
D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (g

ue
st

) I
P:

  1
65

.8
5.

38
.1

36
 O

n:
 T

ue
, 1

5 
Ap

r 2
02

5 
01

:4
2:

09

ST05CH16_Meinshausen ARI 24 January 2018 17:9

Annual Review of Statistics and Its Application

Causal Structure Learning
Christina Heinze-Deml, Marloes H. Maathuis,
and Nicolai Meinshausen
Seminar for Statistics, Department of Mathematics, ETH Zurich, CH-8092 Zurich,
Switzerland; email: heinzedeml@stat.math.ethz.ch, maathuis@stat.math.ethz.ch,
meinshausen@stat.math.ethz.ch

Annu. Rev. Stat. Appl. 2018. 5:371–91

First published as a Review in Advance on
December 8, 2017

The Annual Review of Statistics and Its Application is
online at statistics.annualreviews.org

https://doi.org/10.1146/annurev-statistics-
031017-100630

Copyright c© 2018 by Annual Reviews.
All rights reserved

Keywords
directed graphs, interventions, latent variables, feedback, causal model

Abstract
Graphical models can represent a multivariate distribution in a convenient
and accessible form as a graph. Causal models can be viewed as a special
class of graphical models that represent not only the distribution of the ob-
served system but also the distributions under external interventions. They
hence enable predictions under hypothetical interventions, which is impor-
tant for decision making. The challenging task of learning causal models
from data always relies on some underlying assumptions. We discuss several
recently proposed structure learning algorithms and their assumptions, and
we compare their empirical performance under various scenarios.
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1. INTRODUCTION
A graphical model is a family of multivariate distributions associated with a graph, where the nodes
in the graph represent random variables and the edges encode allowed conditional dependence
relationships between the corresponding random variables (Lauritzen 1996). A causal graphical
model is a special type of graphical model in which edges are interpreted as direct causal effects.
This interpretation facilitates predictions under arbitrary (unseen) interventions, and hence the
estimation of causal effects (e.g., Wright 1934, Spirtes et al. 2000, Pearl 2009). This ability to make
predictions under arbitrary interventions sets causal models apart from standard models. We refer
to Didelez (2018) for an introductory overview of causal concepts and graphical models.1

Structure learning is a model selection problem in which one estimates or learns a graph that
best describes the dependence structure in a given data set (Drton & Maathuis 2017). Causal
structure learning is the special case in which one tries to learn the causal graph or certain aspects
of it, and this is what we focus on in this article. We describe various algorithms that have been
developed for this purpose under different assumptions. We then compare the algorithms in a
simulation study to investigate their performances in settings where the assumptions of a particular
method are met, but also in settings where they are violated.

The outline of the article is as follows. Section 2 discusses the basic causal model and its various
assumptions. Section 3 describes different target graphical objects, such as directed acyclic graphs
(DAGs) or equivalence classes thereof, and describes algorithms that can learn them under certain
assumptions. Section 4 describes the simulation setup, the evaluation scheme, and the results. We
close with a brief discussion in Section 5.

2. THE MODEL
We formulate the model as a structural causal model (Pearl 2009). In particular, we consider a
linear structural equation model (e.g., Wright 1921) for a p-dimensional random variable X =
(X 1, . . . , Xp )t under noise contributions ε = (ε1, . . . , εp )t :

X j ←
p∑

k=1

β j ,kXk + εj for j = 1, . . . , p , 1.

or in vector notation,

X ← BX + ε, 2.

where B is a p × p matrix with entries Bj ,k = β j ,k. Thus, the distribution of X is determined by
the choice of B and the distribution of ε.

This model is called structural since it is interpreted as the generating mechanism of X (empha-
sized by the assignment operator←), where each structural equation is assumed to be invariant to
possible changes in the other structural equations. This is also referred to as autonomy [Haavelmo
1944, Frisch 1995 (1938)]. This assumption is key for causality since it allows the derivation of the
distribution of X under external interventions. For example, a gene knockout experiment can be
modeled by replacing the structural equation of the relevant gene while keeping the other struc-
tural equations unchanged. If the gene knockout experiment has significant off-target effects (e.g.,
Cho et al. 2014), then this approach is problematic with respect to the autonomy assumption. A
possible remedy consists of modeling the experiment as a simultaneous intervention on all genes
that are directly affected by the experiment.

1Causal inference is also possible without graphs, using, for example, the Neyman-Rubin potential outcome model (e.g., Rubin
2005). Single world intervention graphs (Richardson & Robins 2013) provide a unified framework for potential outcome and
graphical approaches to causality.
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2.1. Interventions
In this article, we consider the following two types of interventions:

1. A do-intervention (also called surgical intervention): This intervention is modeled by re-
placing the structural equation

X j ←
p∑

k=1

β j ,kXk + εj by X j ← Zj ,

where Zj is the (either deterministic or random) value that variable X j is forced to take in
this intervention.

2. An additive intervention (also called shift intervention): This intervention consists of adding
additional noise, modeled by replacing the structural equation

X j ←
p∑

k=1

β j ,kXk + εj by X j ←
p∑

k=1

β j ,kXk + εj + Zj ,

where Zj is the additional noise (again either deterministic or random) that is added to
variable X j . Shift interventions are standard in the econometric literature on instrumental
variables with binary treatments where the additive shift of an exogenous instrument changes
the probability of a binary treatment variable (Angrist et al. 1996). Shift interventions are
also natural in biological settings where an inhibitor or enhancer can amplify or decrease
the presence of, for example, mRNA in a cell. If the concentrations are amplified by a fixed
factor, then this corresponds to an additive shift in the log-concentrations.

2.2. Graphical Representation
We can represent the model defined in Equation 1 as a directed graph (DG) G, where each
variable Xk is represented by a node k, k = 1, . . . , p , and there is an edge from node k to node
j (k #= j ) if and only if β j ,k #= 0. Thus, the parents pa( j , G) of node j in G correspond to the
random variables that appear on the right-hand side of the j th structural equation. In other words,
Xpa( j ,G) := {Xi : i ∈ pa( j , G)} are the variables that are involved in the generating mechanism of
X j and are also called the direct causes of X j (with respect to X1, . . . , Xp ). In this sense, edges in
G represent direct causal effects, and G is also called a causal graph. The nonzero β j ,ks can be
depicted as edge weights of G, yielding a weighted graph. This weighted graph and the distribution
of ε fully determine the distribution of X .

