

PennState Institute for Computational and Data Sciences	ence Foundations and Scientific Applications CTSI Clinical and Translational arch Laboratory
Ladder of Causation	
	 Seeing: Most animals, learning machines populate the first rung. They learn from association. Doing: Tool users, including early humanoids, and perhaps some animals, populate the second rung. They can reason about and learn from interventions. Imagining: Humans populate the top rung. They can imagine worlds that do not exist and reason about, and learn from, counterfactuals.
PennState Colore el Information Solere el Martinetador	ples of Causal Inference Vasant G Honavar

PennState Publications Computational Artificial Intelligence Foundations and Scientific Applications CTSI Clience and the Artificial Intelligence Research Laboratory Recap: Causal Effects as Interventions

- If we do(D = 1), then D = 1, and $Y = f_Y(1, U)$
- This Y under do(D = 1) is a function of U and hence differs across individuals
- The mean of Y under the intervention do(D = 1) is:

$$E[Y | do(D = 1)] = \sum_{u} f_{Y} (1, u) P(U = u)$$

- $f_Y(1, u)$ is Y if D is set to 1 for a unit with infinitely many features u
- This value $f_{Y}(1, u)$ is in fact a (unit-level) counterfactual
- "What would Y be if D were set to 1 in a unit with feature values u"?

PennState College of Information Sciences And Technology Principles of Causal Inference

Vasant G Honavar

PennState Institute for Comp and Data Science	Center for Artificial Intelligence Foundations and Scientific Applications CT Artificial Intelligence Research Laboratory	Clinical and Translational Science Institute
Strue	ctural Causal Models Recap	
	A structural causal model $M = (V, U, F, P(u))$ where • V is a set of endogenous (observed) variables. • U is a set of exogenous (unobserved) variables. • F is a set of functions $f : D \rightarrow V_i$ where $D \subseteq V$ $\cup U$ and $V_i \in V$. • $P(u)$ is a probability distribution on U .	:
PennState Callege of Information Sciences And Technology	Principles of Causal Inference	Vasant G Honavar

PennState Institute for Comp and Data Sciences	utational Center for Ar Artificial Inte	tificial Intelligenc ligence Researcl	e Foundation	ns and Scient	tific Applicat	ions CT	Clinical and Translational Science Institute	
Examp X Y = Suppos	be = aU = $bX + U$ be $a = b = 1$	$U = \{1, 2\}$ $P(u = 1]$	(2,3) $(2,3) = \frac{1}{2}, P$	(<i>u</i> = 2)	$=\frac{1}{3}$ and	d P(u =	$(3) = \frac{1}{6}$	
$\begin{array}{ccc} u & X(\\ \hline 1 & \hline 1 \\ 2 & 2 \\ 3 & 3 \end{array}$	$\begin{array}{c cccc} (u) & Y(u) & Y_1 \\ \hline 1 & 2 & 1 \\ 2 & 4 & -5 \\ 3 & 6 & -5 \end{array}$	$\begin{array}{cccc} (u) & Y_2(u) \\ \hline 2 & 3 \\ \hline 3 & 4 \\ \hline 4 & 5 \\ \end{array}$	$\begin{array}{c} Y_3(u) \\ 4 \\ 5 \\ 6 \end{array}$	$\begin{array}{c} X_1(u) \\ 1 \\ 2 \\ 3 \end{array}$	$\begin{array}{c} X_2(u) \\ 1 \\ 2 \\ 3 \end{array}$	$ \begin{array}{c} X_3(u) \\ 1 \\ 2 \\ 3 \end{array} $		
• $X(1) = (1)(1) = 1$. • $Y(1) = (1)X(1) + 1 = (1)(1) + 1 = 2$ • How do we compute $Y_1(2)$ • $Y_1(2)$ is the result of intervention setting $X = 1$ on Y with $U = 2$ • Drop the first Structural equation and set $X = 1$. • Use second structural equation to calculate $Y_1(2)=(1)(1)+2=3$								
PennState Glege of Information Sciences And Technology		Principles	s of Causal Infe	rence			Vasant G Honavar	

