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From identification to estimation
• So far, we have focused on identification of causal effects 
• In the Rubin framework under identifiability assumptions 
• Exchangeability, positivity, consistency

• In the Pearl framework under causal assumptions (structural 
causal model)

• In either case, we express the causal effect of interest in terms  
of statistical quantities that can be estimated from 
observational data
• We now turn to causal effect estimation from data
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From identification to estimation

Causal
Estimand

Statistical
Estimand

Causal Effect 
Estimate

Identification Estimation
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Randomized experiment
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Randomized Experiments

• The assignment mechanism is random, known, and controlled 
by the researcher
• Because the treatments are randomly assigned, the treatment 

groups should all look similar regarding covariates (observed 
and unobserved)
• Randomization ensures exchangeability and hence, 

association implies causation
• In a randomized experiment, potential outcomes are 

statistically independent of the observed treatment 𝑇, given 
the observed covariates i.e., {𝑌! , 𝑌" } ∐𝑇|𝐗
• We have already considered causal effect estimation from 

randomized experiments



6

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Causal effect estimation from observational data
• An observational study can be viewed as a conditionally 

randomized experiment if the following conditions hold:
• Treatments correspond to well-defined interventions that can 

be imagined in the data
• The conditional probability of receiving every possible 

treatment, though not decided by the investigators, depends 
only on the measured covariates 𝐗
• The probability of receiving every treatment conditional on 𝐗

is greater than 0
• These conditions, taken together, are called identifiability 

assumptions
• We know how to estimate causal effects from conditionally 

randomized experiments
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• In the case of observational studies, we should carefully describe
• The randomized experiment that we would like to, but 

cannot,  conduct
• How the observational study emulates that randomized

experiment 
• In ideal randomized experiments, the data contain sufficient  

information to identify causal effects
• In contrast, the  information in observational data is 

insufficient to identify  causal effects
• We need causal assumptions (or equivalently, 

identifiability assumptions)

Causal inference from Observational Data
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Estimating causal effects from observational data

• To estimate causal effects from observational data:
• We specify the randomized control trial that we would 

like to, but cannot conduct
• Under “reasonable” assumptions, show how the target 

trial can be emulated using observational data
• Identifiability assumptions (Rubin framework) 
• Causal assumptions (Pearl framework)
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Study Design versus Analysis

• In a randomized experiment, the design phase (collecting 
data, balancing covariates, specifying plan) is done before 
one gets to see treatment outcomes or perform analysis
• In an observational study, you typically get all data together 

(covariates, treatment, outcomes): there is no clear 
separation between design and analysis
• Solution? 
• If possible, complete the observational study design 

before  you look at the outcomes
• Without looking at the outcomes, you may do whatever 

you need to ensure at least approximate exchangeability
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Design Trumps Analysis1
• “Design”: everything done before access to outcome data
• Contemplating and collecting data (including covariates)
• Making causal assumptions
• Specification of analysis plan that simulates a randomized trial 

from the observational data as soon as the outcomes are 
revealed

• Solution?
• Whenever possible, do all the hard work in the design phase, 

and the analysis with outcomes will be straightforward

1Rubin, D.B., 2008. For objective causal inference, design trumps analysis. The Annals of Applied Statistics, 2(3), pp.808-840.
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Analysis
• In randomized experiments, there is usually a pre-specified 

protocol for analysis
• In observational studies, people often try many different models 

and analyses – can introduce subjectivity and bias
• Solution?
• Specify protocol with outcomes in advance, and do most of 

your work in the design phase to make analysis easy
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Assignment Mechanism
• In a randomized experiment, the assignment mechanism 

satisfies the identifiability assumptions by design
• In an observational study these, or equivalently an assumed 

causal graph, are only assumptions, and they are unverifiable 
from observational data 
• Solution?  
• Rely on domain expertise to ensure that the assumptions 

are plausible
• Conduct robustness analyses 
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Unconfoundedness
• Based on the covariates, is the treatment assignment 

independent of the outcomes?
• Why do we care?  What if assignment did depend on the 

outcomes, conditional on the covariates?
• We would have confounding

• In the presence of confounding, potential outcomes could differ 
between treatment groups before treatment is even applied, 
even if covariate values are identical for the treated and 
untreated groups!
• Unconfoundedness allows us to compare units with similar 