The graph G is called acyclic if it does not contain a cycle.2 A directed acyclic graph is also called
a DAG. A DG is acyclic if and only if there is an ordering of the variables, called a causal order,
such that the matrix B in Equation 2 is triangular. In terms of the causal mechanism, acyclicity
means that there are no feedback loops. We refer to Section 2.5 for more details on cycles.

2.3. Factorization and Truncated Factorization
If ε1, . . . , εp are jointly independent and G is a DAG, then the probability density function f (·) of
X factorizes according to G:

f (x) = f (x1, . . . , xp ) =
p∏

i=1

f (xi |xpa(i ,G)). 3.

2A cycle (sometimes also called directed cycle) is formed by a directed path from i to j together with the edge j → i .
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Moreover, f is then called Markov with respect to G. This means that for pairwise disjoint
subsets A, B, and S of V (S = ∅ is allowed), the following holds: If A and B are separated by
S in G according to a graphical criterion called d-separation (Pearl 2009), then XA and XB are
conditionally independent given XS in f .

One can model an intervention on X j by replacing the conditional density f (xj |xpa( j )) by its
conditional density under the intervention, keeping the other terms unchanged. For example, a
do-intervention on X j yields the following factorization:

f (x|do(xj )) = g(xj )
p∏

i=1,i #= j

f (xi |xpa(i )),

where g(·) is the density of Zj (allowed to be a point mass). When intervening on several variables
simultaneously, one simply conducts such replacements for all intervention variables. The resulting
factorization is known as the g-formula (Robins 1986), the manipulated density (Spirtes et al. 2000),
or the truncated factorization formula (Pearl 2009).

2.4. Counterfactuals
We note that the structural causal model is often discussed in the context of counterfactual out-
comes. In particular, if one assumes that ε is identical under different interventions, the model
defines a joint distribution on all possible counterfactual outcomes. The problematic aspect is
clearly that the realizations of the noise under different interventions can never be observed si-
multaneously, and any statement about the joint distribution of the noise under different interven-
tions is thus in principle unfalsifiable and untestable (Dawid 2000). Without assuming anything
on the joint noise distributions under different interventions, a causal model can equivalently
be formulated via structural equations, a graphical model, or potential outcomes (Richardson &
Robins 2013, Imbens 2014). For the causal structure learning methods discussed in this article, no
assumption on the joint noise distribution is necessary, and we chose to use the structural equation
framework for ease of exposition.

2.5. Assumptions
We consider various assumptions for the model defined by Equation 2.

! Causal sufficiency: Causal sufficiency refers to the absence of hidden (or latent) variables
(Spirtes et al. 2000). There are two common options for the modeling of hidden variables:3

They can be modeled explicitly as nodes in the structural equations or they can manifest
themselves as a dependence between the noise terms (ε1, . . . , εp ), where the noise terms are
assumed to be independent in the absence of latent confounding.

! Causal faithfulness: We saw in Section 2.3 that the distribution of X generated from Equa-
tion 2 is Markov with respect to the causal DAG, meaning that if A and B are d-separated by
S in the causal DAG, then XA and XB are conditionally independent given XS. The reverse
implication is called causal faithfulness. Together, the causal Markov and causal faithfulness
assumptions imply that d-separation relationships in the causal DAG have a one-to-one
correspondence with conditional independencies in the distribution.

3In this article we look at the behavior of various methods under the presence and absence of latent confounding. Throughout,
we do not allow hidden selection variables, that is, unmeasured variables that determine if a unit is included in the data sample.
More details on selection variables can be found in, for example, Spirtes et al. (1999).
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! Acyclicity: Cycles can be used to model instantaneous feedback mechanisms. In the presence
of cycles, the structural equations (Equation 1) are typically interpreted (implicitly) as a
dynamical system. There are various assumptions that can be made about the strength of
cycles in the graph, including the following.4

1. Existence of a unique equilibrium solution of Equation 2: Is there a unique solution X
for each realization ε such that X = B X + ε or, equivalently, (I − B)X = ε, where
I is the p-dimensional identity matrix? Existence of a unique equilibrium requires that
I − B is invertible. In this case the equilibrium is

X = (I − B)−1ε.

2. Convergence to a stable equilibrium: Iterating Equation 2 from any starting value X (0)

for X (and for a fixed and constant realization of the noise ε), we can form an iteration
X (k) = B X (k−1) + ε for k ∈ N. The question is then whether the iterations converge to
the equilibrium, that is, whether limk→∞ X (k) = (I − B)−1ε. This convergence requires
that the spectral radius of B is smaller than 1.

3. Existence of a stable equilibrium under do-interventions: This requires that the cycle
product (the maximal product of the coefficients along all loops in the graph) is smaller
than 1 (see, e.g., Rothenhäusler et al. 2015).

DAGs fulfill all three assumptions above trivially as their spectral radius and cycle product
both vanish identically.

! Gaussianity of the noise distribution: We consider both Gaussian distributions and t-
distributions with various degrees of freedom.

! One or several experimental settings: We consider both homogeneous data, where all obser-
vations are from the same experimental setting, and heterogeneous data, where the obser-
vations come from different experimental settings. In particular, we consider settings with
unknown shift-interventions and known do-interventions.

! Linearity: While the assumptions and the models have been discussed in the context of linear
models, the ideas can be extended to nonlinear models and to discrete random variables to
various degrees.

3. METHODS
Since different structure learning methods output different types of graphical objects, we first
discuss the various target graphical objects in Section 3.1. To conduct a comparison based on
such different graphical targets, we focus on certain ancestral relationships that can be read off
from all objects (see Section 3.2). The different algorithms and their assumptions are discussed in
Section 3.3, and their assumptions are summarized in Table 1.

