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• Seeing: Most animals, learning
machines populate the first rung.
They learn from association.

• Doing: Tool users, including early
humanoids, and perhaps some 
animals, populate the second rung.
They can reason about and learn 
from interventions. 

• Imagining: Humans populate the
top rung. They can imagine worlds 
that do not exist and reason about, 
and learn from, counterfactuals.

Ladder of Causation
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Motivation for Counterfactuals
• Suppose you are driving to NYC

• You have two options 
• Take freeway 𝑑𝑜(𝑋 = 1)
• Take side road 𝑑𝑜(𝑋 = 0). 

• You take side road
• You reach NYC, after 6 hours
• You tell yourself “I should have taken the freeway”
• What does this really mean?

• If you had taken the freeway, you would have reached 
NYC earlier

• If the If condition (antecedent) is unrealized, we call it a 
counterfactual

• Your assertion suggests that whatever slowed down your trip 
to NYC when you took the side road might not have slowed 
you down had you taken the freeway
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Motivation for Counterfactuals
• After reaching NYC, you tell yourself “I should have taken the 

freeway”
• You are thinking If you had taken the freeway, you would have 

reached NYC earlier
• Your assertion is informed by your experience – that it took you 6 

hours to reach NYC using side roads (not freeway)
• But when you decided to take the side road, had you anticipated 

that it would take you 6 hours to get to NYC using the side road, 
you would have taken the freeway instead if you thought that 
taking a freeway would get you to NYC in less than 6 hours! 

• Suppose we try to express this using a 𝑑𝑜-expression
𝐸(𝑡 | 𝑑𝑜(𝑋 = 1), 𝑡 = 6 ℎ𝑜𝑢𝑟𝑠)

• Does this make sense?
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Motivation for Counterfactuals
• When you decided to take the side road, had you anticipated that 

it would take you 6 hours to get to NYC using the side road, you 
would have taken the freeway instead if you thought that taking a 
freeway would get you to NYC in less than 6 hours! 

• Suppose we try to express this using a 𝑑𝑜-expression
𝐸(𝑡 | 𝑑𝑜(𝑋 = 1), 𝑡 = 6 ℎ𝑜𝑢𝑟𝑠)

• Does this make sense?
• No! We need to distinguish between the hypothetical driving time 

on freeway when driving on the side road takes 6 hours and the 
driving time on the side road!
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Note on notation

• We use  𝑌!"#, 𝑌!"# or 𝑌# to denote the value of 𝑌 under the 
intervention 𝑑𝑜(𝐴 = 1)
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Motivating the counterfactuals
• The do operator lets us distinguish between 𝑃(𝑡|𝑑𝑜(𝑋 = 0) and 
𝑃(𝑡|𝑑𝑜(𝑋 = 1)

• But the do operator is too crude to distinguish between the 
hypothetical time on freeway conditioned on relevant factors and the 
actual time on side road

• We need a notation to distinguish between
• Freeway driving time to NYC from SC:   𝑌$"# or 𝑌#
• Sideroad driving time to NYC from SC: 𝑌$"% or 𝑌%

• We need to estimate 𝐸(𝑌$"# |𝑋 = 0, 𝑌 = 𝑌% = 1)
• The expression contains a hypothetical event 𝑌$"# predicated on the 

event 𝑋 = 1, conditioned on a conflicting event 𝑋 = 0 that actually 
occurred (and hence observed)!

• That is, 𝑌 = 𝑌$"# and 𝑋 = 0 (and 𝑌 = 𝑌$"% ) occur in different 
worlds!
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Motivating the counterfactuals

• We need a notation to distinguish between
• Freeway driving time to NYC from SC:   𝑌$"# or 𝑌#
• Sideroad driving time to NYC from SC: 𝑌$"% or 𝑌%

• We need to estimate 𝐸(𝑌$"# |𝑋 = 0, 𝑌 = 𝑌% = 1)
• 𝑌 = 𝑌$"# and 𝑋 = 0 (and 𝑌 = 𝑌$"% ) occur in different worlds!
• 𝐸(𝑌$"# |𝑋=0,	𝑌= 𝑌% = 1)	is very different from 𝐸(𝑌|𝑑𝑜(𝑋 = 0))

• The first is about estimation of a quantity in one world 
conditioned on observations in another world.

• The second is about estimation of a quantity in one world 
conditioned on intervention in the same world.

• We can’t reduce the first expression to a do expression
• We can’t estimate it from an intervention experiment
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Motivating the counterfactuals
• We can’t reduce 𝐸(𝑌$"# |𝑋=0,	𝑌= 𝑌% = 1)	to a do expression
• Hence, we cannot apply do-calculus!
• You can only

• do an intervention on everyone in the population (or everyone with the  
same covariates  X)

• However, as the preceding example shows, there are interesting causal 
questions having to do with individual level counterfactuals that 
cannot be  operationalized using the do-operator

• What does it say about the completeness of do-calculus?
• Nothing!
• Why? do-calculus is about causal effects in populations, NOT individuals!
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Motivating the counterfactuals
• Can we use an RCT to get at 𝐸(𝑌$"# |𝑋=0,	𝑌= 𝑌% = 1)?

• An RCT will get us 𝐸(𝑌 |𝑑𝑜(𝑋=0) ) and 𝐸(𝑌 |𝑑𝑜(𝑋=1) )
• An RCT will NOT get us 𝐸(𝑌$"# |𝑋=0,	𝑌= 𝑌% = 1)!
• Why not?
• Because 𝑋 cannot simultaneously be both 1 and 0!

• If we cannot estimate 𝐸(𝑌$"# |𝑋=0,	𝑌= 𝑌% = 1)	from an RCT, there is 
no hope of estimating it from observational data!
• What if we estimate the freeway driving time for another driver 

or at another time of the day as a surrogate for your driving time 
from SC to NYC had you taken the freeway?
• That would be an approximation
• The quality of the approximation depends on many factors
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D Y

U

• This model corresponds to the following structural equations
• D = fD (U)
• Y =  fY (D,U)
• What do the graph and the equations look like when we  

intervene and “do” D = 1?

