e.g., survey data on college attendance) to approximate the experimental ideal.
The methods described in this paper are designed to answer counterfactual
questions with primarily nonexperimental observational data.

There are at least three different schools of causal inference that have been
introduced in social statistics and econometrics (Rubin, 1974; Imbens and Rubin,
2015), epidemiology (Robins, 1986, 1987; Hernán and Robins, 2020), and
computer science (Goldszmidt and Pearl, 1996; Pearl, 2009). The goal of these
causal frameworks is to describe and correct for biases in data or study design that
would prevent one from making a true causal claim. If these biases are correctable
and the causal effect can be uniquely expressed in terms of the distribution of
observed data, then we say that the causal effect is identifiable (Kennedy, 2016).
Only if a causal effect is identifiable can we use statistical tools to correct for biases
and estimate the causal effect (e.g., inverse propensity score weighting,
g-computation, deep learning).

The algorithms presented in this paper focus on estimating causal effects
primarily by correcting for confounding bias. Loosely speaking, a confounding
covariate/feature is one that is correlated with both the treatment and the
outcome, misleadingly suggesting that the treatment has a causal effect on the
outcome, or obscuring a true causal relationship between the treatment and
outcome. Often times, the confounder is a cause of the treatment and outcome.
As an example of confounding bias, estimating the causal effect of attending college
(treatment) on adult income (outcome) requires controlling for the fact that
parental income may be a common cause of both college attendance and adult
income.

Box 5: Applied Causal Inference Example: The Infant Health and
Development Study

To make this problem setting more concrete for readers unfamiliar with causal
inference, consider simulations based on the 1985–1988 Infant Health and
Development Study that are widely used as benchmarks within this literature. In
this experiment, premature children were randomly assigned to intensive,
high-quality childcare (T), and their cognitive test scores were measured later (Y).
The authors also measured numerous other covariates X including “pregnancy
complications, child’s birth weight and gestation age, birth order, child’s gender,
household composition, day care arrangements, source of health care, quality of
the home environment, parents’ race and ethnicity, and maternal age, education,
IQ, and employment” (Ramey et al., 1992). The ATE would be the effect of
intensive child care on cognitive scores across all children, while various CATEs
might be formulated to better understand how the effects of child care vary for
female children, children born to teenage mothers, or children with unemployed
parents.
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Hill (2011) turns this experimental data into an observational benchmark
by re-simulating the outcome such that the covariates X induce confounding
bias between the treatment and outcome. While the simulations don’t
preserve the names of the covariates, we can imagine some confounding
relationships that might be present in an observational study. For example,
suppose that affluent (X1) parents are more likely able to afford high-quality
child care (T), but there is actually a weak association between childcare and
premature babies’ cognitive ability (Y). We also know affluent parents are
more likely to engage in breastfeeding (X2), which is positively associated with
higher cognitive ability (Heck et al., 2006; Kramer et al., 2008). If we do not
account for the correlation between income and childcare (X1 → T), or
income and cognitive ability (X1 → X2 → Y), we may have bias in our ATE/CATE
estimates, or worse, erroneously interpret the correlation between
childcare and cognitive ability as causal. This example is depicted in a causal graph
below.

The hypothetical confounding bias presented here can be adjusted for either
through treatment modeling (e.g., inverse propensity score weighting,
nonparametric, deep representation learning) to block the path X1 → T, outcome
modeling (e.g., generalized linear models, deep regression) to block the path
X1 → X2 → Y , or both (see the “Estimation of Causal Effects” section). For coded
examples using the IHDP benchmark, see the tutorials.

The ATE is defined as:

ATE = E[Y(1)− Y(0)] = 1
N

∑

i

(Yi(1)− Yi(0)) =
1
N

∑

i

τi = E[τ]
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where Yi(1) and Yi(0) are the potential outcomes had the unit i received or not
received the treatment, respectively. The CATE is defined, with a slight but
heuristic abuse of notation, as,

CATE(x) = E[Yi(1)− Yi(0)|Xi = x] = E[τi|Xi = x] = 1
N

∑

i|Xi=x

τi

where X is the set of selected, observable covariates, x ∈ X represents particu-
lar values of those covariates, and we condition on Xi = x to indicate that the
expectation is taken only over units i with covariates Xi = x.

Within the ML literature on causal inference treated here, the primary strat-
egy for causal identification is selection on observables. A challenge to iden-
tifying causal effects is the presence of confounding relationships between
covariates associated with both the treatment and the outcome.

The key assumptions allowing the identification of causal effects in the
presence of confounding are:

1. Conditional Ignorability/Exchangability The potential outcomes Y(0),
Y(1) and the treatment T are conditionally independent given X,

Y(0), Y(1) ⊥⊥ T|X

Conditional Ignorability specifies that there are no unmeasured con-
founders that affect both treatment and outcome outside of those in
the observed covariates/features X. Additionally, X may contain predic-
tors of the outcome (helping precision), but should not contain instru-
mental variables (hurting precision and potentially amplifying residual
bias) or colliders within the conditioning set.8

Other standard assumptions invoked to justify causal identification
are:

2. Consistency/Stable Unit Treatment Value Assumption (SUTVA).
Consistency specifies that when a unit receives treatment, their
observed outcome is exactly the corresponding potential outcome
(and the same goes for the outcomes under the control condition).
Moreover, the response of any unit does not vary with the treatment
assignment to other units (i.e., no network or spillover effects), and
the form/level of treatment is homogeneous and consistent across
units (no multiple versions of the treatment). Note that this is an iden-
tification assumption, based on our understanding of the data-
generating process, and independent of the model chosen for
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estimation. More formally,

T = t → Y = Y(T)

3. Overlap. For all x ∈ X (i.e., any observed covariate value), all treat-
ments t ∈ {0, 1} have a nonzero probability of being observed in the
data, within the “strata” defined by such covariates,

1 > p(T = t|X = x) > 0

4. An additional assumption sometimes invoked at the interface of iden-
tification and estimation using neural networks is:

Invertability

Φ−1(Φ(X)) = X

In other words, there must exist an inverse function of the representa-
tion functionΦ encoded by a neural network that can reproduce X from
representation space. This is required for the Conditional Ignorability
assumption to hold when using representation learning. From a prac-
tical perspective, it also means that the representation we created is
rich enough to capture the causal relationships we are interested in.

For reference, we describe the full notation used within the primer in Box 6.

Box 6: Notation for Causal Inference and Estimation

We use uppercase to denote general quantities (e.g., random variables) and
lowercase to denote specific quantities for individual units (e.g., observed variable
values).

