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Abstract
A necessary step in the development of artificial intelligence is to enable a machine to represent how the world works, building
an internal structure from data. This structure should hold a good trade-off between expressive power and querying efficiency.
Bayesian networks have proven to be an effective and versatile tool for the task at hand. They have been applied to modeling
knowledge in a variety of fields, ranging from bioinformatics to law, from image processing to economic risk analysis. A
crucial aspect is learning the dependency graph of a Bayesian network from data. This task, called structure learning, is
NP-hard and is the subject of intense, cutting-edge research. In short, it can be thought of as choosing one graph over the
many candidates, grounding our reasoning over a collection of samples of the distribution generating the data. The number
of possible graphs increases very quickly at the increase in the number of variables. Searching in this space, and selecting a
graph over the others, becomes quickly burdensome. In this survey, we review the most relevant structure learning algorithms
that have been proposed in the literature. We classify them according to the approach they follow for solving the problem and
we also show alternatives for handling missing data and continuous variable. An extensive review of existing software tools
is also given.

Keywords Machine learning · Statistics · Bayesian network · Structure learning

1 Introduction

A key issue in artificial intelligence is the development of
models able to provide a structured representation of the
domain knowledge, and taking into account that most likely
those models will be learnt from data. These models should
hold a good trade-off between expressive power and query-
ing efficiency. Bayesian networks [50] have proven to be an
effective and versatile tool for the task at hand. They have
been applied to modeling knowledge in a variety of fields,
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ranging from bioinformatics to law, from image processing
to economic risk analysis [53].

Bayesian networks are a structured knowledge represen-
tation, where domain variables are regarded as nodes in a
graph whose structure encodes the dependencies between
them. A crucial aspect is learning the dependency graph of a
Bayesian network from data. This task, which we call struc-
ture learning, is NP-hard [13], and is the subject of intense,
cutting-edge research.

In short, it can be thought of as choosing one graphover the
many candidates, grounding our reasoning over a collection
of samples of the distribution generating the data. The num-
ber of possible graphs dramatically increaseswith the number
of variables. Hence, searching in this space, and selecting a
graph over the others, becomes quickly burdensome. In this
survey, we present a review of the many sophisticated algo-
rithms that have been proposed in the literature.

The remainder of this paper is organized as follows. Sec-
tion 2 formally introduces Bayesian networks and gives an
illustrative example. Section 3 presents a review of the most
relevant literature about structure learning. Section 4 reviews
the main software tools implementing Bayesian networks
structure learning, and Sect. 5 gives some hints about what
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method to use depending on the target application. The paper
ends with some concluding remarks in Sect. 6.

2 Bayesian networks

We start with the earthquake example given by Pearl [50]. It
is a Bayesian network of five variables, modeling the follow-
ing domain: Mr. K is at work when he receives a call from
a neighbor telling him that his house alarm went off. When
he is about to call the police, he remembers reading in the
instruction manual that the alarm is sensitive to earthquakes
and can be accidentally triggered by one. He reckons that
if an earthquake occurred, it would be on the news. So he
turns on the radio and finds out that an earthquake has just
occurred. ShouldMr.K call the police?Avariable is assigned
to each event: the alarm ringing (variableA), a burglar intru-
sion (variable B), the earthquake occurrence (variable E),
the radio announcement (variableR), and the neighbor’s call
(variable C). To each variable is then assigned a conditional
probability table (CPT). These tables encode the distribution
of the variable given the values of its parents. Each variable
is binary, with the value t meaning the event has happened,
and the value f meaning it has not. The Bayesian network is
depicted in Fig. 1.

2.1 Definition

We can now properly define a Bayesian network as a pair
(G,O) that encodes a joint probability distribution over a
finite set X = {X1, . . . , Xn} of categorical variables. It is
composed of: (i) a directed acyclic graph (DAG) G = {V, E}
whose nodes V correspond to the variables in X and arcs E
represent direct dependencies between variables, and (ii) a
collection of conditional mass functions O that define the
behavior of each variable Xi given its parents !i in the
graph.

In the earthquake example,wehaveX = {A, B,C, R, E};
G is the graph shown in Fig. 1, andO is the set of conditional
probability tables showed in the same figure.

The representation of the full joint table P(X ) takes expo-
nential space in the number of variables n. This complexity
can be avoided thanks to the so-called Markov condition,
which states that in a Bayesian network every variable is
conditionally independent of its non-descendant non-parents
given its parents. By using this condition, it is possible to rep-
resent the joint table in a compact form, as a multiplication
of local mass functions:

p(x) = p(x1, . . . , xn) =
∏

i

p(xi |πi ),

where x is an instantiation of all the variables in X , xi is
the value of variable Xi in x, πi is an instantiation of all
the variables in the parent set !i compatible with x. The
representation now takes still exponential space but only in
the size of the largest parent set.

In our example, representing the full joint tablewould take
25 = 32 parameters. Applying the previous decomposition:

P(E, B, R, A,C)

= P(E)P(B)P(R|E)P(A|E, B)P(C |A), (1)

we can represent it with only 20 parameters (2+2+22+23+
22). The benefit becomes more important as the number of
variables increases. (Additionally, it is possible to represent a
distribution without the last parameter, as it can be computed
from the others. In this case, the full joint table takes 31
parameters, and the decomposition takes 15: 1+1+3+7+3.)

The most important application of a Bayesian network is
probabilistic inference, i.e., estimating the posterior prob-
ability P(X |Y ) on target variables X given evidence on
other variables Y . Our goal could be, for example, to decide
whether Mr. K has to rush home. This is based on the prob-
ability that there has indeed been a burglar intrusion, given

Fig. 1 A Bayesian network for
the earthquake problem. The
tables specify the probability
distribution for each variable
conditional on its parent values.
All the variables are binary
(true/false values)

A

B

C

R

E

P (A|E,B)

E B A = t A = f

t t 0.99 0.01
t f 0.9 0.1
f t 0.97 0.03
f f 0.14 0.86

P (B)

B = t B = f

0.2 0.8

P (E)

E = t E = f

0.01 0.99

P (R)

E R = t R = f

t 0.6 0.4
f 0.05 0.95

P (C)

A C = t C = f

t 0.7 0.3
f 0.01 0.99
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Fig. 2 Example data D sampled
from the modeled network A B C E R

y n n y y
n n n n y
y y y n n

...

that his neighbor called and there was a radio announcement
of an earthquake. In a formula:

P(B = t |R = t,C = t) =? . (2)

Several researchers have studied this application, which
has been proven to be NP-Hard [16]. An important result
is that this complexity can be managed by bounding the
treewidth, a measure of the tree-likeness of the graph. The
treewidth is defined as the size of the largest clique in a
chordal completion of the graph. Modern exact inference
algorithms have worst-case time complexity exponential in
the treewidth of the underlying graph [39].

3 Structure learning

Suppose now that we are unaware of the original structure
of the earthquake model. We can only observe its behavior,
sampling data from the distribution associatedwith themodel
as in Fig. 2. Grounding our reasoning on these observations,
we can thenmake an assessment of their originating structure.
This is the fundamental idea of structure learning.

The problem of learning the structure of a Bayesian
network from a complete dataset of d datapoints D =
{D1, . . . , Dd} corresponds to determining the set of directed
arcs E for the DAG G = (X , E), using some criterion that
specifies the quality of a structure. This can also be stated as
choosing for each variable Xi its parent set !i .

The usual assumption is for the data to be complete. The
case of missing data currently represents a bottleneck for
structure learning, as few methods can properly manage it.
We discuss them in Sect. 3.3.

The task is computationally non-trivial due to the enor-
mous size of the space of possible graphs G, growing
super-exponentially in the number of nodes n [54]. In Fig. 3,

we show only a few examples. How can we choose one over
the others?

