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Abstract
A graphical model is a statistical model that is associated with a graph whose
nodes correspond to variables of interest. The edges of the graph reflect al-
lowed conditional dependencies among the variables. Graphical models have
computationally convenient factorization properties and have long been a
valuable tool for tractable modeling of multivariate distributions. More re-
cently, applications such as reconstructing gene regulatory networks from
gene expression data have driven major advances in structure learning, that
is, estimating the graph underlying a model. We review some of these ad-
vances and discuss methods such as the graphical lasso and neighborhood
selection for undirected graphical models (or Markov random fields) and the
PC algorithm and score-based search methods for directed graphical mod-
els (or Bayesian networks). We further review extensions that account for
effects of latent variables and heterogeneous data sources.
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Graphical models:
conditional
independence models
for random vectors

Undirected graphical
model: a multivariate
statistical model in
which each variable
may be optimally
predicted from
neighboring variables

Directed graphical
model: a multivariate
statistical model that
can capture
dependencies induced
by cause-effect
relationships

1. INTRODUCTION
This article gives an overview of commonly used techniques for structure learning in graphical
modeling. Structure learning is a model selection problem in which one estimates a graph that
summarizes the dependence structure in a given data set.

1.1. What Is a Graphical Model?
A graphical model captures stochastic dependencies among a collection of random variables X v ,
v ∈ V (Lauritzen 1996). More precisely, a graphical model is a set of multivariate joint distri-
butions that exhibit certain conditional independencies. Each model is associated with a graph
G = (V , E), where the vertex set V indexes the variables and the edge set E encodes the condi-
tional independence constraints. These constraints require variables Xv and Xw to be conditionally
independent given XC := (Xu : u ∈ C), denoted by Xv ⊥⊥Xw | XC , if every path between nodes v

and w in G is suitably blocked by the nodes in C .
Markov chains constitute a familiar example of graphical models. We first demonstrate this

in the context of undirected graphs, for which the edges are unordered pairs {v, w} for distinct
v, w ∈ V . We also write v − w ∈ E to indicate that E contains the edge {v, w}. In an undirected
graph, a path is blocked by C if it contains a node in C .

Example 1. Suppose that (X1, . . . , X5) belongs to the graphical model for the undirected graph in
Figure 1a. Then Xv ⊥⊥Xw | XC whenever C contains a node c on the unique path between v and w, so
v < c < w or w < c < v. For example, X2⊥⊥X4 | (X1, X3). If we think of the indices as time, the past
and the future are conditionally independent given the present. We recognize that X1, . . . , X5 form a
Markov chain. The generalization to a Markov chain of arbitrary length is obvious.

Let nbG(v) = {w ∈ V : {w, v} ∈ E} be the neighbors of node v in an undirected graph
G = (V , E). As detailed in Section 2, a typically equivalent interpretation of the graph is that
each Xv is conditionally independent of its nonneighbors XV \(nbG (v)∪{v}) given its neighbors XnbG (v).
A mean squared error optimal prediction of Xv can thus be made from its neighbors XnbG (v)

alone.
Graphical models can also be built from directed graphs G = (V , E). The edge set E then

comprises ordered pairs (v, w) that represent an edge pointing from v to w. To indicate the
presence of an edge from v to w, we also write v → w ∈ E. Adopting the language of family
trees, let paG(v) = {w ∈ V : (w, v) ∈ E} be the parents of node v in G, let deG(v) = {w ∈ V :
w = v or v → · · · → w in G} be the descendants of v in G, and let ndG(v) = V \deG(v) be
the nondescendants of v in G. In a directed acyclic graph, we then require that each variable
Xv is conditionally independent of its nondescendants XndG (v)\paG (v) given its parents XpaG (v). Such
independencies arise when each variable Xv is a stochastic function of XpaG (v). This is the starting
point for a connection to causal modeling (Spirtes et al. 2000, Pearl 2009). The notion of blocking
a path in a directed graph is different and more subtle than blocking in an undirected graph. We
give the details in Section 2.

1 2 3 4 5

a
1 2 3 4 5

b

Figure 1
Two graphs that both induce a Markov chain, (a) an undirected graph and (b) a directed acyclic graph.
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Density
factorization:
the joint density is a
product of terms that
can be efficiently
stored and computed
with

Factorization: for
undirected graphs, the
joint density factors
into a product of terms
that are associated
with the cliques of the
graph

Example 2. Suppose that (X1, . . . , X5) belongs to the graphical model for the directed acyclic graph
in Figure 1b. Denoting this graph by G, we have paG(v) = {v − 1} for v = 2, . . . , 5. Therefore,
Xv ⊥⊥ (X1, . . . , Xv−2) | Xv−1 for v = 3, 4, 5. This is precisely the standard Markov property of a Markov
chain. Again, this example is easily generalized to a chain of arbitrary length.

Graphical models can also be defined in terms of density factorizations. Indeed, much of the
popularity of graphical models is due to the fact that factorizations allow efficient storage and
computation with high-dimensional joint distributions (Wainwright & Jordan 2008). To explain,
suppose for simplicity that X1, X2, . . . , Xm are binary and form a Markov chain, in which case the
joint probability factorizes as

Pr(X1 = x1, . . . , Xm = xm) = Pr(X1 = x1)
m⎟

v=2

Pr(Xv = xv | Xv−1 = xv−1). (1)

The 2m − 1 dimensional joint distribution is thus determined by merely 2m − 1 parameters. In
reference to the directed graph G in Figure 1b, the product in Equation 1 is over the conditional
probabilities Pr(Xv = xv | XpaG (v) = xpaG (v)), or simply Pr(Xv = xv) when paG(v) = ∅. For the
undirected graph in Figure 1a, the right-hand side of Equation 1 may be viewed as a product
of m − 1 functions whose arguments are the pairs (xv , xv+1) that correspond to the edges of the
graph. Section 2 gives generalizations of these observations.

1.2. Application: Reconstruction of Gene Regulatory Networks
The past decade has seen great advances in structure learning, with new methods being developed
and older methods being viewed in a new light. These developments have largely been driven by
problems in biology, such as inferring a network of regulatory relationships among genes from
data on their expression levels (Friedman 2004).

Example 3. Reporting on a prediction challenge, Marbach et al. (2012) provide data on gene expression
in Escherichia coli. We restrict attention to the |V | = 87 genes that form the only large connected
component in the network of known interactions among transcription factors (known prior to the
challenge). Ignoring heterogeneity across the n = 804 samples, we apply neighborhood selection in
a Gaussian copula model (see Sections 3.4 and 3.6), under the defaults of the software of Zhao et al.
(2012). The estimated undirected conditional independence graph (see Section 2.1) has 352 edges. It
is plotted in Figure 2, where each one of the 24 red edges corresponds to one of the 124 pairs of
transcription factors that are known to interact. Although the majority of known interactions fail to
be part of the estimate, some signal is being detected. The probability that a random selection of 352
edges would comprise at least 24 of the 124 known interactions is approximately 1.5× 10−4.

Example 3 involves a modest number of preselected genes and is thus of moderate dimension-
ality. Modern experiments often yield data of far higher dimensionality, presenting a statistical
challenge that is behind much of the recent fascination with graphical models.

1.3. Outline of the Review
This review begins with more background on graphical models in Section 2. Sections 3 and
4 discuss structure learning for undirected and directed graphical models. A brief treatment of
issues arising from latent variables and heterogeneous data sources is given in Sections 5 and 6.
We end with a discussion in Section 7. Although our review conveys some of the main ideas in

www.annualreviews.org • Structure Learning in Graphical Modeling 367
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Figure 2
Estimated conditional independence graph in a Gaussian copula model for data on the expression of 87
transcription factors in Escherichia coli. The 24 red edges correspond to pairs of transcription factors that are
known to interact.

structure learning, several interesting topics are beyond the scope of our review. For instance, we
do not cover Bayesian inference, even though there is an active Bayesian community whose recent
work tackles problems such as heterogeneous data (Peterson et al. 2015, Mitra et al. 2016), latent
variables (Silva & Ghahramani 2009), Markov chain Monte Carlo for sampling graphs (He et al.
2013, Goudie & Mukherjee 2016, Kuipers & Moffa 2016), posterior convergence rates (Banerjee
& Ghosal 2015), robustness (Finegold & Drton 2014), and context-specific independence (Nyman
et al. 2014). We also do not treat dynamic graphical models for multivariate time series, but an
example of work discussing such models is Eichler (2012). Another area omitted in this review is
active learning; the reader is directed to, for example, Vats et al. (2014), Statnikov et al. (2015),
and Dasarathy et al. (2016).

Finally, the literature on structure learning is vast and our references are necessarily selective.
To limit the number of citations, we sometimes only cite a recent article, trusting that readers will
follow the trail of literature to identify earlier work on the topic.

2. BASIC CONCEPTS IN GRAPHICAL MODELING
In this section, we review some essential concepts for undirected and directed graphical models
(e.g., Lauritzen 1996, Studený 2005, Pearl 2009).

2.1. Undirected Graphical Models
Let X = (Xv : v ∈ V ) be a random vector indexed by the vertices of an undirected graph
G = (V , E). Then X satisfies the pairwise Markov property with respect to G if

Xv ⊥⊥Xw | XV \{v,w} (2)

368 Drton · Maathuis



D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  P
en

ns
yl

va
ni

a 
St

at
e 

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:  

16
5.