Causal identification

• Observed covariates/features: X
• Potential outcomes: Y(0) and Y(1)
• Treatment: T
• Unobservable Individual Treatment Effect: τi = Yi(1)− Yi(0)
• Average treatment effect: ATE = E[Y(1)− Y(0)] = E[τ]
• Conditional average treatment effect:

CATE(x) = E[Yi(1)− Yi(0)|Xi = x] = E[τi|Xi = x]

Deep learning estimation

• Predicted potential outcomes: Ŷ(0) and Ŷ(1)
• Outcome modeling functions: Ŷ(T) = h(X, T)
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• Propensity score function: π(X, T) = P(T|X) (where π(X, 0) = 1− π(X, 1))
• Representation functions: Φ(X) (producing representations ϕ)
• Loss functions: L(true, predicted)
• Loss abbreviations: MSE (mean squared error), BCE (binary cross-entropy),

CCE (categorical cross-entropy)
• Loss hyperparameters: λ, α, β
• Estimated CATE∗ for unit i with covariates Xi:

ˆCATEi = τ̂i = Ŷi(1)− Ŷi(0) = h(Xi, 1)− h(Xi, 0)
• Estimated ATE: ÂTE = 1

N

∑N
i=1 τ̂i

Beyond the ATE and CATE there is an additional metric commonly used in the
machine learning literature, first introduced by Hill (2011) called the Precision in
Estimated Heterogeneous Effects (PEHE) . PEHE is the average error across the
predicted CATEs.

• Precision in Estimated Heterogeneous Effects: PEHE = 1
N

∑N
i=1 (τi − τ̂i)2

Beyond being a metric for simulations with known counterfactuals, the PEHE has
theoretical significance in the formulation of generalization bounds within this
literature (Shalit, Johansson, and Sontag, 2017; Johansson et al., 2018, 2020; Zhang,
Bellot, and Schaar, 2020).

∗Note that we use τ̂ to refer to the estimated CATE because truly individual
treatment effects cannot be described only by the observed covariates X.

Estimation of Causal Effects

Once a strategy for identifying causal effects from available data has been devel-
oped (arguably the harder and more important part of causal inference), statis-
tical methods can be used to estimate causal effects by controlling for
confounding bias, selection bias, and/or measurement error. There are two fun-
damental approaches to estimation: treatment modeling to control for correla-
tions between the covariates X and the treatment T , and outcome modeling to
control for correlations between the covariates X and the outcome Y
(Figure 4). Below we briefly review three traditional techniques for removing
confounding bias to motivate our systematization of deep learning models.
First, we discuss outcome modeling through regression. Next, we consider treat-
ment modeling through nonparametric matching. Finally, we discuss treatment
modeling through IPW and introduce the concept of double robustness.

Outcome Modeling: Regression. Assuming the treatment effect is constant
across covariates/features or the probability of treatment is constant across
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all covariates/features (both improbable assumptions), the simplest consistent
approach to estimating the ATE is to regress the outcome on the treatment
indicator and covariates using a linear model.9 The ATE is then the coefficient
of the treatment indicator. Without loss of generality, we call outcome models
of this nature, linear or nonlinear, h:

Ŷi(T) = h(Xi, T)

A slightly more sophisticated semiparametric approach to outcome modeling,
used widely in the application of ML to causal inference, is to use h(X, T)
to impute Ŷ(1) and Ŷ(0), and calculate the CATE for each unit as a plug-in
estimator:

̂CATEi = τ̂i = ˆYi(1)− ˆYi(0) = h(Xi, 1)− h(Xi, 0)

and the ATE as:

ÂTE = 1
N

∑N

i=1

τ̂i

Treatment Modeling: Nonparametric Matching. A common treatment-
modeling strategy is balancing the treated and control covariate

Figure 4. Two fundamental approaches to deconfounding. Blunted arrows indicate
blocked causal paths. Treatment modeling approaches like inverse propensity
weighting, balancing, and representation learning adjust for the association between
the covariates X and the treatment T. Outcome modeling approaches like generalized
linear models or machine learning regressors adjust for the association between X
and the outcome Y .
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distributions through matching. Matching requires the analyst to select a
distance measure that captures the difference in observed covariate distri-
butions between a treated and untreated unit (Austin, 2011). Units with
treatment status T can then be matched with one or more counterparts
with treatment status 1− T using a variety of algorithms (Stuart, 2010).
In a one-to-one matching scenario where each treated unit has an otherwise
identical untreated counterpart, the covariate distribution of treated and
control units is indistinguishable.

Treatment Modeling: IPW. Another common approach is IPW. In IPW, units
are weighted on their inverse propensity to receive treatment. Without
loss of generality, we call the propensity function π. The propensity
score is calculated as the probability of receiving treatment conditional
on covariates:

π(X, T) = P(T|X)

The simplest IPW estimator of the ATE is then:

ÂTE = 1
N

∑N

i=1

[ TiYi
π̂(Xi, 1)

− (1− Ti)Yi
π̂(Xi, 0)

]

Note that only one of the two terms is active for any given unit.
Furthermore, this presentation looks different than how the IPW is gener-
ally presented because we use π as a function with different outputs
depending on the value of T rather than a scalar (Box 6).10

IPW weighting is attractive because if the propensity score π is specified
correctly, Equation 1 is an unbiased estimator of the ATE. Moreover, the IPW
is consistent if π is estimated consistently (Rosenbaum and Rubin, 1983;
Glynn and Quinn, 2010).

Double Robustness. Because different models make different assumptions, it
is not uncommon to combine outcome modeling with propensity modeling
or matching estimators to create doubly robust estimators. For example,
one of the most widely used doubly robust estimators is the augmented-
IPW estimator.

ˆATE= 1
N

∑N

i=1

[
[ Ti
π(Xi,1)

− 1−Ti
π(Xi,0)

]
︸(((((((((((︷︷(((((((((((︸

Treatment Modeling

× [Yi− h(Xi,Ti)]︸(((((((︷︷(((((((︸
Residual Confounding

︸(((((((((((((((((((((((︷︷(((((((((((((((((((((((︸
Adjustment

+[h(Xi,1)− h(Xi,0)]︸((((((((((︷︷((((((((((︸
Outcome Modeling

]
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The first term is a “corrected” IPW estimator replacing the raw outcome by the
residuals from the regression models while the second term is the difference in
prediction from two outcome models, one for treated and one for control units.
As expected, this estimator is unbiased if the IPW and regression estimators are
consistently estimated. However, the model is attractive because it will be con-
sistent if either the propensity score π(X, T) is correctly specified or the regres-
sion model h is consistently specified (Glynn and Quinn, 2010). The model also
provides efficiency gains with respect to the use of each model separately, and
especially with respect to weighting alone.

Doubly robust estimation is especially important for causal estimation
using ML. When using simple outcome plug-in estimators, bias is directly
dependent on estimation error, which may be different for each potential
outcome depending on the modeling strategy (Kennedy, 2020). ML estima-
tion of the propensity score can also rely heavily on nonconfounding predic-
tors, giving rise to extreme weights (Schnitzer, Lok, and Gruber, 2016). More
generally, there are no asymptotic linearity guarantees for ML estimators
which may converge at a slow rate, leading to misleading confidence intervals
(Naimi, Mishler, and Kennedy, 2021; Zivich and Breskin, 2021). For these
reasons, plug-in ML estimation often has poor empirical performance when
not using double robust estimators (Benkeser et al., 2017; Kennedy, 2020;
Zivich and Breskin, 2021).