3.1 Score-based structure learning

The most used approach to structure learning is called score
based. Loosely speaking, the task is to find the best DAG
according to some score function that measures its fitness to
the data [31]. The goal is now to solve:

argmax
G∈G

score(G,D). (3)

One of themostwidely adopted scores is theBayesDirich-
let equivalent uniform (BDeu) [10,17,31], which measures
the posterior probability of a chosen DAG given the available
data while assuming a uniform prior probability distribu-
tion on all the possible networks. Another important one
is the Bayesian Information Criterion (BIC) [61], which
approximates the BDeu. They share the important property
of decomposability: The score of a DAG is constituted by the
sum of the scores of the subgraphs made by each variable Xi
with its parent set !i :

score(G,D) =
∑

Xi

score(Xi ,!i ,D). (4)

The idea is now to separate the learning process in two
steps: parent set identification and structure optimization.
Parent set identification produces a list of suitable candidate
parent sets for each variable, in the order of decreasing score.
Structure optimization assigns a parent set to each node,max-
imizing the score of the resulting structure while avoiding
cycles. Most of the approaches focus on the second phase
and assume that the complete list of candidate parent sets
has been pre-computed.

Structure optimization can further be distinguished
between general structure optimization, with no constraints
on the resulting graph, and bounded treewidth structure
optimization, with an upper bound for the treewidth of the
resulting graph.

Parent set identification Most of the existing approaches to
score-based structure learning require a complete exploration

Fig. 3 Possible graph
reconstruction of the earthquake
model. The first graph, with the
gray nodes, is the original one A
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of the space of possible parent sets for every variable, so as
to generate a database of pre-computed scores.

The complete exploration of such a space is a burdensome
task, as its size grows asO(nk), where n is the number of vari-
ables and k is the maximum number of parents allowed for a
node, called maximum in-degree. This is a local property in
the graph, usually constrained for managing the exploration
complexity. Cussens et al. [19] perform structure learning on
datasets with 1614 variables, setting k = 2, a very limiting
constraint. In the case of k ≥ 3, the largest network studied
by Cussens [18] has 60 nodes. These are among the largest
examples of score-based structural learning in the literature.
Pruning rules have been proposed to help with this matter
[21], but they do not considerably reduce the dimension of
this space. An exception is the greedy search of the K2 algo-
rithm [17], which has however been superseded in terms of
accuracy by the more modern approaches mentioned above.

A high in-degree implies a larger search space and allows
achieving a higher score; however, it also requires higher
computational time. When choosing the in-degree, the user
makes a trade-off between these two objectives. When the
number of variables is large, the in-degree is generally set to
a small value, in order to allow the optimization to be feasible.
The problem of parent set identification is unlikely to admit
a polynomial-time algorithm with a quality guarantee [35].
Thismotivates the development of effective search heuristics.

Scanagatta et al. [60] devise a novel approach for parent
set identification that eliminates the limitation posed by the
structure constraint k. The idea is to guide the exploration
toward the most promising parent sets on the basis of an
approximated score function, denoted as BIC∗, that is com-
puted in constant time. The approach is based on the BIC
score and is currently the only score function supported. The
authors report that BIC∗ scales up to thousands of nodes
without constraints on the maximum in-degree.

General structure optimization Several exact algorithms
for structure optimization have been proposed. The first
approaches were based on the observation that for any fixed
ordering of the n variables, the decomposability of the score
enables efficient optimization over all DAGs compatiblewith
the ordering [17].

Koivisto and Sood [36] and Silander and Myllymaki [63]
explored dynamic programming approaches. The main idea
is to solve small subproblems first and use the results to find
solutions to larger problems until the global learning problem
is solved. They spend memory and time proportional to n ·
2n . Such complexity limits the realistic application of these
approaches only to small domains.

Malone [44], Yuan and Malone [67] and Yuan et al. [68]
propose a new approach that formulates the learning goal as
a shortest path problem. With the guidance of a consistent
heuristic, the algorithm is able to focus on searching for the

most promising parts of a solution space. The main benefit
consists in the pruning part of the graph space. Empirically,
the approach was shown to outperform the competitors on
datasets with up to 26 variables.

An approach based on branch and bound was proposed
by de Campos et al. [22] and de Campos and Ji [21]. It first
finds optimal parent sets for the individual variables by ignor-
ing the acyclicity constraint and then detects and breaks all
the cycles to find a valid Bayesian network. It continues to
improve on it either by finding a better solution or by reduc-
ing the upper bound, until the optimal solution is found. This
anytime behavior is the main appeal of the approach, as it
allows the user to trade-off between the score of the learned
graph and required computational time. It is able to handle
datasets with up to 100 variables.

Yet, the current state-of-the-art approach is based on inte-
ger linear programming [18,32]. The learning is posed as
a relaxed integer linear problem, where cutting planes are
introduced for breaking cycles until the optimal solution is
found. Identifying good cutting planes is the key to the suc-
cess of this approach. Experimentally, it has been shown to
handle datasets with up to 200 variables.

Malone et al. [43] propose a supervised solver selection.
They evaluate a collection of features computed on the input
data in order to predict the best state-of-the-art solver for the
particular instance. Their work is a promising initial step also
in the understanding of each solverweaknesses and strengths.

An interesting idea was introduced by Teyssier and Koller
[66] (which we call ordering-based search or OBS), where
a simple, yet effective heuristic approach is proposed. It is
based on a Monte Carlo search over the space of variable
orderings, trying to select for each ordering the best net-
work consistent with it. As an approximate method, it is
competitive when the problem is too complex for the exact
approaches, potentially scaling to datasets with thousands of
variables.

OBS employs a naïve operator, called swap, for escaping
local maxima in the local greedy search. A more powerful
operator, called insertion, was proposed by Alonso-Barba et
al. [4]. With this operator, the authors were able to signifi-
cantly increase the score of the learned structures.

Recently, Lee and van Beek [41] suggest enhancing the
performance of the greedy local search by applying a meta-
heuristic. They propose two approaches: (a) an iterated local
search coupled with a perturbation factor and (b) a genetic
algorithm in which each candidate solution is an individual,
subject to a series of crossover and mutation stages.

Scanagatta et al. [58] propose a novel operator for improv-
ing the score of the structure by applying local changes to
its underlying ordering. They denote it as the window oper-
ator for local search, already known as block insertion [7]
in the local search literature. They report that the resulting
algorithm consistently yields higher-scoring networks than
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state-of-the-art competitors, and is able to learn Bayesian
networks from dataset containing thousands of variables.

The idea to manipulate the underlying ordering was also
explored by Scanagatta, Corani, de Campos and [57]. The
authors investigatewhich parent sets are especially important
for the score of a DAG, with the aim of improving the sam-
pling strategy and thus to cover better regions of the space
of orders. Their approach is to sample the variables of the
ordering in a fashion that is proportional to their entropy.
This leads to an increase in performance that can be applied
to any algorithm based on local search over the space of
orderings.

Local search has also been carried out over the space of
equivalence classes of network structures [3,12] resulting in
the so-called GES algorithm. It has recently been improved
by introducing new local search heuristics, scaling up to net-
works of 100 nodes [5].

Zheng et al. [69] have recently proposed a novel and inter-
esting approach to structure learning. They have been able
to formulate the learning task as a continuous optimization
problem that can be solved by standard numerical algorithms.

Bounded treewidth structure optimization Being a global
property of the graph, bounding the treewidth considerably
increases the difficulty of the learning process. The treewidth
of a DAG is measured as the treewidth of its moral graph,
that is, the undirected graph obtained by adding an undi-
rected edge between all the common parents of a node, and
discarding the direction of all the other arcs.