85
.3

8.
13

6 
O

n:
 T

ue
, 1

5 
Ap

r 2
02

5 
01

:2
0:

15

ST04CH17-Drton ARI 14 February 2017 13:43

Markov properties:
for undirected graphs,
different versions of
the Markov properties
require different sets
of conditional
independences; global
⇒ local⇒ pairwise,
with equivalence under
the intersection axiom

1 2 3 4 5

Figure 3
An undirected graph with five nodes.

whenever {v, w} /∈ E. Moreover, X satisfies the local Markov property with respect to G if

Xv ⊥⊥XV \(nbG (v)∪{v}) | XnbG (v) (3)

for every v ∈ V , where we recall that nbG(v) = {w ∈ V : {w, v} ∈ E} is the set of neighbors of v.
Finally, X satisfies the global Markov property with respect to G if XA⊥⊥XB | XC for all triples
of pairwise disjoint subsets A, B, C ⊂ V such that C separates A and B in G, i.e., such that every
path between a node in A and a node in B contains a node in C .

It is easy to see that the global Markov property implies the pairwise and local properties. It
can also be shown that the local Markov property implies the pairwise Markov property. Although
not true in general, the three Markov properties are equivalent when X satisfies the intersection
axiom for conditional independence (Lauritzen 1996). This equivalence is true in particular when
the Xv are discrete with positive joint probabilities, or when X has a positive and continuous
density with respect to Lebesgue measure.

Example 4. Let X = (X1, . . . , X5) belong to the graphical model with the undirected graph
G = (V , E) in Figure 3. If X satisfies the pairwise Markov property, the missing edges 1 − 4 /∈ E
and 2 − 4 /∈ E imply X4⊥⊥X1 | (X2, X3, X5) and X4⊥⊥X2 | (X1, X3, X5). The local Markov property
for node v = 4 implies X4⊥⊥ (X1, X2) | (X3, X5). The global Markov property explicitly requires many
other conditional independencies, for example X4⊥⊥X2 | (X1, X3) or (X4, X5)⊥⊥ (X1, X2) | X3.

The pairwise Markov property for undirected graphical models translates each absent edge into
a full conditional independence. For this reason, the smallest undirected graph G with respect to
which X is pairwise Markov is also known as the conditional independence graph of X . Testing
all ( |V |

2 ) pairwise full conditional independencies that might arise in Equation 2 yields a method to
estimate this graph. Addressing the multiple testing issues in this approach allows for control of
false edge discoveries. We will not discuss this in detail but refer the reader to Drton & Perlman
(2007), Liu (2013), and Wasserman et al. (2014).

Under the local Markov property, each variable Xv can be optimally predicted from its neigh-
bors Xnb(v), which is used in a method known as neighborhood selection (see Section 3). The more
comprehensive global Markov property is very useful for reasoning about conditional indepen-
dence.

The famous theorem of Hammersley and Clifford clarifies the construction of distributions that
possess the Markov properties. Suppose X = (Xv : v ∈ V ) has a density with respect to a product
measure µ = ⊗v∈V µv on RV . In applications, each µv is usually either Lebesgue or a counting
measure, so each Xv is (absolutely) continuous or discrete. Let C(G) be the set of all complete
subsets (or cliques) of G, i.e., C ∈ C(G) if {v, w} ∈ E for all v, w ∈ C . Then the distribution of X
is said to factorize with respect to G if it has a density of the form

f (x) =
⎟

C∈C(G)

φC (xC ), x ∈ RV , (4)

where each potential function φC has domain RC , and xC is the subvector (xv : v ∈ C). (For a finite
set A, the space RA comprises real vectors of length |A| with entries indexed by A.) The potential
functions need not have a probabilistic interpretation as conditional densities.

www.annualreviews.org • Structure Learning in Graphical Modeling 369
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Theorem 1 (Hammersley-Clifford). Suppose X = (Xv : v ∈ V ) has a positive density with respect
to a product measure. Then the distribution of X factorizes with respect to G = (V , E) if and only if
X satisfies the pairwise Markov property with respect to G.

A graphical model may thus be defined by specifying families of potential functions. If the
functions are positive, then the pairwise and global Markov properties are equivalent. Moreover,
the global Markov property lists every conditional independence that holds in all distributions with
factorizing densities. This is known as completeness of the global Markov property. Factorization
of nonpositive distributions for categorical variables is treated by Geiger et al. (2006). Matúš (2012)
gives a new perspective on factorization as a consequence of log-convexity of a set of distributions.

Example 5. Suppose X = (X1, . . . , X5) is centered and multivariate normal with positive definite
covariance matrix ". Let K = (κvw) = "−1. Then X has density

f (x) = 1
√

(2π )5 det(")
exp



−1
2

5∑

v,w=1

κvwxvxw



 , x ∈ R5.

This distribution factorizes with respect to the graph in Figure 3 if and only if κ14 = κ15 = κ24 =
κ25 = κ35 = 0. More generally, the Gaussian model associated with an undirected graph G = (V , E)
comprises all normal distributions with a positive definite inverse covariance matrix K = (κvw) ∈ RV ×V

such that κvw = 0 when v − w +∈ E.
Let S be the sample covariance matrix for an independent and identically distributed (i.i.d.) Gaussian

sample of size n. The maximum likelihood estimator (MLE) in the Gaussian graphical model maximizes
the log-likelihood function

L(K ) = log det(K )− tr (SK ) , (5)

subject to K being positive definite with zeros over non-edges of G. Strictly speaking, Equation 5 is
obtained by maximizing over an unknown mean vector, dividing out n/2, and omitting an additive
constant. If n > |V |, then L admits a unique maximizer with probability one, because S is almost
surely positive definite. If |V | ≥ n, then S is singular and L can be unbounded. However, if the graph
G is sparse, then the MLE of K may exist uniquely with probability one even if n is much smaller than
|V | (see, e.g., Sullivant & Gross 2014).

2.2. Directed Graphical Models
Directed acyclic graphs (DAGs) are directed graphs without directed cycles.1 A random vector
X = (Xv : v ∈ V ) satisfies the local Markov property with respect to a DAG G if

Xv ⊥⊥XndG (v)\paG (v) | XpaG (v)

for every v ∈ V . Similarly, X satisfies the global Markov property with respect to G if XA⊥⊥XB |
XC for all triples of pairwise disjoint subsets A, B, C ⊂ V such that C d-separates A and B in G,
which we denote by A ⊥G B | C . The notion of d-separation in directed graphs is more subtle
than separation in undirected graphs and is given in Definition 1 below.

If X satisfies the global Markov property with respect to G, then G is called an independence
map of X . A DAG G is a perfect map of X if A ⊥G B | C if and only if XA⊥⊥XB | XC for all

1Although graph theory speaks of “acyclic directed graphs” (or “acyclic digraphs”), the phrase “directed acyclic graph,” which
leads to the catchy abbreviation “DAG,” has established itself in the literature on graphical models.

370 Drton · Maathuis
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Perfect map: a DAG
is a perfect map of a
distribution if the
d-separations in the
DAG exactly match
the conditional
independencies in the
distribution

pairwise disjoint sets A, B, C ⊂ V . A perfect map thus requires the global Markov property and its
reverse implication, known as faithfulness. The assumption that G is a perfect map is important
for the structure learning methods that we discuss in Section 4.

Suppose X has a density with respect to a product measure. Then the distribution of X
factorizes according to a DAG G = (V , E) if it has a density of the form

f (x) =
⎟

v∈V

f (xv | xpaG (v)), (6)

where the f (xv | xpaG (v)) are conditional densities with f (xv | x∅) = f (xv). The global and local
Markov properties are equivalent, and under the assumed existence of a density they are equivalent
to the factorization property (Verma & Pearl 1988). The global Markov property is also complete,
that is, it states all conditional independencies that are implied by the factorization.

A directed graphical model for DAG G can be specified by conditional densities f (xv | xpaG (v)),
v ∈ V . If these do not share common parameters, the likelihood function of the model factorizes
into |V | local likelihood functions, and the MLEs of f (xv | xpaG (v)), v ∈ V , can be computed
separately. For categorical data, this amounts to computing empirical frequencies for conditional
probability tables. For multivariate Gaussian data, the conditional means and variances are found
via linear regression of each Xv on XpaG (v).

We now define d-separation. In a DAG G = (V , E), nodes v and w are adjacent if v→ w ∈ E
or w→ v ∈ E, and a path is a sequence of distinct nodes in which successive nodes are adjacent.
If π = (v0, v1, . . . , vk) is a path, then v0 and vk are the endpoints of the path. A non-endpoint vi

is a collider on π if vi−1 → vi ← vi+1 is a subpath of π . Otherwise, vi is a noncollider on π . If
every edge on π is of the form vi−1 → vi , then v0 is an ancestor of vk and vk is a descendent of
v0. We write adjG(v), anG(v), and deG(v) for the sets of adjacent nodes, ancestors and descendants
of v in G, respectively. We use the convention that v is an ancestor and descendant of itself,
and apply the notions disjunctively to sets, for example, anG(C) = ∪v∈C anG(v). Finally, we define
ndG(C) = V \deG(C).