The growth of ML for causal inference literature has thus been largely driven
by the introduction of semiparametric frameworks. Semiparametric frameworks
address these issues by usingML only to estimate the nuisance parameters (i.e.,
potential outcomes and propensity score) of influence functions for causal
parameters like the ATE and CATE (Chernozhukov et al., 2018; Kennedy,
2016; Van der Laan and Rose, 2011). In these approaches, the estimation of
causal parameters is only second order dependent on ML error, there is
double-robustness against inconsistent estimation, and guarantees of fast
convergence and asymptotically valid confidence intervals even if the
ML models converge slowly (Benkeser et al., 2017; Kennedy, 2020;
Naimi, Mishler, and Kennedy, 2021; Zivich and Breskin, 2021). We use
the final algorithm introduced below, Dragonnet, as an opportunity to
provide an intuitive introduction to semiparametric theory and how it can
be used for doubly robust estimation (Shi, Blei, and Veitch, 2019).

Three Different Approaches to Deep Causal Estimation
The architectures proposed in the deep learning literature for causal estima-
tion build upon the core idea discussed above. First, we introduce
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“S-Learners” and “T-Learners” to show how neural networks can be used to
estimate nonlinearities in potential outcomes. Second, given the right objec-
tives, a neural network can learn representations of the treated and control
distributions that are deconfounded (Figure 3). This approach, which can
be related theoretically to nonparametric matching, is illustrated by the
foundational TARNet algorithm in the “Double Robustness with IPW”
section (Shalit, Johansson, and Sontag, 2017). Finally, the ML for
causal inference literature has been largely driven by the introduction of
semiparametric frameworks that allow predictive ML models to be
plugged-in to doubly robust estimation equations (Van der Laan and
Rose, 2011; Chernozhukov et al., 2018, 2021). In the “Double
Robustness with IPW” section, we introduce the concept of influence
functions and the targeted maximum likelihood estimator to explain the
Dragonnet algorithm. For clarity, the algorithms presented here all share
a familial resemblence to the TARNet algorithm. However, we note that
there are many other approaches to using deep learning for causal infer-
ence (e.g., the generative models described in Online Appendix).

Deep Outcome Modeling

S-Learners and T-Learners (Tutorial 1 )
Because at most one potential outcome is unobserved, it is not possible to

apply supervised models to directly learn treatment effects. Across economet-
rics, biostatistics, and ML, a common approach to this challenge has been to
instead use ML to model each potential outcome separately and use plug-in
estimators for treatment effects (Chernozhukov et al., 2018; Van der Laan
and Rose, 2011; Wager and Athey, 2018). As with linear models, a single
neural model can be trained to learn both potential outcomes
(S[ingle]-learner) (Figure 1B), or two independent models can be trained to
learn each potential outcome (a “T-learner”) (Johansson et al., 2020)
(Figure 5A). In both cases, the neural network estimators would be feed-
forward networks tasked with minimizing the MSE in the prediction of
observed outcomes. In a slight abuse of notation, the joint loss function for
a T-learner can be written as:

L(Y, h(X, T)) = MSE
[
Yi, Ti × h1(Xi, 1) + (1− Ti) × h0(Xi, 0)

]

where h1 and h0 represent separate networks for each potential outcome.
After training, inputting the same unit into both networks of a T-learner

will produce predictions for both potential outcomes: Ŷ(T) and Ŷ(1− T).
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We can plug-in these predictions to estimate the CATE for each unit,

τ̂i = (1− 2Ti)(Ŷi(1− Ti)− Ŷi(Ti))

where the first term is a switch to make sure the treated potential outcome

Figure 5. (A) T-learner. In a T-learner, separate feed-forward networks are used to
model each outcome (rounded white boxes). We denote the function encoded by
these outcome modelers h. (B) TARNet. TARNet extends the T-learner with shared
representation layers (orange). The motivation behind TARNet (and further elaborations
of this model) is that the multitask objective of accurately predicting both the treated
and control potential outcomes forces the representation layers to learn a balancing
function Φ such that the Φ(X|T = 0) and Φ(X|T = 1) are overlapping distributions
in representation space. For a code implementation, see Box 7. (C) Dragonnet
Dragonnet also adds a propensity score head to TARNet (black textured box) and a free
“nudge” parameter ϵ. In an adaptation of Targeted Maximum Likelihood Estimation, π̂
and ϵ are used to re-weight the outcomes to provide lower biased estimates of the ATE.
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comes first. The ATE can be estimated as,

ÂTE = 1
N

∑N

i=1

τ̂i

Nearly all of the models described below combine this plug-in outcome mod-
eling approach with other forms of treatment adjustment.

Balancing through Representation Learning

TARNet (Tutorial 1 )
Balancing is a treatment adjustment strategy that aims to deconfound treat-

ment from the outcome by forcing the treated and control covariate distribu-
tions closer together (Johansson, Shalit, and Sontag, 2016). The novel
contribution of deep learning to the selection of observables literature is
the proposal that a neural network can transform the covariates into a
representation space Φ such that the treated and control covariate distribu-
tions are indistinguishable (Figure 3).

To encourage a neural network to learn balanced representations, the
seminal paper in this literature, Shalit, Johansson, and Sontag (2017), pro-
poses a simple two-headed neural network called TARNet that extends the
outcome modeling T-learner with shared representation layers (Figure 5B).
Each head models a separate potential outcome: one head learns the
function Ŷ(1) = h1(Φ(X), 1), and the other head learns the function
Ŷ(0) = h0(Φ(X), 0). During training, only one head will receive error gradi-
ents at a time (the one predicting the observed outcome). However, both
heads backpropagate their gradients to shared representation layers that
learn Φ(X). The idea is that these representation layers must learn to
balance the data because they are tasked with predicting both outcomes.
The authors of this algorithm have subsequently extended TARNet with add-
itional losses in an algorithm called CFRNET that explicitly encourages bal-
ancing by minimizing a statistical distance between the two covariate
distributions in representation space; see Online Appendix for details
(Johansson et al., 2018, 2020).

The complete objective for the network is to fit the parameters of h and Φ
for all n units in the training sample such that,

arg min
h,Φ

1
N

∑N

i=1

[
Yi − (Ti[h1(Φ(Xi), 1)︸((((((︷︷((((((︸

Ŷi(1)

]− (1− Ti)[h0(Φ(Xi), 0)︸((((((︷︷((((((︸
Ŷi(0)

]
]2

+ λR(h)︸︷︷︸
L2
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or more compactly,

arg min
h,Φ

MSE(Yi, h(Φ(Xi), Ti)︸(((((︷︷(((((︸
Ŷi(Ti)

)+ λ R(h)︸(︷︷(︸
L2

(5)

whereR(h) is a model complexity term (e.g., for L2 regularization) and λ is a
hyperparameter chosen through model selection. For coded versions of
TARNet in TensorFlow and Pytorch, see Box 7.

Box 7: TARNet in Code

Below we show simple implementations of TARNet in Python TensorFlow 2 and Pytorch. For more
explanation on this implementation and to run this code on the IHDP data, see the tutorials.