3.1. Target Graphical Objects
The structure learning methods that we compare use different types of data ranging from purely
observational data to data with clearly labeled interventions and from data that do not allow hidden
variables and cycles to data that allow both of these. As a result, the different methods learn the

4We exclude self-loops (an edge from a node to itself ), as models would be unidentifiable if self-loops were allowed (see, e.g.,
Rothenhäusler et al. 2015).
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Table 1 The assumptions (see Section 2.5) and output format for different structure learning methods

(rank)PC (rank)FCI (rank)GES (rank)GIES MMHC LINGAM backShift
Causal sufficiency Yes No Yes Yes Yes Yes No
Causal faithfulness Yes Yes Yes Yes Yes No No
Acyclicity Yes Yes Yes Yes Yes Yes No
Non-Gaussian errors No No No No No Yes No
Unknown shift interventions No No No No No No Yes
Known do-interventions No No No Yes No No No
Output CPDAG PAG CPDAG PDAG DAG DAG DG

(For example, PC requires acyclicity, causal faithfulness and causal sufficiency, and LINGAM requires non-Gaussian errors.) Note that linearity is not
explicitly listed, but all versions of the algorithms based on rank-correlations allow certain types of nonlinearities. Abbreviations: CPDAG, completed
partially directed acyclic graph; DAG, directed acyclic graph; DG, directed graph; FCI, fast causal inference; GES, greedy equivalence search; GIES,
greedy interventional equivalence search; LINGAM, linear non-Gaussian acyclic models; MMHC, max-min hill climbing; PAG, partial ancestral graph;
PC, Peter-Clark; PDAG, partially directed acyclic graph.

underlying causal graph at different levels of granularity. At the finest level of granularity, a method
learns the underlying DG from Equation 1. If the method assumes acyclicity (no feedback), then
the target object is a DAG.

Under the model of Equation 2 with acyclicity, independent and multivariate Gaussian errors
and independent and identically distributed (i.i.d.) observational data, the underlying causal DAG
is generally not identifiable. Instead, one can identify the Markov equivalence class of DAGs, that
is, the set of DAGs that encode the same set of d-separation relationships (Pearl 2009). A Markov
equivalence can be conveniently summarized by another graphical object called a completed par-
tially directed acyclic graph (CPDAG) (Andersson et al. 1997, Chickering 2002a). A CPDAG
can be interpreted as follows: i → j is in the CPDAG if i → j in every DAG in the Markov
equivalence class, and i◦−−◦ j in the CPDAG if there is a DAG with i → j and a DAG with i ← j
in the Markov equivalence class. Thus, edges of the type ◦−−◦ represent uncertainty in the edge
orientation.

DAGs are not closed under marginalization. In the presence of latent variables, some algorithms
therefore aim to learn a different object called a maximal ancestral graph (MAG) (Richardson &
Spirtes 2002). In general, MAGs contain three types of edges, i −− j , i → j , and i ↔ j , but in
our settings without selection variables (see footnote 3), i −− j does not occur. A MAG encodes
conditional independencies via m-separation (Richardson & Spirtes 2002). Every DAG with latent
variables can be uniquely mapped to a MAG that encodes the same conditional independencies
and the same ancestral relationships among the observed variables. Ancestral relationships can be
read off from the edge marks of the edges: A tail mark i −−∗ j means that i is an ancestor of j in the
underlying DAG, and an arrowhead i←∗ j means that i is not an ancestor of j in the underlying
DAG, where ∗ represents any of the possible edge marks (again assuming no selection variables).

Several MAGs can encode the same set of conditional independence relationships. Such MAGs
form a Markov equivalence class, which can be represented by a partial ancestral graph (PAG)
(Richardson & Spirtes 2002, Ali et al. 2009). A PAG can contain the edges i → j , i −− j , i −−◦ j ,
i ↔ j , i ◦→ j , and i◦−−◦ j , but the edges i −− j and i −−◦ j do not occur in our setting without
selection variables. The interpretation of the edge marks is as follows. A tail mark means that this
tail mark is present in all MAGs in the Markov equivalence class, and an arrowhead means that
this arrowhead is present in all MAGs in the Markov equivalence class. A circle mark represents
uncertainty about the edge mark, in the sense that there is a MAG in the Markov equivalence class
where this edge mark is a tail, as well as a MAG where this edge mark is an arrowhead.

376 Heinze-Deml · Maathuis · Meinshausen
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3.2. Ancestral and Parental Relationships
To compare methods that output the different graphical objects discussed above, we focus on
the following two basic questions for any variable X j , j ∈ {1, . . . , p} and the underlying causal
DAG G:

1. What are the direct causes of X j , or equivalently, what is paG( j )? The parents are important
since they completely determine the distribution of X j . Hence, the conditional distribution
X j |Xpa( j ) is constant, even under arbitrary interventions on subsets of X{1,...,p}\{ j }. The set
of parents is unique in this respect and allows making accurate predictions about X j even
under arbitrary interventions on all other variables. Moreover, the (possible) parents of X j

can be used to estimate (bounds on) the total causal effect of X j on any of the other variables
(Maathuis et al. 2009, 2010; Stekhoven et al. 2012; Nandy et al. 2017b).

2. What are the causes of X j , or equivalently, what is the set of ancestors anG( j ) (the set of
nodes from which there is a directed path to j in G)? The ancestors are important since
any intervention on ancestors of X j has an effect on the distribution of X j , as long as no
other do-type interventions happen along the path. Thus, if we want to manipulate the
distribution of X j , we can consider interventions on subsets of XanG ( j ).

3.3. Considered Methods
We include at least one algorithm from each of the following five main classes of causal structure
learning algorithms: constraint-based methods, score-based methods, hybrid methods, methods
based on structural equation models with additional restrictions, and methods exploiting invariance
properties. Limiting ourselves to algorithms with an implementation in R (R Core Team 2017),
we obtain the following selection of methods, with assumptions summarized in Table 1:

! Constraint-based methods: Peter-Clark (PC) (Spirtes et al. 2000), rankPC (Harris & Drton
2013), fast causal inference (FCI) (Spirtes et al. 2000), and rankFCI5

! Score-based methods: greedy equivalence search (GES) (Chickering 2002b), rankGES
(Nandy et al. 2017a), greedy interventional equivalence search (GIES) (Hauser & Bühlmann
2012), and rankGIES6

! Hybrid methods: max-min hill climbing (MMHC) (Tsamardinos et al. 2006)
! Structural equation models with additional restrictions: linear non-Gaussian acyclic models

(LINGAM) (Shimizu et al. 2006)
! Exploiting invariance properties: backShift (Rothenhäusler et al. 2015)

We do not include methods for time series data, mixed data, or Bayesian methods. Other
excluded methods that make use of interventional data include those of Cooper & Yoo (1999),
Tian & Pearl (2001), and Eaton & Murphy (2007); the last does not require knowledge of the
precise location of interventions, in a similar spirit to the method of Rothenhäusler et al. (2015).
Hyttinen et al. (2012) also make use of intervention data to learn feedback models, assuming
do-interventions, whereas Peters et al. (2016) permit building a graph nodewise by estimating the
parental set of each node separately.