Definition 1. Two nodes v and w in a DAG G = (V , E) are d-connected given C ⊆ V \{v, w} if G
contains a path π with endpoints v and w such that (a) all colliders on π are in anG(C), and (b) no
noncollider on π is in C . Generalizing to sets, two disjoint subsets A, B ⊂ V are d-connected given
C ⊆ V \(A∪ B) if there are two nodes v ∈ A and w ∈ B that are d-connected given C . If this is not
the case, then C d-separates A and B.

Example 6. Let X = (X1, . . . , X5) belong to the graphical model with the DAG G in Figure 4a. We
see that node 2 is a collider on the path 1→ 2← 3→ 4, whereas it is a noncollider on 1→ 2→ 5. For
node 4, the local Markov property requires X4⊥⊥ (X1, X2, X5) | X3. Because 1 and 4 are d-connected
given C = {2}, C = {5} and C = {2, 5}, but d-separated given any other subset of {2, 3, 5}, the global

1

2

3 4

5

a
1

2

3 4

5

b
1

2

3 4

5

c

Figure 4
Example to illustrate Markov properties of directed acyclic graphs (DAGs). (a) A DAG, (b) the
corresponding completed partially directed acyclic graph (CPDAG), and (c) the corresponding moral graph.
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Markov equivalence:
DAGs with the same
skeleton and
v-structures form a
Markov equivalence
class that can be
represented by a
completed partially
directed acyclic graph
(CPDAG)

Markov property requires X1⊥⊥X4 | XC ′ for any such other subset C ′ of {2, 3, 5}. We observe that, in
contrast to separation in undirected graphs, d-separation in a DAG is not monotonic in the sense that
A ⊥G B | C does not imply that A ⊥G B | C ′ for sets C ′ ! C . Note also that there does not exist an
undirected graph that encodes the same conditional independencies as the DAG in Figure 4a. Finally,
the factorization for G takes the form f (x) = f (x1) f (x2|x1, x3) f (x3) f (x4|x3) f (x5|x2).

Two DAGs G and G′ are Markov equivalent if A ⊥G B | C is equivalent to A ⊥G′ B | C .
Markov-equivalent DAGs are characterized by having the same skeleton and the same v-structures
(Frydenberg 1990, Verma & Pearl 1990). A v-structure is a triple of nodes u → v ← w with u
and w not adjacent. Each Markov equivalence class can be represented by a completed partially
directed acyclic graph (CPDAG) that may have directed and undirected edges (e.g., Andersson
et al. 1997, Roverato 2005). A CPDAG has edge v→ w if and only if the edge v→ w is common
to all DAGs in its equivalence class. If the class contains a DAG with v → w and a DAG with
v ← w, then the CPDAG has the undirected edge v − w. The DAG G in Figure 4a is Markov
equivalent to exactly one other DAG, obtained by replacing the edge 3 → 4 by 3 ← 4. The
CPDAG of G is shown in Figure 4b.

The skeleton of a (partially) directed graph is the undirected graph obtained by replacing all
edges by undirected edges. The moral graph Gm of a DAG G is constructed by first shielding all v-
structures and then taking the skeleton of the resulting graph. Shielding a v-structure u→ v← w

means adding an edge between nodes u and w. Figure 4c shows the moral graph of the DAG in
Figure 4a. It is easy to see that if X satisfies the factorization property for directed graphs with
respect to G, then X satisfies the factorization property for undirected graphs with respect to the
moral graph Gm. Hence, if G is a perfect map of X , then Gm is the conditional independence graph
of X . This implies that the skeleton of a DAG (or CPDAG) is a subgraph of its corresponding
conditional independence graph.

The graphical model associated with a DAG G = (V , E) can also be thought of as a structural
equation model (Bollen 1989). Indeed, if ε = (εv : v ∈ V ) is a vector of independent random noise
variables and gv are measurable functions, then the random vector X = (Xv : v ∈ V ) given by

Xv = gv(XpaG (v), εv), v ∈ V , (7)

is Markov with respect to G. Conversely, if X is Markov with respect to G, then there are
independent variables εv and functions gv such that Equation 7 holds.

Example 7. If all functions gv are linear and the εv are normal random variables, then we may assume
that Equation 7 takes the form X = B X + ε, where the matrix B = (βvw) ∈ RV ×V has βvw = 0 if
w +∈ paG(v). The solution X = (I − B)−1ε follows a multivariate normal distribution with covariance
matrix Cov(X ) = (I − B)−1Cov(ε)(I − B)−T . Here, I − B is invertible because det(I − B) = 1 by
acyclicity of G.

Structural equation models, and thus also directed graphical models, admit a natural causal inter-
pretation. To this end, one views Equation 7 as specifying an assignment mechanism, which is
clarified by writing

Xv ← gv(XpaG (v), εv), v ∈ V . (8)

The variables in XpaG (v) are then treated as direct causes of Xv , meaning that changes in XpaG (v)

may lead to changes in Xv , but not the other way around. This interpretation allows statements
about the distribution of X under experimental interventions. In particular, interventions to the
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Structural equation
models: causal
interpretation of
DAGs obtained by
treating equations
as assignment
mechanisms

Chow-Liu trees:
ML trees that are
maximum spanning
trees for a complete
graph weighted by
mutual information

system can be modeled by changing the structural equations for precisely those variables that are
affected by the intervention (Pearl 2009).

Example 8. The structural equation model for the DAG in Figure 4a postulates that

X1 ← g1(ε1), X3 ← g3(ε3), X2 ← g2(X1, X3, ε2), X4 ← g4(X3, ε4), X5 ← g5(X2, ε5).

We now consider an intervention on X2, where X2 is generated as an independent draw from the
distribution of ε2. Denoting the postintervention variables by X̃ = (X̃ v : v ∈ V ), the distribution of
X̃ is induced by the equation system

X̃ 1 = g1(ε1), X̃ 3 = g3(ε3), X̃ 2 = ε2, X̃ 4 = g4(X̃ 3, ε4), X̃ 5 = g5(X̃ 2, ε5).

The postintervention DAG G̃ is obtained from G by removing the edges 1→ 2 and 3→ 2.

Thus, the causal interpretation of a DAG allows predictions in changed environments, and
hence the estimation of causal effects. These ideas can be combined with the structure learning
methods that we discuss in Section 4 to estimate (bounds on) causal effects from observational
data (Maathuis et al. 2009, 2010; Perković et al. 2015; Nandy et al. 2016b).

3. LEARNING UNDIRECTED GRAPHICAL MODELS
Our treatment of learning undirected graphical models begins with the special case of trees.
We then move on to generally applicable greedy search and '1 penalization methods as well as
techniques that avoid traditional assumptions of Gaussianity for continuous observations.

3.1. Chow-Liu Trees and Forests
A tree G = (V , E) is an undirected graph with a unique path between any two nodes, and thus |E| =
|V |−1. Chow & Liu (1968) showed that one can efficiently find a tree-structured distribution that
optimally approximates a given distribution. In the present context, we may view their algorithm
as outputting a maximum likelihood (ML) estimate (MLE) of a conditional independence tree.

Owing to convenient factorizations, computation in tree-based graphical models is particularly
tractable (Wainwright & Jordan 2008). Indeed, if the distribution of a random vector X = (Xv :
v ∈ V ) factorizes with respect to a tree, then the joint density factorizes as

f (x) =
⎟

v−w∈E

fvw(xv , xw)
fv(xv) fw(xw)

⎟

v∈V

fv(xv). (9)

Here, fv and fvw are the marginal densities of Xv and (Xv , Xw), respectively. Equation 9 is a special
case of a more general result exemplified in Equation 10. It coincides with Equation 6 when we
create a directed tree by letting edges point away from one arbitrarily selected node.

Suppose for a moment that all variables are categorical, with Xv taking values in a finite set Xv .
For a joint state x ∈ X :=

∏
v∈V Xv , let N (x) be the number of times x appears in an i.i.d. sample

of size n from the distribution of X . Writing f̂G(x) for the MLE of the joint probability f (x) in the
graphical model given by tree G, we aim to find the tree G with largest maximum log-likelihood
L̂(G) =

∑
x∈X N (x) log f̂G(x).

Let f̂vw(xv , xw) and f̂v(xv) be the relative frequencies of seeing the pair (Xv , Xw) in state (xv , xw)
and variable Xv in state xv , respectively. The MLE f̂G(x) is obtained by plugging the f̂vw and f̂v
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Local computation:
efficient computation
of the likelihood after
edge additions and
removals by exploiting
graph decompositions

into Equation 9. It follows that

1
n

L̂(G) =
∑

v−w∈E

I
(

f̂vw

)
+ const.,

where I ( f̂vw) is the empirical mutual information of Xv and Xw, so

I
(

f̂vw

)
=

∑

xv∈Xv

∑

xw∈Xw

f̂vw(xv , xw) log
f̂vw(xv , xw)

f̂v(xv) f̂w(xw)
.

Because mutual information is nonnegative, the ML tree is a maximum spanning tree for the
complete graph with edge weights I ( f̂vw). The maximum spanning tree can be computed efficiently
using, for example, Kruskal’s algorithm, which adds edges {v, w} in the order of decreasing mutual
information I ( f̂vw) but skips edges that create a cycle. The ML tree is found after addition of |V |−1
edges. If Kruskal’s algorithm is stopped early, adding only k edges, then the output is a forest with
maximum likelihood among all forests with k edges. A forest is an undirected graph that is a union
of disconnected trees.