TensorFlow 2 Functional API (Keras)

def make_tarnet(input_dim):
#The argument is the number of X covariates.
x = Input(shape=(input_dim,), name='input')

#In TF fxnl API, stack layers by feeding output of prev layer to next
#Make 2 representation layers
#units is the output dim of layer
#elu is \"xponentiated linear unit" activation fxn
phi = Dense(units=200, activation='elu')(x)
phi = Dense(units=200, activation='elu')(phi)

#Begin separate outcome modeling heads
y0_hidden = Dense(units=100, activation='elu')(phi)
y1_hidden = Dense(units=100, activation='elu')(phi)

#Add second layers
y0_hidden = Dense(units=100, activation='elu'(y0_hidden)
y1_hidden = Dense(units=100, activation='elu')(y1_hidden)

#Output predictions
y0_pred = Dense(units=1, activation=None)(y0_hidden)
y1_pred = Dense(units=1, activation=None)(y1_hidden)

#Bundle outputs
concat_pred = Concatenate(1)([y0_pred, y1_pred])

#instantiate model
model = Model(inputs=x, outputs=concat_pred)
return model
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Pytorch

class TARNet(nn.Module):

def __init__(self,input_dim):

super(TARNet,self).__init__()

self.phi = nn.Sequential(

#both input and output dims are specified in torch

nn.Linear(input_dim, 200),

nn.ELU(), #activations are discrete from layers

nn.Linear(200,200),

nn.ELU())

self.y0_hidden = nn.Sequential(

nn.Linear(200, 100),

nn.ELU(),

nn.Linear(100,100),

nn.ELU())

self.y1_hidden = nn.Sequential(

nn.Linear(200, 100),

nn.ELU(),

nn.Linear(100,100),

nn.ELU())

self.y0_pred =nn.Linear(100,1)
self.y1_pred = nn.Linear(100,1)

#the flow of data/gradients in torch is declared in a forward fxn

def forward(self,X):

rep = self.phi(X)

y0_rep=self.y0_hidden(rep)
y0_hat=rep=self.y0_pred(y0_rep)

y1_rep=rep=self.y1_hidden(rep)
y1_hat=rep=self.y1_pred(y1_rep)

return y0_hat, y1_hat

Double Robustness with IPW

Rather than applying losses directly to the representation function, IPW
methods estimate propensity scores from representations using the function
π(Φ(X), T) = P(T|Φ(X)). As in traditional IPW estimators, these methods
exploit the sufficiency of correctly specified propensity scores to reweight
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the plugged-in outcome predictions and provide unbiased estimates of
the ATE (Rosenbaum and Rubin, 1983). Because these models combine
outcome modeling with IPW, they retain the attractive statistical properties
of doubly robust estimators discussed in the “Treatment Modeling:
Nonparametric Matching” section (Atan, Jordon, and Schaar, 2018). In
this section, we focus on Shi, Blei, and Veitch (2019)’s Dragonnet
model, which adapts semiparametric estimation theory for batch-wise
neural network training in a procedure they call “Targeted Regularization”
(TarReg) (Kennedy, 2016). Given the increasing importance of semipara-
metric theory and “double machine learning” across the causal estimation lit-
erature, we include a brief introduction to semiparametric theory and targeted
maximum likelihood estimation (TMLE) before diving into the details of
the Dragonnet algorithm (Van der Laan and Rose, 2011; Chernozhukov
et al., 2018).

Dragonnet (Tutorial 3 / Tutorial 4 )
A trivial extension to TARNet is to add a third head to predict the propen-

sity score. This third head could use multiple neural network layers or just a
single neuron, as proposed in Dragonnet (Figure 5C) (Shi, Blei, and Veitch,
2019). Dragonnet uses this additional head to develop a training procedure
called Targeted Regularization for semiparametric causal estimation, inspired
by TMLE (Van der Laan and Rose, 2011).

With three heads, the basic loss function for this network looks like:

argmin
Φ, π, h

MSE(Yi, h(Φ(Xi), Ti)︸(((((((((((︷︷(((((((((((︸
Outcome Loss

+αBCE(Ti, π(Φ(Xi), Ti))︸((((((((((((︷︷((((((((((((︸
π Loss

+λ R(h)︸(︷︷(︸
L2

(6)

with α being a hyperparameter to balance the two objectives, and λ balancing
these against a model complexity term. The mean squared error and binary
cross-entropy are standard objective functions in ML for regression and
binary classification, respectively. Note that the first term is the same as the
first term in Equation 5.

Below, we explore how the authors add a second loss on top of this one to
allow for semiparametric estimation.

Semiparametric Theory of Causal Inference. In recent years, semiparametric
theory has emerged as a dominant theoretical framework for applying ML
algorithms, including neural networks, to causal estimation (Chernozhukov
et al., 2018, 2021, 2022; Farrell, Liang, and Misra, 2021; Kennedy, 2016;
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Nie and Wager, 2021; Van der Laan and Rose, 2011; Wager and Athey,
2018). The great appeal of these frameworks is that they allow for ML algo-
rithms to be plugged-in for nonlinear estimates of outcomes and propensity
score, while still providing attractive statistical guarantees (e.g., consistency,
efficiency, asymptotically valid confidence intervals).

At a very intuitive level, semiparametric causal estimation is focused on esti-
mating a target parameter T(P) of a distribution P of treatment effects, i.e., esti-
mating the ATE (Fisher and Kennedy, 2021). While we do not know the true
distribution of treatment effects because we lack counterfactuals, we do know
some parameters of this distribution (e.g., the treatment assignment mechan-
ism). We can encode these constraints in the form of a likelihood that paramet-
rically defines a set of possible approximate distributions P from our existing
data. Within this set, there is a sample-inferred distribution P̃ ∈ P, that can be
used to estimate T(P) using T(P̃).

Regardless of P̃ chosen, P̃ ≠ P → T(P̃) ≠ T(P). We do not know how to
pick P̃ with finite data to get the best estimate T(P̃). We can maximize a
likelihood function to pick P̃, but there may be “nuisance” parameters
in the likelihood that are not the target and we do not care about
estimating accurately. Maximum likelihood optimization may provide
lower-biased estimates of these nuisance terms at the cost of better esti-
mates of T(P).

To sharpen the likelihood’s focus on T(P), we define a “nudge” parameter
ϵ that, starting from P̃, selects a T(P̃ϵ) ∈ P that is closer to PT(P̃)T(P). An
influence curve of T(P) tells us how changes in ϵ will induce changes in
T(P̃ϵ). We’ll use this influence curve to fit ϵ to get a better approximation
of T(P) within the likelihood framework. In particular, there is a specific effi-
cient influence curve (EIC) that provides us with the lowest variance estimates
of T(P). In causal estimation, solving the EIC for the ATE yields estimates
that are asymptotically unbiased, efficient, and have confidence intervals
with (asymptotically) correct coverage.

The EIC for the ATE is,

EICATE =

1
N

∑N

i=1

[
[( Ti
π(Xi,1)

− 1−Ti
π(Xi,0)

)
︸(((((((((((︷︷(((((((((((︸

TreatmentModeling

× (Yi−h(Xi,Ti))︸(((((((︷︷(((((((︸
ResidualConfounding

︸((((((((((((((((((((((︷︷((((((((((((((((((((((︸
Adjustment

]+[h(Xi,1)−h(Xi,0)]︸((((((((((︷︷((((((((((︸
OutcomeModeling

]
−ATE

(7)
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Setting EICATE to its mean of 0,

ATE= 1
N

∑N

i=1

[
[( Ti
π(Xi,1)

− 1−Ti
π(Xi,0)

)
︸(((((((((((︷︷(((((((((((︸

TreatmentModeling

× (Yi−h(Xi,T))︸(((((((︷︷(((((((︸
ResidualConfounding

︸((((((((((((((((((((((︷︷((((((((((((((((((((((︸
Adjustment

]+[h(Xi,1)−h(Xi,0)]︸((((((((((︷︷((((((((((︸
OutcomeModeling

]

(8)

The underbraces illustrate how EICATE resembles a doubly robust estimator.
When the EIC is minimized (set to 0) as in Equation 8, the ATE is equal to the
outcome modeling estimate plus a treatment modeling estimate proportional
to the residual error.