11 / 29

Recap: Causal Effects as  Interventions
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D = 1 Y

U

• This model corresponds to
• D = 1
• Y =  fY (1,U)

12 / 29

Recap: Causal Effects as  Interventions
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Recap: Causal Effects as Interventions
• If we  𝑑𝑜(𝐷 = 1), then 𝐷 = 1, and  𝑌 = 𝑓𝑌 (1, 𝑈)
• This 𝑌 under 𝑑𝑜(𝐷 = 1) is a function of 𝑈 and hence differs  

across individuals
• The mean of 𝑌 under the intervention 𝑑𝑜(𝐷 = 1) is:

𝐸[𝑌 |𝑑𝑜(𝐷 = 1)] =-
"

𝑓# 1, 𝑢 𝑃(𝑈 = 𝑢)

• 𝑓𝑌 (1, 𝑢) is 𝑌 if 𝐷 is set to 1 for a unit with infinitely many  features 𝑢
• This value  𝑓𝑌 (1, 𝑢) is in fact a  (unit-level) counterfactual
• “What would 𝑌 be if 𝐷 were set to 1 in a unit with feature values 𝑢 ”?
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Structural Interpretation of Counterfactuals
• If we 𝑑𝑜(𝐷 = 𝑑) in an SCM 𝑀,

• We get the SCM𝑀𝑑 where 𝐷 = 𝑓&(𝑢) is replaced by 𝐷 = 𝑑 The 
counterfactual value of 𝑌 in unit 𝑢 in model 𝑀 when 𝐷 is set to 𝑑 is 
𝑌𝑀𝑑 (𝑢), or Yd (u) or just Yd

• The variable 𝑌 is passively observed,  and the variable Yd denotes the result of 
an intervention 𝐷 = 𝑑

• This definition of  counterfactuals relies on a causalmodel
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Fundamental law of counterfactuals

Counterfactuals obey:
• Consistency:  if 𝐷 = 𝑑 then 𝑌' = 𝑌
• If 𝐷 is binary, 𝑌 = 𝐷 𝑌# + (1 − 𝐷) 𝑌%

• 𝑌# is the observed value of 𝑌 when 𝑋 is set to 1
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• What is then the average causal effect of binary D on Y using  not the 
do-operator, but counterfactuals?
• 𝐸[𝑌1] − 𝐸[𝑌0]

• In the literature that uses only counterfactuals but no graphs,  this is 
often called the average treatment effect (of 𝐷 on  𝑌 )

• Nothing new:
• 𝐸[𝑌1] − 𝐸[𝑌0] = 𝐸[𝑌 |𝑑𝑜(𝐷 = 1)] − 𝐸[𝑌 |𝑑𝑜(𝐷 = 0)]

• However, we can now also think about causal effects for  
individuals: 𝑌1(𝑢) − 𝑌0(𝑢)

• This individual treatment effect will vary across individuals as a  
function of 𝑢

Causal Effects using Counterfactuals
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Structural Causal Models Recap

A structural causal model𝑀 = (𝑉,𝑈, 𝐹, P(𝑢))where:
• 𝑉 is a set of endogenous (observed) variables.
• 𝑈 is a set of

3

exogenous (unobserved) variables.
• 𝐹 is a set of functions 𝑓 ∶ 𝐷 → 𝑉𝑖 where𝐷 ⊆ 𝑉
∪ 𝑈 and𝑉𝑖 ∈ 𝑉 .

• 𝑃(𝑢) is a probability distribution on𝑈.
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Counterfactuals defined
• Suppose 𝑀 is a structural causal model (𝑉, 𝑈, 𝐹 ), exogenous 

variables 𝑈 (latent) with known domains. 
• 𝑈 = 𝑢 implies an individual in the population (e.g., a person, 

a situation in Nature)
• 𝑋(𝑢) denotes the characteristics of an individual with 𝑈 = 𝑢
• Counterfactual sentence: 𝑌 would be 𝑦 had 𝐷 been 𝑑
• 𝑌'(𝑢) = 𝑦 where 𝑌 and 𝐷 are any variables in 𝑉
• We can interpret “had 𝐷 been 𝑑” as an instruction to the 

causal reasoner to make a minimal modification in the current 
model so as to establish the antecedent condition 𝐷 = 𝑑
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From population data to individual behavior

𝑋 = 𝑈$
𝐻 = 𝑎 𝑋 + 𝑈(

𝑌 = 𝑏 𝑋 + 𝑐 𝐻 + 𝑈)

• Suppose Joe has
𝑋 = 0.5, 𝐻 = 1, and 𝑌 = 1.5

0.5 = 𝑈$
1 = (0.5)(0.5) + 𝑈(

1.5 = (0.7) (0.5) + (0.4) (1) + 𝑈)

• We find that
• 𝑈$ = 0.5
• 𝑈( = 0.75 and
• 𝑈) = 0.75



20

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

From population data to individual behavior

𝑋 = 𝑈$
𝐻 = 2

𝑌 = 𝑏 𝑋 + 𝑐 𝐻 + 𝑈)

What happens to Joe’s score when we double the homework?
𝐻 = 2,𝑈$ = 0.5, 𝑈( = 0.75, and 𝑈) = 0.75

𝑌("* = (0.7)(0.5) + (2)(0.4) + 0.75
= 0.35 + 0.8 + 0.75
= 1.90
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Counterfactuals in Linear Systems
• Structural model 𝑌 = 𝛼 + 𝛽𝐷 + 𝐸
• This model claims that for every unit 𝑢, 𝑌𝑑 𝑢 = 𝛼 + 𝛽𝑑 + 𝐸so 

that for every 𝑢, 𝑌1(𝑢) − 𝑌0(𝑢) = 𝛽
• 𝛽 is one structural coefficient (identifiable from observational data

under certain conditions)
• Given the causal assumptions embodied in this structural causal model,
𝛽, the causaleffect of𝐷 on𝑌 the samefor every individual.

• This isalmost always wrong
• If motherhood 𝑀 affects wages 𝑊 differently among women
• We couldn’t possibly assert that 𝑊 = 𝛼 + 𝛽𝑀 + 𝐸

• Structural models are not regressions, but the structural coefficients, 
under certain conditions (which we went over in previous lectures), 
can be identified from observational data
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Computing Deterministic Counterfactuals Given a Causal Model

• Abduction1: Use evidence 𝐸 = 𝑒 to determine the value of (past) 𝑈
• Action: Modify the model 𝑀, by removing the structural equations for 

the variables in 𝐷 by replacing them with 𝐷 = 𝑑, to get the modified 
model 𝑀)

• Prediction: Use the modified Model 𝑀) and the (past) value of 𝑈 to 
compute the value of 𝑌𝑑, the consequence of the counterfactual based 
on our understanding of the past and the imagined intervention 𝐷 = 𝑑

• Counterfactuals, which are taken as primitives in Rubin’s potential 
outcomes framework, are derived properties of structural equation 
models

• 1 Peirce, C. S. Collected Papers of Charles Sanders Peirce, C. Hartshorne, P. Weiss, and A. Burks (ed), 1931–1958, Cambridge MA: Harvard 
University Press.
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Probabilistic counterfactuals

• What if counterfactuals pertain to a subset of individuals in a 
population? 

