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1 | INTRODUCTION

Causal inference has been a topic of intense interest in the statistical literature. The focus of
causal inference methodology deals with the issue of how to properly evaluate treatment effects
in a nonrandomized setting. In many medical and scientific studies, randomization cannot be
performed due to logistic, economic, and/or ethical limitations. Under these circumstances, the
emergent challenge is the consistent evaluation of treatment effects in the presence of confound-
ing. For example, in Bhagat et al. (2017), a cohort of patients undergoing lung resection surgery
are examined to compare the rate of unplanned readmission following thoracoscopic versus open
anatomic lung resections. The mode of surgery is not randomized and there are several preop-
erative characteristics, which inform the method of surgery, that in turn affect the readmission
rate. Methods for causal inference seek to minimize any bias induced by these confounding
variables.

Two important concepts in causal inference are the potential outcomes model (Rubin, 1974;
Splawa-Neyman, Dabrowska, & Speed, 1990) and the propensity score (Rosenbaum & Rubin,
1983). The potential outcomes approach provides a powerful tool for conceptualizing, estimating,
and performing inference regarding causal effects. An overview for implementing the potential
outcomes model can be found in Imbens and Rubin (2015). They demonstrate that a natural quan-
tity which regularly arises when balancing potential confounders between experimental groups
in observational studies is the propensity score (Rosenbaum & Rubin, 1983). The propensity score
is defined as the probability of receiving treatment given a set of measured covariates. Based on
the assumptions underlying the potential outcomes model and the propensity score, causal infer-
ence proceeds in the following stages: (a) a propensity score model is fit using the observed data;
(b) diagnostics for covariate balance using the propensity score are evaluated; and (c) estimates
of the causal effect are produced by conditioning on the propensity score. Iterating between steps
(a) and (b) is often necessary to ensure the homogeneity of the propensity score adjusted covariate
distributions.

A key goal for the propensity score model is to achieve covariate balance, which means that the
distribution of confounders between the treated and control groups are equivalent. From Rosen-
baum and Rubin (1983), the assumptions of strongly ignorable treatment assignment (defined in
Section 2.2), in conjunction with the definition of the propensity score, imply that adjustment
on the propensity score alone will theoretically achieve balance. However, this result is based on
the population propensity score and does not necessarily hold in finite samples. There have been
numerous approaches that address the issue of balancing empirical covariate distributions using
weighting estimators. We refer to the weights produced by these methods as balancing weights.
One popular method is to construct propensity scores with covariate balance built into the estima-
tion procedure. Imai and Ratkovic (2013) and Fan, Imai, Liu, Ning, and Yang (2016) introduced
the covariate balance propensity score (CBPS) and its subsequent improvement (iCBPS), both of
which use generalized methods of moments to fit a logit model with covariate balance serving as
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In the political science literature, Hainmueller (2012) uses maximum entropy density esti-

mation to find balancing weights to estimate the average treatment effect of the treated. The
algorithm, termed entropy balancing, finds the vector of balancing weights that minimize the
normalized relative entropy from a vector of sampling weights subject to a set of linear equality
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constraints about the moments of the covariate distribution. Recent work by Zhao and Per-
cival (2017) shows how this algorithm enjoys a double-robustness property. The general idea
of double-robust estimation is to combine covariate information about the treatment assign-
ment and the outcome model into the weighting estimator (Bang & Robins, 2005; Kang &
Schafer, 2007). If at least one model is correctly specified, then the resulting causal effect
estimate is consistent. When both the outcome and treatment models are correctly specified,
then the estimate achieves the semiparametric efficiency bound described by Hahn (1998).
Entropy balancing is limited to finding balancing weights to estimate the average treatment
effect of the treated, leaving gaps in the procedure for developing doubly robust estimators
of other estimands. This issue is related to the choice of Hainmueller (2012) to optimize the
normalized relative entropy. By changing the criterion distance function in a convex opti-
mization problem, similar to the one presented by Hainmueller (2012), we can draw paral-
lels to other covariate balancing methods. A similar idea is proposed by Zhao (2019), who
shows that CBPS and entropy balancing can be generalized by modifying the score func-
tion derived from the respective covariate balance problem. Calibration estimators (Deville &
Sarndal, 1992) also produce balancing weights using constrained convex optimization tech-
niques. The proposed methods in Chan, Yam, and Zheng (2015) implicitly extends entropy
balancing to include other distance functions. However, they restrict their attention to a non-
parametric setting, characterizing their methodology as a departure from the propensity score
literature.

Our aim is to extend the work of Hainmueller (2012), Imai and Ratkovic (2013), and Fan
et al. (2016) for finding balancing weights that facilitate causal effect estimation when the treat-
ment assignment is not determined by a logit model. We do so by demonstrating how balancing
weights can be computed from Bregman distances (Bregman, 1967). Bregman distances have mul-
tiple geometric properties that allow for easy estimation of the balancing weights. This geometric
interpretation of balancing weights complements the implicit geometry found in classic semi-
parametric inference. Using the results of our framework, we prove that CBPS (Imai & Ratkovic,
2013) and iCBPS (Fan et al., 2016) are doubly robust estimators of the average treatment effect
while assuming the propensity scores follow a logit model. As an extension to CBPS, we pro-
pose an estimator for balancing weights akin to the overlap weights discussed by Li, Morgan, and
Zaslavsky (2018). We also show how our framework is consistent with the calibration estimator
approach of Chan et al. (2015), thereby bridging the empirical covariate balancing methods of
entropy balancing, CBPS, iCBPS, and calibration estimators. We are interested in these methods
in particular as they do not incorporate a model of the outcome process into their designs in the
spirit of Rubin (2008).

The outline of this article is as follows. Section 2 defines the general notation and assump-
tions that will be applied throughout the manuscript. Section 3 describes the methods for
finding balancing weights by solving a constrained optimization problem using Bregman dis-
tances as the criterion function. Section 4 describes the similarities between our method and
other covariate balancing methods. Section 5 summarizes results from two simulation stud-
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ies comparing different covariate balancing methods. This section also contains the results
for a replication study of Bhagat et al. (2017) using a variety of different covariate balancin
methods. The real dataset illustrates the importance of selecting appropriate covariate bal-

ancing methods. Finally, Section 6 concludes with a discussion of the framework and future

work.
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2 | BACKGROUND AND PRELIMINARIES
2.1 | Notation and definitions

Parameters will be denoted using Greek letters, whereas random variables will be denoted
with Roman letters. Boldface letters will denote vectors and matrices, while nonboldface letters
represent scalars. For a matrix A, the transpose is written as A”. The symbol Vfdenotes the gra-
dient of a function f. Let 1,, denote the (n X 1) vector with each entry equal to one. Similarly, let
0,, denote the (n X 1) vector with each entry equal to zero.

Let X denote a vector of real-valued covariate measurements, Z denote the random treatment
assignment with support {0, 1}, and Y denote the real-valued outcome variable. The independent
sampling units will be indexed by i = 1,2, ..., n. The (n x 1) vector of balancing weights will be
written as p = (p;, D3 --- pn)T, while the (n x 1) vector of sampling weights will be written as
q=(q.9 -9, " We will often write p, = p(X;) for the ith subject to emphasize the fact that
the balancing weights are conditioned on the covariates. Define {c¢;(X);j = 1,2, ..., m}, as a set of
functions that generate linearly independent features to be balanced between treatment groups.
We will refer to these quantities as balance functions.