From TMLE to Targeted Regularization. Targeted Regularization (TarReg) is
closely modeled after Targeted Maximum Likelihood Estimation (TMLE)
(Van der Laan and Rose, 2011). TMLE is an iterative procedure where a nuis-
ance parameter ϵ is used to nudge the outcome models towards sharper esti-
mates of the ATE when minimizing the EIC as in Equation 8.11

1. Fit h by predicting outcomes (e.g., using TARNet) and minimizing
MSE(Yi, h(Φ(Xi), Ti))

2. Fit π by predicting treatment (e.g., using logistic regression) and
BCE(Ti, π(Φ(Xi), Ti))

3. Plug-in h and π functions to fit ϵ and estimate h∗(X, T) where,

h∗(Xi, Ti)︸((((︷︷((((︸
Y∗

= h(Φ(Xi), Φ(Ti))︸((((((((︷︷((((((((︸
Ŷ

+ Ti
π(Φ(Xi), 1)

− 1− Ti
π(Φ(Xi), 0)

( )

︸(((((((((((((((((︷︷(((((((((((((((((︸
Treatment Modeling Adjustment

× ϵ︸︷︷︸
“nudge”

by minimizing MSE(Y , h∗(Φ(X), T)). This is equivalent to minimizing
the “Adjustment” part in Equation 8.

4. Plug-in h∗(X, T) to estimate ˆATE:

ÂTETMLE = 1
N

∑N

i=1

h∗(Xi, 1)︸(((︷︷(((︸
Y∗
i (1)

− h∗(Xi, 0)︸(((︷︷(((︸
Y∗
i (0)

Targeted Regularization takes TMLE and adapts it for a neural network loss
function. The main difference is that steps 1 and 2 above are done concur-
rently by Dragonnet, and that the loss functions for the first three steps are
combined into a single loss applied to the whole network at the end of
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each batch. It requires adding a single free parameter to the Dragonnet
network for ϵ.

At a very intuitive level, Targeted Regularization is appealing because it
introduces a loss function to TARNet that explicitly encourages the network
to learn the mean of the treatment effect distribution, and not just the outcome
distribution. The Targeted Regularization procedure proceeds as follows:

In each epoch:

1.
(a) Use Dragonnet to predict h(Φ(X), T) and π(Φ(X), T).
(b) Calculate the standard ML loss for the network using a hyperpara-

meter α:

argmin
Φ, π, h

MSE(Yi, h(Φ(Xi), Ti))︸((((((((((((︷︷((((((((((((︸
Outcome Loss

+αBCE(Ti, π(Φ(Xi), Ti))︸((((((((((((︷︷((((((((((((︸
π Loss

+λ R(h)︸(︷︷(︸
L2

2.
(a) Compute h∗(Φ(Xi), Ti) as above,

h∗(Φ(Xi), Ti)︸((((((︷︷((((((︸
Y∗

= h(Φ(Xi), Ti)︸(((((︷︷(((((︸
Ŷi

+ (
Ti

π(Φ(Xi), 1)
− 1− Ti

π(Φ(Xi), 0)
)

︸((((((((((((((((︷︷((((((((((((((((︸
Treatment Modeling Adjustment

× ϵ︸︷︷︸
“nudge”

(b) Calculate the targeted regularization loss: MSE(Y , h∗(Φ(X), T))
3. Combine and minimize the losses from 1 and 2 using a hyperparameter β,

Φ, h, ϵargmin = MSE[Yi, h(Φ(Xi), Ti)]︸((((((((((((︷︷((((((((((((︸
Outcome Loss

+α · BCE[Ti, π(Φ(Xi), Ti)]︸((((((((((((︷︷((((((((((((︸
π Loss

+λR(h)︸︷︷︸
L2

+β ·MSE(Yi, h∗(Φ(Xi), Ti))︸(((((((((((((︷︷(((((((((((((︸
TargetedRegularization Loss

Step 3 of Targeted Regularization is exactly equivalent to minimizing the EIC
up to a constant β.

At the end of training, we can thus estimate the targeted regularization esti-
mate of the ATE ˆATETR as in TMLE:

ˆATETR = 1
N

∑N

i=1

h∗(Φ(Xi), 1)︸((((((︷︷((((((︸
Y∗
i (1)

− h∗(Φ(Xi), 0)︸((((((︷︷((((((︸
Y∗
i (0)
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Compared to S-learners, T-learners, and TARNet, the Dragonnet algorithm is
particularly attractive because of the statistical guarantees afforded by its semi-
parametric framework. It is doubly robust, unbiased, converges at a rate of 1/

n
√ ,

and the sampling distribution is asymptotically normal. Below we describe how
to create assymptotically valid confidence intervals for this estimator.

Confidence and Interpretation
In this section, we move from theory to practice and treat best practices for
building confidence intervals and interpreting heterogeneous treatment
effects. Both of these topics are active areas of development, not only
within the causal inference literature but across ML research. Here we specif-
ically focus on recommendations that can be easily implemented by analysts.

Assessing Confidence

(Tutorial 4 )
In this paper, we feature Dragonnet over other approaches because of its

attractive statistical properties. Because the Targeted Regularization proced-
ure in Dragonnet is essentially a variant of TMLE, an asymptotically valid
standard error can be calculated as the sample corrected variance of the
EIC σ ˆATE, where

σ ˆATETR
=

////////////////
Var(EIC ˆATETR

)

N

√
(9)

and,

Var(EIC ˆATETR
) = Var[(

Ti
π(Xi, 1)

− 1− Ti
π(Xi, 0)

)(Y − h∗(Xi, Ti))

+ (h∗(Xi, 1)− h∗(Xi, 0))− ˆATETR ] (10)

(Van der Laan and Rose, 2011, pp. 96)
In Tutorial 4, we show how σ ˆATE can be used to calculate a Wald confi-

dence interval for Dragonnet. While not featured in this review, asymptot-
ically valid conference intervals can also be calculated using RieszNet, a
variant of Dragonnet introduced in Chernozhukov et al. (2022) that con-
nects neural network estimation to the automatically debiased ML literature
currently popular in causal econometrics (Chernozhukov et al., 2018,
2021).
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Interpretation

(Tutorial 4 )
A lack of interpretability has been a barrier to the adoption of ML methods

like neural networks and random forests in social science settings. However,
the literature on post hoc interpretability techniques has matured considerably
over the past five years, and several techniques for identifying important fea-
tures/covariates such as permutation importance, LIME scores, SHapley
Additive exPlanations (SHAP) scores, Individual Conditional Expectation
plots etc. are in widespread usage today (Altmann et al., 2010; Goldstein
et al., 2015; Lundberg and Lee, 2017; Ribeiro, Singh, and Guestrin, 2016).
For a broad and accessible treatment of interpreting ML models see Molnar
(2022).