• It is unlikely that their counterfactual outcomes are identical
• Example: Effect of motherhood on income of women

• Suppose we wanted to know what would have happened if all 
students with 𝑌 < 2 had their homework 𝐻 doubled?

• Can we use do expressions to express such counterfactuals?
• No. Because do expressions cannot restrict the set of individuals 

intervened in the manner specified

𝑋 = 𝑈$
𝐻 = 𝑎 𝑋 + 𝑈(

𝑌 = 𝑏 𝑋 + 𝑐 𝐻 + 𝑈)



24

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Probabilistic counterfactuals
• Suppose we wanted to know what would have happened if all 

students with 𝑌 < 2 had their homework 𝐻 doubled?

• Suppose Joe’s score was less than 2. We want to know what his 
score have been had his homework been doubled?

• Unlike in the deterministic case, we don’t know everything (𝑋, 𝑌, 𝐻)
about Joe. All we know is that he is in the group with 𝑌 < 2

• We cannot determine the precise value of 𝑈 = {𝑈$, 𝑈( , 𝑈)} for Joe
• 𝑃(𝑈) induces a distribution over the observables 𝑋, 𝑌, 𝐻
• This presents us with the problem of answering probabilistic 

counterfactual queries

𝑋 = 𝑈$
𝐻 = 𝑎 𝑋 + 𝑈(

𝑌 = 𝑏 𝑋 + 𝑐 𝐻 + 𝑈)
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Probabilistic Counterfactual Given a Causal Model
• Given that we observe the feature 𝐸 = 𝑒 for a given individual, what 

is the expected outcome 𝑌 for that individual had 𝐷 been 𝑑?
• That is, we want to know: 𝐸[𝑌&"'|𝐸 = 𝑒]

• Computing the probabilistic counterfactual given a causal model 𝑀
involves  3 steps:

• Abduction: Use evidence 𝐸 = 𝑒 to update 𝑃(𝑈) to 𝑃(𝑈|𝐸 = 𝑒)
• Action: Modify the model 𝑀, by removing the structural 

equations by replacing the variables in 𝐷 by replacing them with 
𝐷 = 𝑑, to get the modified model 𝑀'

• Prediction: Use the modified Model 𝑀' and 𝑃 𝑈 𝐸 = 𝑒 to 
compute the expectation of 𝑌, the consequence of the 
counterfactual

• Counterfactuals, which are taken as primitives in Rubin’s potential 
outcomes framework, are derived properties of structural equation 
models
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Example 
𝑋 = 𝑎𝑈

𝑌 = 𝑏𝑋 + 𝑈
Suppose 𝑎 = 𝑏 = 1

• 𝑋 1 = 1 1 = 1.
• 𝑌 1 = 1 𝑋 1 + 1 = 1 1 + 1 = 2
• How do we compute 𝑌# 2
• 𝑌# 2 is the result of intervention setting 𝑋 = 1 on 𝑌 with 𝑈 = 2

• Drop the first Structural equation and set 𝑋 = 1.
• Use second structural equation to calculate 𝑌1(2)=(1)(1)+2=3

𝑈 = 1,2,3
𝑃(𝑢 = 1) = *

+
, 𝑃 𝑢 = 2 = *

,
and 𝑃(𝑢 = 3) = *

-
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Example 
𝑋 = 𝑎𝑈

𝑌 = 𝑏𝑋 + 𝑈
Suppose 𝑎 = 𝑏 = 1

• We can compute the probability that 𝑌 would be 3 had 𝑋 been 2 
• P(𝑌* = 3)
• 𝑌*(𝑢) = 3 occurs only in the first row, when 𝑈 = 1 which 

occurs with probability 𝑃(1) = 1/2

𝑈 = 1,2,3
𝑃(𝑢 = 1) = *

+
, 𝑃 𝑢 = 2 = *

,
and 𝑃(𝑢 = 3) = *

-
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Example 
𝑋 = 𝑎𝑈

𝑌 = 𝑏𝑋 + 𝑈
Suppose 𝑎 = 𝑏 = 1

𝑈 = 1,2,3
𝑃(𝑢 = 1) = *

+
, 𝑃 𝑢 = 2 = *

,
and 𝑃(𝑢 = 3) = *

-

• We can compute any counterfactual probability
• 𝑃(𝑌* = 4) = 𝑃(𝑈 = 2) = 1/3

• We can compute any joint probability
• 𝑃 𝑌# < 4, 𝑌* > 3 = 1/3
• Note that this is a cross-world event spanning 𝑋 = 1 and 𝑋
= 2 which intersect at 𝑈 = 2
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The power of probabilistic counterfactuals  

• Given an SCM, we can compute any counterfactual probability
• Given an SCM, we can compute any joint probability over 

combinations of counterfactuals
• E.g. 𝑃(𝑌# = 𝑦# , 𝑌* = 𝑦*)

• This allows us to compute conditional probabilities over 
counterfactuals and define independence among counterfactuals 
just as we did over observables

• This is something we cannot do using the 𝑑𝑜(𝑋 = 𝑥) notation
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Limitation of the do-expressions

Example model:
• 𝑋 = 1 denotes college educated
• 𝑈* =1 denotes having work 

experience
• 𝑍 denotes skill level
• 𝑌 denotes salary
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Limitation of the do-expressions
Suppose we want to compute 
E[𝑌𝑋=1|𝑍 = 1] the expected salary of 
individuals with skill level 𝑍 = 1, had 
they received a college education

• Can we use E 𝑌 𝑑𝑜 𝑋 = 1 , 𝑍 = 1 ?
• The 𝑑𝑜-expression stands for the expected salary of individuals 

who all finished college and have since acquired skill level 𝑍 = 1.
• The salaries of these individuals, as the SCM shows, depend 

only on their skill, and are not affected by whether they 
obtained the skill through college or work experience.