The first approaches were based on heuristic edge addi-
tions. An approximate method has been proposed by Elidan
and Gould [23], polynomial in both the number of variables
and the treewidth bound. It is able to provide an upper bound
on the treewidth of the learned structure, thus able to check
at each arc addition if the bound is violated. The experiments
show that their approach is able to learn better models than
competing heuristicmethods, on datasets with up to 200 vari-
ables.

An exact method has been proposed by Korhonen and
Parviainen [38]. It is a dynamic programming algorithm able
to find the optimal graph maximizing a given score function
in timeO(3nnk+O(1)),where k is the treewidth bound.Exper-
iments show its applicability to networks with up to 15 nodes
and treewidth bound of 3. Its complexity growth may render
it unfeasible for larger domains.

Parviainen et al. [49] adopted an integer programming
approach. Cutting planes are formulated in order to enforce
the treewidth bound. Their experiments showed an improve-
ment over the competitors on datasets with up to 60 nodes.

Nie et al. [47] proposed an approximation technique that
consists of sampling k-trees (maximal graphs of treewidth
k), and subsequently selecting the best structure which is a
subgraph of that k-tree. Their experiments showed promising

results for datasets with up to 100 variables. Unfortunately,
the sampling space for k-trees is huge and can barely be
effectively explored by the sampling technique in a reason-
able amount of time. As the number of variables grows, each
sampled k-tree has a low probability of providing a good
fit for the given domain, and the time required to find good
solution increases.

Nie et al. [46] improved on the above idea by searching
for promising k-trees using an A*-guided exploration. The
goodness of the k-tree is approximated by using a heuristic
evaluation, called Informative Score. When a promising k-
tree has been selected, the algorithm searches for the optimal
DAG that is subgraph of the k-tree. The idea has been shown
to improve on competitors, but does not solve completely
the issue about the difficulties of sampling in the space of
k-trees.

Scanagatta et al. [56] exploit the fact that any k-tree can
be constructed by an iterative procedure that adds one vari-
able at a time. They then propose an iterative procedure that,
given an order on the variables, builds a DAG G adding one
variable at a time. The moral graph of G is thus ensured
to be subgraph of a k-tree. The algorithm is designed as to
maximize the score of the resulting DAGwhile guaranteeing
the bound on the treewidth. They report that their approach
scales effectively with both the number of variables and the
treewidth, outperforming the competitors, and is able to learn
bounded treewidth Bayesian networks from dataset contain-
ing thousands of variables.

3.2 Constraint-based structure learning

There are also methods based on statistical tests, called
constraint-based structure learning. These algorithms use a
series of conditional hypothesis tests to learn independences
among the variables in the model [51,52]. Following these
constraints, the DAG is in turn built. Their performance is
critically determined by the adopted hypothesis test.

The state-of-the-art approach is the PC algorithm (named
after its authors, Peter and Clark) introduced by Spirtes et
al. [64]. It starts from a complete, undirected graph and
deletes edges recursively based on conditional independence
decisions. This yields an undirected graph that can then be
partially directed and further extended to represent the under-
lying DAG. The PC algorithm runs in the worst case in
exponential time (as a function of the number of nodes), but
if the true underlying DAG is sparse, which is often a rea-
sonable assumption, this reduces to a polynomial runtime.
Kalisch and Bühlmann [34] showed the applicability of the
PC algorithm even in high-dimensional settings, up to 1000
nodes.

The standard PC algorithm relies on an ordering over
the variables, and may thus suffer from unstable results.
Colombo and Maathuis [14] proposed a modification of the
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algorithm that significantly increases the robustness of the
method, rendering it order independent.

The PC algorithm by itself does not require a spe-
cific conditional independence test. Most applications adopt
Chi-square test or mutual information tests. An interesting
approach, based on Bayesian score tests, has been proposed
by Abellán et al. [1].

Recent innovations introduced parallel computing tech-
niques for local causal discoverymethods in constraint-based
approaches [62]. Remarkably, the solution proposed byMad-
sen et al. [42], which is based on allocating the conditional
independence tests in the available computing units follow-
ing a balanced incomplete block design, has been tested on
datasets of over 2000 variables and 500k records.

3.3 Incomplete data

The standard approach to structure learning requires the
data to be complete. At the moment, very few methods can
handle the case of incomplete data. The most commonly
used is the structural expectation–maximization (SEM) [27].
This approach performs a two-step iterative procedure: (i)
E-step: Complete the data with expected values or modes
from the currently inducedBayesian network (in otherwords,
compute the expected sufficient statistics); (ii) M-step: Per-
form structure learning as if the data were complete. This
procedure continues until convergence. Unfortunately, the
complexity cost of this computation can be very high and
restrict its application only to small domains.

A competing approach has been proposed by Adel and de
Campos [2]. Given the task of learning a Bayesian network
frommissing data, it translates it into the problemof structure
learning from complete data. This is done by augmenting the
network with variables that take into account all the possible
completions of the data. The approach showed convincing
potential in datasets with up to 23 variables, but only on
small datasets, since it has an exponential cost in the size of
the missing data.

A different approach was proposed by Fernández et al.
[24]. It is designed for learning Bayesian networks repre-
senting regression problems, and is based on using mixtures
of truncated exponentials in order to represent the joint
distribution of the induced network [45]. It relies on a
data augmentation algorithm that iteratively re-estimates a
Bayesian networkmodel, and inputs themissing values using
it. It showed promising results on datasets with up to 16 vari-
ables, with both discrete and continuous values.

Nielsen et al. [48] proposed an algorithm for learning, in
the presence of missing data, a Probabilistic Decision Graph:
This is a representation language for probability distributions
based on binary decision diagrams. It can encode indepen-
dence relations that cannot be captured in aBayesian network
structure, and can sometimes provide computationally more

efficient representations than Bayesian networks [33]. Their
experiments showed a reasonable performance, but on net-
works with only up to 40 variables.

Scanagatta, Corani, Zaffalon, Yoo and Kang [59] propose
a method for performing structure learning on incomplete
datasets, using structural expectation–maximization (SEM).
They tackle the issue of the complexity cost by employing a
bounded treewidthBayesian network structure learning algo-
rithm. In this way, they obtain a fast implementation of SEM,
since the bounded treewidth structures learned in the differ-
ent iterations guarantee efficient inferences. They report that
it is the first implementation of SEM that is able to scale
thousands of variables.

3.4 Handling continuous variables

The methods for structure learning described so far are basi-
cally designed for discrete variables, though in general they
can be adapted to handle continuous variables as well. The
most straightforward approach is to discretize the continu-
ous variables, so that statistical tests of independence can be
carried out, and therefore, algorithms such as the PC can be
applied. This approach has been explored by Fernández et
al. [25].

Score-based structure learning can also be used with con-
tinuous variables as long as the score used to guide the search
process is compatible with the model adopted for represent-
ing the probability density of the continuous variables. The
method proposed by Romero et al. [55] represents such den-
sities using mixtures of truncated exponentials.

However, some statistical models are incompatible with
this approach, as they impose some structure restrictions.
This is the case of the conditional Gaussian (CG)model [40],
where discrete variables are not allowed to have continu-
ous parents. This model corresponds to scenarios where the
marginal over the discrete variables is a Multinomial and the
conditional density of the continuous variables for each con-
figuration of the discrete ones is a multivariate Normal. A
solution for learning CG networks following a score-based
approach was proposed by Bøttcher [8], later improved by
considering equivalence classes resulting in a more efficient
search procedure [9].