2.2 | Potential outcomes model

Potential outcomes provide a convenient framework for conceptualizing causal effects. This
framework was first introduced by Splawa-Neyman et al. (1990) for randomized experiments. The
concepts and assumptions necessary to extend this framework to observational data were later
formalized by Rubin (1974). The potential outcomes are denoted with a vector [Y(0), Y(1)]” with
Y(0) and Y(1) corresponding to the counterfactual outcome when Z = 0 and Z = 1, respectively.
The conditional expectations for the potential outcomes are denoted with uy(X) = E[Y(0)|X]
and u;(X) = E[Y(1)|X]. The random outcome is defined by the transformation Y = ZY(1) + (1 —
Z)Y(0). Some common causal estimands are the population average treatment effect (ATE),
Tate = E[Y(1) — Y(0)], and the population average treatment effect of the treated (ATT), tarr =
E[Y(1) — Y(0)|Z = 1]. In any case, the causal effects are nonidentifiable as one of the two required
potential outcomes is always missing. This simple observation is the fundamental problem of
causal inference. We adopt the setting proposed by Rosenbaum and Rubin (1983) who describe
a set of assumptions that will allow us to find consistent estimates of the treatment effect in
observational studies. This includes the following assumptions about the data.
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Assumption 1 (Strong ignorability). [Y(0), Y(1)]

The strong ignorability assumption requires thal:L theX vector of potential outcomes be inde-
pendent of the treatment assignment when we condffl&i on the covariates. This assumption
further implies that there is no unmeasured confounding. The implication of Assumption 1 along
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with the delzflmtlon of the propensity score as a balance criterion allows us to conclude that

{{Y(g) Y(1)] )Jl Z|n(X), where 7(X) = Pr{Z = 1|X} denotes the propensity score (Rosenbaum &
ubin,

Assumption 2 (Positivity). 0 < Pr{Z = 1|X} < 1 for all X.

The treatment positivity assumption requires the probability that a subject is assigned to the
treatment group as opposed to the control group be bounded away from zero and one. Since
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Pr{Z = 1|X} must be estimated from the covariates, then Assumption 2 equivalently amounts
to requiring sufficient overlap between the covariate distributions of the two treatment groups.
The feasibility of the convex optimization problems that we will introduce later on are deeply
intertwined with Assumption 2. Without sufficient overlap, the estimated balancing weights will
either not exist, or be unstable and produce biased estimates of the causal effect.

2.3 | Horvitz-Thompson estimator

The Horvitz—-Thompson class of estimators (Hirano, Imbens, & Ridder, 2003; Horvitz &
Thompson, 1952) frequently appears in the causal inference literature. For example, the
Horvitz—Thompson estimator for the average treatment effect is

N z (1 - Zi)Yi
TATE = 1)
ﬂ(X ) 1-x(Xy)
while the Horvitz-Thompson estimator for zarr is
n
. 1 (X)) - Z)Y;
= — Z;Y; — , 2
TATT n ; [ iXi 1— E(Xi) ( )

where n; = 2?:1 Z;. Hahn (1998) was able to show that (1) and (2) have optimal asymptotic prop-
erties for estimating zatg and zarr. Even when we substitute a consistent estimator of the propen-
sity score into (1), the estimator for rarg remains consistent and achieves the semiparametric
efficiency bound.

A more general form for causal effect estimation is

. 2 (2Z ~ Dp(X)Y,

3
= l 1p(Xi)Zi ( )

which accommodates several different estimands through the choice of p(X). For example, we
will see in Section 3.4 that the estimator for zapr is similar to estimators of ratg With additional
constraints placed on the balancing weights so that p(X) = g whenever Z = 1. Equations (1) and
(2) provide direction for identifying p(X) within (3) in order to estimate z otz and zart, respectively.
If the propensity score is known, zate can be estimated by setting p(X) = #(X) ! when Z =1
and p(X) = [1 — #(X)]~! when Z = 0. We can also find an estimator for zarr by setting p(X) =
x(X)[1 — #(X)]~! when Z = 0 and p(X) = 1 when Z = 1. When the propensity score is unknown,
finding an estimator for p(X) that produces consistent estimates of 7 aorg and zarr is relatively
straightforward. Estimating balancing weights that also preserve the efficiency of 7 org and Zarr
is a more challenging proposition.
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3 | BREGMAN DISTANCES

3.1 | Definition

Let A" C R" be a nonempty, convex, and open set with closure A" Define f: A" - Rtobeacon-
tinuously differentiable, strictly convex function. The Bregman distance generated by the function
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FIGURE 1 Example of a Bregman distance
for one-dimensional p’, g € A. The function f(p) (red
line) is strictly convex over p € A. The line tangent
to f at g is the blue line. The Bregman function is
the distance between the red and blue lines at the
point p’ [Colour figure can be viewed at
wileyonlinelibrary.com]

Ds(p' || )

flg) + [Vflg)T(p—q)

< S e .
R - - - -

f is the difference between f evaluated at p € A" and the first-order Taylor series approximation
—_n

of f about q € A", evaluated at p. In other words, a Bregman distance Dy : A x A" — R may be

defined as

D¢(pllg) = f(p) - f(@) — [VA@I"(p - q).

Bregman distances are often used to measure the convexity associated with f. Since f is strictly
convex over A, it follows that for pEe A" and q € A", D¢(pllq) > 0 with equality holding if and
only if p = q. This implies that D¢(p||q) is also strictly convex. A more complete definition of
Bregman distances can be found in chapter 2 of Censor and Zenios (1998), which includes addi-
tional properties that Dy must satisfy which are not mentioned here. A visual representation of a
Bregman distance can be found in Figure 1.

One of the most common examples of a Bregman distance is the unnormalized relative
entropy. Let f(p) = X, pilog(p;) for p € [0, c0)". We assume 01og(0) = 0 so that the domain of f
includes the boundary points contained within the closure of A”. The resulting Bregman distance
is written as

Dy plog B —pi+g,

i=1 i
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The Euclidean distance is anotl{pt Iax)am% ff a Breéma)n distance] By selecting f(p) = ?:1 pl.2 /2
forp € R", we get
" — ) 2
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2 PplHq) = 21‘ 2

In order to simplify the presentation of the methods, we will only consider Bregman distances
that are separable. This means D¢(p||q) = Z?zl D¢ (p; |1g;)- Note that both the unnormalized rel-
ative entropy and the Euclidean distance are separable. Since we require positive weights, we
also restrict our focus to convex functions where A" C [0, 0)" in order to avoid setting additional
constraints for p > 0,,. Notice that the domain of the unnormalized relative entropy satisfies this

https://onlinelibrary.wiley.com/reader/content/10.1111/sjos.12457/format/pdf/OEBPS/pages/1.page.xhtml Page 12 of 54



A framework for covariate balance using Bregman distances 10/14/20, 10:12 PM

JOSEY ET AL.

7
Scandinavian Journal of Statistics—l—

condition while the domain of the Euclidean distance does not. In addition, we will assume
throughout that the sampling weights q € A" are fixed by design and known.

3.2 | Constrained optimization and duality

For some q € A", the value p € A" that minimizes Dy (pllq) in an unconstrained setting is p = q.
In covariate balance problems, we specify a set of linear constraints that the optimal solution must
satisfy. Consider the constrained convex optimization problem to

n
minimize Z Dy(pillg)

i=1
subjectto ATp =, (4)

where A is a linearly independent (n X m) matrix that forms the basis of a linear subspace that
defines the constraints of the program and b is an (m x 1) vector denoting the margins of those
constraints. The entries of A and b are denoted with a; € R and b e R (i=1,2,...,n and
j=1,2,...,m), respectively. Equation (4) is often referred to as the primal problem and the cor-
responding solution is referred to as the primal solution. We denote the set of feasible primal
solutions that satisfy the linear constraints in (4) as Q = {p tATp = b}.