• Conditioning on 𝑍 = 1, in this case, cuts off the effect of the 
intervention that we’re interested in.
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Limitation of the do-expressions
Suppose we want to compute 𝐸[𝑌𝑋=1|𝑍 = 1] the 
expected salary of individuals with skill level 𝑍 = 
1, had they received a college education

• Can we use E 𝑌 𝑑𝑜 𝑋 = 1 , 𝑍 = 1 ?
• Conditioning on 𝑍 = 1cuts off the effect of the intervention 𝑍 = 1
• Some of those with skill, i.e., 𝑍 = 1 might not have gone to college yet 

might have attained higher skill (and salary) had they received college 
education. 

• The individuals that are relevant for computing E[𝑌𝑋=1|𝑍 = 1]  are 
excluded by  the 𝑑𝑜-expression E 𝑌 𝑑𝑜 𝑋 = 1 , 𝑍 = 1

• Here, 
• E 𝑌 𝑑𝑜 𝑋 = 1 , 𝑍 = 1 = E 𝑌 𝑑𝑜 𝑋 = 0 , 𝑍 = 1 (𝑍 d-

separates 𝑋 from 𝑌)
• E[𝑌𝑋=1|𝑍 = 1] ≠ E[𝑌𝑋=0|𝑍 = 1]
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Counterfactual versus do-expression

• E 𝑌 𝑑𝑜 𝑋 = 1 , 𝑍 = 1 = E 𝑌 𝑑𝑜 𝑋 = 0 , 𝑍 = 1 ?
• Yes, 𝑌 only depends on 𝑍
• Conditioning on 𝑍 d-separates 𝑋 from 𝑌
• 𝑍 = 1 refers to current skills; intervention 𝑑𝑜 𝑋 = 1 is about the 

effect of hypothetical education in an unrealized past, given 
current skills 

• E[𝑌𝑋=1|𝑍 = 1] ≠E [𝑌𝑋=0|𝑍 = 1]?
• No, 𝑍 = 1 selects a subset of the population in which we 

examine the effect of intervening on 𝑋
• 𝑍 = 1 and 𝑋 = 1 refer to different worlds (pre and post-

intervention)



34

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Can counterfactual encode a do-expression?

• Yes. E 𝑌 𝑑𝑜 𝑋 = 1 , 𝑍 = 1 = E[𝑌𝑋=1|𝑍$"# = 1]
• That is, we condition on the post-intervention value of 𝑍

• 𝑃 𝑌 = 𝑦 𝑑𝑜 𝑋 = 1 , 𝑍 = 𝑧 = +()"-, /"0 |'2 $"# )
+(/"0|'2 $"# )
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Counterfactual anddo Calculations

Suppose 𝑎 ≠ 1, 𝑎 ≠ 0 , 𝑎𝑏 ≠ 0
E[𝑌₁|𝑍 = 1] = 𝑎 + 1 𝑏
E[𝑌₀|𝑍 = 1] = 𝑏
E[𝑌|𝑑𝑜(𝑋 = 1), 𝑍 = 1] = 𝑏
E[𝑌|𝑑𝑜(𝑋 = 0), 𝑍 = 1] = 𝑏
E[ 𝑌₁ − 𝑌₀ | 𝑍= 1] = 𝑎𝑏

• Even though 𝑍 d-separates 𝑋
from 𝑌, 𝑋 has a causal effect on 𝑌
among those with 𝑍 = 1

• While the salary of those at skill
level 𝑍 = 1 depends only on their 
skill and not on education
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Counterfactual anddo Calculations
• Even though 𝑍 d-separates 𝑋 from 𝑌, 𝑋 has a causal effect on 𝑌

among those with 𝑍 = 1
• While the salary of those at skill level 𝑍 = 1 depends only on their 

skill and not on education 𝑋, the salary of individuals currently at skill 
level 𝑍 = 1 could have been different had they had a different past 

• Dependencies of this sort needed for retrospective reasoning about
an unrealized past are not represented in standard structural causal 
models and cannot be expressed using do expressions

• Performing such reasoning requires augmenting causal graphs with 
counterfactual variables 
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Counterfactual anddo Calculations

• With 𝑎 ≠ 0, 𝑎 ≠ 1, 𝑃(𝑈#) and 𝑃 𝑈* do not appear in the 
calculations because the condition 𝑍 = 1 occurs only for 𝑢# = 0
and 𝑢* = 1 forcing 𝑌, 𝑌# and 𝑌* to take a definite value.

• But with 𝑎 = 1, 𝑍 = 1 occurs when 𝑢# = 0 and 𝑢* = 1 as well as 
when 𝑢# = 1 and 𝑢* = 0

• E[𝑌𝑋=1|𝑍 = 1] = 𝑏 1 + + 4/"% +(40"#)
+ 4/"% + 40"# 5+ 4/"# +(40"%)

• E[𝑌𝑋=0|𝑍 = 1] = 𝑏 + 4/"% +(40"%)
+ 4/"% + 40"# 5+ 4/"# +(40"%)
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Graphical Representation of Counterfactuals
Can we see counterfactual in our causal model’s graph?
Yes. Based on the fundamental law of counterfactuals
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• How  can we visualize counterfactual 𝑌ₓ?
• Remove arrows going into 𝑋 yielding 𝑀ₓ in which 𝑌 is now 𝑌ₓ
• Remember that conditioning 𝑌ₓ on 𝑊₃ is a pre-interventional 

conditioning
• In 𝑀ₓ, which variables cause 𝑌 to vary?

• 𝑍₃,𝑊₂, 𝑈61 and 𝑈7 (conditioning on 𝑊₃ couples 𝑋 and 𝑈61)
• How do we hold 𝑋 constant?
• We simply remove effect of arrows going into 𝑋?
• Condition on variables satisfying the backdoor criterion

Graphical representation of counterfactuals
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TheGraphicalRepresentationof Counterfactuals

• What would cause 𝑌2 to vary?
• All exogenous variables capable of influencing 𝑌 in 𝑀2
• Observed and unobserved parents of 𝑌, and parents of nodes on the 

pathways between 𝑋 and 𝑌
• 𝑍₃,𝑊₂, 𝑈3!

and 𝑈4 (the unobserved variables are not shown in the fig)
• If we can identify a set of variables 𝑍 in 𝑀2 that satisfy the back door 

criterion with respect to (𝑋, 𝑌2 ), we render 𝑋 independent of 𝑌2 given 𝑍



41

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Counterfactual Interpretation of Backdoor Criterion
• If a set 𝑍 of variables satisfies the backdoor condition relative to 
(𝑋, 𝑌), then the counterfactual 𝑌ₓ is conditionally independent of 𝑋
given 𝑍

𝑃(𝑌ₓ|𝑋, 𝑍) = 𝑃(𝑌ₓ|𝑍)

• How can we calculate 𝑃(𝑦ₓ) from data?