The Chow-Liu method is not limited to categorical data. Indeed, we may formulate statistical
models for the bivariate marginal distributions fvw, compute their ML estimates f̂vw, and find a
maximum weight spanning tree from their mutual informations I ( f̂vw). In particular, when the
marginals are taken to be bivariate normal, then the joint density f is multivariate normal and
I ( f̂vw) = − 1

2 log(1− r2
vw), where rvw is the empirical correlation between Xv and Xw. In this case,

the absolute correlations |rvw| can also be used as weights.
Although it is an older idea, there has been renewed interest in Chow and Liu’s approach. Tan

et al. (2010, 2011) study which trees/forests are most difficult to recover. Liu et al. (2011) use kernel
density estimates in a nonparametric approach. Edwards et al. (2010) discuss mixed categorical
and continuous data and incorporate information criteria into the algorithm. The output is then
a forest because the penalties for model complexity may yield negative edge weights. Treating
models with latent variables, Friedman et al. (2002) suggest a structural EM algorithm whose
M-step optimizes over both parameters and tree structure. The Chow-Liu algorithm is also used
in methods for learning latent locally tree-like graphs by Anandkumar & Valluvan (2013).

3.2. Greedy Search
Beyond the realm of trees, finding a graph that maximizes a (penalized) likelihood or information
criterion is hard in a complexity-theoretic sense (Karger & Srebro 2001). Nevertheless, good
estimates can be obtained from heuristic techniques, such as greedy or stepwise forward/backward
search. Good implementations, for example as discussed by Højsgaard et al. (2012), evaluate the
benefit of an edge addition or removal via local computation based on clique-sum decompositions
(Lauritzen 1996, chapter 3).

Example 9. The graph G in Figure 5a is a clique-sum of three smaller graphs, the so-called prime
components shown in Figure 5b. If a distribution factorizes with respect to G, then its density f
satisfies

f (x) = f1234(x1, x2, x3, x4) f345(x3, x4, x5) f567(x5, x6, x7)
f34(x3, x4) f5(x5)

. (10)

The marginal densities in the numerator correspond to the prime components, and those in the de-
nominator correspond to the separating sets, i.e., the cliques along which the prime components are
summed. Suppose now that we wish to compute the likelihood ratio statistic comparing the given graph
to the graph with edge 3 − 5 removed, in a setting of categorical data under multinomial sampling.
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Figure 5
A clique-sum decomposition. (a) An undirected graph. (b) Clique-sum of the prime components of panel a.

Graphical lasso
(glasso): estimator
that optimizes
'1-penalized joint
Gaussian
log-likelihood

The edge belongs to the clique {3, 4, 5}, and proposition 4.32 in Lauritzen (1996) implies that the
likelihood ratio statistic can be obtained by computing with the data on (X3, X4, X5) alone. Specifically,
one computes the likelihood ratio of the graph 3 − 4 − 5 with respect to the full triangle graph on
{3, 4, 5}. Analogous results exist for the Gaussian case and, with additional subtleties, for mixed discrete
and conditionally Gaussian observations (Lauritzen 1996, chapters 5 and 6).

Computation of likelihood ratios is particularly convenient for decomposable graphs, that is,
graphs in which all prime components are complete. For example, trees are decomposable be-
cause their prime components are the individual edges, and the graph in Figure 5a is nondecom-
posable. For a decomposable graph, Gaussian models as well as models for categorical variables
admit closed-form MLEs (Lauritzen 1996, sections 4.4 and 5.3). These are obtained by estimat-
ing marginal distributions (via sample means and covariances for Gaussian data, or via empiri-
cal frequencies for categorical data) and substituting these estimates in a factorization such as
Equation 10. In contrast, computing MLEs for nondecomposable graphs involves solving higher
degree polynomial equation systems (Drton et al. 2009, chapter 2.1).

More recently, greedy search has been applied in a framework of neighborhood selection, in
which a graph G is selected by determining the neighborhood nbG(v) of each node v. As discussed
in Section 3.4, finding nbG(v) often corresponds to variable selection in a regression problem. This
avoids the need for iterative computation of MLEs when dealing with nondecomposable graphs,
and a connection can be made to results on forward selection methods for variable selection in
high-dimensional regression. Jalali et al. (2011) and Ray et al. (2015) leverage this connection
and provide theoretical guarantees for greedy search in high-dimensional problems. The related
method of Bresler (2015) greedily selects supersets of the neighborhoods that are subsequently
pruned. These methods are competitive to the '1-regularization techniques that we discuss next.

3.3. Gaussian Models and ℓ1-Penalization
Gaussian models provide the starting point for most graphical modeling of continuous observa-
tions. As noted in Example 5, a Gaussian conditional independence graph can be estimated by
determining the zero entries of the inverse covariance matrix K ∈ RV ×V .

Let S = (svw) be the sample covariance matrix for a sample of n observations, with svv > 0 for
all v ∈ V to avoid trivialities. Yuan & Lin (2007) and Banerjee et al. (2008) proposed the graphical
lasso (glasso) estimator

K̂ gl = arg min
K

{
− log det(K ) + tr (SK ) + λ‖K‖1

}
, (11)

where the minimization is over positive definite matrices K = (κvw) ∈ RV ×V and λ ≥ 0 is a tuning
parameter. The objective adds to the log-likelihood function from Equation 5 a multiple of the
(vector) '1-norm, i.e., ‖K‖1 =

∑
v,w∈V |κvw|. Some authors omit the positive diagonal entries κvv
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Neighborhood
selection: neighbors
are found using
techniques for variable
selection such as '1
penalization

when forming the norm. In either case, such a regularization term induces sparsity in K̂ gl, just as
it does in lasso regression. The conditional independence graph is then estimated by the graph
Ĝgl that has edge v−w if and only if κ̂gl

vw += 0. For λ > 0, the minimum in Equation 11 is achieved
uniquely because the objective is strictly concave and coercive irrespective of whether S has full
rank. This is important in high-dimensional settings.

The coordinate-descent algorithm of Friedman et al. (2008) is a popular method for computa-
tion of K̂ gl; the reader is directed to Mazumder & Hastie (2012b) for a discussion of its properties.
Recent implementations exploit the fact that simply thresholding the sample covariance matrix
S yields the connected components of Ĝgl (Witten et al. 2011, Mazumder & Hastie 2012a). Al-
ternative approaches for computation of K̂ gl are discussed by Hsieh et al. (2013). The estimation
error of K̂ gl and the consistency of Ĝgl in high-dimensional problems are studied by Ravikumar
et al. (2011).

There are several related methods to estimate a sparse covariance matrix. For example, Cai
et al. (2011) minimize ‖K‖1 subject to a constraint on ‖SK − I‖∞. Here, I is the identity and
‖A‖∞ is the maximum absolute entry of A. Minimax optimality properties can be proven for an
adaptive version of the estimator (Cai et al. 2016).

A conditional independence graph is sometimes expected to have particular structure, such as
hub nodes with many neighbors. This motivated Defazio & Caetano (2012) to consider regular-
ization with a sorted '1 norm. For tuning parameters λ1 ≥ · · · ≥ λp ≥ 0, the sorted '1 norm
of β ∈ Rp is

∑p
j=1 λ j |β( j )|, where β(1), . . . ,β(p) are the entries of β listed in descending order of

absolute values, so |β(1)| ≥ |β(2)| ≥ · · · ≥ |β(p)|. Defazio & Caetano (2012) estimate the inverse
covariance K = (κvw) by the optimal solution of

min
K

{
− log det(K ) + tr (SK ) +

∑

v∈V

|V |∑

j=1

λ j |κv,( j )|
}
. (12)

Intuitively, the sorted '1 norm allows one to more easily detect a signal κvw if it concerns a variable
Xv with other stronger signals κvu . Of course, the work just described is not the only one addressing
hubs (see, e.g., Tan et al. 2014).

3.4. Neighborhood Selection
We may estimate a conditional independence graph G = (V , E) by estimating all of its neighbor-
hoods nbG(v). According to the local Markov property, Xv depends on the other variables only
through its neighbors Xw, w ∈ nbG(v). Hence, we may proceed by estimating the conditional dis-
tribution of Xv given XV \{v} and determining nbG(v) as the index set of the variables Xw on which
the estimated conditional distribution depends. (Alternatively, we could motivate the approach by
referring to the pairwise Markov property, from which we conclude that {v, w} /∈ E if the condi-
tional distribution does not depend on Xw.) The ideas behind this neighborhood selection have a
longer tradition (Besag 1975). However, its widespread use in graphical modeling emerged more
recently when Meinshausen & Bühlmann (2006) tackled high-dimensional problems through a
connection to lasso regression.

Example 10. Let X = (Xv : v ∈ V ) be multivariate normal with inverse covariance matrix K = (κvw).
Then the conditional distribution of Xv given all remaining variables is normal with variance 1/κvv

and expectation

E [Xv | Xw , w += v] =
∑

w∈V \{v}

(
− κvw

κvv

)
Xw =

∑

w∈nbG (v)

(
− κvw

κvv

)
Xw.
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We may estimate nbG(v) as the set of active covariates in a linear regression of Xv on all other variables
Xw , w += v. Any technique for variable selection could be applied.