Geometrically, the solution to the primal problem is the point

p = argmin__,, Dy (pllq), (5)

which is the generalized projection of @ € A" into Q. Note that Q N A" is sometimes empty. One
solution to avoid this issue is to choose b = ATp, wherep € A" so that peln A" For example
when using the unnormalized relative entropy, we might set b = 0,, with p = 0,. However, this
condition is not so obvious for some of the covariate balancing problems that we will encounter
later on. Instead, we will assume QN A" # (J throughout. Lemma 1 proves that the generalized
projection is unique. The proof appears in section 2.1 of Censor and Zenios (1998). For the sake
of completeness, a version of this proof is also found in the online supplement.

Lemma 1. Suppose QN A" # 0. Then the generalized projection of q into Q, defined in (5), is
unique.

"[020T/01/¥11 38 [LSHTT sols/TTTT 01/4pda/10p/ - TT0/801'8S0" L0 - ANSIOATU[) )e1S ETUBA[ASUUR]] Aq pajurig

When peQnA", the primal problem can be solved by introducing a vector of
Lagrangian multipliers. With Lagrangian multipliers, we can formulate the Lagrangian L : A" x
A" x R™ — R for any constrained optimization problem in the form of (4) as

L(p.q, 4) = Dy p-b)"A (6)
(pll + (A
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Optimizing the Lagrangian with respect to p € A" and 4 € R™ is an unconstrained problem
equivalent to (4). Instead ot finding the point p € Q N A" that minimizes I¥ (p||q), we find the vec-
tor p that minimizes the Lagrangian with respect top € A" and A that maximizes the Lagrangian

with respect to 4 € R™. In other words, the optimal solution forms a saddle point on (6) over the
space A" x R™ for a fixedq € A".

The following propositions are used in tandem to obtain balancing weights for treatment effect
estimation. A necessary condition for these propositions is that the function f, which generates
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the Bregman distance Dy be zone consistent with respect to Q. This means that for any q € A",
the Bregman distance produced by f has its generalized projection of q into Q contained within
the open set A",

Proposition 1. Assume that fis zone consistent with respect to Q. Let p € N A" be the generalized
projection of q into Q, as defined in (5). Then P is uniquely determined by

P (q,A1) = (V)" (Vf(@) - Al),

where ] € R™is also unique.

The proof of Proposition 1 can be found in the online supplement. Given the result of Propo-
sition 1, the convex optimization problem can be solved by estimating 1 € R™ with the dual
problem, which is to

maximize L [P}r(q, Al).q, /l]
subjectto A€ R™ (7)

Propositions 1 and 2 imply that the primal solution to (4) can be obtained by plugging the
solution to the dual problem into the generalized projection. The proof of Proposition 2 is adapted
from section 3.4 of Bertsekas (1999) and appears in the online supplement.

Proposition 2. Assume f is zone consistent with respect to Q. If the primal problem (4) has an
optimal solution, then the dual problem (7) also has an optimal solution and the two optimal values
are equal.

3.3 | Balancing weights for the ATE

In this section, we outline the general strategy and guidelines for obtaining balancing weights for
estimating zars. The proposed method requires solving the primal problem to

minimize Z Dr(pillg:)
i=1

n
subject to Z pi2Z; — ciX;) =0 and
i=1
n n
plZlcj(Xl) = qlcj(Xl) for all ] =1,2,...,m. (8)

i=1 i=1
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As mentioned in the previoE section, (S)Eln be solved by optimizing the corresponding
Lagrangian, which is defined as
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n m n
LATE(p, q, 1) = E ¥ (pij|g) + E Ajo Zpi(ZZi - 1)a(Xi)
i

+ Z Ajr Zpizicj(xi) - ZQiCj(Xz’) , (9)
J=1 i=1

i=1
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where g = (10, 420, .. » Amo) T @and 41 = (A11, A1 s -, A1)’ With 4 = (A, A1)T. The criterion dis-
tance function should be selected so that Py [qi, ZJ’Z 1 6(XpA jo] = n(X;)~% We can also frame this

problem using the notation from Section 3.2. Let A ( be an (n X m) matrix whose elements consist
ofajo = (2Z; — 1)c(X;), A1 bean (n X m) with entries a;;; = Z;6(X;),bp = 0,,,andb; bean (m x 1)
vector with entries bj; = 2?21 q; G(X;). We then combine A, and A, to construct A = [Ag, A]
while by and b; are concatenated into b = [bg , blT] T

After differentiating (9) with respect to p; for some i = 1,2, ...,n and setting the resulting
derivative to zero, we arrive at the generalized projection evaluated at A € R?". The dual objective
function is obtained by substituting the generalized projection for p; in the Lagrangian. The dual
solution solves the dual problem,

A =argmax ) Lare {Pf [qi, Y @Z - DX+ Zzicj(xiuﬂ] i ,1} . (10)

iR oy j=1 j=1

As a result of Propositions 1 and 2, the balancing weights are uniquely determined by the
generalized projection evaluated at 1 € R2™,

m m
p(XZ) = Pf [qi, Z(ZZl - 1)CJ(X1)/A1]0 + ZZZC](XI)/i\Jl] , 1=12,...,n. (11)

j=1 j=1

It is recommended, and often necessary (see the proofs to Theorems 1 and 2), that one of
the balance functions be an intercept—we will assume throughout that ¢, (X) = 1 for all X. This

constraintimplies ;. , 1, B = 2.2 —o)Di-

3.4 | Balancing weights for the ATT

Next we consider the problem of finding balancing weights to estimate 7 orr. This requires solving
the primal problem to

n
minimize Z Dy (pillg:)
i=1
n n
subject to pi(1—=2Z)g(X;) = qiZici(X;) forall j=1,2,...,m. (12)
i=1 i=1
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The criterion Bregman Yistance should be chpsen so that the generalized projection resembles
the functional form for the odds of treatment. That is,

m
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. P e 1 v: 3
Pr lqz,E c;(Xl)Az] = ey
where A = (A1, A2, ..., A,»)". In terms of the notation presented in Section 3.2, (12) is equivalent

to (4) by setting a;; = (1 — Z))¢Xy), i=1,2,...,n, and b; = Y, qiZ;c;j(X), j=1,2, ..., m. Simi-
lar to the balancing weights for estimating 7 arg, we set ¢1(X) = 1 for all X so that Z{i: z=11qi =
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D (i:z,=0)Pi- The associated Lagrangian for (12) can then be expressed as

Lari(p.q. A) = ) Dypillg) + ), 4 [Z pil— Z)g(Xo) — ) aiZi(Xy)

i=1 j=1 i=1 i=1

Notice that when Z=1 and g € A, then Py [q,(l -2) Zj’ilcj(X)/lj] = ¢g. Moreover, recall
from Section 3.1 that Dy(q||q) = 0 for some q € A. Therefore, (12) can be reconstructed into the
equivalent primal problem to

n
minimize Z Dr(pillqi)
i=1
n
subject to Zpi(ZZi —DciX;) =0 forall j=1,2,...,m and

i=1

pi=q; forallie{i: Z =1}.