𝑃(𝑦ₓ) = <
!

𝑃 𝑦ₓ|𝑍 = 𝑧 𝑃(𝑍 = 𝑧)

= <
!

𝑃 𝑦ₓ|𝑥, 𝑍 = 𝑧 𝑃(𝑍 = 𝑧)

= <
!

𝑃 𝑦|𝑥, 𝑍 = 𝑧 𝑃(𝑍 = 𝑧)

This is just backdoor adjustment in the counterfactual setting!

LoT

BDC

Consistency
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Counterfactual Independence

• Does the effect of education on salary (𝑌ₓ) depend on education (𝑋), given 
skill 𝑍? 

𝑌ₓ ⫫ 𝑋 | 𝑍? or 𝐸[𝑌ₓ|𝑋, 𝑍] = 𝐸[𝑌ₓ|𝑍]?
• We know 𝐸[𝑌|𝑋, 𝑍] = 𝐸 𝑌 𝑍
• ∵ 𝑍 blocks all paths from 𝑋 to 𝑌
• Is the situation different for 𝑌ₓ?

• Yes!
• Remove arrows into 𝑋 to get 𝑀2 in which 𝑌 is 𝑌2
• Which variables cause 𝑌2 to vary when conditioned on 𝑍?
• 𝑈+ - Why? Because 𝑈+ and 𝑋 become d-connected when conditioned 

on 𝑍
• Hence, 𝐸 𝑌ₓ 𝑋, 𝑍 ≠ 𝐸 𝑌ₓ 𝑍
• In this case, Education matters in estimating the causal effect of Skill (𝑍) 

on Salary (𝑌)!
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Counterfactual in Experimental Settings
• We saw that counterfactuals can be answered from a fully specified 

structural model
• Consider data for 10 students

𝑋 = 𝑈$
𝐻 = 𝑎 𝑋 + 𝑈(

𝑌 = 𝑏 𝑋 + 𝑐 𝐻 + 𝑈)
𝜎4546 = 0

• We used the model to predict the potential outcomes
• In reality, we never can get such data (why?)
• Nevertheless, we can use the model to compute the E[𝑌$"# − 𝑌$"%]
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Counterfactual in Experimental Settings
• Suppose we do not have the model
• But we have data from an experiment in which 𝑋 is assigned at random to 

members of the population
• The observed data correspond to the last two columns

• Now, because 𝑋 is 
randomly assigned, the 
backdoor adjustment 
formula applies in the 
counterfactual setting 
with 𝑍 =

• E[𝑌@]=E[𝑌 |𝑋 = 𝑥]

• Because E[𝑌@]=E[𝑌 |𝑋 = 𝑥], we can estimate E[𝑌$"# − 𝑌$"%] 
= E[𝑌$"#] −E[𝑌$"%] from the observed data!

• Note that the quality of the estimate depends on sample size etc.
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Applications of Counterfactuals

• Recruitment program
• Additive Interventions
• Personal decision making
• Gender discrimination in hiring
• Mediation and path disabling
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• The government funds a job training program aimed at 
getting jobless people back into the workforce. 

• A pilot randomized experiment shows that the program is 
effective; a higher percentage of people were hired among 
those who finished the the program than among those who 
did not enroll in the program. 

• The program is approved, and the training is offered to any 
unemployed person who wants to enroll.

• The hiring rate among those who complete the program 
turns out even higher than in the randomized pilot study. 

Effectiveness of a Job Training Program
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• The hiring rate among those who complete the program 
turns out even higher than in the randomized pilot study.

• Critics: Those who self-enroll, may be more intelligent, more 
resourceful, and more socially connected than those who 
were  eligible  but did not enroll and hence were  more likely 
to have found a job regardless of the training.

• What we really need to estimate is the differential benefit of 
the program on those enrolled: the extent to which hiring 
rate has increased among the enrolled, compared to what it  
would have been had they not enrolled.

Effectiveness of a Job Training Program
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• What we really need to estimate is the differential benefit of the 
program on those enrolled: the extent to which hiring rate has 
increased among the enrolled, compared to what it  would have 
been had they not enrolled.

• How? Counterfactuals to the rescue!
• Let X = 1 represent training and Y = 1 represent hiring
• The effect of training on the trained is E[𝑌$"# − 𝑌$"% |𝑋 = 1]
• This is called the effect of treatment on the treated

Effectiveness of a Job Training Program
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Personal Decision Making

• Cancer patients must decide between two treatments:
• lumpectomy alone, or 
• lumpectomy plus irradiation

• Ms. Jones, in consultation with her oncologist, decides on the 
second option. Ten years later, Ms. Jones is alive, and the tumor 
has not recurred. She speculates: Do I owe my life to irradiation?

• Mrs. Smith, on the other hand, chooses the first option and her 
tumor recurred after a year. She regrets: I should have gone 
through irradiation.

Can these speculations ever be substantiated using data? 



50

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Discriminatory hiring practices

• Mary files a lawsuit against the TechGigs, alleging discriminatory 
hiring practices. 

• She claims she applied for a job with TechGigs and despite having 
all the credentials for the job, she was not hired, allegedly because 
she mentioned, during the course of her interview, that she is gay.

• Moreover, she claims, the hiring record of TechGig shows 
consistent preferences for straight employees. 

• Does she have a case? Can hiring records prove whether TechGig
was discriminating when declining her job application?
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Mediation path disabling

• A policy maker wishes to assess the extent to which gender 
disparity in hiring can be reduced by making hiring decisions 
gender-blind, rather than eliminating gender inequality in 
education or job training. 