Building on criteria used to evaluate other explainable AI methods, Crabbé
et al. (2022) note four desirable properties of a feature importance technique for
the interpretation of deep causal estimators: Sensitivity, completeness, linearity,
and implementation invariance (Sundararajan, Taly, and Yan, 2017). A method
that is sensitive can distinguish between features that are simply predictive of
the outcome, and those that actually influence CATE heterogeneity. A method
that is complete identifies all features that, together, explain all effect hetero-
geneity compared to a baseline. A linear method is one where the feature
importance scores additively describe the prediction. Lastly, the approach
should be agnostic to both the model architecture (e.g., TARNet, Dragonnet)
and different architectural hyperparameterizations (i.e., invariant to implemen-
tation). Of the feature importance methods surveyed, they identify two that
manifest all four of these qualities: SHAP scores, and integrated gradients.

SHAP scores have emerged as one of the most popular methods for
evaluating ML models in recent years (Lundberg and Lee, 2017). SHAP
is what is called a “local” interpretability method: it provides feature
importance estimates for each individual datum. Theoretically, SHAP
frames feature importance estimation as a cooperative (game-theoretic)
game between covariates to predict a specific outcome. Under the hood,
the algorithm exhaustively compares all possible “coalitions” of covariates
and their ability to predict the outcome (win the game). Predictions from
this powerset of coalitions are used to calculate the additive marginal con-
tributions of each feature in prediction using Shapley values. The disadvan-
tage of SHAP is that, even with computational tricks, calculating scores for
every unit can become computationally intractable in high-dimensional
datasets. SHAP scores are interpreted in comparison to a causal baseline
of the ATE.
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Because of the computational expense of SHAP scores, Crabbé et al.
(2022) also recommend another local-interpretability method called
“Integrated Gradients” (Sundararajan, Taly, and Yan, 2017). Intuitively,
this algorithm draws a straight-line, linear path in feature space between
the target input (individual unit) and a baseline (i.e., a hypothetical unit
who is exactly average on all covariates). A feature importance score can
then be constructed by calculating the gradient in prediction error along
this path with respect to the feature of interest. Note that SHAP scores can
also be understood theoretically within the path framework. From this per-
spective, coalitions are paths in which each feature is turned on sequentially,
and the SHAP score is the expectation across these paths. This interpretation
leads to a gradient-based algorithm for calculating SHAP scores specifically
for neural networks, which is also in the SHAP package. In practice, we rec-
ommend that analysts experiment with both integrated gradients and SHAP
scores.

What’s in the tutorials?

To move from theory to empirics, the online tutorials show how to imple-
ment many of the ideas presented throughout this primer. The tutorials are
hosted in notebooks in the Google Colaboratory environment. When users
open a Colab notebook, Google immediately provides a free virtual
machine with standard Python ML packages available. This means that
readers need not install anything on their own computers to experiment
with these models. The tutorials are written in the Python programming
language and provide examples in both TensorFlow2 and Pytorch, the
two most popular deep learning frameworks. We note that both
TensorFlow2 and Pytorch have implementations in R. However, we
strongly recommend that readers interested in getting into deep learning
work in Python, which has a much richer ecosystem of third-party
packages for ML.

Currently there are five tutorials:

• Tutorial 1 introduces S-learners, and T-learners before
TARNet as a way to get familiar with building custom TensorFlow
models.

• Tutorial 2 focuses on causal inference metrics and hyper-
parameter optimization. Because we do not observe counterfactual
outcomes, it’s not obvious how to optimize supervised learning
models for causal inference. This tutorial introduces some metrics
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for evaluating model performance. In the first part, you learn how to
assess performance on these metrics in Tensorboard. In the second
part, we hack Keras Tuner to do hyperparameter optimization for
TARNet, and discuss considerations for training models as estimators
rather than predictors.

• Tutorial 3 highlights the semiparametric extension to TARNet
featured in Shi, Blei, and Veitch (2019). We add treatment modeling to
our TARNet model, and build an augmented inverse propensity score
estimator. We then briefly describe the algorithm for Targeted
Maximum Likelihood Estimation to introduce and build a Dragonnet
with Shi et al.’s Targeted Regularization.

• Tutorial 4 reimplements Dragonnet in Pytorch and shows how
to calculate asymptotically valid confidence intervals for the ATE. We
also interpret the features contributing to different heterogeneous
CATEs using Integrated Gradients and SHAP scores. This tutorial is
a good tutorial if you also just want to learn how to interpret SHAP
scores, independent of the context of causal inference.

• Tutorial 5 features the Counterfactual Regression Network
(CFRNet) and propensity-weighted CFRNet in Shalit, Johansson, and
Sontag (2017); Johansson et al. (2018, 2020) (see Online Appendix).
This approach relies on integral probability metrics to bind the counter-
factual prediction loss and force the treated and control distributions
closer together. The weighted variant adds adaptive propensity-based
weights that provide a consistency guarantee, relax overlap assump-
tions, and ideally reduce bias.

Beyond Traditional Data: Text, Networks, Images, and
Treatment over Time
As exciting as neural networks are for heterogeneous treatment effect esti-
mation from quantitative data, a great promise of deep causal estimation is
inference when treatments, confounders, and mediators are encoded in high-
dimensional data (e.g., text, images, social networks, speech, and video) or
are time-varying. This is a strong advantage of neural networks over other
ML approaches, which do not generalize competitively to nonquantitative
data. In these scenarios, multitask objectives and tailored architectures
can be used to learn representations that are simultaneously rich, capture
information about causal quantities, and disentangle their relationships.
Moreover, the inherent flexibility of neural networks means that, in many
cases, the TARNet-style models presented above can serve as the
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foundations to inference on text and graphs with some architectural modi-
fications, additional losses, and new identification assumptions.

This literature is rapidly evolving, so readers should treat this section of the
primer as fundamentally prospective. To maintain accessibility, our primary
goal here is to introduce readers to hypothetical scenarios where they might
perform causal inference on text, network, or image data. Second, we select-
ively review contemporary, theoretically motivated literature on deep causal
estimation in these settings. The identification assumptions for different data
types differ substantially, so we generally leave those to the interested
reader. Finally, we briefly discuss approaches for dealing with time-varying
confounding. We also take this section as an opportunity to introduce Graph
Neural Networks (GNNs) and the Transformer architecture, now used in
most contemporary deep learning models to learn from complex data (Box 8).

Box 8: Graph Neural Networks and Transformers

Graph neural networks (GNNs) are the current state-of-the-art approach for
creating representations for nodes in graphs. Compared to previous approaches
that relied on “shallow” embeddings based only on a node’s local context (e.g.,
random walks to nearby nodes), GNNs are attractive because their node
representations are aggregated from the structural position and covariates of all
nodes n degrees away from the target node, where n is the number of graph neural
network layers.

The most intuitive understanding of how graph neural networks work is as a
message-passing system (Gilmer et al., 2017). We use one of the first GNN papers,
the Graph Convolutional Network as an example (Kipf and Welling, 2017). In this
interpretation, each node has a message that it passes to its neighbors through a
graph convolution operation. In the first layer of a GNN this message would
consist of the node’s covariates/features. In consecutive layers of the network,
these messages are actually representations of the node produced by the previous
layer. During graph convolution, each node multiplies incoming messages by its
own set of weights and combines these weighted inputs using an aggregation
function (e.g., summation). By the n-th GNN layer, these messages will contain
structure and covariate information from all nodes n degrees away. For interested
readers, there is also a spectral interpretation of this process. Typically GNNs are
trained to produce representations of graphs by predicting the probability that two
nodes are linked in the network, and then used for something else. One variant of
the GNN uses an “attention” mechanism to vary the extent that nodes value
messages from different neighbors (the graph attention network or GAT)
(Veličković et al., 2018).