According to Propositions 1 and 2, the balancing weights are evaluated with the resulting
generalized projection,

m
pX;) = Ps [qi, (1-2) ch(xi)ij] . i=1,2,...,n,

J=1

where the dual vector is estimated by solving for

A = argmax )’ Lurr {Pf [qi,(l - 7)) ch(xi)/lj] . ,1} .

AGR™ g j=1

4 | RELATIONSHIP WITH OTHER COVARIATE BALANCE
METHODS

41 | Entropy balancing
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Entropy balancing (Hainmueller, 2012) is a special case of a constrained Bregman distance opti-
mization problem. By setting f(p) = I, p; log(p) and g; € (0, 0) for all i = 1,2, ...,n, we can
identify the entropy balancing primal problem, which is to

X

o Di
minimize Jog = —p;+gq;
I_pl g RN bi %1

n
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subject to Zpi(l - Z)g(X;) = Z qiZicj(X;) forall j=1,2,...,m. (13)

According to Proposition 2, optimizing (13) is equivalent to maximizing the dual objective
function,
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i = arg max Z {_qi exp [—(1 - Zi) Z CJ(Xl)/IJ] - ini Z Cj(Xi)/lj} . (14)
= =1

j=1

The vector of balancing weights is obtained by evaluating the generalized projection with the
solution to the dual problem, which yields

P(X;) = q; exp [—(1 -z, cj(xi)}j] , i=12,....n (15)
j=1

In Hainmueller (2012), (13) is written using the normalized relative entropy instead of the
unnormalized relative entropy. However, optimizing the normalized relative entropy is simply
achieved by (14) and (15) with minor alterations. Let q; =q/ Y, qZ forallie {i: Z =1}
and constrain the intercept so that ', pi(1 — Z) = Y., ¢Z; = 1. As previously suggested in
Section 3.4, we recommend setting ¢;(X) = 1. In doing so, the resulting balancing weights for the
control group will sum to one while still satisfying the constraints of the primal problem.

Using the resulting estimating equations for A and zarr in concordance with results from
M-estimation theory (Stefanski & Boos, 2002), Zhao and Percival (2017) show that entropy
balancing weights produce doubly robust estimates of zarr. This means if either logit[z(X)] €
span{¢(X) : j=1,2,...,m} or uo(X) € span{¢X) : j = 1,2, ..., m}, then the balancing weights
of (15) applied to (3) is consistent for zarr. If both conditions are satisfied, then the estimator
achieves the semiparametric efficiency bound derived by Hahn (1998) for estimators of 7 srt. The
Horvitz-Thompson estimator for zarr that substitutes a consistent estimate of the propensity
score for 7(X) in (2), on the other hand, does not achieve the semiparametric efficiency bound.

4.2 | Covariate balance propensity scores

Another method for covariate balance, developed by Imai and Ratkovic (2013), proposes fitting a
logit model for the propensity score,

exp | T 60X |

1+ exp [Z,-'Zl cj(Xi),lj]

7(X;) = i=1,2..,n, (16)

"[020T/01/¥11 38 [LSHTT sols/TTTT 01/4pda/10p/ - TT0/801'8S0" L0 - ANSIOATU[) )e1S ETUBA[ASUUR]] Aq pajurig

subject to

Y ZeX) Q- Z)eXq)
Xy 1-xXp)

=0 forall j=1,2,...,m. (17)
i=1

5|
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They opted to solve for A € R"™ using generalized method of moments (GMM) while at the
same time satisfying (17). The estimated propensity scores can be transformed into balancin
weights for estimating zatg with the inverse probability of treatment weighting estimator. We will

refer to the model where the balance functions that appear in (17) are identical to the balance
functions within the linear predictor of (16) as the exactly specified CBPS model.

The weights obtained with an exactly specified CBPS model can be expressed in an equivalent
manner to a constrained optimization problem following our framework. First, notice that the
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fixed effect coefficients of the logit model can double as a vector of dual variables. Next, observe
that (17) can be rewritten as

n

2 {1 + exp [—(22,. ~1) ch(x,.)aj] } 2Z; - 1)(X) =0 forall j=1,2,...,m.
j=1

i=1
The CBPS primal problem can then be constructed in order to
n

-1
minimize Z [(pi —1)log <p 1) —Pi+ql']

i=1 i

n
subject to Z p2Z;—1)c(X;)) =0 forall j=1,2,...,m. (18)
i=1

We call the criterion distance function in (18) the shifted relative entropy, which
is generated by setting f(p)=Z:;l(pi—l)log(pi—l), p € [1,00)". Notice that (18)
also contains fewer constraints than (8). We assume q,=2 for all i=12,...,m.
Assuming uniform sampling weights follows the prevailing philosophy of the
causal inference literature in which observational data are typically randomly sam-
pled from the population of interest. The solution to the dual problem for (18)
finds

A= arg max Z {(ZZ,- - 1)2 ¢(X;)Aj — exp [—(22,- -1) ch(Xi)ﬁj] } . (19)

AER™ o j=1 j=1

The principal reason for selecting the shifted relative entropy as the criterion distance func-
tion is the resulting balancing weights, which resemble the inverse probability of treatment
weights,

PX) =1+ exp [—(221 -1) ch (Xl-)ﬁlj] , i=1,2,...,n. (20)

j=1

A similar derivation of CBPS using the dual function setup was also described by Zhao (2019).

Fanetal. (2016) identifies a condition that the balance functions must satisfy in order for CBPS
to be doubly robust for estimating z org. This condition is not obvious from a data analytic context.
However, the condition is satisfied if we assume a constant conditional average treatment effect.
Under this assumption, we can prove that CBPS is doubly robust using the balancing weights
produced by (20).
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Assumption 3 (Constant conditional ATE). For all X, y1(X) — uo(X) = 7.
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Theorem 1. Let Assumptions 1 and 2 be given. Suppose E[Y(0)], E[Y(1)], and E[ci(X)] exist for all
j=1,2,...,m. Furthermore, assume V[Y(0)] < oo and V[Y(1)] < oo. Then the balancing weights
determined by (19) and (20) applied to (3) is doubly robust in the sense that:

1. If logit[z#(X)] = Zj'il ¢jX)A; for some 4; € R, j=1,2, ..., m, then 1 is consistent for T arg;
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2. Under Assumption 3 and if uy(X) = Z"il ci(X)B; for some f;e R, j=1,2,...,m, then 7 is

j
consistent for targ;
3. If Conditions 1 and 2 are both satisfied, then

\/ﬁ(f — TATE )_)dN(Oa 2 semi)

where

o VIY(D)IX]  V[Y(0)X]
Zse““_]E{ X 12X }

As an extension to CBPS, consider the primal problem using the Bregman distance generated
by setting f(p) = X L, pi log(p) + (1 - pi) log(1 - py), p € [0, 1]™:

n
: 1—p;
minimize Z [ ilog <&> + (1 —pi)10g< b >]
i=1 qi 1-g

1 1

n
subject to Zpi(ZZi —1ejX) =0 forall j=1,2,....,m. (21)
i=1

Ifweassumeq; = 1/2foralli =1,2,...,n, then according to Propositions 1 and 2, the solution
to (21)is