3.3.1. (rank)PC and (rank)FCI. The PC algorithm (Spirtes et al. 2000) is named after its inven-
tors, Peter Spirtes and Clark Glymour. It is a constraint-based algorithm that assumes acyclicity,

5rankFCI is obtained by using rank correlations in FCI, analogously to rankPC.
6rankGIES is obtained by using rank correlations in GIES, analogously to rankGES.

www.annualreviews.org • Causal Structure Learning 377



D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (g

ue
st

) I
P:

  1
65

.8
5.

38
.1

36
 O

n:
 T

ue
, 1

5 
Ap

r 2
02

5 
01

:4
2:

09

ST05CH16_Meinshausen ARI 24 January 2018 17:9

causal faithfulness, and causal sufficiency. It conducts numerous conditional independence tests
to learn about the structure of the underlying DAG. In particular, it learns the CPDAG of the
underlying DAG in three steps: (a) determining the skeleton, (b) determining the v-structures,
and (c) determining further edge orientations. The skeleton of the CPDAG is the undirected
graph obtained by replacing all directed edges by undirected edges. The PC algorithm learns the
skeleton by starting with a complete undirected graph. For k = 0, 1, 2, . . . and adjacent nodes i
and j in the current skeleton, it then tests conditional independence of Xi and X j given XS for all
S + adj(i )\ { j } with |S| = k, and for all S + adj( j )\ {i} with |S| = k. The algorithm removes an
edge if a conditional independence is found (that is, the null hypothesis of independence was not
rejected at some level α), and stores the corresponding separating set S. Step (a) stops if the size
of the conditioning set k equals the degree of the graph.

In step (b), all edges are replaced by ◦−−◦, and the algorithm considers all unshielded triples,
that is, all triples i ◦−−◦ j ◦−−◦ k where i and k are not adjacent. Based on the separating set that
led to the removal of i −−k, the algorithm determines whether the triple should be oriented as a
v-structure i → j ← k or not. Finally, in step (c), some additional orientation rules are applied to
orient as many of the remaining undirected edges as possible.

The PC algorithm was shown to be consistent in certain sparse high-dimensional settings
(Kalisch & Bühlmann 2007). There are various modifications of the algorithm. We use the order-
independent version of Colombo & Maathuis (2014). The PC algorithm does not impose any
distributional assumptions, but conditional independence tests are easiest in the binary and mul-
tivariate Gaussian settings. Harris & Drton (2013) proposed a version of the PC algorithm for
certain Gaussian copula distributions. We include this algorithm in our comparison and refer to
it as rankPC. There is also a version of the PC algorithm that allows cycles (Richardson & Spirtes
1999), but we did not find an R implementation of it.

The fast causal inference (FCI) algorithm (Spirtes et al. 1999, 2000) is a modification of the
PC algorithm that drops the assumption of causal sufficiency by allowing arbitrarily many hidden
variables. The output of the FCI algorithm can be interpreted as a PAG (Zhang 2008a). The first
step of the FCI algorithm is the same as step a of the PC algorithm, but the FCI algorithm needs
to conduct additional tests to learn the correct skeleton. There are also additional orientation
rules, which were shown to be complete by Zhang (2008b). Because the additional tests can slow
down the algorithm considerably, faster adaptations have been developed, such as really fast causal
inference (RFCI) (Colombo et al. 2012) and FCI+ (Claassen et al. 2013). Colombo et al. (2012)
proved high-dimensional consistency of FCI and RFCI. The idea of Harris & Drton (2013) can
also be applied to FCI, leading to rankFCI.

3.3.2. (rank)GES and (rank)GIES. Greedy equivalence search (GES) (Chickering 2002b) is a
score-based algorithm that assumes acyclicity, causal faithfulness, and causal sufficiency. Score-
based algorithms use the fact that each DAG can be scored in relation to the data, typically using
a penalized likelihood score. The algorithms then search for the DAG or CPDAG that yields
the optimal score. Since the space of possible graphs is typically too large, greedy approaches
are used. In particular, GES learns the CPDAG of the underlying causal DAG by conducting a
greedy search on the space of possible CPDAGs. Its greedy search consists of a forward phase, in
which it conducts single edge additions that yield the maximum improvement in score, and then a
backward phase, in which it conducts single edge deletions. Despite the greedy search, Chickering
(2002b) showed that the algorithm is consistent under some assumptions (for fixed p). Nandy et al.
(2017a) showed high-dimensional consistency of GES.

Greedy interventional equivalence search (GIES) (Hauser & Bühlmann 2012) is an adapta-
tion of GES to settings with data from different known do-interventions. Due to the additional
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information from the interventions, its target graphical object is a so-called interventional Markov
equivalence class, which is a subclass of the Markov equivalence class of the underlying DAG and
can be seen as a partially directed acyclic graph (PDAG).

Nandy et al. (2017a) showed a close connection between score-based and constraint-based
methods for multivariate Gaussian data. As a result, the copula methods that can be used for the
PC and FCI algorithms can be transferred to the GES and GIES algorithms. We include these
algorithms in our comparison and refer to them as rankGES and rankGIES.

3.3.3. Max-min hill climbing. MMHC (Tsamardinos et al. 2006) is a hybrid algorithm that
assumes acyclicity, causal faithfulness, and causal sufficiency. Hybrid algorithms combine ideas
from both constraint-based and score-based approaches. In particular, MMHC first learns the
CPDAG skeleton using the constraint-based max-min parents and children algorithm and then
performs a score-based hill-climbing DAG search to determine the edge orientations. Its output
is a DAG. Nandy et al. (2017a) showed that the algorithm is not consistent for fixed p , due to the
restricted score-based phase.

3.3.4. LINGAM. LINGAM (Shimizu et al. 2006) is an acronym derived from “linear non-
Gaussian acyclic models” and has been designed for the model in Equation 2 with non-Gaussian
noise. It assumes acyclicity and causal sufficiency. It is based on the fact that X = Aε with
A = (I − B)−1. This can be viewed as a source separation problem, where identification of the
matrix B is equivalent to identification of the mixture matrix A. It was shown by Comon (1994) that
whenever at most one of the components of ε is Gaussian, the mixing matrix is identifiable up to
scaling and permutation of columns, via independent component analysis (ICA). This observation
lies at the basis of the LINGAM method. There are various modifications of LINGAM, for
example, to allow for hidden variables (Hoyer et al. 2008) or cycles (Lacerda et al. 2008). There is
also a different implementation called DirectLINGAM (Shimizu et al. 2011) that uses a pairwise
causality measure instead of ICA. Since only ICA-based LINGAM assuming acyclicity and causal
sufficiency is available in R, we include this version in our comparison.