As of 2023, Transformers are the hegemonic architecture used in natural
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language processing. After their introduction in 2017, these models improved
performance on many high-profile NLP tasks across the board. Several
enterprise-scale transformers have been featured in the media for their impressive
performance in text generation and question answering (e.g. OpenAI’s GPT-3/4,
Google’s Bard, Meta’s Llamma). Smaller models in broad use are based on the BERT
architecture (Devlin et al., 2019).

Transformers and GNNs, specifically GATs, are roughly equivalent
architectures. From the graph perspective, words in sentences are akin to nodes in
networks, with their relative positions to each other being analogous to their
structural positions in the graph. Transformers improved on previous sequential
approaches to text analysis (i.e. recurrent neural networks) by having each word
(or representation of a word) receive messages from not just adjacent words, but
all words heterogeneously. Attention mechanisms throughout the architecture
allow each layer of a transformer to attend to words or aggregated representation
heterogeneously. Architectures such as BERTor GPT stack transformer layers to
create models with hundreds of millions to hundreds of billions of parameters.
These models are expensive to train, both computationally and with respect to
data, so they are often pretrained on enormous datasets and then “fine-tuned”
(lightly re-trained) with smaller datasets for specific tasks or to align with certain
goals.

Causal Inference from Text

In recent years, an interdisciplinary community across both social science and
computer science has coalesced around causal inference from text (see Keith,
Jensen, and O’Connor (2020) and Feder et al. (2021) for exhaustive reviews).
Broadly speaking, texts may capture information about any causal quantity
(treatments, outcomes, confounders, mediators) we might be interested in.
For example, in an exit-polling experiment, analysts might want to measure
toxicity (Y) in text responses to political prompts. In an observational study
of e-mail response times (Y), analysts might want to measure the effects of
the tone of the email (T). In this scenario, the analyst might also want to
control for confounders like subject matter (X). Each of these scenarios pre-
sents distinct identification challenges (Feder et al., 2021). But in all cases, we
can use low-dimensional representations of the high dimensional text to
extract, quantify, and disentangle relationships between nuanced qualities
like tone and subject matter.

The ability of neural networks to automatically extract features makes
them particularly suited for the last scenario when both treatment
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information and confounding covariates are encoded in text. In many
cases, we may not have explicitly identified, quantified, or labeled all of
the confounders in text (e.g., subject matter and tone of emails), but we
would still like to control for them. Pryzant et al. (2021),Veitch, Sridhar,
and Blei (2020), and Gui and Veitch (2022) address this problem by pre-
pending Transformer-layers (Box 8) for reading text to the beginning of
TARNet or Dragonnet. Veitch, Sridhar, and Blei (2020) demonstrate the
viability of this approach on a Science of Science question testing the
causal effect of equations on getting papers accepted to computer
science conferences. Pryzant et al. (2021); Gui and Veitch (2022)
explore the more complicated scenario in which the treatment is not expli-
citly known (e.g., equations in papers, gender of authors), but is instead
externally perceived upon reading (e.g., politeness/rudeness of an email
or toxicity of a social media post). In these models, an additional loss func-
tion is also added for learning text representations concurrently with the
causal inference losses discussed above.

Causal Inference from Networks

A smaller literature has leveraged relational data for causal inference in two
distinct scenarios. In the first traditional selection on the observable setting,
we wish to control for information about unobserved confounding inferable
from homophilous ties. For example, age or gender might be unmeasured
in our data, but we might expect people to develop friendship ties with
those of the same gender identity or age cohort.

This scenario suggests estimation strategies similar to those when con-
founders are encoded in text. Much like Transformer layers can be pre-
pended to TARNet-style estimators to learn from text, GNNs (an analog
of the Transformer) can be preprended to learn from graphs. Guo, Li,
and Liu (2020) provides a first pass at this problem by adding GNN
layers to CFRNet Shalit, Johansson, and Sontag (2017) (Box 8). Veitch,
Wang, and Blei (2019) instead adapt Dragonnet in a semiparametric
framework to allow for consistent estimates of the treatment and
outcome, assuming the network representation encodes significant infor-
mation about confounders.

The second, more challenging scenario is estimating the causal effect of
social influence on outcomes from observational data. For example, Cristali
and Veitch (2022) introduce the problem of measuring the effects of vaccin-
ation (T) on peer vaccination choice (Y). This is a hard problem because (a)
SUTVA is a fundamental assumption of all causal inference frameworks
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and (b) it is hard to disentangle whether changes in the outcome result from
the treatment via peer effects (e.g, person A pressuring person B to vaccin-
ate), or from homophily (e.g., person A and person B having similar polit-
ical leanings). In other words, contagion and homophily are generically
confounded (Shalizi and Thomas, 2011). McFowland and Shalizi (2023)
are the first to tackle this problem by making strong parametric assumptions
about the generation of network ties and the outcome model. Cristali and
Veitch (2022) instead propose an approach using neural network-learned
representations of the graph.

Causal Inference from Images

While ideas from causal inference have been leveraged extensively to
improve image classification, to our knowledge there are no papers that
explore causal inference where treatments, confounders, mediators, or
predictors are encoded in images.12 That being said, some scenarios pro-
posed for causal text analysis should apply here as well. For example, con-
sider the conjoint experiment on the electability of politicians’ faces by
Todorov et al. (2005) where both the treatment (e.g. incumbency of a pol-
itician) and potential latent confounders (e.g., party, age, gender, race) are
encoded in an image. In this setting, a TARNet-like model adapted to learn
and condition on image representations could improve treatment effect
estimation by controlling for confounders such as the politician’s age.
Causal inference on images is an area ripe for exploration, and we hope
to see more work here in the future.

Causal Inference from Time-varying Data

One natural extension of deep causal estimation is to scenarios where treat-
ments are administered over time and confounding may be time-varying.
While “g-methods” developed by Robins et al. for estimating effects with
time-varying treatments and confounding have existed for decades, the stat-
istical assumptions encoded in these models are quite strong (Robins,
1994; Robins and Hernán, 2008; Robins, Hernan, and Brumback, 2000).
Due to their reliance on generalized linear models to define the “structural”
component, they assume that the outcome is a linear function of all covariates
and treatment. Second, for identification, they make strong assumptions about
which previous timesteps confound the current one. Third, they require differ-
ent coefficients to be estimated at each time steps. Transformers (Box 8) and
RNNs, a simpler model for sequential data (Online Appendix), should be able
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to capture long-term dependencies and nonlinearities in ways that marginal
structural models and g-computation cannot.