3.5 Statistical classification

Statistical classification is a common problem in machine
learning, where it is required to identify to which category a
newobservation belongs, based on the previous observations.
The category to be predicted is known as the class, and the
explanatory variables on which the choice is made are called
features. An example would be to predict whether tomor-
row is going to rain (class) given information on today’s
atmospheric conditions such as pressure, humidity, wind
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Fig. 4 Naïve Bayes. In this
figure and the following ones,
class variable is shown in gray

C

A1 A2 A3 A4

Fig. 5 TAN: The tree is
A1 ← A2 ← A3 → A4

C

A1 A2 A3 A4

Fig. 6 FAN: The forest is
constituted by the sub-trees
A1 → A2 and A3 ← A4

C

A1 A2 A3 A4

speed (features). This has been a widely used application
of Bayesian networks. Thanks to structural constraints, the
approaches are usually highly scalable, able to learn optimal
structures even with thousands of variables.

Naïve Bayes (NB) has been one of the first proposed tools.
An example is shown in Fig. 4. It assumes the stochastic
independence of the features given the class. This strong
assumption makes the classifier highly scalable, with a com-
plexity of O(n). However, the posterior probabilities are
biased and may lead to incorrect estimation [29].

The tree-augmented naïve classifier (TAN) [28] relaxes
this assumption, augmenting the NB with a tree which con-
nects the features. An example is shown in Fig. 5. As a result,
one feature has only the class as a parent, while the remaining
features have two parents: the class and another feature. This
design consistently helps reducing the bias of naïve Bayes, at
the cost of time complexity of only O(n2) for exact learning.

TAN is further improved by the forest-augmented naïve
classifier (FAN). An example is shown in Fig. 6. A FAN aug-
ments the naïveBayeswith a forest.A forest is a set of disjoint
trees; it is more general than a tree, as it includes the tree as
a special case. Thus, the BIC score of FAN is higher than
or equal to the BIC score of TAN. The structural learning
algorithm of FAN [37] is obtained as a slight modification
of the TAN algorithm. It maintains the same quadratic time
complexity.

A limit of both TAN and FAN is that they do not perform
feature selection; each feature is forcedly connected to the
class without checking whether it is relevant. The extended
tree-augmented naive (ETAN) [20] overcomes this problem.
ETAN allows each feature to have as parent either (i) the
class; (ii) the class and a feature; (iii) a feature without the
class; (iv) no parent, inwhich case the feature is recognized as
irrelevant. The structural learning algorithmofETANexactly
identifies the highest-scoring graph that satisfies the previous
constraints. An example is shown in Fig. 7. This algorithm
is more complex than that of TAN and FAN. The ETAN
includes naive Bayes, TAN and FAN as special cases; thus,
it achieves a higher BIC score (equal score in the worst case)
than all of them.

Bayesian network classifiers have also been extended
to regression problems, in which the variable to predict is
continuous. Adaptations for learning different structures in
regression problems have been proposed by Fernández and
Salmerón [26], where feature selection is carried out follow-
ing a filter approach.

4 Software tools

This section provides the current state of the art on software
tools for learning Bayesian networks from data. A summary

Fig. 7 ETAN which recognizes
A4 as an irrelevant feature. Note
also that A2 is not connected to
the class

C

A1 A2 A3 A4
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table, containing main characteristics of analyzed software,
is made available.

4.1 BANJO

Bayesian network inference with Java objects (BANJO)
https://users.cs.duke.edu/~amink/software/banjo/ is a soft-
ware application and framework for structure learning of
static and dynamic Bayesian networks, developed under
the direction of Alexander J. Hartemink in the Depart-
ment of Computer Science at Duke University. BANJO
focuses on score-based structure learning by making avail-
able the following heuristic search strategies: simulated
annealing and greedy hill climbing. These heuristics are
paired with evaluation of a single random local move or
all local moves at each step. BANJO runs on computers
running Macintosh OS X, Microsoft Windows, Linux, and
Solaris, and its code is modifiable within any Java develop-
ment environment, from simple text editor to full-featured
IDE, while the open-source Eclipse IDE has been used to
develop it.

4.2 BayesiaLab

BayesiaLab (http://www.bayesia.com/) is a commercial
desktop application (Windows/Mac/Unix) with a sophisti-
cated graphical user interface, which provides scientists a
comprehensive “laboratory” environment for machine learn-
ing, knowledge modeling, diagnosis, analysis, simulation,
and optimization. According to https://library.bayesia.com/
display/FAQ/Score-Based+Learning+Algorithms, Bayesia-
Lab performs structural learning by using a score-based
approach which optimizes theMinimumDescription Length
score function. BayesiaLab offers different algorithms in
order to increase the probability to find the optimal solu-
tion. They are using different search policies (greedy, taboo)
and/or are exploring different spaces (Trees, Bayesian net-
works, Essential Graphs, Order of nodes).

4.3 Bayesian network classifiers inWeka

Bayesian Network Classifiers in Weka (https://www.cs.
waikato.ac.nz/~remco/weka_bn/) is a Java source code avail-
able developed by the University of Waikato and made
available in 2006 under GPL1 license. Structure learning
of Bayesian networks is achieved by score-based approach,
hill climbing (K2, B, etc.) and general purpose (simu-
lated annealing and tabu search) algorithms. In particular,
the local score metrics implemented are: Bayes, BDe,
MDL, entropy, AIC. Bayesian Network Classifiers in Weka
comes with an easy-to-use graphical user interface. Further-

more, structure learning is made possible also according
to the constraint-based approach through the ICS and CI
algorithms.

4.4 Bayes server

Bayes Server (https://www.bayesserver.com/) is a commer-
cial tool formodelingBayesian networks,DynamicBayesian
networks and Decision graphs. It comes with an effective
graphical user interface, and a number of advanced APIs,
including all the features of the graphical user interface, are
made available. Structural learning of Bayesian networks can
be performed according to the score-based approach, and
to the constraint-based approach through the PC algorithm.
Bayes Server API can be used from C#, Java, JavaScript,
Python, R, MATLAB, Excel functions and Apache Spark.

4.5 B-course

B-Course is a web-based data analysis tool for Bayesian
modeling which has been made available from November
2002 by the Complex Systems Computation Group CoSCo,
at Helsinki Institute for Information Technology. According
to the web site http://b-course.hiit.fi/obc/, B-Course allows
the user to upload his/her dataset to learn the structure of a
Bayesian network by using a score-based approach which
exploits proprietary algorithms, as well as simulated anneal-
ing andhill climbing algorithms. In particular, theB-Course’s
proprietary algorithm picks models that resemble the current
best model. Indeed, the web site reads “These models are
more likely to be predictively more accurate than the current
best model than if we picked the models randomly”.

4.6 BKD/BD

Bayesware Discoverer (https://open.bu.edu/handle/2144/
1288) originates from Bayesian Knowledge Discoverer
(BKD), i.e., a software tool that can learn Bayesian networks
from data by using the “bound and collapse” approach based
on probability intervals. The dataset to learn from may con-
tain missing values. BKD is a free software, but it has been
succeeded by a commercial version, the Bayesware Discov-
erer, which offers a nice graphical user interface with some
powerful visualization options. However, Bayesware Dis-
coverer is only available for Windows.