Example 11. In a symmetric Ising model with (real-valued) interaction parameters θvw , all random
variables Xv take values in {−1, 1} and joint probabilities have the form

Pr(Xv = xv , v ∈ V ) ∝ exp





∑

{v,w}∈E

θvwxvxw




. (13)

By the Hammersley-Clifford theorem, the conditional independence graph G = (V , E) of such a
distribution has edge v − w ∈ E if and only if θvw += 0. Because

log
(

Pr(Xv = 1 | Xw = xw , w += v)
1− Pr(Xv = 1 | Xw = xw , w += v)

)
=

∑

w∈nbG (v)

(2θvw) xw ,

the neighborhood nbG(v) can be estimated as the set of active covariates in a logistic regression of Xv

on all other variables Xw , w += v. We note that the normalizing constant in Equation 13 is a sum over
2|V | joint states and thus intractable unless |V | is small.

Estimating each neighborhood in isolation may lead to inconsistencies that are commonly re-
solved post-hoc. Let n̂b(v), v ∈ V , be the estimated neighborhoods. If w ∈ n̂b(v) but v +∈ n̂b(w),
then the so-called and-rule excludes the edge v−w from the estimated conditional independence
graph, whereas the or-rule includes such edges.

The use of '1-regularization for neighborhood selection in Gaussian and Ising models
(Examples 10 and 11) is studied by Meinshausen & Bühlmann (2006) and Ravikumar et al. (2010),
respectively. Yang et al. (2015a) treat other exponential family models, and Chen et al. (2015)
propose refinements of the and-/or-rules that take into account the distributional type of the
nodes. Voorman et al. (2014) apply techniques for sparse additive models, in which a conditional
expectation of the form E[Xv | Xw, w += v] =

∑
w +=v fvw(Xw) is estimated using basis expansions

and a group lasso penalty that allows for zero functions as estimates of some of the univariate
functions fvw.

Neighborhood selection is related to the concept of pseudo-likelihood, which is based on the
full conditional densities of a joint density f . The log-pseudo-likelihood function is

Lpseudo( f ) =
∑

v∈V

log fv|V \{v} (xv | xw, w += v) . (14)

Non-Gaussian distributions specified via the Hammersley-Clifford theorem typically have in-
tractable normalizing constants; recall Example 11. In contrast, the full conditionals in the pseudo-
likelihood can often be normalized. Indeed, the conditional probabilities for discrete Xv can be
normalized by summing over the state space of Xv alone as opposed to over all joint states. Sim-
ilarly, it may be feasible to find the normalizing constant of the full conditional density for a
continuous random variable by univariate integration.

Although neighborhood selection treats the different conditional densities fv|V \{v} as unrelated,
the conditionals share parameters. For instance, the interaction parameter θvw in the Ising model
from Equation 13 appears in the conditionals for Xv and for Xw. As an alternative that avoids
inconsistencies among estimated neighborhoods, we may maximize an '1 penalized version of
Lpseudo from Equation 14 with respect to a symmetric interaction matrix. Höfling & Tibshirani
(2009) explore this pseudo-likelihood method for Ising models but find rather little difference
with neighborhood selection. Khare et al. (2015) give an overview of Gaussian pseudo-likelihood
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Score matching:
convex quadratic loss
for continuous
non-Gaussian
graphical models

methods that retain the symmetry of the inverse covariance matrix and address issues in the
specification of a convex optimization objective.

A full likelihood may be expected to yield more efficient estimators than neighborhood selec-
tion or pseudo-likelihood. However, under '1 regularization, the situation is subtle, as different
irrepresentability conditions are needed to ensure consistency. Indeed, there are Gaussian exam-
ples in which neighborhood selection is consistent whenever the glasso is consistent, but in which
the converse is false (Meinshausen 2008, Ravikumar et al. 2011).

3.5. Score Matching
The Hammersley-Clifford theorem allows the specification of graphical models as interaction
models in the form of an exponential family. However, the normalizing constants in such models
are tractable only in special cases. The score matching approach of Hyvärinen (2005, 2007) is
well suited to address this challenge. We describe the basic version that applies to continuous
observations supported on all of RV .

Let X = (Xv : v ∈ V ) be absolutely continuous with differentiable density f0 and support
RV . Let f be another density that is twice differentiable and has support RV . Writing ∇x for the
gradient with respect to x, define the Fisher information distance

J( f ) =
∫

RV
f0(x)

∥∥∇x log f (x)−∇x log f0(x)
∥∥2

2 dx. (15)

Although it is natural to minimize an estimate of J(·), this approach is complicated by the way
the unknown true density f0 appears in Equation 15. Hyvärinen (2005) circumvents this problem
using integration by parts (Stein’s identity), which yields under mild conditions that

J( f ) =
∫

RV
f0(x)

[
*x log f (x) + 1

2
‖∇x log f (x)‖2

2

]
dx + const., (16)

where *x f (x) =
∑

v ∂
2 f (x)/∂x2

v is the Laplace operator. Writing S(x, f ) = *x log f (x) +
1
2‖∇x log f (x)‖2

2, a score matching estimator minimizes the empirical loss

Ĵ( f ) = 1
n

n∑

i=1

S(x(i ), f )

for f ranging over a model of interest. Importantly, if f is only known up to a normalizing constant,
then this constant cancels in the logarithmic derivatives in S(x, f ). Moreover, in an exponential
family with log-densities log f (x|θ ) = θT t(x)−ψ(θ ) + b(x) for sufficient statistics t(x), the loss Ĵ
is a convex quadratic function of the natural parameter θ .

Example 12. Consider the family of centered multivariate normal distributions, parameterized by their
inverse covariance matrices K . Then,

Ĵ(K ) = 1
2

trace(K 2S)− trace(K ) =
∑

v∈V

1
2
κT
v Sκv − κT

v ev , (17)

where S is the sample covariance matrix of X , κv is the vth column of K , and ev is the vth canonical
basis vector of RV . If S is invertible then the score matching estimator equals the MLE K̂ = S−1.
However, for submodels that constrain K to lie in a linear subspace, the two estimators generally differ.
The score matching estimator need not be asymptotically efficient, as Forbes & Lauritzen (2015) show
in the context of symmetry constraints in graphical models.
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Closed-form score matching estimators are available for any pairwise interaction model

log f (x|θ ) =
A∑

a=1

∑

v +=w

θ (a)
vw t(a)

vw(xv , xw) +
L∑

l=1

∑

v

θ (l)
v t(l)

v (xv) − ψ(θ ) + b(x), x ∈ RV , (18)

for which Xv⊥⊥Xw | XV \{v,w} if and only if θ (a)
vw = 0 for all a = 1, . . . , A. Sparse estimates of the

interaction matrices (θ (a)
vw ) can be obtained by adding an '1 or group lasso penalty to the loss Ĵ. The

resulting estimators of conditional independence graphs are studied by Lin et al. (2016), who also
treat nonnegative observations; by Janofsky (2015), who proposes a nonparametric exponential
series approach; and by Sun et al. (2015), who consider infinite-dimensional exponential families.
For Gaussian models, '1-regularized score matching is a simple but state-of-the-art method. It
coincides with the method of Liu & Luo (2015).

3.6. Semiparametric and Robust Methods
Traditionally, methods for continuous observations have relied heavily on Gaussian models. A
problem of obvious interest is to provide methods for non-Gaussian observations. We already
mentioned several such methods and comment here on two other lines of work.

From a perspective of robustness, several authors explored the use of elliptical distributions
(Bilodeau 2014, Vogel & Fried 2011, Vogel & Tyler 2014). Finegold & Drton (2011) consider
the special case of t-distribution models in which a Gaussian random vector is observed under
scaling with a single random divisor. They also propose nonelliptical alternative t-distributions,
which result from dividing the different components of a latent Gaussian vector by independent
scalars. Different divisors are useful for high-dimensional data with outliers in many observations,
but where each observation only has a small number of corrupted entries.

In a different vein, Liu et al. (2009) propose semiparametric methods based on Gaussian copula
models. Here, the observation X = (Xv : v ∈ V ) satisfies Xv = hv(Zv) for a Gaussian random
vector Z = (Zv : v ∈ V ) and strictly increasing functions hv : R → R. Because the hv are
deterministic and one-to-one, X has the same Markov properties as Z. Liu et al. (2012a) and Xue
& Zou (2012) observe that efficient estimation in the copula models can be based on Kendall’s
τ and Spearman’s .. Indeed, for strictly increasing hv , the observation X and the latent vector
Z have the same rank correlations. One may thus apply Gaussian methods after estimating the
latent Gaussian correlation matrix by suitably transformed pairwise estimates of τ or .. In the data
analysis in Example 3, we applied this idea in conjunction with Gaussian neighborhood selection
from Section 3.4.

It is noteworthy that Kendall’s τ also provides a simple way to fit copula models based on
elliptical distributions (Liu et al. 2012b). Extensions to mixed discrete and continuous data are
treated by Fan et al. (2016). Avoiding the assumption of a Gaussian copula, Yang et al. (2014) use
coarser data summaries than ranks to handle settings in which the full conditionals are generalized
linear models with unknown base measure.