covariate values to estimate causal effects
• We have to assume absence of confounding, or turn to a set of 

causal assumptions to identify the confounders, or rely on 
methods that can cope with confounders 
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Unconfoundedness
• The plausibility of unconfoundedness lies in the collection of 

covariates
• Want to compare “like with like”.  
• Which covariates do we need data on to ensure that a set of units 

are comparable?
• Answer: 
• Data on all covariates that matter!
• How do we know which covariates matter?
• There is no way to know with certainty unless we have a 

causal graph
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Reality
• Observational studies are rarely truly unconfounded
• We just try to get as close as possible to the truth by
• collecting the all the relevant covariate data possible
• making plausible causal assumptions when we can
• and using the techniques we’ll learn…
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Positivity?

• Every unit  has some chance of being assigned to each of the 
treatment groups, conditional on covariates
• Solution?  If some types of individuals are observed only the 

treatment group, or only in the control group, eliminate them 
from analyses 
• Restrict causal inferences to the subset of the data for 

which the positivity assumption holds
• Discard individuals in the treated (or control) group that 

are not similar to any other individual in the other group
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Regular Assignment Mechanism
• Regular assignment mechanism satisfies
• Unconfoundedness
• (Conditional) Exchangeability 𝑌!,𝑌"∐𝑇 | 𝐗
• Positivity  

• The probability that an individual is in the treated group 
depends only on that individual’s covariates

0 < 𝑝(𝑇 = 1 |𝐗 = 𝐱) < 1
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Assignment Mechanism
• In a randomized experiment, the assignment mechanism is 

known
• In an observational study the assignment mechanism is 

unknown
• Solution?  
• Estimate the assignment mechanism by modeling it 

(propensity scores)
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Covariate Balance

• In randomized experiments, the randomization creates 
covariate balance between treatment groups
• In observational studies, treatment groups will be naturally 

unbalanced regarding covariates
• Solution? compare similar units
• How?  
• Propensity scores
• Matching
• Representation learning
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From identification to estimation

Causal
Estimand

Statistical
Estimand

Causal Effect 
Estimate

Identification Estimation
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Causal Estimands
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Estimation Methods
• Conditional outcome modeling and (basic) Machine Learning
• Propensity score and inverse propensity weighting
• Matching 
• Non-parametric models  - deep learning
• Doubly Robust Machine learning
• Instrumental variables
• Natural experiments
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Simple Conditioning
Definition Conditioning calculates treatment effects by identifying 

groups of individuals with the same covariates, where 
individuals in one group are treated and in the other group 
are not.

Intuition Conditioning our analysis of 𝑇 → 𝑌 on 𝑋 breaks the 
dependence between confounds 𝑋 and the treatment 𝑇

Example Suppose age confounds the causal effect of exercise on 
cholesterol. By conditioning analysis on age, we can 
identify the effect of exercise.

Keep in mind How do we know what to condition on?
Grouping becomes harder as dimensionality of 𝑋 increases
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Causal Estimands
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COM Estimators
Key idea
• Just fit a statistical machine learning model 𝜇(𝑡,𝑤) for
E(𝑌|𝑇,𝑊)
• Approximate E𝑊 𝑌 𝑇 = 𝜇(𝑡,𝑤) with the empirical mean "
#
∑$ 𝜇(𝑡$, 𝑤$)

• Use the model 𝜇(𝑡,𝑤) to obtain predictions 𝜇̂(𝑡$, 𝑤$)
• Then COM estimator for ATE is given by:

𝜏̂ = "
#
∑$ 𝜇̂(1,𝑤$) − 𝜇̂(0,𝑤$)

• The COM estimator for CATE can be defined in an analogous 
manner
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Conditional Outcome Modeling
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Conditional outcome modeling (COM) of ATE and CATE
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COM estimators

• Fundamentally fit a model (e.g., regression, neural network, 
random forest, etc.) to estimate 𝜇 (as a function of 
𝑋,𝑊, and 𝑇)
• Known by many names
• G-computation estimators
• Parametric G-formula
• Standardization
• S-learner
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ATE Estimation

𝑤!