4.7 blip

blip (Bayesian network Learning Improved Project) is an
open-source Java package that offers a wide range of struc-
ture learning algorithms (https://github.com/mauro-idsia/
blip). It is developed my Mauro Scanagatta, and it is
distributed under the LGPL-3 by IDSIA. It focuses on score-

123

https://users.cs.duke.edu/~amink/software/banjo/
http://www.bayesia.com/
https://library.bayesia.com/display/FAQ/Score-Based+Learning+Algorithms
https://library.bayesia.com/display/FAQ/Score-Based+Learning+Algorithms
https://www.cs.waikato.ac.nz/~remco/weka_bn/
https://www.cs.waikato.ac.nz/~remco/weka_bn/
https://www.bayesserver.com/
http://b-course.hiit.fi/obc/
https://open.bu.edu/handle/2144/1288
https://open.bu.edu/handle/2144/1288
https://github.com/mauro-idsia/blip
https://github.com/mauro-idsia/blip


Progress in Artificial Intelligence (2019) 8:425–439 433

based learning,mainly theBIC and theBDeu score functions,
and allows the user to learn BNs from datasets containing
thousands of variables. It provides state-of-the-art algorithms
for the following tasks: parent set identification (BIC∗),
general structure optimization (WINASOBS-ENT), bounded
treewidth structure optimization (KMAX) and structure
learning on incomplete datasets (SEM-KMAX). An R bind-
ing is also available.

4.8 bnlearn

Bayesian network structure learning, parameter learning and
inference is anRpackagewhich offers a rich set of algorithms
which was first released in 2007 by Marco Scutari. Bnlearn
(http://www.bnlearn.com/) allows constraint-based struc-
tural learning via the following algorithms: PC, Grow shrink
Markov blanket, incremental association based on Markov
blanket, inter-incremental association based onMarkov blan-
ket, fast incremental association based on Markov blanket,
max–min parents and children, Hiton parents and children.
Bnlearn allows score-based structural learning through the
following algorithms: hill climbing, tabu search, hybridmax–
min hill climbing, Restricted Maximization. Some of the
many available score functions for discrete variables are:
log-likelihood, BDe, BIC,MDL,BDs,K2,while for continu-
ous variable the available score functions are: log-likelihood,
AIC, BIC, for Gaussian networks. Furthermore, bnlearn
allows for black and white lists.

4.9 BNJ

Bayesian Network tools in Java (BNJ) is an open-source
suite of software tools for research and development using
graphical models. It is implemented in Java and distributed
under the GNUGeneral Public License (GPL) by the Kansas
State University Laboratory for Knowledge Discovery in
Databases (KDD). It can be downloaded from http://bnj.
sourceforge.net/, and the latest release is July 21, 2004.
Structure learning is made available through score-based
approach, while search strategy includes sparse candidate,
Markov chainMonte Carlo (perturbation-based). BNJ works
for both Windows and Linux.

4.10 bnstruct

Bnstruct is an R package which learns Bayesian net-
works from data with missing values (https://cran.r-project.
org/web/packages/bnstruct/index.html). It implements the
Silander–Myllymaki complete search, the max–min par-
ents and children, the hill climbing, the max–min hill
climbing heuristic searches, and the structural expectation–
maximization algorithm. Structure learning is score based
on the following scoring functions: BDeu, AIC, BIC. The

current release is bnstruct 1.0.4, which has been released on
August 31, 2018.

4.11 BNT

The Bayes Net Toolbox (BNT) has been developed by Kevin
Murphy from 1997 to 2002 using the MATLAB program-
ming language. It offers no graphical user interface, and
its last update dates back to October 19, 2007. Starting
from January 2014, it is maintained on Github at https://
github.com/bayesnet/bnt. BNT supports structure learning
of Bayesian networks by making available the following
score-based algorithms: Bayesian learning, using MCMC
or local search, only in the case where nodes are discrete
and fully observed, and the following constraint-based algo-
rithms: InductiveCausation (IC), FastCausal Inference (FCI)
[52], and PC [64].

4.12 DEAL

DEAL is a software package for use with R (https://www.
jstatsoft.org/article/view/v008i20) which has been devel-
oped by Susanne G. Bøttcher and Claus Dethlefsen. DEAL
includes several methods for analyzing data using Bayesian
networks with variables of discrete and/or continuous types
but restricted to conditionally Gaussian networks. Structure
learning is implemented through a score-based approach
which uses the Bayes factor comparing two different DAGs.
The search strategy compares models that differ only by a
single arrow, either added, removed or reversed. Indeed, in
these cases, the Bayes factor is especially simple, because of
decomposability of the network score. DEAL also offers the
possibility to combine the search algorithm random restarts
[31], and to exploit equivalence relations to speed up model
search. It is worthwhile to mention that DEAL has an inter-
face to Hugin.

4.13 ELVIRA

The ELVIRA system (http://leo.ugr.es/elvira/) is a tool to
construct model-based decision support systems [15]. It
offers an easy-to-use graphical user interface (GUI) which
allows the user to define models by clicking his/her mouse.
It has been developed using the Java language, and thus, it
can be used on any operating system. Furthermore, the source
code is made freely available to download. However, its last
update dates back to June 19, 2001, and no information is
provided about the implemented structure learning approach.

4.14 Free BN

Free BN is an open-source, Java written, Bayesian network
structure learning API licensed under the Apache 2.0 license
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which has been made available by Jee Vang as a major
accomplishment of his PhD dissertation. Structural learning
of Bayesian network is performed according to the score-
based approach, using a search-and-score algorithm which
optimizes the K2 metric, and according to the constraint-
based approach mainly through the PC algorithm. The last
interactions on the official web site date back to 2010.

4.15 GeNie and smile

GeNie andSmile are commercial software fromBayesFusion
(https://www.bayesfusion.com/). GeNie Modeler is a graph-
ical user interface (GUI) to SMILE Engine and allows for
interactive model building and learning. It is written for the
Windows environment but can be also used on macOS and
Linux under Wine. The SMILE Engine offers easy integra-
tion of BayesFusion in customers’ applications, which can
be written in a variety of programming languages (e.g., C++,
Python, Java, R, .NET). SMILE.COM allows for easy inte-
gration with MS Excel. Structure learning can be performed
by the score-based approach algorithms such as: Bayesian
search algorithm [31], Greedy Thick Thinning [11] and by
using the PC constraint-based algorithm [64]. Furthermore,
GeNiemakes available theEssentialGraphSearch algorithm,
based on a combination of the constraint-based search (with
its prominent representative being the PC algorithm) and the
Bayesian Search approach.

4.16 GOBNILP

Globally Optimal Bayesian Network learning using Integer
Linear Programming (GOBNILP) is a C program which
learns Bayesian networks from complete discrete data or
from local scores. GOBNILP (https://www.cs.york.ac.uk/
aig/sw/gobnilp/) uses the SCIP (https://scip.zib.de/) frame-
work for constraint integer programming. A development
version of GOBNILP is freely available as well as a Python
version. Structural learning in GOBNILP is score based
(BDeu), while the cutting plane algorithm is used to solve
an integer linear programming problem for score optimiza-
tion. The latest version, GOBNILP 1.6.3 has been released
on January 5, 2018, and it is available for both Windows and
Mac.

4.17 Hugin expert

Hugin Expert (https://www.hugin.com/) is a commercial
software based on Bayesian networks and influence dia-
gram technology. The following products aremade available:
HuginExplorer,HuginDeveloper,HuginEducational,which
is free but limited in the maximum number of nodes, and
Hugin Researcher which makes available API to develop
industrial applications. It is Java based, offers an intuitive ed

effective graphical user interface and it is available on Win-
dows, Linux andmacOS. Structural learning is performed by
the score-based approach which allows choosing whether to
optimize BIC or AIC, and by the constraint-based approach,
where the PC [64] and Necessary Path Condition [65] learn-
ing algorithms are made available.

4.18 LibB

LibB (http://www.cs.huji.ac.il/labs/compbio/LibB/progra
ms.html) has been developed by Nir Friedman and Gal Eli-
dan, and it consists of a set of executables freely available
for academic use only. It is made available for the follow-
ing software platforms: Windows 2000, NT, XP, and Linux.
The program LearnBayes learns the structure of a Bayesian
network by the score-based approach. In particular, the avail-
able scores are the following: BIC, likelihood, BDe and
BDe with equivalent sample size, while the following search
options are available: greedy hill climbing, greedy hill climb-
ing with restarts, tabu search, best-first search, beam search,
MCMC search, simulated annealing, and stochastic first-
ascent search. It is worthwhile to mention that structure
learning is made possible also in the case of missing data; in
such a case, Structural Expectation Maximization is used.