Several papers have begun to explore these possibilities in the context of
personalized medicine. Lim, Alaa, and van der Schaar (2018) build a mar-
ginal structural model using a RNN, and Bica et al. (2020) extend this frame-
work with an additional loss to more explicitly deal with time varying
confounding by forcing the model to “unlearn” information about the previ-
ous time steps. Melnychuk, Frauen, and Feuerriegel (2022) go one step
further by adapting Bica et al. (2020)’s approach with a transformer.
Inspired by longitudinal targeted maximum likelihood, Frauen et al. (2022)
add a semiparametric targeting layer to their RNN to create a g-computation
algorithm that is doubly robust and asymptotically efficient. Li et al. (2021)
instead propose an RNN framework for g-computation that allows for
dynamic treatment regimes. All of these papers use simulations of tumor
growth dynamics, naturalistic simulations based on vital signs from intensive
care unit visits, or datasets on the response of back pain to physical therapy.

Conclusion: Deep Causal Estimation in Context
In this primer, we introduce social scientists to the emerging ML literature on
deep learning for causal inference. To set the stage, we first provide both an
intuitive introduction to fundamental deep learning concepts like representa-
tion and multitask learning, as well as practical guidelines for training neural
networks. In the main body of the article, we show how ML researchers have
adapted core treatment and outcome modeling strategies to leverage the par-
ticular strengths of neural networks for heterogeneous treatment effect esti-
mation. We follow with a discussion on inference (e.g., model selection,
confidence intervals, interpretation), and close with a prospective look at
algorithms for inference from text, social networks, images, and time-varying
data.

Deep learning is not the only potential tool for heterogeneous treatment
effect inference, and there are robust literatures exploring the usage of
other methods in both the econometrics and biostatistics communities (Van
der Laan and Rose, 2011; Chernozhukov et al., 2018; Wager and Athey,
2018). While these literatures are certainly more mature, below we discuss
reasons why we think the use gap between neural networks and other ML
methods will continue to narrow, a change that we must prepare for.

First, neural networks are better at modeling nonlinear heterogeneity (e.g., in
treatment responses) than other ML methods. In extensive simulations, Curth
et al. (2021) found that when the data-generating process for treatment
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heterogeneity includes exponential relationships, neural networks outperformed
random forests, but tree-based methods are robust when the data-generating
process is built on linear functions. Neural networks were also consistently
better at predicting outlier treatment effects than forests. These differences
result from how the two methods model functions. While neural networks can
approximate any continuous function with enough neurons, random forests
must build nonlinear or nonorthogonal decision boundaries using piecewise
functions and average predictions. Consistent with these differences, Curth
et al. (2021) also find that neural networks do better when variables are con-
structed as continuous covariates, and vice versa when they are dichotomized.

From a statistical perspective, the rise of semiparametric and double ML
frameworks has also narrowed the gap between neural networks and other
types of ML in terms of theoretical guarantees. For example, the
TMLE-inspired Dragonnet algorithm featured here is unbiased, plausibly
consistent, and converges to the target estimand at a fast rate of 1/

n
√ . The

closely related Riezsnet double ML model (not featured) boasts similar guar-
antees (Chernozhukov et al., 2022). Beyond these algorithms, there is a
growing adjacent literature of model-agnostic plug-in learners (e.g.,
X-learner, R-learner) that can leverage the strengths of neural networks
(Nie and Wager, 2021; Künzel et al., 2019).

Third, folk beliefs about the data-hungriness and uninterpretability of
neural networks are overstated. Neural networks are data-hungry when over-
parameterized or learning from high-dimensional data like images, but we
show in the tutorials that modest-sized (hundreds of neurons), well-
regularized neural networks can successfully infer heterogeneous treatment
effects in a naturalistic simulation of quantitative data with less than 800
units. In the “Confidence and Interpretation” section, we also highlight the
considerable progress in ML interpretability over the past five years, much
of which has been on model-agnostic approaches that benefit all black-box
algorithms equally.13

In our opinion, themost pressing limitation of current deep learning approaches
is the difficultyof optimizingneural networks. Theoretically, this stems from(a) the
complexity of the loss functions which are often nonconvex, and (b) the ease of
over-parameterizing these models to fit these functions. If neural networks are to
be used as statistical estimators, statistical guarantees must be backed by optimiza-
tion guarantees and/or more rigorous methods for model selection. Outside of stat-
istical estimation, this limitation has largely been addressed through empirical
testing on test data and strategic model selection. Within the statistical estimation
context, this gap will likely need to be addressed by simulation-based sensitivity
analyses and, in the short term, comparisons to other model families.
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Moreover, there has been a lack of mature tools and empirical applications
of these models. A major goal of this primer, and the tutorials in particular, is
to synthesize the theoretical literature, practical training and interpretation
guidelines, and annotated code in one place so that social scientists can
start using these models. Deep learning frameworks like TensorFlow and
Pytorch are becoming more accessible every year, but we note that canned
Python packages like Uber’s causalML exist for interested readers who just
want to experiment with a few of these models (Chen et al., 2020).

Despite current limitations, we believe the future of causal estimation runs
through deep learning. As causal inference ventures into new settings, the
flexibility of neural networks will become essential for learning from text,
graph, image, video, and speech data. For time-varying settings, we believe
the ability of neural networks to model nonlinearities and long-range tem-
poral dependencies will ultimately lead to solutions with net weaker assump-
tions than current approaches. Overall, we are optimistic and excited to see
where deep causal estimation heads over the next few years.
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Notes

1. Neural networks can have hundreds to billions of parameters making them effect-
ively nonparametric. The risks of overparameterization of neural networks are dis-
cussed in the “Deep Learning Fundamentals” section.

2. The other two prominent paradigms are unsupervised learning and reinforcement
learning.

3. Note that bias in statistical learning theory is not equivalent to bias of a statistical
estimator.

4. For some interesting work on understanding neural networks theoretically from a
statistical physics perspective see Roberts, Yaida, and Hanin (2022).

5. In the specific context of causal inference, we recommend not having mini-
batches that are too small such that the model can learn from both treated and
control units with sufficient overlap.

6. In convex functions (e.g. the OLS loss), there is a single minimum, so optimiz-
ing the function means that you will always converge at the same parameter
weights. This is not the case for nonconvex functions which may have many
local minima.

7. We note that crossfitting (Zivich and Breskin, 2021), another approach that has
emerged for model selection of other types of ML causal estimators may work
for the models discussed here, but is likely data-inefficient.

8. A variable is a collider if it is caused by two other variables. Controlling for col-
liding variables, or descendants of colliding variables, will induce a spurious cor-
relation between the parents. In the case of adjusting for confounding, controlling
for a collider variable can (re-)open a confounding path that would otherwise be
closed, introducing additional bias.

9. Another outcome modeling approach that could be used to estimate the
outcome, not discussed here, is g-computation (Robins, 1986; Hernán and
Robins, 2020).

10. To de-emphasize the contribution of units with extreme weights due to sparse
data, sometimes a “stabilized” IPW is used (Glynn and Quinn, 2010).

11. For a deeper dive on targeted learning, we recommend (Benkeser and Chambaz,
2020).

12. Jesson et al. (2021) introduce a simulation where the MNIST digit dataset serves
as covariates X as a toy example of high-dimensional confounding, but not a pos-
sible application.

13. Critics often point to out-of-bag feature importances as a particular
strength of random forests, but this approach has been shown to be less
accurate than model-agnostic permutation importances anyways (Altmann
et al., 2010).
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