𝑤"

𝑤#

𝑤$

%𝐴𝑇𝐸𝑔(𝐰,𝛃)
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COM Estimator: S-learner (single learner)

A single predictive model is trained to 
predict both 𝑌(1) and 𝑌(0)
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Practical challenges of S-learner

• When the data are high-dimensional, the estimator ignores 
𝑇, especially when the magnitude of the causal effect is 
small1

• How can we fix this?

1 Künzel, S.R., Sekhon, J.S., Bickel, P.J. and Yu, B., 2019. Metalearners for estimating heterogeneous 
treatment effects using machine learning. Proceedings of the national academy of sciences, 116(10), pp.4156-
4165.
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Grouped COM (GCOM) Estimators
• How to ensure that the model does not ignore 𝑇?
• Train a separate model for 𝑇 = 1 and 𝑇 = 0!

Now each model is trained on only a subset of the data
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Grouped COM (GCOM) Estimators

• Now each model is trained on only a subset of the data
• Variance of the estimator is higher than that of COM
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TARNet Estimator1

• The best of COM and GCOM

1 Shalit, U., Johansson, F.D. and Sontag, D., 2017, Estimating individual treatment effect: generalization bounds and algorithms. 
In International Conference on Machine Learning (pp. 3076-3085). PMLR.
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X-Learner1

1 Künzel, S.R., Sekhon, J.S., Bickel, P.J. and Yu, B., 2019. Metalearners for estimating heterogeneous treatment effects using 
machine learning. Proceedings of the national academy of sciences, 116(10), pp.4156-4165.
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Propensity Score

Propensity Score Theorem
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Propensity Score Theorem
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Propensity Score and Positivity-Unconfoundedness Tension
• Recall that overlap decreases with

the dimensionality of the
adjustment set
• The propensity score magically 

reduces the dimensionality of the 
adjustment set 𝑊 to 1!
• Propensity score is unknown but 

can be learned from data
𝑒(𝐰) = 𝑃(𝑇 = 1 |𝐖 = 𝐰)

• One way to model 𝑒(𝐰): logistic 
regression

𝑙𝑜𝑔 &(𝐰)
"*&(𝐰) =𝛼+𝛃 𝑻𝐰
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Propensity Score
In general, we can model the propensity scores using more complex 
structures, e.g., random forest regression, deep neural networks, etc. 
trained on the observational data to predict assignment probabilities
• Accurate estimates of propensity score roughly translates to 

accurate inference of the assignment mechanism 
• However, the goal is not to optimize the fit of the model, but doing 

so while ensuring covariate balance (which is necessary for 
exchangeability)
• Remember: No peeking at the outcomes!
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Why do Propensity Scores work?
Why do propensity scores work?
• Individuals with similar covariates get similar scores, and all 

individuals mapped to a similar score have similar treatment 
likelihoods.

What if the estimated propensity score is not accurate? (i.e., can’t 
tell who is treated)
• That’s ok.  The role of the model is to balance covariates given a 

score; not to actually identify treated and untreated.
Should we try to predict propensity scores perfectly? 
• No! The goal is to use propensity score estimation is to control for 

confounding and achieve covariate balance
• We must avoid variable selection etc. to optimize propensity 

score prediction
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• What if we had 20 covariates, with 4 levels each?
• Over a million million subclasses
• How can we balance across so many covariates?
• One solution: Balance on the propensity score! 
• Amazing fact: balancing on just the propensity score balances ALL 

covariates included in the propensity score model!!!
• We will see why this is the case 
• If the above amazing fact is true, we can compare units with 

similar propensity scores using
• Stratification 
• Matching
• Weighting

Slide by Cassandra Pattanayak

Balancing
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Inverse propensity score weighting: Intuition

constant
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Inverse propensity score weighting: Intuition

• The effect of 𝑊 on 𝑇 is proportional to the propensity score 𝑒 𝑊
• We want to neutralize this effect 
• One way to do this is to weight samples according to "

&(,)
• Note: You don’t want propensity scores get close to 0 or 1!
• Set propensity scores less than 𝜖 to 𝜖 (for a small 𝜖 > 0 ) and 
• Set propensity scores greater than (1 − 𝜖) to (1 − 𝜖)
• This can introduce some bias that we have to live with

constant
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Inverse propensity weighting: proof

It suffices to show that E -.
&(,) = E 𝑌(1) and E -("*.)