4.19 Libpgm

Libpgm (https://pythonhosted.org/libpgm/) is an endeavor
to make Bayesian probability graphs easy to use. It was
developed at CyberPoint Labs during the Summer of 2012
by Charles Cabot working under the direction of James
Ulrich and Mark Raugas. It is provided free of use in accor-
dance with the New BSD License. Structure learning can
be performed according to both the score-based and the
constraint-based approaches.

4.20 OpenMarkov

OpenMarkov (http://www.openmarkov.org/index.php?lang=
en) has been developed in Java by the Research Centre
for Intelligent Decision Support Systems of the UNED in
Madrid. The latest stable release is 0.2.0. Structure learning
is performed according to the score-based approach by the
hill climbing search procedure applied to the K2 metric, and
according to the constraint-based approach applying the PC
[64] algorithm. OpenMarkov makes available a rudimentary
treatment of dataset with missing values, i.e., record removal
of missing replacement with the stringmissing. Furthermore,
OpenMarkov can be used as an API.
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4.21 PNL and PyPNL

The Open-Source Probabilistic Networks Library (PNL) is a
tool, written inC++, forworkingwith graphicalmodelsmade
available under the Intel Open-Source License. It supports
directed and undirectedmodels, discrete and continuous vari-
ables, and various inference and learning algorithms. The last
update of PNL (https://sourceforge.net/projects/openpnl/)
dates back to April 16, 2013. However, it is made avail-
able in Python (https://github.com/PyOpenPNL) with the
last update dating back to April 15, 2017. Structure learning
is score based, where BIC and AIC scores can be optimized.
It is worthwhile to mention that a parallel implementation
of PNL is made available from the Information Technolo-
gies Laboratory, Faculty of Computational Mathematics and
Cybernetics at Nizhni Novgorod State University.

4.22 Pomegranate

Pomegranate is a Python package that implements fast and
flexible probabilistic models ranging from individual proba-
bility distributions to compositionalmodels such asBayesian
networks and hidden Markov models (https://pomegranate.
readthedocs.io/en/latest/BayesianNetwork.html). Structure
learning of Bayesian networks from data is performed
according to the score-based approach. However, the search
strategy is such that it currently enumerates all the exponen-
tial number of structures and finds the best according to the
score. The score that is optimized is theminimumdescription
length (MDL).

4.23 ProBT

ProBT (http://www.probayes.com/en/recherche/probt/) is
commercial C++ library which makes available advanced
modeling, inference, and learning capabilities. It extends
the Bayesian networks framework by providing a structured
programming language allowing the developers to increase
their applications capabilities and robustness by integrat-
ing Bayesian models. Structure learning is made possible
by score-based approach by optimizing MI, BIC, MDL, and
AIC scores.

4.24 Tetrad

The Tetrad codebase (http://www.phil.cmu.edu/tetrad/),
developed in JAVA, and copyrighted by Clark Glymour,
Richard Scheines, Peter Spirtes and Joseph Ramsey, is pub-
lically available on GitHub (https://github.com/cmu-phil/
tetrad). Tetrad is a unique suite for causal discovery; it pro-
vides algorithms the capability to discover causal models
when there may be unobserved confounders of measured
variables, to search for models of latent structure, and to

search for linear feedback models. Tetrad V comes with a
easy-to-use graphical user interface, and it allows calculat-
ing predictions of the effects of interventions or experiments
based on a model. Many algorithms for learning the struc-
ture of Bayesian networks and causal Bayesian networks are
made available. Score-based algorithms include: FGES and
IMaGES, for both continuous and discrete variables as well
as for missing data. Constraint-based algorithms include:
PC, PCStable, CPC, CPCStable, PCmax, FCI, RFCI, GFCI,
TsFCI, etc. For additional information, the reader is referred
to the Tetrad Vmanual which is available at http://www.phil.
cmu.edu/tetrad/.

4.25 UnBBayes

UnBBayes (http://unbbayes.sourceforge.net/index.html) is
an open-source software for modeling, learning and rea-
soning upon probabilistic networks developed in Java by
researchers from the University of Brasília and the George
Mason University. The web site mentions that structural
learning of Bayesian networks is implemented trough the
score-based approach, i.e., K2 metric. However, the latest
update of UnBBayes dates back to March 24, 2010.

4.26 WinMine/MSBN

TheWinMine/MSBN toolkit is free for non-commercial pur-
poses. It has been developed byMaxChickering atMicrosoft
Research, and works on Windows 2000/NT/XP and can be
downloaded at https://www.microsoft.com/en-us/research/
project/winmine-toolkit/. It was established on October 5,
2002, and consists of a set of executables which allow to
build statistical models from data. Learning the structure of
aBayesian network can be performedby runningDnet.exe. In
particular, when WinMine/MSBN is used to learn the struc-
ture of a discrete Bayesian network, it uses a score-based
approach together with a greedy DAG-based search algo-
rithm. The search for the optimal structure of the Bayesian
networks starts with the model containing no edges; then
edges are greedily added, deleted, and reversed until a local
maximum is reached.

Table 1 summarizes the analyzed software according to
the following characteristics:

– Constraint is associated with constraint-based learning
algorithms.

– Score is associatedwith score-based learning algorithms,
more precisely with score available for optimization.

– Missing is associated with missing treatment with spe-
cific reference to structure learning.

– GUI tells about graphical user interface availability.
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– License is about whether the software is free (F) or com-
mercial (C).

– Op. System is about which operating system/s is/are sup-
ported.

– Language is associated with the programming language
used to develop the software.

– API tells about the API availability.
– Updated tells the date of the last known update.

5 Guidelines

From a practitioner’s point of view, it can be difficult to
choose a method to use in a particular problem given the
wide variety of available algorithms for inducing the struc-
ture of a Bayesian network. First of all, the nature of the
problem to solve must be taken into account. If we are fac-
ing a classification or regression problem, then one should
stick to the alternatives described in Sect. 3.5, because those
structures are especially optimized for the prediction tasks.

If instead we are interested in knowing the independence
relations between the variables in themodel, score-based and
constraint-based methods are more appropriate, since they
are more expressive in terms of representing independences.
It is important to point out that the methods explored in this
paper do not take causality into account. It means that links
between the variables in the learned structures should not be
interpreted as causal relationships. Learning causal models is
a research line that is receiving important attention in the last
years. The work by He et al. [30] constitutes a good review
of existing methods for these scenarios.

From a technical point of view, the features of the avail-
able data also determine the kinds of methods that can be
used. More precisely, depending on the existence of missing
data or the presence of continuous variables, the procedures
reviewed in Sects. 3.3 and 3.4 become relevant, as they are
able to handle such situations directly. Otherwise, a pre-
processing step aimed to input the missing data or discretize
the continuous variables would be necessary.

The size of the dataset is also relevant because it can
determine the accuracy of the constraint-based methods. It is
known that the power of the statistical tests grows with the
sample size (i.e., the probability of accepting the null hypoth-
esis when it is false decreases as the sample size increases).
Therefore, test-based algorithms such as the PC have a ten-
dency to include too many false edges when the sample size
is large. A solution to this problem was developed by Bacciu
et al. [6].

Finally, the software availability issue is crucial when
attempting to apply any of the reviewed methods to practical
problems. In that sense, the analysis of software solutions in
Sect. 4 can be of help.

