

PennState College of Information Sciences And Technology Principles of Causal Inference

Vasant G Honavar

PennState Institute for Computational and Data Sciences			
Chain of Mediation			
$(A) \longrightarrow (B) \longrightarrow (C)$			
 In chain of mediation: A ≠ C , but A ⊥ C B We say this path is open unconditionally, but conditional on 			
the middle node it is blocked			
 As in "blocking the information flow" Note that P(4) = 1 > P(4) so that Correliate 4 while 			
• Note that $P(A C = T) > P(A)$, so that C predicts A, while the causal influence actually flows along $A \to B \to C$.			
Perinciples of Causal Inference Vasant G Honavar			

PennState Institute for Computati and Data Sciences	Center for Artificial Intelligence Foundations and Scientific Applications Artificial Intelligence Research Laboratory	Clinical and Translational Science Institute
Commor	n Cause A C	
 So Un noc Thi "ca 	in the common cause/fork graph, $A \not\perp C$ but $A \perp C \mid B$ conditionally, the path is open . Conditional on the middl de, it is blocked s is exactly like in the chain of mediation, but different usal story"	e
PennState College of Information Sciences And Technology	Principles of Causal Inference	Vasant G Honavar

PennState College of Information Sciences And Technology Principles of Causal Inference

Vasant G Honavar

PennState College of Information Sciences And Technology Principles of Causal Inference

Vasant G Honavar

 Unless we actually are in a situation where we have resources to intervene, we don't observe E[Y|do(D)]

PennState Institute for Col and Data Scien	Center for Artificial Intelligence Foundations and Scientific Applications Artificial Intelligence Research Laboratory	CTSI Clinical and Translational Science Institute
Local Causal Markov Condition		
 Each node in a Causal Graph is independent of its non- descendents conditioned on its parents 		
Min	nimality	
• r	n addition to Causal Markov condition, we have neighboring nodes in a causal graph are dependen	t
PennState Celege of Information Sciences And Technology	Principles of Causal Inference	Vasant G Honavar

Sources And Hermology

Principles of Causal Inference

Vasant G Honavar

Type equation here.

Type equation here.

Then:

EXAMPLE 2 Senter for Artificial Intelligence Foundations and Scientific Applications **Characteristic and Intelligence Research Laboratory** $P(Y|do(X)) \text{ is identifiable if } \exists Z \text{ that d-separates } X \text{ from } Y \text{ in } G_{\underline{X}}$ $P(Y|do(X)) \text{ is identifiable if } \exists Z \text{ that d-separates } X \text{ from } Y \text{ in } G_{\underline{X}}$ $P(Y|do(X = x)) = \sum_{z} P(Y|X = x, z)P(z)$ $= \sum_{z} \frac{P(Y, x, z)}{P(x|z)}$ • IPW has the effect of estimating the interventional probability from a suitably resampled data to mimic an interventional distribution!

Principles of Causal Inference

Vasant G Honavar

PennState Institute for Computation and Data Sciences	Center for Artificial Intelligence Foundations and Scientific Applications CTS Clinical and Translations Artificial Intelligence Research Laboratory	al			
Non-identifiability					
Theorem (Graphical criterion for non-identifiability of joint interventional distributions (Tian, 2002)).					
If there is a bidirected path connecting <i>X</i> to any of its children in <i>G</i> , then $P(V do(X))$ is not identifiable from $P(V)$ and <i>G</i> .					
Note: Bidirected path denotes unobserved confounding.					
Page State					
College of Information Sciences And Technology	Principles of Causal Inference Vasant G Honava	ar			

PennState Institute for Com and Data Science	Center for Artificial Intelligence Foundations an Artificial Intelligence Research Laboratory	d Scientific Applications	CTSI Clinical and Translational Science Institute		
Identi	fiability: Necessary and su	ufficient cor	dition		
Theore P(V do NO bidi	m: (X)) is identifiable from <i>P</i> (V) are rected path connecting <i>X</i> to any	nd <i>G</i> if and only v of its childrer	if there is in <i>G</i> .		
Note: Bidirected path denotes unobserved confounding.					
Note: There is also a graphical criterion in terms of "hedges".					
See Shpitser, I., & Pearl, J. (2008). Complete identification methods for the causal hierarchy. <i>Journal of Machine Learning Research</i> , 9, 1941-1979.					
		Tian and	Pearl, 2002		
PennState College of Information Sciences And Technology	Principles of Causal Inference		Vasant G Honavar		