PennState Institute for Com and Data Science	putational s	Center Artificia	for Artificial I Intelligenc	Intelligence e Research	Foundation	ns and Scien	tific Applicat	ions CTS	Clinical and Translational Science Institute
Examp y Y = Suppos	ble X = a = bX Se a =	uU + U = b =	U = P(u 1	= {1,2,3 = = 1) =	$=\frac{1}{2}, P(u)$	u = 2) =	$=\frac{1}{3}$ and h	p(u=3)	$)=\frac{1}{6}$
u X	(u)	Y(u)	$Y_1(u)$	$Y_2(u)$	$Y_3(u)$	$X_1(u)$	$X_2(u)$	$X_3(u)$	
1 2 3	1 2 3	2 4 6	2 3 4	- <u>3</u> 4 5	4 5 6	1 2 3	1 2 3	1 2 3	
 We can compute the probability that Y would be 3 had X been 2 P(Y₂ = 3) Y₂(u) = 3 occurs only in the first row, when U = 1 which occurs with probability P(1) = 1/2 									
PennState				Principles	of Causal Infer	rence			Vasant G Honavar

PennState Institute for Computational Artificial Intelligence Research Laboratory								
Example $X = aU$ $U = \{1,2,3\}$ Y = bX + U Suppose $a = b = 1$ $P(u = 1) = \frac{1}{2}$, $P(u = 2) = \frac{1}{3}$ and $P(u = 3) = \frac{1}{6}$								
u X(u)	$Y(u) = Y_1(u)$	$Y_2(u)$	$Y_3(u)$	$X_1(u)$	$X_2(u)$	$X_3(u)$		
$\begin{array}{c} 1 \\ \hline 2 \\ \hline 3 \\ \hline 3 \\ \end{array}$	$\begin{array}{c}2\\-4\\-6\\4\end{array}$	3 4 5	4 5 6	1 2 3	1 2 3	1 2 3		
 We can compute any counterfactual probability P(Y₂ = 4) = P(U = 2) = 1/3 We can compute any joint probability P(Y₁ < 4, Y₂ > 3) = 1/3 Note that this is a cross-world event spanning X = 1 and X = 2 which intersect at U = 2 								
PennState College of Information Sciences And Sectionalogy		Principles	of Causal Infe	rence			Vasant G Honavar	

a 1	PennState	Cer	Center for Artificial Intelligence Foundations and Scientific Applications					
Counterfactual and do Calculations								
$X = \mu \overline{Z} = aX + \mu Y = bZ $ (College) (Skill) (Salary)								
$\overline{u_1}$	U2	X(u)	$\overline{Z(u)}$	$\frac{Y(u)}{Y(u)}$	$Y_0(u)$	$Y_1(u)$	$Z_{0}(u)$	$Z_1(u)$
$\frac{1}{0}$	0	0	0	0	0	ab	0	a
0	1	0	1	b	b	(a + 1)b	1	<i>a</i> + 1
1	0	1	а	ab	0	ab	0	а
1	1	1	a + 1	(a + 1)b	b	(a + 1)b	1	<i>a</i> + 1
 With a ≠ 0, a ≠ 1, P(U₁) and P(U₂) do not appear in the calculations because the condition Z = 1 occurs only for u₁ = 0 and u₂ = 1 forcing Y, Y₁ and Y₂ to take a definite value. But with a = 1, Z = 1 occurs when u₁ = 0 and u₂ = 1 as well as when u₁ = 1 and u₂ = 0 E[Y_{X=1} Z = 1] = b (1 + P(u₁=0)P(u₂=1) + P(u₁=1)P(u₂=0))/P(u₂=0) + E[Y_{X=0} Z = 1] = b (P(u₁=0)P(u₂=1) + P(u₁=1)P(u₂=0))/P(u₂=1) + P(u₁=1)P(u₂=0)) 								
Peni Select	State (Information And Technology			Principles of Cau	usal Inference		Va	isant G Honavar