6 Concluding remarks

In this paper, we have presented a review of the most relevant
literature on Bayesian network structure learning. We have
classified the analyzed methods according to the approach
they follow for solving the problem and discussed relevant
issues about how they handle missing values or continuous
variables. Methods oriented to specific tasks as classification
and regression have also been accounted for. A thorough
revision of available software tools has also been carried out.

Regarding future lines of research, there is an increasing
interest of developing scalable methods able to handle large
volumes of data and to run in distributed computational envi-
ronments. Causality is also receiving considerable attention.
This fact is connected to the need of developing models that
are interpretable by humans.

Acknowledgements This work has been partly supported by the Span-
ish Ministry of Science, Innovation and Universities, grant TIN2016-
77902-C3-3-P and by ERDF (FEDER) funds.

References

1. Abellán, J., Gómez-Olmedo, M., Moral, S.: Some variations on
the PC algorithm. In: Third European Workshop on Probabilistic
Graphical Models, pp. 1–8 (2006)

2. Adel, T., de Campos, C.P.: Learning Bayesian networks with
incomplete data by augmentation. In:Proceedings of the 31st AAAI
Conference on Artificial Intelligence, pp. 1684–1690 (2017)

3. Alonso-Barba, J., de la Ossa, L., Gámez, J., Puerta, J.: Scaling up
the greedy equivalence search algorithm by constraining the search
space of equivalence classes. Int. J. Approx. Reason. 54, 429–451
(2013)

4. Alonso-Barba, J.I., de la Ossa, L., Puerta, J.M.: Structural learning
of Bayesian networks using local algorithms based on the space of
orderings. Soft Comput. 15(10), 1881–1895 (2011)

5. Alonso, J., de la Ossa, L., Gámez, J., Puerta, J.: On the use of
local search heuristics to improve GES-based Bayesian network
learning. Appl. Soft Comput. 64, 366–376 (2018)

6. Bacciu, D., Etchells, T., Lisboa, P., Whittaker, J.: Efficient iden-
tification of independence networks using mutual information.
Comput. Stat. 28, 621–646 (2013)

7. Ben-Daya,M., Al-Fawzan,M.: A tabu search approach for the flow
shop scheduling problem. Eur. J. Oper. Res. 109(1), 88–95 (1998)

8. Bøttcher, S.: Learning Bayesian networks with mixed variables.
In: Proceedings of the Eighth International Workshop in Artificial
Intelligence and Statistics (2001)

9. Bøttcher, S., Dethlefsen, C.: deal: A package for learning bayesian
networks. J. Stat. Softw. 8, 1–40 (2003)

10. Buntine, W.: Theory refinement on Bayesian networks. In: Pro-
ceedings of the 8th Conference on Uncertainty in Artificial Intelli-
gence, pp. 52–60 (1991)

11. Cheng, J., Bell, D.A., Liu, W.: An algorithm for Bayesian belief
network construction from data. In: Proceedings of Artificial Intel-
ligence and Statistics, pp. 83–90 (1997)

12. Chickering, D.: A transformational characterization of equiva-
lent Bayesian network structures. In: Proceedings of the Eleventh
Annual Conference on Uncertainty in Artificial Intelligence,
pp. 87–98. Morgan Kaufmann (1995)

123



438 Progress in Artificial Intelligence (2019) 8:425–439

13. Chickering, D.M., Heckerman, D., Meek, C.: Large-sample learn-
ing of Bayesian networks is NP-Hard. J. Mach. Learn. Res. 5,
1287–1330 (2014)

14. Colombo, D., Maathuis, M.H.: Order-independent constraint-
based causal structure learning. Journal of Machine Learning
Research 15, 3741–3782 (2014)

15. Consortium, Elvira.: Elvira: An environment for creating and using
probabilistic graphical models. In: Gámez, J., Salmerón, A. (eds)
Proceedings of the First European Workshop on Probabilistic
Graphical Models, pp. 222–230 (2002)

16. Cooper, G.F.: The computational complexity of probabilistic infer-
ence using Bayesian belief networks. Artif. Intell. 42, 393–405
(1990)

17. Cooper, G.F., Herskovits, E.: A Bayesian method for the induc-
tion of probabilistic networks from data. Mach. Learn. 9, 309–347
(1992)

18. Cussens, J.: Bayesian network learning with cutting planes. In:
Proceedings of the 27th Conference on Uncertainty in Artificial
Intelligence, pp. 153–160 (2011)

19. Cussens, J., Malone, B., Yuan, C.: IJCAI 2013 tutorial on opti-
mal algorithms for learningBayesiannetworks (2013). https://sites.
google.com/site/ijcai2013bns/slides. Accessed June 2018

20. de Campos, C.P., Corani, G., Scanagatta, M., Cuccu, M., Zaf-
falon, M.: Learning extended tree augmented naive structures. Int.
J. Approx. Reason. 68, 153–163 (2015)

21. deCampos, C.P., Ji, Q.: Efficient structure learning ofBayesian net-
works using constraints. J. Mach. Learn. Res. 12, 663–689 (2011)

22. de Campos, C.P., Zeng, Z., Ji, Q.: Structure learning of Bayesian
networks using constraints. In: Proceedings of the 26th Interna-
tional Conference on Machine Learning, pp. 113–120 (2009)

23. Elidan, G., Gould, S.: Learning bounded treewidth Bayesian net-
works. J. Mach. Learn. Res. 9, 2699–2731 (2008)

24. Fernández, A., Nielsen, J.D., Salmerón, A.: LearningBayesian net-
works for regression from incomplete databases. Int. J. Uncertain.
Fuzziness Knowl. Based Syst 18(1), 69–86 (2010)

25. Fernández, A., Pérez-Bernabé, I., Salmerón, A.: On Using the PC
Algorithm forLearningContinuousBayesianNetworks:AnExper-
imental Analysis, CAEPIA’13. LectureNotes in Computer Science
8109, 342–351 (2013)

26. Fernández, A., Salmerón, A.: Extension of Bayesian network clas-
sifiers to regression problems. In: Geffner, H., Prada, R., Alexan-
dre, I.M., David, N. (eds) Advances in Artificial Intelligence—
IBERAMIA 2008, Vol. 5290 of Lecture Notes in Artificial Intelli-
gence, pp. 83–92. Springer (2008)

27. Friedman, N.: The Bayesian structural EM algorithm. In: Pro-
ceedings of the 14th Conference on Uncertainty in Artificial
Intelligence, pp. 129–138 (1998)

28. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network clas-
sifiers. Mach. Learn. 29, 131–163 (1997)

29. Hand, D.J., Yu, K.: Idiot’s Bayes–not so stupid after all? Int. Stat.
Rev. 69(3), 385–398 (2001)

30. He, Y., Jia, J., Geng, Z.: Structural learning of causal networks.
Behaviormetrika 44, 287–305 (2017)

31. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian
networks: the combination of knowledge and statistical data.Mach.
Learn. 20, 197–243 (1995)

32. Jaakkola, T., Sontag, D., Globerson, A., Meila, M.: Learning
Bayesian network structure using LP relaxations. In: Proceedings
of the 13th International Conference on Artificial Intelligence and
Statistics, pp. 358–365 (2010)

33. Jaeger, M.: Probabilistic decision graphs—combining verification
and ai techniques for probabilistic inference. Int. J. Uncertain.
Fuzziness Knowl. Based Syst. 12, 19–42 (2004)

34. Kalisch, M., Bühlmann, P.: Estimating high-dimensional directed
acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 8, 613–
636 (2007)

35. Koivisto, M.: Parent assignment is hard for the MDL, AIC, and
NML costs. In: Proceedings of the 29th Annual Conference On
Learning Theory, vol. 4005, pp. 289–303 (2016)