• The former concerns the “direct effect” of gender on hiring, 
whereas the latter concerns the “indirect effect,” or the effect 
mediated via job qualification.
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Freedom of choice and causal effects
• In most modern nations, some people may attend university,  but are not 

forced to. 
• For those who attend university, does it  pay off in terms of lifetime

earnings?
• Y lifetime earnings, D =  1 if you goto university
• We can model the above using a very simple SCM would be:
• Y =  fY (D,UY ) D =  fD (UD )
• UY and UD may be correlated
• Why?

• You love learning, do well in school; soyou attend  university, but of 
course your learning skills also have an effect  on your earnings regardless 
of whether you attenduniversity
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• Perhaps (some) people can (roughly) predict their lifetime  earnings 
depending on their decision to attend or not attend  university

• Counterfactuals as potential outcomes: You deliberate an  action and its 
potential outcome; you take an action and  experience an actualoutcome

• For those who choose  𝐷 = 𝑑 , the potential outcome Yd becomes an 
actual outcome  Y (consistency) E[𝑌𝑑 |𝐷 = 𝑑] = E[𝑌 |𝐷 = 𝑑]:

• You want to know whether “universities pay off”. 
• You have data onactual earnings for people with D =  1and D =  0. 
• Can you somehow get from this the average causal effect (ATE) of D?
• We know E[𝑌 |𝑑𝑜(𝐷 = 1)] ≠ E[𝑌 |𝐷 = 1]
• Hence E 𝑌1 = E 𝑌 𝑑𝑜 𝐷 = 1

≠ E[𝑌 |𝐷 = 1] = E[𝑌1|𝐷 = 1]

Freedom of choice and causal effects
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Freedom of choice and causal effects

• E 𝑌1 ≠ E 𝑌1 𝐷 = 1
• Problem is dependency between D and  potential outcomes (NOT 

observed outcomes). 
• Is there a  substantive interpretation to this dependency?

• Perhaps (some) people can (roughly) predict their lifetime  earnings 
depending on their decision to attend or not attend  university

• Extreme case: People know exactly their potential outcomes  and 
choose 𝐷 = 1 if 𝑌1 ≥ 𝑌0

• If  people behave this way, we cannot identify the ATE of  
attending university using only measures of D and Y

• Because treatment 𝐷 is a function of 𝑌𝑑 = 𝑓𝑌 (𝑑, 𝑈), 
it’s a  function of 𝑈⇒ back-door path from 𝐷 to𝑌

15 / 29
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E
• Extreme case: People know exactly their potential outcomes  and choose 
𝐷 = 1 if 𝑌1 ≥ 𝑌0 à unobserved confounding

• Perhaps, in some situations, one may ask people about their  potential 
outcomes. Then no fancy analysis needed, just  directly calculate E[𝑌1
− 𝑌0]. 

• But this is in general, unlikely to be the case
• If individuals have the freedom to choose   𝐷 and their choice is 

influenced by their knowledge of potential outcomes, you have  
unobserved confounding between 𝐷 and𝑌

• Thinking in terms of who is choosing treatment and how is extremely  
useful for analyzing causalproblems
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Freedom to choose and causal effects: ATT
• “For those who attend university, does it pay off in terms of  lifetime

earnings?”
• First clause is conditioning filter: People for whom𝐷 = 1
• But E[𝑌 |𝑑𝑜(𝐷 = 1), 𝐷 = 1] −E[𝑌 |𝑑𝑜(𝐷 = 0), 𝐷 = 1] does  

not address this question
• do requires you to force people to attend university
• do is not  an option when people have the freedom to choose 

whether to attend university
• Also the state of affairs do(D =  0), D =  1 just does not make sense

• Every person has a counterfactual Y1 if they go to university, and  Y0 if they
don’t. Try to write down an expression that  captures above question using 
counterfactuals!

• E [𝑌1 − 𝑌0|𝐷 = 1]
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Freedom to choose and causal effects: ATT
• E[𝑌1 − 𝑌0|𝐷 = 1]: The average treatment effect on the  treated

(ATT)
• E[𝑌1 − 𝑌0|𝐷 = 1] = E[𝑌1|𝐷 = 1] −E[𝑌0|𝐷 = 1]
• ATE is relevant if you can/want/must force all people to have

• 𝐷 = 1 𝑜𝑟𝐷 = 0
• ATT is relevant if people can chooseD!
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Relevance of ATT
• In general, if ATT =  ATE, individuals do not make choices  depending 

on their potential outcomes/no confounding
• If ATT >  ATE, individuals (or some other force) optimizes the choice  of 

treatment with respect to the outcome𝑌
• If ATT <  ATE, people (or someone else) chooses the  treatment as 

to “hurt” people (with respect to 𝑌)!
• Identification of ATT and ATE gives some insight into  decision-making

processes
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Estimation of ATT
• If 𝑋 satisfies BDC wrt (𝐷, 𝑌 ), then
𝐴𝑇𝑇 = E[𝑌1 − 𝑌0|𝐷 = 1] =

-
2

(E[𝑌 |𝐷 = 1,𝑋 = 𝑥] − 𝐸[𝑌 |𝐷 = 0,𝑋 = 𝑥]) · 𝑃(𝑋 = 𝑥 |𝐷 = 1)

Estimation strategy:
• Bin/discretize continuous 𝑋 cleverly via coarsened exact  matching 

(CEM, King et al.)
• In each stratum of 𝑋 , estimate 𝑋 −specificeffect
𝐸[𝑌 |𝐷 = 1,𝑋 = 𝑥] − 𝐸[𝑌 |𝐷 = 0,𝑋 = 𝑥] via regression

• Estimate 𝑃(𝑋 = 𝑥 |𝐷 = 1) nonparametrically:

𝑃 𝑋 = 𝑥 𝐷 = 1 =
𝑃 𝑋 = 𝑥, 𝐷 = 1

𝑃 𝐷 = 1
(Bayes’ law)
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Direct and Indirect Effects
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Substantive Examples for (in)direct effects

• Do macroeconomic conditions affect the vote for the  incumbent 
mostly through individual evaluations of the  economy?

• Does the incumbency effect exist because strong incumbents  scare off 
high-quality challengers?

• Are hiring processes discriminatory? Is there a direct effect  of socio-
economic background/gender/race on the  probability of being hired?

• Do some genes cause lung cancer only through their effect on  smoking
behaviour?