"*&(,) = E 𝑌(0)

E -.
&(,) = E E -.

&(,) |𝑊

When 𝑌 = 𝑌(1), we have E -.
&(,) = E E -(").

&(,) |𝑊

= E E - " |, E .|,
0(.|,)

= E E 𝑌 1 |𝑊
=E 𝑌(1)

Similar argument holds for E 𝑌(0)
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Inverse propensity score weighting: ATE
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Inverse propensity score weighting: CATE

• The same idea as for ATE
• except restrict the estimate to data samples where 𝑥$ = 𝑥



47

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Combining COM and propensity scores

Basic intuition:
• Instead of matching on 𝑊, match on (predicted) 𝑒(𝑊)
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Generalizing propensity score-based sample reweighting methods

• Balancing Score: Balancing score𝑏(𝑊) is a general weighting score, 

which is the function of covariates𝑊 satisfying:𝑇⫫𝑊| 𝑏(𝑊).

• Neutralizes the dependence of 𝑇 on 𝑊
• We will see examples of this later

• Propensity Score is a special case of balancing score
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Matching

Treated
Control

•Matching can be in 
•Original space
• Learned low-

dimensional space 
(modern representation 
learning methods)

• Different criteria for “close
enough”
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Avg Cholesterol = 200 Avg Cholesterol = 202

Matching and Stratification
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:

:

:

:

:

:

:

:

:

:

:

:

:

Matching and Stratification
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Exact Match

Simple:
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐱$, 𝐱1

= N
0, 𝐱$ = 𝐱1
∞, 𝐱$≠ 𝐱1

• Use this in low-dimensional settings when overlap is 
abundant
• But in most cases, there will be too few exact matches …
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Mahalanobis Distance

Mahalanobis distance accounts for unit differences by 
normalizing each dimension by the standard deviation.

𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 𝐱$, 𝐱1 = 𝐱$ − 𝐱1
.𝑆*"(𝐱$ − 𝐱1)

And 𝑆 is the covariance matrix.
Other distance measures may be used.
• Appropriate for low-dimensional settings when 

overlap is abundant
• But in most cases, there will be too few exact 

matches …
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Matching

• Identify pairs of treated and untreated individuals 
who are very similar or even identical to each other
• Very similar ::=  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐱$, 𝐱1 < 𝜖

• Paired individuals provide the counterfactual 
estimate for each other

:i j
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Additional Considerations in Matching

• When matching, should we allow replacement?
• bias / variance trade-off

• When matching, what if nearest neighbor is far away?
• Use a “caliper” threshold to limit acceptable distance

• What if not all treated individuals are matched to untreated?
• This will bias results.  Consider redefining original cohort to 

exclude treated  individuals who won’t have matches in the 
untreated population.

• In the simplest case, treatment is binary
• Advanced variants allow multi-valued, and other treatment 

regimens



56

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Matching in low-dimensional representation space

• Learn a low-dimensional information preserving mapping of 
data using representation learning
• e.g., deep autoencoder networks

• Allow matching methods to be extended to data with 
complex structure – images, graphs, etc.
• Perform matching in the representation space
• Matching in representation space far more reliable than 

matching in the original covariate space
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From Matching to Stratification
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From Matching to Stratification

• 1: 1matching generalizes to many:many matching.
• Stratification identifies paired subpopulations whose 

covariate distributions are similar.
• There can still be bias, if strata are too large.
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How to stratify with propensity score

• Train a machine learning model to predict treatment status
• Supervised learning: We are trying to predict a known 

label (treatment status) based on observed covariates.
• Conventionally, use a logistic regression model, but any 

ML model can be used
• But score must be well-calibrated.  i.e., (100𝑝)% of 

individuals with score of 𝑝 are observed to be treated
• Distance is the difference between propensity scores

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐱$, 𝐱1 = |𝑒̂ 𝐱$ − 𝑒̂ 𝐱1 |
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Propensity Score Stratification
We can use propensity score to 
stratify populations
1. Calculate propensity scores per 

individual as in matching.
2. But instead of matching, 

stratify based on score.
3. Calculate average treatment 

effect as weighted average of 
outcome differences per 
strata.