A 1
pXi) = —, (22)
l+exp |(2Z-D YT XD

where the dual solution is obtained by solving for

n

. 1 2
A = arg max, gm Z log
H 1+exp |z - DY g®y| | 1+exp|@Z -1 B g4

n

1 2
+ log

i=1 1+exp —(2Z;—1) j’il ¢ (X)4 l+exp —(2Z;—1) j’il ¢ (X)) A

+Elj ] ezgvexo ] | ) b
i=1 i=1 1+exp (27 —1) jril ¢;(Xi)4; }
) {2 s
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The Bregman distance in this case is referred to as the binary relative entropy. This distance is
useful for finding balancing weights that produce estimates for a special case of the weighted aver-
age treatment effect called the optimally weighted average treatment effect (OWATE) (Crump,
Hotz, Imbens, & Mitnik, 2006),
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E{zXO[1 — z(X)][Y(1) — Y(0)]}
E{zXO[1 - z(X)]}

TOWATE =

A consistent estimator for 7 owatg is also consistent for 7y, with the smallest variance, when we
are given Assumption 3 and the potential outcomes have equal variance. Li et al. (2018) further
motivates the use of estimators for rowatg When there is poor overlap between the treated and
the control groups. Equations (23) and (22) provide a dual interpretation of the covariate balance
scoring rule for estimating zoware considered by Zhao (2019). By replacing p(X) with (22) in (3),
and using arguments similar to the proof of Theorem 1, we derive a doubly robust estimator for
Towate With the usual asymptotic properties.

Corollary 1. Under the same assumptions and conditions as Theorem 1, the balancing weights
determined by (22) and (23) applied to (3) is doubly robust for estimating t owate With asymptotic
variance

5 2 Vivalxy |, Viyvolx]

Zsemi = . 24
E{zX[1 — z(X)]} 2 (24

4.3 | Improved CBPSs

The iCBPS approach (Fan et al., 2016) improves upon the CBPS method described in Section 4.2
to better accommodate heterogeneous treatment effects. The objective of this method is to fit a
logit model subject to the constraints

"1 ZeiX, — Z)eiX;
Zl X)) (1 -Z)GX) —0 and
Pt E(Xz‘) 1 - 7(Xi)
(T)_l] cjX;) =0 forall j=1,2,...,m. (25)

Fan et al. (2016) uses GMM to estimate 2 € R in (16) subject to (25). This modified approach
can be adapted to fit into our proposed framework, with the balancing weights being estimated
using dual optimization techniques instead of GMM.

Using the same criterion Bregman distance as the one used in (18), we can obtain balancing
weights that satisfy (25) as follows. Assume g, = 2foralli = 1,2, ..., m. Define the primal problem
for iCBPS as
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minimize @i—Dlog (pi—1)—pi+2
S 1
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- .
subject to Z pi(2Zi —1)d(Xi) =0 and

n n
Y piZicjX) = ) qefXy) forall j=1,2,....m. (26)
i=1 i=1
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As opposed to (18), the iCBPS primal problem follows our guidelines in Section 3.3 more
closely. The resulting dual solution solves for

n

m m m
= argmax,cgon Y. {(zzi =1 )Xo +Z Y, XA — ), ¢Xin
j=1

i=1 j=1 Jj=1

— exp [—(2Zi -1 ) ¢X)Ao—Zi ) cj(Xi)/lﬂl } : (27)

Jj=1 j=1

The covariate balancing weights differ slightly from (20) due to the additional constraints in
(26) with

PX;) =1+ exp [—(ZZl- -1 ) GX)Ao—Zi ) cj(xl-)iﬂl , i=1,2,...,n (28)

J=1 J=1

Note that with the GMM approach, A € R"™, whereas with our method, A € ™. This implies
that exact balance between covariates is not necessarily achieved with the proposed methods of
Fan et al. (2016). A notable deviation from our own recommendations exists within how b is
specified. Even though q; =2 foralli=1,2,...,n, we set bj; = 2?21 ciXj)forallj=1,2,...,m.
If we were to follow the setup in Section 3.3, we would set bj; = 2?21 2¢i(X;). However, this dis-
tinction is minor in the context of uniform sampling weights and should produce similar results.
We now show that the weights produced by (27) and (28) applied to (3) is doubly robust given a
linear conditional average treatment effect, defined in Assumption 4. Note that Assumption 4 is

less stringent than Assumption 3, which was necessary to prove Theorem 1.

Assumption4 (Linear conditional ATE). Forall X, y; (X) — uo(X) = ), J’Z 1¢(X)aj where aj € R
forallj=1,2,...,m.

Theorem 2. Let Assumptions 1 and 2 be given. Suppose E[Y;(0)], E[Y(1)], and E[c;(X)] exist for

allj=1,2,...,m. Assume V[Y(0)] < oo and V[Y(1)] < oo. Then the balancing weights determined
by (27) and (28) applied to (3) is doubly robust in the sense that:

~

If logit[z(X)] = ZJ"; cjX)Ajo for some Ajp € R, j=1,2,...,m, then 7 is consistent for Tatg;
2. Under Assumption 4 and if uy(X) = ZJ”; ci(X)p; for some f;eR, j=1,2,...,m, then 7 is
consistent for Tatg;

3. If Conditions 1 and 2 are both satisfied, then
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ﬁ(f — 7aTE) = d N (0, Zsemi),

where

Z:semi =

+ :
(VIYQ)IXT  VIY(0)IX] Y

https://onlinelibrary.wiley.com/reader/content/10.1111/sjos.12457/format/pdf/OEBPS/pages/1.page.xhtml Page 29 of 54



A framework for covariate balance using Bregman distances 10/14/20, 10:12 PM

i T(X) 1 — 7m(X) f

4.4 | Calibration estimators

Chan et al. (2015) describes a class of estimators originally introduced by Deville and Sarndal
(1992) for survey sampling called calibration estimators. One of the contributions from Chan
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et al. (2015) shows how calibration estimators can be applied to covariate balance problems. For
some separable generalized distance function G : A" — R, calibration estimators find balancing
weights that solve the primal problem to

n
minimize )’ G(p:)
i=1

subjectto Y p(1 - Z)¢;(X;) = Y ¢;(X;) and

i=1 i=1

n n

ZpiZicj(Xl-) = Z ¢(X;) forallj=1,2,...,m. (29)
i=1 i=1

Chan et al. (2015) assume uniform sampling weights. Equation (29) is solved by defining the
functions h(p) = G(1 — p)and g(v) = h [(Vh)‘l(v)] +v—v(Vh)"' (v)withp € Aandv € R to write
the dual objective functions, which we use to solve for

Ao = arg max, g Z {g 2(1 - Zi)@(xi)/lj] - Z Cj(XiMJ} and

i=1 = =1
11 = argmax; ,m Z {g Z ZLCJ(XI)/Ij] - Z Cj (Xl)/lj} . (30)
i=1 =1 =1

The resulting balancing weights are obtained by evaluating the first derivative of g at 1
and 1 1

X)) = Vg [Za — Z)gX)Ajo+ ), Zicj(xl-ﬂﬂ] : (31)
j=1 J=1

Similar to our solution for finding balancing weights to estimate zarg, the dual variable
A = (do, 21)T has 2m entries. Tseng and Bertsekas (1987) and Chan et al. (2015) show that (30) can
be solved using any strictly concave g(v), v € R, assuming that a feasible solution for (29) exists.
Therefore, calibration estimators are not necessarily restricted to Bregman distances. However,
if G is a monotone increasing transformation of Dy with respect to p € A", then (29) can be con-
structed using Bregman distances so that the primal solutions are equivalent. The only difference
from the methods we present in Section 3.3 is with the construction of A and b. In Theorem 3, we
identify the conditions for which our proposed method is equivalent to the calibration estimator
approach of Chan et al. (2015).