• Does Cognitive Behavioral Therapy only work because it leads  people to 
use anti-depressants more often?
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History of (in)direct effects
• Being clear about the theoretical causal mechanism is a  

precondition for a goodtheory
• Very often, disagreement is not about direction of some  causal 

effect, but about the mechanism
• The methodological literature on how to learn about causal  

mechanisms from data only started around 2000!
• While this is clearly of interest to all sciences

• Pearl in 1st ed. of “Causality” (2000): “Indirect effects lack  
intrinsic operational meaning”

• Rubin (2004): Indirect effects are “ill-defined” and “more  
deceptive than helpful”

• Pearl changed his opinion in 2001 and gave general definitions,  
identification results, and policy implications of indirect effects
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Direct and indirect effects in linear models
• What is the direct, what is the indirect  effect of D on Y in this model?

• Direct: 𝛽𝐷𝑌 , indirect: 𝛽𝐷𝑀𝛽𝑀𝑌
• Can you think of the direct effect as a do-effect?
• Yes

E 𝑌 𝑑𝑜 𝐷 = 1 , 𝑑𝑜 𝑀 = 𝑚
−E[𝑌 |𝑑𝑜(𝐷 = 0), 𝑑𝑜(𝑀 = 𝑚)]

• Can you think of the indirect effect as a do-effect?
• No: not  possible to do 𝐷 so as to isolate 
𝛽𝐷𝑀𝛽𝑀𝑌

• As we have seen, linear causal models permit 
causal estimation using series of linear regressions

D

M

Y

𝛽DY

𝛽DM

𝛽MY
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From linear to general case
• In linear structural equation models, it is “clear” what direct  and 

indirect effects are: Just look at path coefficients
• However, it is not clear how to generalize this notion to  nonlinear 

models, or unknown functions f where we do not  even know what 
“coefficients” they may have
• Pearl in 1st ed. of “Causality” (2000): “Indirect effects lack intrinsic

operational meaning” - not possible to write them using do-
operator; not clear to which action or policy they refer

• Pearl 2001, also 2nd ed. Of ”Causality (2009): "An indirect effect is
the effect of a variable when its direct effect is disabled"
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Substantive Examples for path-disabling interventions
• Women 𝐺 =1acquire musical skills 𝑀. They play in an  audition for an 

orchestra, and then are hired 𝑌 = 1with some  probability 𝑝1
• Women 𝐺 = 1acquire musical skills 𝑀. They play in an audition

behind a curtain for an orchestra, and then are hired 𝑌 = 1with
adifferentprobability p2

• Playing behind a veil makes sure committee does not know  gender, 
thus disabling the direct effect of gender on hiring

• Goldin 2001 found that introduction of gender-blind audition in  
various professional US orchestras substantially increased the representation 
of women  in orchestra

• Using only do-interventions, we would worry about how to
do(M) (increase musical skills, perhaps conditional ongender) which is 
harder and perhaps more costly
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Substantive Examples for path-disabling interventions

• A drug D helps to cure some illness 𝑌 , but also results in 
headache which leads patients to take aspirin 𝑀. Aspirin 
possibly also affects 𝑌

• What happens if drug company manipulates the drug so that  
it does not cause headache, but direct effect stays the same?

• Disable path 𝐷 → 𝑀
• Some people may still naturally take aspirin for other reasons,  

which may moderate the remaining direct effect of 𝐷
• If we can identify the direct effect of 𝐷 not going through 𝑀

from observational data, we can predict the causal effect of 
the drug 𝐷 on illness 𝑌

D

M

Y
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Path disabling interventions
• Because we are dealing with disabling the influence of one variable 

on another, we cannot express the effect of such interventions using 
the do operator

• However, we can express it using the language of counterfactuals
• Suppose we want to assess hiring disparity after putting in place 

gender-blind hiring procedures
• We require that all female (𝑋 = 0) applicants be treated like males 
(𝑋 = 1) with comparable qualifications (𝑄 = 𝑞) and proceed to 
estimate the hiring rate under this counterfactual condition 𝑌$"#,A"B

• But because 𝑞 varies among applicants, we need to average this 
according to distribution of 𝑞
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Path disabling interventions

• Suppose we want to assess hiring disparity after putting in place 
gender-blind hiring procedures

• We require that all female (𝑋 = 0) applicants be treated like males 
(𝑋 = 1) with comparable qualifications (𝑄 = 𝑞) and proceed to 
estimate the hiring rate under this counterfactual condition 𝑌$"#,A"B

• But because 𝑞 varies among applicants, we need to average this 
according to distribution of 𝑞 among females

m
B

E 𝑌$"#,A"B 𝑃 𝑄 = 𝑞 𝑋 = 0
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Path disabling interventions

• Males should have a similar chance of getting hired except that the  
average is with respect to distribution of 𝑞 among males

m
B

E 𝑌$"#,A"B 𝑃 𝑄 = 𝑞 𝑋 = 1

• The indirect effect of gender on hiring as mediated by qualification is 
given by

'
9

E 𝑌:;*,=;9 𝑃 𝑄 = 𝑞 𝑋 = 0 − 𝑃(𝑄 = 𝑞|𝑋 = 1)
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Path disabling interventions

• The indirect effect of gender on hiring mediated by qualification is given by

'
9

E 𝑌:;*,=;9 𝑃 𝑄 = 𝑞 𝑋 = 0 −𝑃(𝑄 = 𝑞|𝑋 = 1)

• This is the Natural indirect effect (NIE) of 𝑋 on 𝑌, mediated by 𝑞
• Can we estimate NIE from observational data?
• In the absence of confounding, we can show that

-
9

E 𝑌:;*,=;9 𝑃 𝑄 = 𝑞 𝑋 = 0 − 𝑃(𝑄 = 𝑞|𝑋 = 1)

=-
9

E 𝑌|𝑋 = 1, 𝑄 = 𝑞 𝑃 𝑄 = 𝑞 𝑋 = 0 − 𝑃(𝑄 = 𝑞|𝑋 = 1)

We call this the mediation formula
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A toolkit for mediation

𝑡 = 𝑓C 𝑢C 𝑚 = 𝑓D 𝑡, 𝑢D 𝑦 = 𝑓) 𝑡,𝑚, 𝑢)
• Total effect 𝑇𝐸 = 𝐸[𝑌# − 𝑌%]