4. Weight by number of treated 
in the population for ATE on 
treated.

Propensity = 0.0

Propensity = 1.0
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Propensity Score Stratification

𝐴𝑇𝑇
= '

"∈"$%&$&

1
𝑁",()*

(+𝑌",()* − +𝑌",()+)

where,
+𝑌",( is the average outcome at 
strata 𝑠 and treatment status 𝑇
And 𝑁",()* is the number of 
treated individuals in strata 𝑠

Propensity = 0.0

Propensity = 1.0
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Stratification – Practical Considerations

• How many strata do we pick?
• Scale will depend on data.  Want each stratum to have enough data. 
• Conventional, small-data literature (e.g., ~100 data points) picked 5.
• With 10k to 1M or more data points, we can pick 100 to 1000 strata.
• Set strata boundaries to split observed population evenly
• Aside: why not always pick a small number of strata? 

• Bias-variance trade-off…
• What if there aren’t enough treated or untreated individuals in some 

stratum to make a meaningful comparison?
• This often happens near propensity score 0.0 and near 1.0
• Drop (“Clip”) these strata from analysis.
• This essentially redefines the cohort



64

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Stratification
Definition Stratification calculates treatment effects by 

identifying groups of individuals with similar 
distributions of covariates, where individuals in one 
group are treated and in the other group are not.

Intuition The difference in average outcome of paired 
groups tells us the effect of the treatment on that 
subpopulation.  Observed confounds are balanced, 
due to covariate similarity across paired groups.

Example In our cartoon example, we stratified based on 
propensity score into 3 strata. ATE is the weighted 
sum of differences in avg outcomes in each strata.

Keep in 
mind

Make sure there are enough comparable 
individuals in each strata
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Weighting: An alternative to conditioning
What if we assign weights to 
observations to simulate 
randomized experiment?
• Stratification weights strata 

results by number of treated
• Weighting by treated population  

~ weighting by propensity score.
Generalized weighting:  
• Calculate effect by weighted sum 

over all individual outcomes
• Many weighting methods to 

generate a balanced dataset

Propensity = 0.0

Propensity = 1.0
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Weighting

𝐴𝑇𝐸 =
1

𝑁.2"
Y

$∈45&64&7
𝑏$𝑦$ −

1
𝑁.2!

Y
1∈8#45&64&7

𝑏1𝑦1

Inverse Probability of Treatment Weighting (IPTW)

𝐴𝑇𝐸 =
1
𝑛Y
$2"

#
𝑡$𝑦$
𝑒̂(𝑤$)

−
1
𝑛Y
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1 − 𝑒̂(𝑤$)
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Weighting: Caveats and Practical notes

• High variance when 𝑒 close to 0 or 1
A single value can derail the estimate. 
• Many heuristics for clipping weights; stabilizing weights; etc.
• Assumes propensity score model is correctly specified (i.e., 

that 𝑒 is correctly estimated for all individuals)
• Variants of weighting: calculate average treatment effect on 

treated

67
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Weighting

Definition Weighting calculates average treatment effect as 
the difference between the weighted sum of the 
treated and untreated populations

Intuition Weights on each individual act to balance the 
distribution of covariates in the treated and 
untreated groups.  (i.e., break the dependence 
between treatment status and covariates)

Keep in 
mind

High variance when propensity scores are very 
high or very low
Many variants of weighting schemes
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Regression (or supervised machine learning)
As we have seen earlier,
• In regression analysis, we build a model of 𝑌 as a function of 

covariates 𝐗 and 𝑇, and interpret coefficients of 𝑋 and 𝑇
causally:

𝐸(𝑌|𝐗, 𝑇) = 𝛼"𝑋" +𝛼9𝑋9 +⋯𝛼#𝑋# +𝛼.𝑇

Model is fit with standard methods (e.g., MLE)

The bigger 𝛼𝑇 is, the stronger the causal relationship of 𝑇 to 𝑌
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Regression:  Caveats

Causal interpretation of regressions requires many assumptions
Threats to validity include:
- Modeling assumptions : e.g., what if we use a linear model and 

causal relationship is non-linear
- Multicollinearity: if covariates are correlated, we can’t get 

accurate coefficients
- Omitted variables: Omission of confounders can invalidate 

findings