MThansensa 2 Crinnncnrin hmin ~ cammaw~nlimad Aict~innna M2\ 1ihainla 760 ~ 1rrnAtaIrnn T1Anra~Nainec f1amna
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ALICULVVL1L J. LJULIJPUOC vwe rtuve u SCILC’ uL,cu uwturiece U\P}, vvrwiere h) u IILU’LULUILC Lreer CMDLILS trurw-
Jormation of some Bregman distance D/ (p||q) with respect to p € A" and q € A" is uniform. Then
for

n n
Q=<p: ZpiZicj(Xi) = b; and Zpi(l - Z)gXy) =b forallj=1,2...,m and
i=1 i=1
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n n n
Ql = {p . ZplZlC](Xl) = bj and Zpizicj(xi) = Zpi(l - Zi)Cj(Xi) for all] = 1,2 e, m } ,

P = p wherep = arg min, ., \,»G(p) and p = arg min,q, ,A=DA(p||Q).

Theorem 1 of Chan et al. (2015) shows that calibration estimators can be used to produce con-
sistent estimates for zarg While also attaining the semiparametric efficiency bound described by
Hahn (1998). This is accomplished using a nonparametric setup where the balance functions rep-
resent a basis for uniformly approximating uo(X), 14 (X), and z(X). Given this result and Theorem
3implies that for a sufficiently rich set of balance functions, the Bregman distance weights in con-
junction with (3) can produce consistent and efficient estimates of 7 org. This result is quite useful
when the balance functions that determine either the outcome or the treatment assignment are
unknown.

Without further defining the distance to be optimized in the primal problem, (30) and (31)
are less flexible when considering nonuniform sampling weights. This is especially important
when developing iterative estimation algorithms or dealing with more complex balance designs
where the data are not sampled uniformly from the population of interest. Furthermore, calibra-
tion estimators, as they are described in Chan et al. (2015), achieve a three-way balance between
the treated, the controls, and the combined treatment groups for estimating za1g. As shown in
Theorem 1, this condition is not required when Assumption 3 holds. Zhao (2019) also noted that
this condition is not required to achieve global efficiency using covariate balance scoring rules.

5 | NUMERICAL STUDIES
5.1 | Homogeneous treatment effect simulation

In this section, we demonstrate the utility of the proposed methodology using simulated data
that assumes a constant conditional average treatment effect (Assumption 3). We generate 1,000
replications of several datasets determined by one of 72 experimental scenarios. For each dataset,
we find balancing weights from four different covariate balancing methods to estimate z org. They
are:

1. (IPW) Inverse probability of treatment weights where the propensity score follows a logit
model fit using maximum likelihood estimation;

2. (CBPS) Inverse probability of treatment weights where the propensity score is fit to an exactly
specified logit model subject to (17). The propensity scores are fit using generalized method
of moments as implemented in the CBPS package (Fong, Ratkovic, & Imai, 2019);

3. (SENT) Balancing weights that are estimated by minimizing the shifted relative entropy fol-
lowing the results of (27) and (28). Using these balancing weights instead of (19) and (20)
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allows us to test the ettect ot overspecitying the linear constraints when we know Assumption
3 is satisfied;

4. (BENT) Balancing weights that are estimated by minimizing the binary relative entropy
subject to the constraints in (21) via the dual and primal solutions of (22) and (23).

We consider an extensive set of experimental scenarios adapted from those examined by Kang
and Schafer (2007). These scenarios vary the sample size n € {200, 1,000}, the error variance ¢ % €
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{2,5,10}, the generative process that determines the treatment assignment (indexed by {a, b}),
the outcome process (indexed by {a, b}), and the correlation between the potential outcomes,
p € {—0.3,0,0.5}. The covariates to be balanced (i.e., the balance functions) are distributed as
X1,X5, X3, X4 ~ N(0,1). Define the transformations U = exp(X1/2), U, = X,/[1 + exp(X1)] + 10,
Us = (X1 X3/25+ 0.6)%, and U, = (X, + X4 + 20%. The vector (Uy, Uy, Us, Uy) T is subsequently
standardized to have a mean of zero and marginal variances of one.

The probability that a subject receives the treatment is then determined using the inverse logit
link function,

eol ]

2® =
1+exp [ngk)]

i

k € {a,b}.

Scenarios a and b distinguish whether the log odds of the propensity score is either linear or
nonlinear with

_)(il + 0.5)(}2 - 0.25Xi3 - 0.1)(1'4 and

7@ =
7" = ~Uy +0.5U 5~ 0.25U;3 — 0.1Uj. (32)

The treatmentindicators are generated by sampling Z; ~ Bin(1, ngk) ). For the outcome process,

we use the bivariate model
Yi(0) -~ N @) c? po?
Yi(D) “po? 62| )

gi
)
¥

+7
where 7 € {a, b} indexes

U@ =210+ 27.4X; +13.7X;, +13.7X;3 +13.7X;,  and
u” =210+ 27.4Uy +13.7U;, +13.7U3 +13.7U3. (33)

Once the potential outcomes have been generated, the observed outcome is the potential
outcome corresponding to the observed treatment assignment. Each of the covariate balancing
methods listed above is provided the design matrix with an intercept and the four original covari-
ates: X3, Xin, Xi3, and Xy fori = 1,2, ..., n. The causal effect is then estimated using (3) where we
substitute p(X;) with the balancing weights estimated by each method.

We found that the correlation between the potential outcomes did not affect the resulting
estimates of zarg . In addition, the effects of altering o? and n had anticipated results. Lower values
of 62 led to lower standard errors of the causal effect estimate, whereas smaller values of n led to
larger standard errors. Therefore, we report the results for p = 0, n = 200, and 62 =101inTable 1
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and Figure 2. 'I'he complete results appear 1n the online supplement.
For all the methods that we tested, if either the outcome model or the treatment assighment
is correctly specified, then the causal effect estimate is unbiased. We see in Table 1 and Figure 2

that the balancing weights obtained with SENT perform as well, or better in some cases, than
the exactly specified CBPS model, even though the balancing weights obtained with SENT have
twice as many constraints. The Monte Carlo standard error and bias of the estimates for rarg are
smallest when BENT is used to estimate the balancing weights for every scenario we examined.
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TABLE 1 Average estimate, Monte Carlo standard error (MC SE), residual mean squared error, and
empirical bias of the constant conditional average treatment effect using the four methods for estimating
balancing weights described in Section 5.1

Treatment
Outcome assignment
scenario scenario IPW CBPS SENT BENT
Avg. estimate (MC SE) a a 19.60(3.28) 20.02 (0.55) 20.02(0.53) 20.02 (0.51)
a b 20.40 (2.70) 20.00 (0.50) 20.01(0.49) 20.00 (0.49)
b a 19.36 (5.27) 19.67(3.81) 19.75(2.90) 19.90 (2.21)
b b 15.33(3.57) 15.26(3.28) 15.83(2.73) 16.47(2.31)
Mean squared error (bias) a a 10.91 (—-0.40) 0.30(0.02) 0.28(0.02) 0.26 (0.02)
a b 7.42(0.40)  0.25(0.00) 0.24(0.01)  0.24 (0.00)
b a 28.21 (—0.64) 14.63 (—0.33) 8.49 (—=0.25) 4.87 (—0.10)
b b 34.54 (—4.67) 33.14 (—4.74) 24.79 (—4.17) 17.83 (—3.53)

Note: IPW uses inverse probability of treatment weights estimated from a generalized linear model, CBPS uses the
covariate balance propensity score weights, SENT uses the constrained optimal solution of the shifted relative entropy,
and BENT uses the constrained optimal solution of the binary relative entropy.