3.7. Tuning Parameter Selection
Many of the aforementioned methods depend on a tuning parameter. Varying this parameter
typically yields a useful ranking of edges. However, it may also be desirable to select a single
tuning parameter, for example by optimizing information criteria such as the Bayesian information
criterion (BIC). However, in problems with a large number of variables |V |, the BIC tends to yield
overly dense graphs. Foygel & Drton (2010), Gao et al. (2012), and Barber & Drton (2015) address
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this issue by adapting ideas from sparse high-dimensional regression. Via a multiplicity-correcting
prior, the BIC penalty is made dependent on log |V |.

Another useful approach is stability selection (Meinshausen & Bühlmann 2010, Shah &
Samworth 2013). This method records how often each edge is selected across random subsamples
and different tuning parameters, and selects those edges for which there exists a tuning parameter
so that the subsample selection frequency exceeds a specified threshold. The method aims to avoid
false positives. A resampling technique that seeks to avoid false negatives was proposed by Liu
et al. (2010). This method chooses the least amount of penalization for which graph estimates are
suitably stable across subsamples.

Finally, we note that there are methods that aim to reduce or eliminate dependence on tuning
parameters (see Lederer & Müller 2014 and references therein).

4. LEARNING DIRECTED GRAPHICAL MODELS
We now discuss methods for learning the structure of a directed graphical model. Textbooks
on this problem include Spirtes et al. (2000), Neapolitan (2004), and Koller & Friedman (2009).
Throughout, we assume that the DAG G = (V , E) is a perfect map of X = (Xv : v ∈ V ), and
that we observe n i.i.d. copies of X . The observed data are denoted by x.

In general, G is not identifiable from the distribution of X , but we can identify its Markov
equivalence class, or equivalently, its CPDAG. Thus, many structure learning methods aim to
learn the CPDAG. We treat exact score-based search in problems of moderate dimensionality
and review more broadly applicable methods based on greedy search or conditional independence
tests, as well as hybrids of these two approaches. Finally, we discuss methods that impose additional
assumptions that allow identification of the DAG.

4.1. Exact Score-Based Search
Score-based approaches learn a DAG by determining the graph G that optimizes a specified
score Q(G, x). Typically Q is a penalized likelihood score, for example the BIC. Such scores are
often decomposable, meaning that Q(G, x) =

∑
v∈V q (v | paG(v), x), where the summands are local

scores of each node v given its parents. For many models, scores such as the BIC are also score-
equivalent, meaning that Q(G, x) = Q(G′, x) if G and G′ are Markov equivalent. This is the case,
in particular, for Gaussian models and for models for categorical data.

Finding an optimal DAG, or possibly CPDAG, is hard owing to the large search space and
the acyclicity constraint. For instance, there are over 1036 (vertex-labeled) DAGs on 14 nodes.
Nevertheless, for decomposable scores, an exact search is feasible more broadly than one might
expect. Different approaches to exact search include branch and bound methods (e.g., de Campos
et al. 2009), partial order covers (e.g., Parviainen & Koivisto 2009), and as we discuss in more
detail below, dynamic programming and integer linear programming.

Silander & Myllymäki (2006) propose an elegant dynamic programming approach. It leverages
the fact that a best DAG for a variable set W ⊆ V can be thought of as a best sink s ∈ W , with best
parents among subsets of W \ {s }, and a best DAG for W \ {s }. Using dynamic programming and
starting from the singleton sets, a best sink can be found for all subsets W ⊆ V . Backtracking then
yields an ordering of the nodes that is compatible with a best DAG on V . Given this ordering, one
can use regression to select parents for each node from its predecessors in the ordering, yielding
a best DAG on V .

Although the computational and memory requirements are exponential in |V |, this approach
is feasible for problems with up to roughly 30 nodes.
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Greedy equivalence
search (GES): greedy
score-based search on
the space of CPDAGs
that provides
consistency despite
greedy search

More recently, authors such as Jaakkola et al. (2010), Cussens & Bartlett (2013) and Studený &
Haws (2014) suggested integer linear programming approaches, in which the search over graph
structures is formulated as a linear program over a polytope P representing DAGs. For instance,
the vertices of P may be taken to be sparse binary vectors / = (/1, . . . , /|V |), where each /v is of
length 2|V |−1, which is the number of possible parent sets. If pa(v) = sv , then we set /v(sv) = 1
and all other entries of /v are zero. The polytope P is then the convex hull of all binary vectors
/ that correspond to DAGs. A key property of P is that cyclic graphs lie outside of P . Using the
notation / also for interior points of P , the structure learning problem can be cast as

max
∑

v∈V

∑

sv⊆V \{v}
/v(sv)q (v | sv , x) s.t. / ∈ P.

The complexity of this linear program is in the facets that define the polytope P , and practical
algorithms are based on relaxations of P .

4.2. Greedy Score-Based Search
For large graphs, exact search is infeasible, and one can turn to greedy search. A well-known
algorithm of this type is the greedy equivalence search (GES) algorithm of Chickering (2002).
Given a starting graph (often the empty graph) and a score, GES performs a greedy search on
the space of CPDAGs. The algorithm performs a forward phase in which edges are added, and a
backward phase in which edges can be removed. Efficient implementations use local computations
to evaluate the benefit of an added or deleted edge, using the decomposability of the score. The
forward phase tends to take much longer in practice than the backward phase.

Owing to the greedy search, GES will typically not find the global optimum of the score given
data x with a sample of size n. Remarkably, however, Chickering (2002) showed that GES does
find the global optimum with probability converging to 1 as n→∞, if the score is decomposable,
score-equivalent, and consistent. The consistency property ensures that the true CPDAG gets the
highest score with probability converging to 1 as n→∞. An important ingredient of Chickering’s
proof is the fact that the forward phase outputs an independence map of X , with probability
converging to 1 as n→∞.

Although the number of added and deleted edges in GES is polynomial in the number of nodes
|V |, the number of performed score evaluations can be exponential in |V |. Chickering & Meek
(2015) show that the backward phase of GES can be made polynomial for sparse graphs. With
a naive forward phase that simply gives the complete graph (which is trivially an independence
map), this yields a polynomial time algorithm for sparse graphs.

The consistency result of Chickering (2002) is for a classical setting where |V | is fixed and
n → ∞. Van de Geer & Bühlmann (2013) consider a high-dimensional setting where |V | is
allowed to grow with n. They show that the global optimum of the '0-penalized likelihood score
is consistent, but they do not propose an algorithm to find the global optimum. Nandy et al.
(2016a) show a first high-dimensional consistency result for GES.

4.3. Constraint-Based Methods
Constraint-based methods seek to find a DAG that is compatible with the conditional indepen-
dencies seen in the given data set. We begin the discussion of such methods by focusing on the
estimation of the skeleton of the DAG (or, equivalently, its CPDAG), which is typically the most
computationally intensive step.

If G is a perfect map of X , then v and w are adjacent in G if and only if Xv and Xw are
conditionally dependent given XC for all C ⊆ V \ {v, w}. A naive approach thus determines if v
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Constraint-based
methods:
reverse-engineer the
CPDAG based on
conditional
independencies
inferred from data

PC algorithm:
constraint-based
method that uses a
limited number of
conditional
independence tests
with small
conditioning sets, if
the underlying
CPDAG is sparse

and w are adjacent by testing all 2|V |−2 conditional independencies, as done by the SGS (Spirtes,
Glymour, and Scheines) or IC (inductive causation) algorithms (Verma & Pearl 1990, Spirtes et al.
2000). In contrast, the PC algorithm (named after its authors Peter Spirtes and Clark Glymour)
of Spirtes et al. (2000) limits the number of conditional independence tests, by using the fact that
v and w are not adjacent in a DAG G if and only if Xv⊥⊥Xw | XpaG (v) or Xv⊥⊥Xw | XpaG (w). Because
we do not know the parent sets (this would mean knowing the DAG), the PC algorithm ensures
that the following conditional independencies are tested: Xv⊥⊥Xw | XC for all C ⊆ adjG(v) and
all C ⊆ adjG(w), and removes the edge if a conditional independence is found. This still appears
infeasible, however, because we do not know adjG(v) and adjG(w). The PC algorithm circumvents
this problem by always working with supergraphs of the true skeleton and testing conditional
independencies given subsets of adjacency sets in these supergraphs.

Concretely, the PC algorithm starts with a complete graph on V . It then tests marginal in-
dependence for all pairs of nodes, and removes an edge if an independence is found. Next, for
every pair of nodes that are still adjacent, it tests conditional independence given all subsets of
cardinality 1 of the adjacency sets of the two nodes. The algorithm removes an edge if a con-
ditional independence is found. The algorithm continues in this manner, each time increasing
the cardinality of the conditioning set by 1, until the cardinality of the conditioning sets exceeds
maxv∈V |adjG′ (v)| − 1, where G′ is the current state of the skeleton. At this point, all required
conditional independencies have been considered, and the skeleton is found.

In a second phase, the PC algorithm postprocesses the results of the conditional independence
tests and learns the v-structures, as illustrated in Example 13 below. Finally, the algorithm applies
a few simple orientation rules to orient some of the remaining edges, based on the fact that one
may not create directed cycles or new v-structures. If the true conditional independencies are
used as input for the PC algorithm, then the final output is the CPDAG of the underlying DAG
G. We note that for graphs with bounded degree, that is, a bound on maxv∈V |adjG(v)|, the PC
algorithm has a running time that is polynomial in the number of variables. The running time
depends exponentially on the degree.