= 𝐸[𝑌|𝑑𝑜(𝑇 = 1) − 𝐸(𝑌|𝑑𝑜(𝑇 = 0)]
• TE measures the expected increase in 𝑌 as the treatment 

changes from 𝑇 = 0 to 𝑇 = 1, while the mediator is allowed 
to track the change in 𝑇 naturally as dictated by 𝑓D
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A toolkit for mediation

𝑡 = 𝑓C 𝑢C 𝑚 = 𝑓D 𝑡, 𝑢D 𝑦 = 𝑓) 𝑡,𝑚, 𝑢)
• Controlled direct effect 𝐶𝐷𝐸(𝑚) = 𝐸[𝑌#,E − 𝑌%,E]

= 𝐸[𝑌|𝑑𝑜(𝑇 = 1,𝑀 = 𝑚) − 𝐸(𝑌|𝑑𝑜(𝑇 = 0,𝑀 = 𝑚)]
• CDE measures the expected increase in 𝑌 as the treatment 

changes from 𝑇 = 0 to 𝑇 = 1, while the mediator is set to 
𝑚 uniformly for the entire population
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A toolkit for mediation

𝑡 = 𝑓C 𝑢C 𝑚 = 𝑓D 𝑡, 𝑢D 𝑦 = 𝑓) 𝑡,𝑚, 𝑢)
• Natural direct effect 𝑁𝐷𝐸 = 𝐸[𝑌#,D> − 𝑌%,D>]
• NDE measures the expected increase in 𝑌 as the treatment 

changes from 𝑇 = 0 to 𝑇 = 1, while the mediator is set to 
whatever value it would have attained, for each individual, 
prior to the change, i.e., under 𝑇 = 0
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A toolkit for mediation

𝑡 = 𝑓? 𝑢? 𝑚 = 𝑓@ 𝑡, 𝑢@ 𝑦 = 𝑓# 𝑡,𝑚, 𝑢#
• Natural indirect effect 𝑁𝐼𝐸 = 𝐸[𝑌A,@" − 𝑌A,@#]
• NIE measures the expected increase in 𝑌 when the treatment is held 

constant at 𝑇 = 0 while the mediator 𝑀 changes to whatever value it 
would have attained, for each individual, under 𝑇 = 1.

• NIE captures, the portion of the effect that can be explained by mediation 
alone, while disabling the capacity of 𝑌 to respond to 𝑇
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A toolkit for mediation

𝑡 = 𝑓? 𝑢? 𝑚 = 𝑓@ 𝑡, 𝑢@ 𝑦 = 𝑓# 𝑡,𝑚, 𝑢#
• In general, 𝑇𝐸 = 𝑁𝐷𝐸 − 𝑁𝐼𝐸 B
• Where 𝑁𝐼𝐸 B denotes the NIE under the reverse change, i.e., 𝑇 = 1 to 𝑇
= 0

• In linear systems, 𝑇𝐸 = 𝑁𝐷𝐸 + 𝑁𝐼𝐸
• Why?
• Because reversal of change flips the sign of the coefficient
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Conditions for identifying natural effects

We can identify 𝑁𝐷𝐸 and 𝑁𝐼𝐸 provided there exists a set 𝑊
of measured covariates such that
• No member of 𝑊 is a descendent of 𝑇
• 𝑊 blocks all backdoor paths from 𝑀 to 𝑌
• The 𝑊-specific effect of 𝑇 on 𝑀 is identifiable (possibly 

using experiments or adjustments)
• The 𝑊-specific joint effect of {𝑇,𝑀} on Y is identifiable 

(possibly using experiments or adjustments)
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Identification of NDE

• When the first two conditions hold, 

𝑁𝐷𝐸 = ∑E∑6 E[𝑌|𝑇 = 1,𝑀 = 𝑚,𝑊 = 𝑤 − E[𝑌|𝑇 = 0,𝑀
= 𝑚,𝑊 = 𝑤]]. 𝑃(𝑀 = 𝑚|𝑇 = 0,𝑊 = 𝑤)𝑃(𝑊 = 𝑤)
• What about in the non-confounded case?
In the non-confounded case, this further reduces to

𝑁𝐷𝐸 = ∑E∑6 E[𝑌|𝑇 = 1,𝑀 = 𝑚 − E[𝑌|𝑇 = 0,𝑀 = 𝑚]]𝑃(𝑀
= 𝑚|𝑇 = 0)
• Similarly in the non-confounded case, 

𝑁𝐼𝐸 = '
C

E 𝑌 𝑇 = 0,𝑀 = 𝑚 [𝑃 𝑀 = 𝑚 𝑇 = 1 − 𝑃 𝑀 = 𝑚 𝑇 = 0 ]
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Response fraction due to mediation

• 𝑁𝐷𝐸/𝑇𝐸 measures the fraction of the response that is 
transmitted directly, with 𝑀 frozen

• 𝑁𝐼𝐸/𝑇𝐸 measures the fraction of the response that is 
transmitted through 𝑀, with 𝑌 blinded to 𝑇

• (𝑇𝐸 − 𝑁𝐷𝐸)/𝑇𝐸 measures the fraction of the response 
that is necessarily due to 𝑀
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Summary: Counterfactuals, path disabling interventions, Mediation

• Mediation is easy to analyze in the case of linear causal models; need to only 
worry about unobservedconfounding

• But in general, causal models may not be linear – we considered the non-
parametric setting

• Definition of direct/indirect effects relies on “path-disabling”  
interventions instead of “variable-setting” or “do” interventions

• Leads to 
• Nested counterfactuals 𝐸[𝑌&"#,DDE>] and definition of “natural” 

direct (as distinct from controlled direct) and indirect effects. 
• Identification via blocking back-door paths
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• Definition of direct/indirect effects relies on “path-disabling”  
interventions instead of “variable-setting” or “do” interventions

• Leads to 
• Nested counterfactuals 𝐸[𝑌&"#,DDE>] and definition of “natural” 

direct (as distinct from controlled direct) and indirect effects. 
• Identification via blocking back-door paths

• Estimand is very similar to ATT/ATE estimand: 
• For all values 𝑚 of mediator 𝑀 compute mean differences in Y for 

different values 𝑑 of treatment; 
• Weight each  difference with distribution of M under “baseline” 

value of 𝐷
• Nonparametric identification  of NDE/NIE impossible in the presence of 

post-treatment confounders

Summary: Counterfactuals, path disabling interventions, Mediation