This is expected since these weights are used for estimating the 7 owarg (Crump et al., 2006), and
because every condition necessary to ensure that an estimator for rowarg is also an estimator for
Tate are met. The Monte Carlo standard errors and mean square error are also uniformly smaller
for the average treatment effect estimates when using balancing weights estimated by CBPS and
SENT versus IPW. This result indicates that methods which exactly balance the empirical covari-
ate distributions perform better in finite sample settings. When both the outcome and treatment
assignment models are misspecified, the four methods for finding balancing weights all produced
biased estimates of zarg . In these completely misspecified scenarios, the balancing weights esti-
mated with BENT produce the least amount of bias and the lowest standard error for estimating

TATE -

5.2 | Heterogeneous treatment effect simulation

In this section, we simulate an additional 72 scenarios with a linear conditional average treatment
effect to test our proposed methods under Assumption 4. We use the same covariate distributions
for (X1,X;,X3,X4) T and (U, U,, Uz, Uy) T as in Section 5.1. We also recycle the conditional mean
functions ,ugf) ,Z € {a,b}, from (33). To generate the linear conditional average treatment effects,
define
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oj = 20— 13./Xl1 +13./X14 and
® — 20— 13.7U1 +13.7Uk.

For outcome scenarios a and b, the bivariate outcome model is defined as
¢
Yol ([ "

Y,(1) @ L 5O

i i

sz 02 ), e {a,b},

[62 po*
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FIGURE 2 A subset of the constant conditional average treatment effect estimates using four different
methods for estimating balancing weights. Each boxplot is composed of 1,000 estimates from the replicates that
generate the values in Table 1 [Colour figure can be viewed at wileyonlinelibrary.com]

from which we sample n € {200,1,000} entries. Each unit's treatment assignment is sampled
from Bin(1, ngk) ), Where ni(k) is determined by ngk), k € {a, b}, which are defined in (32). Similar to
the simulations conducted in Section 5.1, we also vary ¢ € {2, 5,10} and p € {-0.3,0,0.5}. For

this set of scenarios, we examine five different covariate balance methods:

10/14/20, 10:12 PM
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1. (AIPW) Augmented inverse probability weights which uses the estimator

n

1 { ZiYy 4 —zX)lnX) (A -Z)Yi [Zi— ﬁ(Xi)]ﬁo(Xi)} L (34)

TAIPW = —
n £

i (X) is fit using linear regression on the treated group and /iy (X) is fit using linear regression
on the controls. 7(X) is fit with logistic regression;

AX) #(X) 1- #(X) 1 - #(X;)
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2. (CAL) Calibration weights that solve (30) and (31) for g(v) = exp(-v), v € R. This is equiva-
lent to minimizing the unnormalized relative entropy subject to the linear constraints in (29).
The R package ATE developed by Haris and Chan (2015) is used to estimate these balancing
weights;

3. (iCBPS)Inverse probability of treatment weights where the propensity scores follow an exactly
specified logit model that must satisfy (25) following the results of Fan et al. (2016). The
propensity score is estimated using generalized method of moments as implemented in the
CBPS package (Fong et al., 2019);

4. (hdCBPS) An augmented version of CBPS that extends (34) by using regularized regres-
sion techniques to find f; (X) and /io(X). The R package CBPS (Fong et al., 2019) is used to
implement this method;

5. (SENT) Balancing weights that minimize the shifted relative entropy conditioned on the
constraints in (26) where the estimates are obtained from (27) and (28).

For CAL, iCBPS, and SENT, the resulting balancing weights are substituted for p(X) in (3)
to estimate zarg. The augmented approach of AIPW was first proposed by Robins, Rotnitzky,
and Zhao (1994) while hdCBPS uses the augmented estimator proposed by Ning, Peng, and Imai
(2018).

As with the previous simulation study, it appears that the correlation between potential out-
comes is inconsequential, while the Monte Carlo standard errors predictably decrease when
either nincreases or o2 decreases. A representative selection of results from the experiment where
p =0,n =200, and o2 = 10 is found in Table 2 and Figure 3. The complete results can be found
in the online supplement. This simulation demonstrates that all five methods enjoy the doubly
robust property described in Theorem 2. For each scenario, CAL and SENT had similar levels
of bias and variation despite using different criterion distance functions. Even though the con-
straints of iCBPS and SENT are the same, the differences between the optimization techniques
of the two methods become quite apparent. The Monte Carlo standard error of the estimates for
7aTe Using balancing weights obtained with SENT is smaller than the standard error of the esti-
mates using balancing weights found with iCBPS. AIPW, CAL, and SENT performed similarly
whenever the outcome was correctly specified. However, when the outcome model is misspec-
ified and the propensity score is correctly specified, the Monte Carlo standard error and mean
squared error were greater with AIPW than SENT and CAL. This suggests, and is further con-
firmed by hdCBPS, that methods which exactly balance covariate distributions can improve the
efficiency of a doubly robust estimator in finite samples. The estimates from hdCBPS performed
about as well as SENT and CAL. However, this method was proposed to alleviate issues encoun-
tered with high-dimensional covariate data, rendering many of its benefits redundant in this
low-dimensional simulation study.

"[020T/01/¥11 38 [LSHTT sols/TTTT 01/4pda/10p/ - TT0/801'8S0" L0 - ANSIOATU[) )e1S ETUBA[ASUUR]] Aq pajurig

5.3 | Illustrative example of unplanned readmissions after lung

https://onlinelibrary.wiley.com/reader/content/10.1111/sjos.12457/format/pdf/OEBPS/pages/1.page.xhtml Page 41 of 54



A framework for covariate balance using Bregman distances 10/14/20, 10:12 PM

resection

Next, we investigate the results of a real dataset using different weighting and matching meth-
ods. In Bhagat et al. (2017), the odds of unplanned, 30-day readmissions are compared between
lung cancer patients who receive thoracoscopic versus open lung resections. The study identi-
fied 9,510 patients who underwent some form of lung resection from the American College of
Surgeons—National Safety and Quality Innovation Program (ACS-NSQIP) database. Of those
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TABLE 2 Average estimate, Monte Carlo standard error (MC SE), residual mean squared error, and
empirical bias of the linear conditional average treatment effect using the five methods for estimating balancing
weights described in Section 5.2

Treatment
Outcome assignment
scenario scenario AIPW CAL iCBPS hdCBPS SENT
Avg. estimate a a 19.93(1.51) 19.93(1.49) 19.06(3.94) 19.93(1.51) 19.93(1.49)
(MC SE)
a b 20.09 (1.48) 20.09(1.47) 18.05(3.50) 20.09(1.47) 20.09 (1.47)
b a 19.80 (7.35) 20.43(2.76) 19.72(3.63) 19.59 (3.02) 20.25(2.78)
b b 15.04 (4.52) 16.91 (2.55) 14.21(4.48) 16.15(2.76) 16.77 (2.54)
Mean squared a a 2.28 (—=0.07) 2.22(=0.07) 16.41(—0.94) 2.28 (—0.07) 2.23(—0.07)
error (bias)
a b 2.18(0.09) 2.16(0.09) 16.08 (-1.95) 2.17(0.09)  2.16(0.09)
b a 53.98 (—0.20) 7.77 (0.43) 13.26 (—0.28) 9.28 (—=0.41) 7.78 (0.25)
b b 45.04 (—4.96) 16.01 (—3.09) 53.58 (=5.79) 22.45 (—3.85) 16.84 (—3.23)

Note: AIPW uses an augmented inverse probability of treatment approach where the propensity scores are estimated from a
generalized linear model, CAL uses the calibration estimated weights, iCBPS uses the covariate balance propensity score weights,
hdCBPS is an augmented version of CBPS, and SENT uses the constrained optimal solution of the shifted relative entropy.