3.3.5. backShift. backShift (Rothenhäusler et al. 2015) makes use of non-i.i.d. structure in the
data and unknown shift interventions on variables. Assume that the data are divided into distinct
blocks E . Let $e ∈ Rp×p be the empirical Gram matrix of the p variables in block e ∈ E of the
data. In the absence of shift interventions, the expected values of $e would be identical for all
e ∈ E . Under unknown shift interventions, the Gram matrices can change from block to block.
However, for the true matrix B of causal coefficients from Equation 2, it can be shown that the
expected value of

(I − B)($e − $e ′ )(I − B)t

is a diagonal matrix for all e , e ′ ∈ E , even in the presence of latent confounding. backShift estimates
I−B (and hence B) by a joint diagonalization of all Gram differences $e−$e ′ for all pairs e , e ′ ∈ E .
A necessary and sufficient condition for identifiability of the causal matrix B is as follows. Let ηe ,k be
the variance of the noise interventions at variable k ∈ {1, . . . , p} in setting e ∈ E . Full identifiability
requires that we can find for each pair of variables (k, l) two settings e , e ′ ∈ E such that the product
ηe ,kηe ′ , l is not equal to the product ηe , lηe ′ ,k. A consequence of this necessary and sufficient condition
for identifiability is |E | ≥ 3, that is, we need to observe at least three different blocks of data for
identifiability.
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4. EMPIRICAL EVALUATION
We conducted an extensive simulation study to evaluate and compare the methods, paying par-
ticular attention to sensitivity of the methods to model violations. We are also interested in
realistic boundaries (in terms of the number of variables, the sample size, and other simula-
tion parameters) beyond which we cannot expect a reasonable reconstruction of the underlying
graph.

In Section 4.1, we describe the data-generating mechanism used in the simulation study.
Section 4.2 discusses the framework for comparison of the considered methods, and Section
4.3 contains the results.

The code is available in the R package CompareCausalNetworks (Heinze-Deml &
Meinshausen 2017), along with further documentation. All methods are called through the inter-
face offered by the CompareCausalNetworks package, which depends on the packages backShift
(Heinze-Deml 2017), bnlearn (Scutari 2010), and pcalg (Kalisch et al. 2012) for the code of the
considered methods. In particular, backShift is in backShift, MMHC is in bnlearn, and all other
considered methods are in pcalg.

4.1. Data Generation
We generate data sets that differ with respect to the following characteristics: the number of
observations n; the number of variables p ; the expected number of edges in B; the noise dis-
tribution; the correlation of the noise terms; the type, strength, and number of interventions;
the signal-to-noise ratio; the presence and strength of a cycle in the graph; and possible model
misspecifications in terms of nonlinearities. The function simulateInterventions() from the
package CompareCausalNetworks implements the simulation scheme that we describe in more
detail below.

We first generate the adjacency matrix B. Assume the variables with indices {1, . . . , p} are
causally ordered. For each pair of nodes i and j , where i precedes j in the causal ordering, we
draw a sample from Bernoulli(ps ) to determine the presence of an edge from i to j . After having
sampled the nonzero entries of B in this fashion, we sample their corresponding coefficients from
Unif(−1, 1). As described below, the edge weights are later rescaled to achieve a specified signal-
to-noise ratio. We exclude the possibility of B = 0, that is, we resample until B contains at least
one nonzero entry.

Second, we simulate the interventions. We let nI denote the total number of (interventional
and observational) settings that are generated. Let I ∈ {0, 1}nI×p be an indicator matrix, where
an entry Ie ,k = 1 indicates that variable k is intervened on in setting e and a zero entry indicates
that no intervention takes place. For each variable k, we first set the kth column I·k ≡ 0 and
then sample one setting e ′ uniformly at random and set Ie ′k = 1. In other words, each variable is
intervened on in exactly one setting. It is possible that there are settings where no interventions
take place, corresponding to zero rows of the matrix I , which represents the observational
setting. Similarly, there may be settings where interventions are performed on multiple variables
at once. After defining the settings, we sample (uniformly at random with replacement) what
setting each data point belongs to. So, for each setting, we generate approximately the same
number of samples. In any generated data set, the interventions are all of the same type, that
is, they are either all shift or all do-interventions (with equal probability). In both cases, an
intervention on a variable X j is modeled by sampling Zj from a t-distribution as Zj ∼ σZ · t(df ε)
(see Section 2.1). If σZ = 0 is sampled, it is taken to encode that no interventions should
be performed. In that case, all interventional settings correspond to purely observational
data.
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Third, the noise terms ε are generated by first sampling from a p-dimensional zero-mean
Gaussian distribution with covariance matrix ', where 'i ,i = 1 and 'i , j = ρε. The magnitude of
ρε models the presence and the strength of hidden variables (see Section 2.5). For a positive value
of ρ, the correlation structure corresponds to the presence of a hidden variable that affects each
observed variable. To steer the signal-to-noise ratio, we set the variance of the noise terms of all
nodes except for the source nodes to ω, where 0 < ω ≤ 1. Stepping through the variables in causal
order, for each variable X j that has parents, we uniformly rescale the edge weights β j ,k in the j th
structural equation such that the variance of the sum

∑p
k=1 β j ,kXk + εj is approximately equal to one

in the observational setting. In other words, the parameter ω steers what proportion of the variance
stems from the noise εj . The signal-to-noise ratio can then be computed as SNR = (1−ω)/ω (in
the absence of hidden variables).

Fourth, if the causal graph contains a cycle, we sample two nodes i and j such that adding an
edge between them creates a cycle in the causal graph. We then compute the coefficient for this
edge such that the cycle product is 1. Subsequently, we sample the sign of the coefficient with
equal probability and set the magnitude by scaling the coefficient by wc , where 0 < wc < 1.

Fifth, we transform the noise variables to obtain a t-distribution with df ε degrees of freedom.
X is then generated as X = (I − B)−1ε in the observational case; under a shift intervention X
can be generated as X = (I − B)−1(ε + Z), where the coordinates of Z are only nonzero for the
variables that are intervened on. Under a do-intervention on X j , β j ,k for k = 1, . . . , p are set to 0
to yield B ′ and εj is set to Zj to yield ε′j . We then obtain X as X = (I − B ′)−1ε′.

Sixth, if nonlinearity is to be introduced, we marginally transform all variables as X j ← tanh(Xj).
Last, we randomly permute the order of the variables in X before running the algorithms.

Methods that are order-dependent therefore cannot exploit any potential advantage stemming
from a data matrix with columns ordered according to the causal ordering or a similar one.