36. Koivisto, M., Sood, K.: Exact Bayesian structure discovery in
Bayesian networks. J. Mach. Learn. Res. 5, 549–573 (2004)

37. Koller, D., Friedman, N.: Probabilistic Graphical Models: Princi-
ples and Techniques. MIT Press, Boston (2009)

38. Korhonen, J., Parviainen, P.: Exact learning of bounded treewidth
Bayesian networks. In: Artificial Intelligence and Statistics, pp
370–378 (2013)

39. Kwisthout, J. H.P., Bodlaender, H.L., van der Gaag, L.C.: The
necessity of bounded treewidth for efficient inference in Bayesian
networks. In: Proceedings of the 19th European Conference on
Artificial Intelligence, pp. 237–242 (2010)

40. Lauritzen, S., Wermuth, N.: Graphical models for associations
between variables, some of which are qualitative and some quan-
titative. Ann. Stat. 17, 31–57 (1989)

41. Lee,C., vanBeek, P.:Metaheuristics for score-and-searchBayesian
network structure learning. In: Proceedings of the 30th Canadian
Conference on Artificial Intelligence, pp. 129–141 (2017)

42. Madsen, A.L., Jensen, F., Salmerón, A., Langseth, H., Nielsen,
T.D.: A parallel algorithm for Bayesian network structure learning
from large data sets. Knowl. Based Syst. 117, 46–55 (2017)

43. Malone, B., Kangas, K., Järvisalo,M., Koivisto,M.,Myllymäki, P.:
Empirical hardness of finding optimalBayesian network structures:
algorithm selection and runtime prediction. Mach. Learn. 107, 1–
37 (2018)

44. Malone, B.M.: Learning optimal Bayesian networks with heuristic
search. Ph.D. thesis, Mississippi State University (2012)

45. Moral, S., Rumí, R., Salmerón, A.: Mixtures of Truncated Expo-
nentials in Hybrid Bayesian Networks. In: Benferhat, S., Besnard ,
P. (eds) Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, Vol. 2143 of Lecture Notes in Artificial Intelligence,
pp. 156–167. Springer (2001)

46. Nie, S., de Campos, C.P., Ji, Q.: Learning bounded treewidth
Bayesian networks via sampling. In: Proceedings of the 13th Euro-
pean Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty, pp. 387–396 (2015)

47. Nie, S., Mauá, D.D., de Campos, C.P., Ji, Q.: Advances in learning
Bayesian networks of bounded treewidth. Adv. Neural Inf. Process.
Syst. 27, 2285–2293 (2014)

48. Nielsen, J.D., Rumí, R., Salmerón, A.: Structural-EM for learning
PDG models from incomplete data. Int. J. Approx. Reason. 51(5),
515–530 (2010)

49. Parviainen, P., Farahani, H.S., Lagergren, J.: Learning bounded
treewidth Bayesian networks using integer linear programming.
In: Proceedings of the 17th International Conference on Artificial
Intelligence and Statistics, pp. 751–759 (2014)

50. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Elsevier, Amsterdam (1988)

51. Pearl, J.: Causality: models, reasoning and inference. Econom.
Theory 19(46), 675–685 (2003)

52. Pearl, J., Verma, T.S.: A theory of inferred causation. Stud. Logic
Found. Math. 134, 789–811 (1995)

53. Pourret, O., Naïm, P., Marcot, B.: Bayesian Networks: A Practical
Guide to Applications. Wiley, Hoboken (2008)

54. Robinson, R.W.: Counting Labeled Acyclic Digraphs, New Direc-
tions in the Theory of Graphs, pp. 28–43. Academic Press, New
York (1973)

55. Romero, V., Rumí, R., Salmerón, A.: Learning hybrid Bayesian
networks using mixtures of truncated exponentials. Int. J. Approx.
Reason. 42, 54–68 (2006)

56. Scanagatta, M., Corani, G., de Campos, C.P., Zaffalon, M.:
Learning treewidth-bounded Bayesian networks with thousands of
variables. Adv. Neural Inf. Process. Syst. 29, 1462–1470 (2016)

123

https://sites.google.com/site/ijcai2013bns/slides
https://sites.google.com/site/ijcai2013bns/slides


Progress in Artificial Intelligence (2019) 8:425–439 439

57. Scanagatta,M.,Corani,G., deCampos,C.P., Zaffalon,M.:Approx-
imate structure learning for large Bayesian networks. Mach. Learn.
107, 1–19 (2018)

58. Scanagatta, M., Corani, G., Zaffalon, M.: Improved local search
in Bayesian networks structure learning. In:Proceedings of the 3rd
International Workshop on Advanced Methodologies for Bayesian
Networks, pp. 45–56 (2017)

59. Scanagatta, M., Corani, G., Zaffalon, M., Yoo, J., Kang, U.:
Efficient learning of bounded-treewidth Bayesian networks from
complete and incomplete data sets. Int. J. Approx. Reason. 95,
152–166 (2018)

60. Scanagatta, M., de Campos, C.P., Corani, G., Zaffalon, M.: Learn-
ing Bayesian networks with thousands of variables. Adv. Neural
Inf. Process. Syst. 28, 1855–1863 (2015)

61. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6,
461–464 (1978)

62. Scutari, M.: Bayesian network constraint-based structure learning
algorithms: Parallel and optimised implementations in the bnlearn
R package. CoRR (2014). arXiv:1406.7648

63. Silander, T.,Myllymaki, P.: A simple approach for finding the glob-
ally optimal Bayesian network structure. In: Proceedings of the
22ndConference onUncertainty inArtificial Intelligence, pp. 445–
452 (2006)

64. Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and
Search. MIT Press, Boston (2000)

65. Steck, H., Tresp, V.: Bayesian belief networks for data mining.
University of Magdeburg, pp 145–154 (1996)

66. Teyssier,M., Koller, D.: Ordering-based search: a simple and effec-
tive algorithm for learning Bayesian networks. In: Proceedings
of the 21st Conference on Uncertainty in Artificial Intelligence,
pp. 584–590 (2005)

67. Yuan, C., Malone, B.: An improved admissible heuristic for
learning optimal Bayesian networks. In: Proceedings of the 28th
Conference on Uncertainty in Artificial Intelligence, pp. 924–933
(2012)

68. Yuan, C.,Malone, B.,Wu,X.: Learning optimal Bayesian networks
using A* search. In: Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, pp. 2186–2191 (2011)

69. Zheng, X., Aragam, B., Ravikumar, P., Xing, E.: DAGs with no
tears: Continuous optimization for structure learning. In: Advances
in Neural Information Processing Systems, pp. 9492–9503 (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1406.7648

	A survey on Bayesian network structure learning from data
	Abstract
	1 Introduction
	2 Bayesian networks
	2.1 Definition

	3 Structure learning
	3.1 Score-based structure learning
	3.2 Constraint-based structure learning
	3.3 Incomplete data
	3.4 Handling continuous variables
	3.5 Statistical classification

	4 Software tools
	4.1 BANJO
	4.2 BayesiaLab
	4.3 Bayesian network classifiers in Weka
	4.4 Bayes server
	4.5 B-course
	4.6 BKD/BD
	4.7 blip
	4.8 bnlearn
	4.9 BNJ
	4.10 bnstruct
	4.11 BNT
	4.12 DEAL
	4.13 ELVIRA
	4.14 Free BN
	4.15 GeNie and smile
	4.16 GOBNILP
	4.17 Hugin expert
	4.18 LibB
	4.19 Libpgm
	4.20 OpenMarkov
	4.21 PNL and PyPNL
	4.22 Pomegranate
	4.23 ProBT
	4.24 Tetrad
	4.25 UnBBayes
	4.26 WinMine/MSBN

	5 Guidelines
	6 Concluding remarks
	Acknowledgements
	References