Example 13. Suppose we have three random variables Xu , Xv , Xw with Xu ⊥⊥Xw as the sole conditional
independence. The PC algorithm starts with a complete undirected graph on {u, v, w}. When testing
marginal independencies, it removes the edge u − w after finding Xu ⊥⊥Xw . No other conditional
independencies are found, so that u − v − w is the final skeleton. Next, the algorithm detects that
v is a collider on the path (u, v, w), because otherwise u ⊥⊥G w is violated. Hence, the DAG (and
corresponding CPDAG) is u→ v← w.

The same skeleton is found if the only conditional independence is Xu ⊥⊥Xw | Xv . Then, however, v

must be a noncollider on the path (u, v, w) to ensure that u ⊥G w | v holds. This leaves three possible
DAGs, namely, u → v → w, u ← v ← w or u ← v → w, which form a Markov equivalence class
represented by the CPDAG u − v − w.

In practice, conditional independencies need to be tested based on data. Standard tests are
available for multivariate Gaussian and multinomial data. Usually, all tests are performed at the
same significance level α, and an edge is removed if the null hypothesis of (conditional) inde-
pendence is not rejected. Here, α does not control an overall type I error. Rather, it is a tuning
parameter that typically gives sparser graphs for smaller values.

High-dimensional consistency of the PC algorithm for certain sparse Gaussian DAGs is shown
in Kalisch & Bühlmann (2007). Harris & Drton (2013) generalize this result to Gaussian copulas.
Colombo & Maathuis (2014) observe that the output of the PC algorithm can depend strongly on
the variable ordering. They provide order-independent versions of the algorithm that are again
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consistent in high-dimensional settings. Consistency of the PC algorithm rests on the assumption
that the underlying DAG is a perfect map. This assumption is studied in depth by Uhler et al.
(2013), who show that it can be restrictive.

4.4. Hybrid Algorithms
Hybrid algorithms combine ideas from constraint-based and score-based methods, by employing
a greedy search over a restricted space, often determined using conditional independence tests.
An example is the max-min hill climbing (MMHC) algorithm (Tsamardinos et al. 2006). Hy-
brid algorithms scale well with respect to the number of variables and exhibit good estimation
performance (Tsamardinos et al. 2006, Nandy et al. 2016a).

The theoretical properties of hybrid algorithms are less well studied than those of purely score-
or constraint-based algorithms. Nandy et al. (2016a) try to fill this gap by studying a simple hybrid
algorithm: GES restricted to the search space determined by the conditional independence graph.
Nandy et al. (2016a) show that this algorithm (and also MMHC) is not consistent. Indeed, even
though the global optimum lies within the restricted search space (because the skeleton of the
CPDAG is a subgraph of the conditional independence graph), the greedy search path may not
find this global optimum without leaving the restricted search space. Nandy et al. (2016a) introduce
a new hybrid algorithm, called adaptively restricted GES, which was shown to be consistent in
classical and high-dimensional settings.

4.5. Structural Equation Models With Additional Restrictions
So far, we have discussed learning the Markov equivalence class of DAGs, as described by a
CPDAG. Under some additional assumptions, it is possible to identify the unique DAG. To
obtain intuition, we consider a simple example.

Example 14. Figure 6a shows a sample from the linear structural equation model (SEM): X = εX ,
Y = X + εY , with εX and εY i.i.d. Uniform(−0.5,0.5). The corresponding DAG is Y ← X , and we
note that εY ⊥⊥ X . Figure 6b shows a sample from the analogous model with X ← Y , where εX ⊥⊥Y .
The joint distributions are clearly different for the two different DAGs. (If the errors were Gaussian,
however, the point clouds would be football shaped, and we would not be able to distinguish the two
DAGs.)

Now suppose we are told that Figure 6a is generated from a linear SEM, and we are asked to decide
whether the corresponding DAG is X → Y or Y → X . If the DAG were Y → X , then regressing X
on Y would yield residuals that are roughly independent of Y . This is clearly not the case in Figure 6a.
If the DAG were X → Y , then regressing Y on X would yield residuals that are roughly independent
of X . This is indeed the case in Figure 6a. Hence, we can learn that the DAG is X → Y .

Such ideas were first used for linear SEMs with non-Gaussian noise, or equivalently, for linear
non-Gaussian acyclic models (LiNGAM) (Shimizu et al. 2006). Recall from Example 8 that a
linear SEM can be written as X = (I − B)−1ε, meaning that X is a linear, invertible mixture
of independent errors with mixing matrix A = (I − B)−1. In the case of non-Gaussian errors,
independent component analysis can identify A up to scaling and permutation of the columns.
This idea forms the basis of the original LiNGAM algorithm. Shimizu et al. (2011) give a more
advanced implementation that is suitable for larger numbers of variables. The LiNGAM approach
has also been extended to allow for latent variables, time series data and feedback loops (see Shimizu
2014 for an overview).
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Figure 6
Simulated data from linear structural equation models with uniform errors, showing (a) the directed acyclic
graph (DAG) X → Y , and (b) the DAG Y → X . Red lines indicate the regression of Y on X , and blue
lines indicate the regression of X on Y .

Identifiability of the DAG can also be achieved by various other restrictions on SEMs with ad-
ditive noise, such as nonlinear structural equations (Peters et al. 2014), additive models (Bühlmann
et al. 2014), or equal error variances (Peters & Bühlmann 2014).

5. LATENT VARIABLES
The methods discussed so far rely on data being available for all relevant variables. However,
many applications of graphical models involve latent, that is, unobserved variables. Sometimes,
these are specific variables of interest, such as features of extinct species in phylogenetics. In other
settings, there may simply be a concern that observed correlations are induced by latent variables.
We will review some of the ideas proposed to address this latter issue.

5.1. Low-Rank Structure in Undirected Graphical Models
Let X = (Xv : v ∈ V ) be multivariate normal with covariance matrix ", and let K = "−1.
Suppose only the variables indexed by O ! V are observed. Letting H = V \O, we have that
XO = (Xv : v ∈ O) is multivariate normal with inverse covariance matrix

(
"O,O

)−1 = KO,O − KO,H
(
KH ,H

)−1 KH ,O . (19)

If X satisfies the Markov property with respect to an undirected graph G = (V , E), then the
matrix KO,O is supported over the induced subgraph GO , i.e., the (v, w) entry of KO,O is nonzero
only if v = w or v−w ∈ E. In contrast, the matrix KO,H (KH ,H )−1 KH ,O will typically be dense, as
its (v, w) entry is generically nonzero whenever the graph G contains a path v− h1− · · ·− hk −w

with h1, . . . , hk ∈ H . However, KO,H (KH ,H )−1 KH ,O has rank at most |H |. Therefore, if GO is
sparse and the number of latent variables is small, then the inverse covariance matrix of XO is the
sum of a sparse and a low-rank matrix.

Example 15. Taking up Example 5, let (X1, . . . , X5) be multivariate normal with the graph from
Figure 3 as a conditional independence graph. Let K = (κvw) be the inverse covariance matrix. If
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O = {1, 2, 4, 5} and H = {3}, then XO has inverse covariance matrix





κ11 κ12 0 0
κ12 κ22 0 0
0 0 κ44 κ45

0 0 κ45 κ55




− 1
κ33





κ13

κ23

κ34

0









κ13

κ23

κ34

0





T

.

Here, the first matrix is sparse and supported over the subgraph with node 3 removed, and the second
matrix has rank |H | = 1. In this example, the low-rank matrix has two zero entries corresponding to
the pairs (X1, X5) and (X2, X5). This can be seen from the global Markov property because X5 can be
separated from (X1, X2) by the observed variable X4.

Suppose we have an i.i.d. sample of size n from the distribution of XO , with sample covariance
matrix S, and wish to learn (a) the edges between nodes v, w ∈ O in the conditional independence
graph of X = (XO , XH ) and (b) the number of latent variables |H |. By Equation 19, both tasks
can be solved simultaneously by estimating a sparse-plus-low-rank decomposition of the inverse
covariance matrix of XO . Chandrasekaran et al. (2012) propose a penalized maximum likelihood
approach in which one solves

min
K sp,K lr

{
− log det(K sp − K lr) + tr

[
S(K sp − K lr)

]
+ λ

[
γ ‖K sp‖1 + tr(K lr)

] }
, (20)

subject to K sp− K lr being positive definite and K lr being positive semidefinite. Here, K sp and K lr

stand for the sparse and low-rank components of K and have corresponding '1- and trace/nuclear
norm penalties. For tuning parametersλ, γ ≥ 0, this optimization problem is convex. Let (K̂ sp, K̂ lr)
be a minimizer. Chandrasekaran et al. (2012) show that under identifiability conditions the sparsity
pattern of K̂ sp and the rank of K̂ lr consistently estimate the subgraph GO and the number of hidden
variables. The theory covers settings in which |O| may roughly be as large as n. Possible modifi-
cations of the procedure are proposed in discussion pieces published along with Chandrasekaran
et al. (2012). Larger instances of Equation 20 can be solved using an ADMM (alternating direction
method of multipliers) algorithm (Ma et al. 2013).

The Gaussian example we treated is only one very special case of graphical modeling with latent
variables. Indeed, many mixture and latent factor models can be thought of as graphical models
with latent variables. (The states of discrete latent variables index different mixture components.)
Nevertheless, the example illustrates a general phenomenon: latent variables induce low-rank
structure in tensors of moments. This fact is exploited also in methods of Anandkumar et al.
(2014) and Chaganty & Liang (2014).