4.1.1. Considered settings. We sample the simulation parameters uniformly at random from
the following sets.

! Sample size n ∈ {500, 2000, 5000, 10000}
! Number of variables p ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 50, 100}
! Edge density parameter ps ∈ {0.1, 0.2, 0.3, 0.4}
! Number of interventions nI ∈ {3, 4, 5}
! Strength of the interventions σZ ∈ {0, 0.1, 0.5, 1, 2, 3, 5, 10}
! Degrees of freedom of the noise distribution df ε ∈ {2, 3, 5, 10, 20, 100}
! Strength of hidden variables ρε ∈ {0, 0.1, 0.2, 0.5, 0.8}
! Proportion of variance from noise ω ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
! Strength of cycle wc ∈ {0.1, 0.25, 0.5, 0.75, 0.9}

In total, we consider 842 different configurations. For each sampled configuration, we generate
20 different causal graphs with one data set per graph. Supplemental Appendix Section 6.2
summarizes the number of simulation settings for different values of the simulation parameters.

4.2. Evaluation Methodology
As the targets of inference differ between the considered methods, we evaluate a method’s accuracy
for recovering parental and ancestral relations (see also Section 3.2). For each of these, we look at
a method’s performance for predicting (a) the existence of a relation, (b) the absence of a relation,
and (c) the potential existence of a relation. We formulate these different categories as so-called
queries, which are further described in Section 4.2.1.
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An additional challenge in comparing a diverse set of methods involves choosing the options and
the proper amount of regularization that determines the sparsity of the estimated structure. We
address this challenge in two ways. First, we run different configurations of each method’s tuning
parameters and options, as detailed in Supplemental Appendix Section 6.1. In the evaluation
of the methods for a certain metric, we choose the method’s configuration that yielded the best
results under the considered metric in each simulation setting (averaged over the twenty data
sets for each setting). This means that the results are optimistically biased, but we found that the
ranking was largely insensitive to the tuning parameter choices. Second, we use a subsampling
scheme (stability ranking) so that each method outputs a ranking of pairs of nodes for a given
query. For instance, the first entry in this ranking for the existence of parental relations is the edge
most likely to be present in the underlying DAG. Further details are given in Sections 4.2.2 and
4.2.3.

4.2.1. Considered queries. For both the parental and ancestral relations, we consider three
queries. The existence of a relation is assessed by the queries isParent and isAncestor, the
absence of a relation is assessed by the queries isNoParent and isNoAncestor, and the potential
existence of a relation is assessed by the queries isPossibleParent and isPossibleAncestor.

All queries return a connectivity matrix, which we denote by A. The interpretations of
the entries of A differ according to the considered query. For parental relations, we have the
following:

1. isParent: This query cannot be easily answered by methods that return a PAG. For the
other graphical objects, Ai , j = 1 if i → j in the estimated graph, and Ai , j = 0 otherwise.

2. isPossibleParent: Entry Ai , j = 1 if there is an edge of type i −−∗ j or i◦−−∗ j in the
estimated graph. Concretely, for methods estimating DGs or DAGs, Ai , j = 1 if i → j in
the estimated graph; for PDAGs and CPDAGs, Ai , j = 1 if i → j or i◦−−◦ j in the estimated
graph; and for PAGs, Ai , j = 1 if i → j , i −−◦ j , i −− j , i◦→ j , i◦−−◦ j or i◦−− j in the
estimated graph. Otherwise, Ai , j = 0.

3. isNoParent: This is the complement of the query isPossibleParent. If the latter returns
the connectivity matrix A′, then entry Ai , j = 1 if A′i , j = 0 and Ai , j = 0 if A′i , j = 1.

For ancestral relations, we have the following:

1. isAncestor:Entry Ai , j = 1 if there is a path from i to j with edges of type−−∗. For example,
for DGs, DAGs, and CPDAGs this reduces to a directed path. Otherwise, Ai , j = 0.

2. isPossibleAncestor: Entry Ai , j = 1 if there is a path from i to j such that no edge on
the path points toward i (possibly directed path), and Ai , j = 0 otherwise. In general, such
a path can contain edges of the types i −−∗ j and i◦−−∗ j . For DAGs and DGs, this again
reduces to a directed path, and for CPDAGs it is a path with edges ◦−−◦ and→.

3. isNoAncestor: This is the complement of the query isPossibleAncestor. If the latter
returns the connectivity matrix A′, then entry Ai , j = 1 if A′i , j = 0 and Ai , j = 0 if A′i , j = 1.

4.2.2. Stability ranking. To obtain a ranking of pairs of nodes for a given query, we run the
method under consideration on nsim = 100 random subsamples of the data, where each subsample
contains approximately n/2 data points. More specifically, we use the following stratified sam-
pling scheme: In each round, we draw samples from 1/

√
2 · nI settings, where nI denotes the

total number of (interventional and observational) settings. In each chosen setting s , we sample
1/
√

2 · ns observations uniformly at random without replacement, where ns denotes the number
of observations in setting s . After a random permutation of the order of the variables, we run
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the method on each subsample and evaluate the method’s output with respect to the considered
query.

For each subsample k and a particular query q , we obtain the corresponding connectivity
matrix A. We can then rank all pairs of nodes i , j according to the frequency πi , j ∈ [0, 1] of the
occurrence of Ai , j = 1 across subsamples. Ties between pairs of variables can be broken with the
results of the other queries—for instance, if the query is isParent, ties are broken with counts for
isPossibleParent. This stability ranking scheme is implemented in the function getRanking()
in the package CompareCausalNetworks. Further details about the tie-breaking scheme are given
in the package documentation.

4.2.3. Metrics. For a chosen query and cutoff value of t ∈ (0, 1), we select all pairs (i , j ) for which
πi , j ≥ t. This leads to a true-positive rate TPRt = |{(i , j ) : πi , j ≥ t} ∩ S|/|S|, where S := {(i , j ) :
Ai , j = 1} is the set of correct answers (for example, the set of true direct causal effects for the
query isParent). The corresponding false-positive rate is FPRt = |{(i , j ) : πi , j ≥ t} ∩ Sc |/|Sc |,
with Sc := {(i , j ) : Ai , j = 0}. The four metrics we consider are as follows.

1. AOC: The standard area under curve (AUC) measures the area below the graph
(FPRt , TPRt) ∈ [0, 1]2 as t is varied between 0 and 1. Under random guessing, the area
is 0.5 in expectation, and the optimal value is 1. Here, to make rates comparable, we look at
the area over curve defined as AOC = 1−AUC, such that low values are preferable.