9,510 patients, 4,935 (51.9%) received a thoracoscopic resection and 4,575 (48.1%) received an
open anatomic resection. The study analysis carried out a greedy one-to-one matching of patients
using the estimated propensity score as the criterion matching function (Ho, Imai, King, &
Stuart, 2007). The propensity scores were fit with standard logistic regression. This algorithm
matched 3,399 thoracoscopic lung resection patients to 3,399 open anatomic lung resection
patients, dropping 2,712 patients (28.5%). In doing so, the “treated” group are assumed to be
the patients who receive thoracoscopic lung resections and represent a random sample of the
target population. Thus, the casual effect being estimated is the average treatment effect of the
treated.

We replicated the study conducted in Bhagat et al. (2017) by estimating balancing weights
using two different methods. The first method uses entropy balancing (EB) where the estimated
balancing weights are obtained with (14) and (15). Recall that these balancing weights applied
to (3) is doubly robust (Zhao & Percival, 2017). The second method fits a propensity score model
using logistic regression (IPW). With the fitted propensity score, we then use (2) substituting
7#(X) for z(X) to estimate rarr. The causal effect estimates using the propensity score matched
(PSM) cohort from the original article are also reported along with the unadjusted (UN) results in
Table 3.

Figure 4 shows the amount of imbalance observed for each of the covariates among those

10/14/20, 10:12 PM
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included in the covariate balancing models. We see that across each covariate, entroEy balancing
perfectly balances the first sample moments of the covariate distribution between the two treat-
ment groups. Logistic regression appears to be less adequate at balancing the covariate moments

than matching. However, aside from hospital length of stay, each of the weighted mean differ-
ences fell within the conservative 0.05 unit threshold using the inverse probability of treatment
weights. The unadjusted differences do not share the same success as their adjusted counterparts,
suggesting that some form of balancing should be implemented. After estimating 7 orr, notice in
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Table 3 that the estimated risk difference is significant when using either the inverse probabil-
ity of treatment weights or entropy balancing, but is not significant when using propensity score
matching. The difference is likely due to the 2,712 patients who were omitted when matching.
This discrepancy illuminates and emphasizes the importance of selecting the most appropriate
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menoa 10r bpalancing covariate aata, €ven witilin a large opservational stuay.

6 | DISCUSSION

The generalized projection of a Bregman distance from a vector of sampling weights onto a set
of intersecting hyperplanes is a powerful and flexible tool for normalizing data. In particular,
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TABLE 3 ATT estimates for 30-day unplanned readmission in

thoracoscopic versus open lung resection patients

Balancing method Risk difference SE

UN
PSM
IPW
EB

Abbreviations: ATT, average treatment effect of the treated; EB, entropy

95%

—0.021 0.006 (—0.032, —0.010)
—0.010 0.006 (-0.021, 0.001)

—0.015 0.006 (—0.027, —0.004)
—0.016 0.006 (—0.027,—0.004)

confidence interval

balancing results; IPW, inverse probability weighted results; PSM, propensity
score matched results; UN, unadjusted results.
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FIGURE 4 Each point represents the adjusted absolute standardized mean difference (x-axis) between
thoracoscopic and open lung resection patients. The covariates in the plot (y-axis) are included into each model.
The red dotted line marks an absolute standardized mean difference of 0.05 [Colour figure can be viewed at
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this process is quite useful for constructing balancing weights for estimating causal effects. Using
properties of dual optimization, we identify a doubly robust estimator for zarg and the optimally
weighted average treatment effect (Crump et al., 2006) in Theorem 1 and Corollary 1. We also
show that the dual interpretation of improved CBPS (Fan et al., 2016) is doubly robust in Theorem
2. In Theorem 3, we present the conditions for which the balancing weights produced by (11) are
the same as the weights produced by (31) suggested by Chan et al. (2015). When the true balance
functions are unknown, we can use nonparametric methods similar to those suggested by Hirano
et al. (2003) and Chan et al. (2015) within our framework to achieve global efficiency.

In the simulation studies we conducted, we observed that the balancing weights that are typ-
ically used to estimate zowate had the best performance for estimating g when Assumption 3
is satisfied. We also observed that including additional constraints as in (8) sometimes had better
performance than estimators that require fewer constraints, like CBPS. When we assume a lin-
ear conditional average treatment effect, our dual interpretation of iCBPS performed better than
the analogous GMM estimator. We then apply our framework to a real dataset of lung resection
patients. Here, we demonstrate how the choice of balancing method can have a critical impact
on the results of a study.

There are several limitations to our proposed framework. First, each sampling unit's treatment
assignment is assumed to be independent from the treatment assignment of the other sampling
units. This assumption is sometimes called the no interference assumption. Health outcomes
research is rich in observational data from the emergence of the electronic health record. While
numerous in size, these datasets are more complex with patients being clustered within regions,
hospitals, clinics, and/or practicing physicians. These are all factors that need to be accounted
for in some way. How to extend these methods to clustered data settings is currently under inves-
tigation. Second, linear equality constraints are often quite stringent. If a particular covariate is
difficult to balance, our proposed framework will sometimes fail to find the appropriate balancing
weights. Zubizarreta (2015) propose using stable balancing weights which minimize the Euclid-
ian distance subject to linear inequality constraints placed on the weighted sample moments of
the covariate distribution. In more recent work, Wang and Zubizarreta (2020) have combined this
interval constrained optimization approach with calibration estimators. There is also the issue
where the balance functions that generate either the outcome or treatment assignment are high
dimensional. This problem is not examined in the presented work. Ninget al. (2018) propose using
an augmented approach with the CBPSs of Imai and Ratkovic (2013) and Fan et al. (2016) in the
spirit of Robins et al. (1994) and Farrell (2015). Their proposed methodology boasts compelling
results as the dimension of covariate distribution increases. It is possible that our approach could
be extended using some of the methods proposed by Ning et al. (2018).

In addition to addressing some of the limitations identified in the previous paragraph, in future
work we would also like to expand these methods to incorporate multivalued treatment assign-
ments. This would entail modifying the Horvitz—Thompson estimator and also requires extending
the constraint matrix A and target margins b to facilitate covariate balance between all pairwise
combinations of the treatment assignments. Finally, we would like to further investigate methods
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for generalizing causal effect estimates to a target population, which would involve estimating q
prior to estimating p.
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APPENDIX TECHNICAL PROOFS
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Proofs for all Theorems, Lemmas, Propositions, and Corollaries presented in this article are
available online at http://www.interscience.wiley.com/journal/sjs.

APPENDIX R PACKAGE AND SIMULATION CODE
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The R ackafe used to fit balancing weights as the generalized projection of Bregman dis-
tance is still in development with a working version available at https://github.com/kevjosey/
cbal. The code used to conduct the simulation study in Section 5 is available at the following URL:

https://github.com/kevjosey/cbal-sim. The code for replicating the study by Bhagat et al. (2017)
is available from the authors upon request.
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