5.2. Latent Variables in Directed Graphical Models
If a DAG model has latent variables, then the marginal distribution of the observed variables can
generally not be represented by a DAG. Moreover, if the marginal distribution can be represented
by a DAG, this DAG may have no causal interpretation.

Example 16. Let the DAG G: 1 → 2 ← 3 → 4 ← 5 be a perfect map of the distribution of
(X1, . . . , X5), and suppose that X3 is latent. There is no DAG on {1, 2, 4, 5} that encodes exactly the
same d-separation relations among {1, 2, 4, 5} as G. Hence, there does not exist a perfect map of the
marginal distribution of (X1, X2, X4, X5).
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Mixed graphs:
represent
dependencies from
DAGs with latent
variables and can be
learned using the FCI
algorithm

Example 17. Let the DAG G: 1 ← 2 → 3 ← 4 → 5 be a perfect map of the distribution of
(X1, . . . , X5), and suppose that X2 and X4 are latent. The only conditional independence among the
observed variables is X1⊥⊥X5, which is encoded by the DAG G′: 1→ 3← 5. Indeed, G′ is a perfect
map of the distribution of X = (X1, X3, X5) and would be found when applying consistent methods
such as the PC algorithm to a large sample of (X1, X3, X5). However, G′ does not reflect the causal
interpretation of G. For example, G′ suggests X1 as a cause of X3, but there is no directed path from
X1 to X3 in G.

Mixed graphs provide a useful approach to address these problems without explicit modeling
of latent variables (e.g., Spirtes et al. 2000, Pearl 2009, Wermuth 2011). The nodes of these
graphs index the observed variables only. The edges, however, may be of two types, directed and
bidirected. This added flexibility allows one to represent the more complicated dependence struc-
tures arising from a DAG with latent variables. A straightforward generalization of d-separation
determines conditional independencies in mixed graph models. For instance, the mixed graph
1→ 2←→ 4← 5 is a perfect map for the distribution in Example 16. To facilitate constraint-
based structure learning in settings with latent variables, Richardson & Spirtes (2002) introduce
a class of mixed graphs known as maximal ancestral graphs (MAGs). (The work also considers
selection bias, which we ignore here.) Every DAG G = (V , E) with V = O∪H , where O and H
index the observed and latent variables, respectively, can be transformed into a unique MAG on
O such that conditional independencies among the observed variables are preserved. The MAG
also encodes ancestral relationships in the underlying DAG G, as follows. If the MAG has edge
v → w, then v ∈ anG(w) but w /∈ anG(v). Similarly, v ↔ w encodes v /∈ anG(w) and w /∈ anG(v).
In general, several MAGs may describe the same set of conditional independencies. The resulting
Markov equivalence class of MAGs can be described by a partial ancestral graph (PAG) (Ali et al.
2009).

PAGs can be learned by a generalization of the PC algorithm called the fast causal inference
(FCI) algorithm (Spirtes et al. 1999, Richardson & Spirtes 2002). As noted in Section 4.3, the PC
algorithm is of polynomial time for graphs of bounded degree, by exploiting the fact that the edge
v−w is absent in the skeleton of the DAG G if and only if Xv⊥⊥Xw | XpaG (v) or Xv⊥⊥Xw | XpaG (w). In
the presence of latent variables, this fact no longer holds. The FCI algorithm therefore performs
additional tests, and the number of such tests can be exponential in the number of nodes, even
for sparse graphs. The FCI algorithm also uses more complicated orientation rules, which were
extended and proved to be complete by Zhang (2008). Colombo et al. (2012) and Claassen et al.
(2013) introduce fast modifications of the FCI algorithm that are of polynomial time for graphs
of bounded degree.

Although MAGs can represent all conditional independencies in the marginal distribution
of the observed variables, there can be equality and inequality constraints that MAGs cannot
represent. An example is the so-called Verma constraint (Verma & Pearl 1990) (see also example
3.3.14 in Drton et al. 2009). To represent constraints beyond conditional independencies, there
is current work on new classes of graphs (Shpitser et al. 2012, 2014; Evans 2016).

6. HETEROGENEOUS DATA
Heterogeneous data that do not form an i.i.d. sample from a single population are encountered,
for instance, in gene expression studies involving different organisms or experimental conditions,
or in the comparative analysis of brain networks for patients with different neurological disorders.
In such settings, it is of interest to learn the structure of graphical models for subpopulations.
More generally, a graph may depend on covariates.
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Guo et al. (2011) propose an extension of the graphical lasso from Equation 11 to estimate
undirected conditional independence graphs of several related Gaussian populations. The au-
thors sum up the log-likelihood functions for m populations with inverse covariance matrices
K1, . . . , Km ∈ RV ×V and then add a sparsity-inducing penalty. To share common structure, the
inverse covariances are reparametrized as Ki ,vw = θvwγi ,vw. The penalty then adds the (vector)
'1 norms of the matrix (θvw) and the m matrices (γi ,vw). Sparsity in an estimate of (θvw) results in
edges being simultaneously absent from all m graph estimates, each of which may have further
edges absent through zero estimates of γi ,vw. A downside of this method is that its optimization
problem is not convex. Danaher et al. (2014) propose instead the use of group or fused lasso
penalties specified in terms of the inverse covariances. The group lasso penalty takes the form
∑

v +=w

√
K 2

1,vw + · · · + K 2
m,vw and leads to edges being simultaneously absent from all m graph es-

timates; a version of this approach that separates positive from negative signals was also proposed
by Chiquet et al. (2011). The fused lasso penalty

∑
1≤i< j≤m

∑
v,w |Ki ,vw − K j ,vw| yields pairwise

similar edge patterns in the different populations. Yang et al. (2015b) consider generalizations of
this fused lasso penalty and characterize when the resulting optimization problem can be decom-
posed into smaller problems arising from block-diagonal inverse covariance matrices. Saegusa &
Shojaie (2016) treat settings in which some populations may be more closely related than others.
Finally, Zhao et al. (2014) show how the difference between two conditional independence graphs
can be estimated without estimating the two graphs.

Heterogeneous data also arise from time-course observations, for which we may wish to learn
time-varying structure. Zhou et al. (2010) compute glasso estimates at different time points, taking
as input a weighted sample covariance matrix that is a kernel estimate of the covariance matrix
at time t. Alternatively, Kolar et al. (2010) and Kolar & Xing (2012) use fused lasso penalties.
Matrix/tensor-normal models, in which one of the dimensions could be time, constitute another
approach; the reader is directed to He et al. (2014) and references therein.

Similar issues arise for directed graphical models. In particular, so-called dynamic Bayesian
networks have long been used to model temporal dependencies, and there is a natural connection
to vector-autoregressive processes in the time series literature (e.g., Shojaie & Michailidis 2010).
A detailed discussion is beyond the scope of this review.

Finally, we note that heterogeneity from different experimental conditions can also be exploited
in structure learning for directed graphical models (Danks et al. 2009, Hauser & Bühlmann
2012, Hyttinen et al. 2013, Triantafillou & Tsamardinos 2015). These papers generally assume
i.i.d. observations from various known experimental conditions, and some of them allow cycles
and/or latent variables. Peters et al. (2016) study a scenario where data may come from different
experimental conditions, but the type of these conditions is unknown. They provide a method
built on the idea that a variable can be predicted from its causes equally well across different
experimental conditions.

7. DISCUSSION
Stimulated to a large extent by applications in gene expression analysis, the field of structure
learning in graphical modeling has undergone rapid development, with much of the new work
focusing on high-dimensional problems. In this review, we have treated some of the main ideas
behind these developments, including '1-regularization techniques, greedy search approaches, and
methods based on conditional independence tests. Extensions to cope with latent variables have
long been of interest and continue to be addressed in new ways. More recently, challenges arising
in connection with heterogeneous and dependent data have inspired methods that generalize
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those for i.i.d. data. Similarly, methods for continuous but non-Gaussian data are an active area of
research.

In a different vein, it is of interest to provide an uncertainty assessment for estimates of graph
structure. Bayesian approaches naturally include an uncertainty assessment but frequentist tech-
niques that are able to cope with high-dimensional data are also being developed ( Janková & van
de Geer 2015, Ren et al. 2015, Xia et al. 2015).

Finally, our treatment of directed graphical models considered acyclic graphs, in which no
feedback loops exist in the cause-effect relationships that the model captures. Effective methods
for structure learning exist for the acyclic case, but coping with feedback loops is a far more dif-
ficult problem. Although certain forms of feedback can be represented in the paradigm of linear
structural equation modeling (Spirtes et al. 2000, Mooij & Heskes 2013), and conditional inde-
pendence can then be exploited in structure learning (Richardson 1996), these models can gen-
erally not be described using solely conditional independence (see example 3.6 and appendix A in
Drton 2009). New ideas are still needed to effectively learn cyclic cause-effect relationships from
possibly high-dimensional observational data.

FUTURE ISSUES

1. Methods that account for the effects of latent variables need to be developed further.

2. Emerging techniques for formal statistical inference for high-dimensional graphical
models should see continued development.

3. New methods for cyclic directed graphical models are needed to effectively learn cause-
effect networks with feedback loops.
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