2. Equal-error rate (E-ER): This measures the false-negative rate FNRt = 1 − TPRt at the
cutoff t where it equals the false-positive rate FPRt , that is, for the value t ∈ (0, 1) for which
1−TPRt = FPRt . The advantage over AOC is that it is a real error rate and is also identical
whether we look at the missing edges or at the true edges. For random guessing, the expected
value is 0.5 and does not depend on the sparsity of the graph.

3. No-false-positives error rate (NFP-ER). This measures the false negative rate FNRt =
1 − TPRt for the minimal cutoff t at which FPRt = 0, that is, for the largest number of
selections under the constraint that not a single false positive occurs. The expected value
under random guessing depends on the sparsity of the graph.

4. No-false-negatives error rate (NFN-ER): This measures the false-positive rate FPRt =
1 − TNRt for the maximally large cutoff t at which FNRt = 0, that is, for the smallest
number of selections possible that not a single false negative occurs. The expected value
under random guessing depends on the sparsity of the graph.

All four metrics are designed so that lower values are better.

4.3. Results
Below, we mostly present results for the isAncestor query and the metric E-ER. Results for
other queries and metrics are similar in nature.

4.3.1. Multidimensional scaling. For each simulation setting and each method, we compute
the E-ER for the isAncestor query. This yields a (number of simulation settings) × (number of
methods) matrix with E-ER values. The Euclidean distance between two columns in this matrix
is a distance between methods. Similarly, the Euclidean distance between two rows in the matrix
is a distance between simulation settings.

Figure 1 shows a multidimensional scaling (MDS) plot based on distances between the
methods, using least-squares scaling. We see that the rank-based methods rankFCI, rankPC,
rankGES, and rankGIES are close to their counterparts FCI, PC, GES and GIES. It is
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PC

rankPC
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rankFCI

GES
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Figure 1
A multidimensional scaling (MDS) visualization of the methods considered in this review. The distance
between two methods is taken to be the Euclidean distance between the equal-error rate of both methods
across all settings for the isAncestor query. The MDS plot uses least-squares scaling.

somewhat unexpected that MMHC is closer to GIES and rankGIES than to PC and GES. The
two methods that have the largest average distance to the other methods are LINGAM and back-
Shift. This is perhaps expected, as these methods are of a very different nature than the other
methods.

Figure 2 shows an MDS plot based on distances between the simulation settings, again using
least-squares scaling. Thus, each point in the plot now corresponds to a simulation setting. The
points are colored according to the best-performing method. We see that the regions where either
LINGAM or backShift is optimal are relatively well separated, while the regions where GIES,
MMHC, PC, GES, FCI, or their rank-based versions are optimal do not show a clear separation,
as perhaps already expected from the previous result in Figure 1.

4.3.2. Pairwise comparisons. Next, we investigate whether there are methods that dominate
the others. We compare the E-ER across all of the different settings in Table 2. It is apparent
that no such dominance is visible among different pairs of methods. A block-structure is visible,
however, with similar groups as in Figure 1. One block is formed by the constraint-based methods
{PC, rankPC, FCI, rankFCI}: The E-ER of constraint-based methods is hardly ever substantially
different. The second block is formed by the score-based approaches {GES, rankGIES}, and the
third is given by the extensions and hybrid methods {GIES, rankGIES, MMHC}. This latter
block is of interest, as MMHC makes fewer assumptions about the available data and does not
need to know where interventions occurred. LINGAM and backShift do not fit nicely into any
block in the empirical comparison and are more orthogonal to the other algorithms in that they
perform substantially better and substantially worse in many settings, if compared with the other
approaches.
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Best method
PC
rankPC
FCI
rankFCI
GES
rankGES
GIES
rankGIES
MMHC
LINGAM
backShift

Figure 2
A multidimensional scaling (MDS) visualization of the simulation settings. The distance between two simulation settings is taken to be
the correlation distance between the equal-error rate of both simulation settings across all methods for the isAncestor query. Each
setting is shown as a sample point with color coding for the best-performing method. A filled symbol indicates that the performance
metric was smaller than 0.3 and an unfilled symbol that it was larger. MDS uses least-squares scaling.

Table 2 A pairwise comparison of structure learning methods

PC rankPC FCI rankFCI GES rankGES GIES rankGIES MMHC LINGAM backShift
PC 0 6 10 16 1 1 1 0 0 14 20
rankPC 0 0 9 10 1 2 0 0 0 11 17
FCI 1 9 0 5 1 1 1 0 0 11 17
rankFCI 0 1 0 0 1 1 0 0 0 10 16
GES 5 15 16 23 0 0 1 0 0 16 26
rankGES 6 15 16 24 0 0 1 0 1 16 25
GIES 18 29 26 35 10 11 0 0 2 25 35
rankGIES 26 36 34 44 17 17 4 0 1 27 38
MMHC 21 33 30 40 16 17 5 0 0 23 36
LINGAM 29 34 34 38 27 27 19 14 14 0 31
backShift 18 23 24 29 16 16 9 5 7 13 0

Each column shows the percentage of settings where methods were better by a margin of at least 0.1 in the equal-error rate compared with other methods in
the given column. For example, LINGAM beats PC in 14% of the settings, while PC beats LINGAM by the given margin in 29% of the settings. There is no
globally dominant algorithm, and a block-structure among related algorithms is visible. Abbreviations: FCI, fast causal inference; GES, greedy equivalence
search; GIES, greedy interventional equivalence search; LINGAM, linear non-Gaussian acyclic models; MMHC, max-min hill climbing; PC, Peter-Clark.
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Table 3 Marginal rank correlations between equal-error rate performance (for the isAncestor query) and parameter
settings (shown only if absolute value exceeds 0.1, multiplied by 100, and rounded to the nearest multiple of 5)

PC rankPC FCI rankFCI GES rankGES GIES rankGIES MMHC LINGAM backShift
n 15 10 −15
p 45 45 25 25 40 35 35 40 45 40 75
d fε 15
ρε 50 60 55 60 55 55 65 50 50 35
ω 10 10 10 10 15 10 20 15 10 20
ps 20 15 20 15 25 25 25 30 30 15 25
do-interv −10 −10
nI

σZ −35 −25 −35 −30 −35 −35 −25 −35 −30 −30
cyclic −15 −15 35
wc −15 −15 35
nonlinear 20

A positive value for p indicates, for example, that the method becomes less successful with increasing p . Abbreviations: FCI, fast causal inference; GES,
greedy equivalence search; GIES, greedy interventional equivalence search; LINGAM, linear non-Gaussian acyclic models; MMHC, max-min hill
climbing; PC, Peter-Clark.

4.3.3. Which causal graphs can be estimated well?. Which graphs can be estimated by some or
all methods? To start answering the question, we show in Table 3 the rank correlation between
the E-ER for the isAncestor query and parameter settings for all methods. We see that the
number of variables p and the strength of the hidden variables ρε show the highest correlations.
In both cases the correlation is positive, indicating that increased p or ρε leads to higher E-ERs.
Other parameters that show substantial correlations are ω, ps , and σZ. For ω and ps , we again see
positive correlations, indicating that large noise contributions and denser graphs are associated
with higher E-ERs. The correlation with σZ is negative for all methods except for LINGAM.
While it is expected that backShift would benefit from strong interventions, the benefit for, for
example, PC and FCI is unexpected.

We note that the strong effect of ρε can be explained by the fact that we created a correlation
ρε between all pairs of noise variables. It is not surprising that this has a larger impact than adding,
for example, a single cycle to the graph (which only seems to substantially affect the performance
of LINGAM).

Figure 3 shows the average E-ER for the isAncestor query for each method as a function
of the simulation parameters ρε, ω, ps , and σZ as identified from Table 3, split according to
the number of variables p in the graph (small, medium-sized and large graphs). Figure 4 shows
the scaling of runtime with the number of variables. Again, we see that the size of the graph
p and the strength of the hidden variables ρε have the strongest effect on performance, with the
exception that backShift is not much affected by ρε (but this method is also perhaps less competitive
in the absence of latent confounding). The strength of the interventions, the sparsity of the
graph, and the signal-to-noise ratio also affect the average performance, but perhaps to a lesser
extent.

The following are some other observations:

1. The most surprising outcome is perhaps that the number of samples n has only a very weak
influence on the success despite it being varied between a few hundred and twenty thousand.
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Figure 3
The average equal-error rate for the isAncestor query, for each method as a function of the four most important parameters (besides
the number of variables p), ρε , σZ, ps , and ω.

2. Sparser graphs with fewer edges are consistently easier to estimate with all methods than
dense graphs.

3. Less heavy tails in the error distribution have an adverse effect on the performance of
LINGAM only, as it makes use of higher moments. LINGAM is also most affected when
each variable undergoes a nonlinear transformation.

4. A cycle in the graph again has a detrimental effect on LINGAM (which is likely different in
the version of LINGAM that allows for cycles; Lacerda et al. 2008).

4.3.4. Bounds on performance. The outcomes of the simulations show a large degree of varia-
tion. To further investigate the role of the number of variables p , we show in Figure 5 the bounds
of the performance as a function of p for the isAncestor query. Specifically, for each value of p ,
we consider the range of the four considered metrics when varying all other parameters for each
method and show the lower and upper bounds in the figure.

The upper bounds show the worst performance across all parameters while holding p constant.
They can be compared with the expected value under random guessing, which is 0.5 for the E-ER
and AOC metrics and 1 for NFP-ER and NFN-ER.
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Figure 4
The average runtime in seconds of each method on a logarithmic scale as a function of the number of
variables p on a logarithmic scale. The time includes the stability ranking. A single run is faster by a factor of
100 for all methods. (A single run of backShift already includes ten subsamples.)

The lower bound reveals in contrast the error rates in the best setting for a given p . The metric
NFP-ER seems more difficult to keep at reasonable levels than NFN-ER, with the exception of
LINGAM, which has very small values of NFP-ER in some settings up to p ≈ 20. The NFN-ER
is typically lower than NFP-ER, as there are typically more nonancestral pairs in the graphs (due to
not connected components, for example) than ancestral pairs. This is confirmed by the third row
of panels in Figure 5, which shows the error rates for the isNoAncestor query. Here, the roles
of NFN-ER and NFP-ER are reversed owing to the relative abundance of nonancestral pairs.

5. DISCUSSION
We have tried to give a contemporaneous overview of structure learning for causal models that
are available in R, and we have conducted an extensive empirical comparison. It is noteworthy that
we found a clustering of methods into constraint-based approaches, score-based approaches, and
other approaches that do not fall neatly into these categories. Methods from the same class behave
empirically very similarly. We have also tried to quantify to what extent methods are negatively
or positively affected by various parameters such as the size of the graph to learn, sparsity, and
strength of hidden variables. The most important parameters in our setup are the size of the
graph p and the strength of the hidden variables ρε. An easily accessible interface to all methods
is contributed as R package CompareCausalNetworks.

The results suggest that more efficient algorithms would be desirable from both a computational
and a statistical point of view. As it stands, the success of the algorithms depends on both the
assumptions made about the data-generating process (and how accurate these assumptions are)
and the specific implementation details of each algorithm. It would be worthwhile for the relative
importance of these two factors to be separated better by more modular estimation methods, and
perhaps more work on worst-case bounds would also be beneficial. These latter bounds would allow
quantifying to what extent the empirically poor statistical scalability is inherent to the problem or
a consequence of choices made in the considered algorithms.
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Figure 5
The range of equal-error rate (E-ER) for all methods as a function of the number of variables p for the isAncestor query (top left
panel ). The top right panel shows the same for the area over curve (AOC); the second row shows the no-false-positives error rate
(NFP-ER) and no-false-negatives error rate (NFN-ER). The bottom row shows the corresponding plots to the second row but for the
isNoAncestor query.
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Hauser A, Bühlmann P. 2012. Characterization and greedy learning of interventional Markov equivalence

classes of directed acyclic graphs. J. Mach. Learn. Res. 13:2409–64
Heinze-Deml C. 2017. backShift: learning causal cyclic graphs from unknown shift interventions. R package.

https://github.com/christinaheinze/backShift
Heinze-Deml C, Meinshausen N. 2017. CompareCausalNetworks: interface to diverse estimation methods

of causal networks. R package. https://github.com/christinaheinze/CompareCausalNetworks
Hoyer PO, Shimizu S, Kerminen AJ, Palviainen M. 2008. Estimation of causal effects using linear non-Gaussian

causal models with hidden variables. Int. J. Approx. Reason. 49:362–78
Hyttinen A, Eberhardt F, Hoyer PO. 2012. Learning linear cyclic causal models with latent variables.

J. Mach. Learn. Res. 13:3387–439
Imbens G. 2014. Instrumental variables: an econometricians perspective. Stat. Sci. 29:323–58
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