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Motivating Examples
* Democracy and GDP

You can get (ok) measures of democracy and GDP growth for every
country in the world.

Soyou observe these measures for all countries.
Can you tell from these data whether democracy hasa positive effect
on GDP growth?
* No. Maybe something else determines both democracy and
GDP growth, and we cannot measure it.

* Cardiovascular health and brushing teeth:

Suppose we find that there is a high correlation between brushing teeth
regularly and low incidence of heart disease.

Can you conclude that not brushing teeth is a cause of heart disease?
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Confounding

©—

* Youfind P(Y|D = d) # P(Y|D = d). Why?

* Intuition: Measured association between D and Y consists of
 causal effect of D on Y and
» confounding due to U

* Formalize intuition? How can we generally “read off”
dependencies from causal graphs?

» Sometimes our causal assumptions can be tested!

PennState -
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Motivation for d-separation

+ Step 1. Assuming a specific graph, which
dependencies/correlations would we seein the data?

« Step2. Wewill think about what “causal effect” actually
means.

+ Step 3. We will try to equate causal effects with
population quantities (“causal inference”)
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Causal Inference
Population Quantities of
» Passively Causal Interest
observable Inference * Actions
features/v ——) | ©  Effects
ariables » Changesto the
+ Population population
means etc.
Using Assu efine
mptions
Causal Graph
« Estimators of + Causal _
population & Assumptions
quantities © + Mechanisms
* E.g. sample * Unobservable
mean Variables
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Causal Graphs

* Three elements:

* \Variables (nodes)

* Edges: Possible direct causal effects (we will make this more
precise)

* Missing edges: Strong assumption about absent causal effects
* Causal graphs are Directed Acyclic Graphs

* Edges are directed

* No directed cycles, sono variable causing itselfindirectly

* Semantics: Every node is independent of its non descendents
given its parents (we will make this more precise)
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DAG Terminology (U}

* Descendants of variables = children, grandchildren...

* Ancestors of variables = parents, grandparents...
* A path is asequence of neighboring arrows, without crossing avariable
more than once

* Direction of the arrow does not matter (when it does, we will say
directed paths)

* What arethe edgesand paths in this graph that start from D?
D->Y D&<U, D&EU>Y, D->Y<U
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Causal DAGs

* Nodes are independent of non-
descendants given their parents

d-separation:

* a graph theoretic criterion
for reading independence statements

* can be computed in linear time (in the
number of edges)
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Three Basic Paths

* Aside from direct connectionsA = B, only three

different paths involving three variables possible in DAGs:

* A-> B- C((chain of mediation)
* A& B - C(common cause/fork)
e A-> B<& C(collider)

* Strategy: Understand how different paths lead to
(conditional) (in)dependence between A and B

» Of course, A > Bmeansthat Al B
* That is, A is not independent of B)
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Chain of Mediation

O—E—0©

* RumorAonagivenday (P(A= 1)= 0. 5)
* Person B knows the rumor sometlmes( = 1),
* Person B sometimes spreads rumor to person C(C = 1).
* Bor Cdonotinvent rumors beyond A
* Youmeasure A, B, Cfor multiple distinct days.
* Will Cbe informative about A?
* Yes, when Cknows arumor, arumor A definitely occurred
s PA=1C=1)=1>PA=1)=050rA ) C

* What happens to this dependence when we only look at
days whenB = 1?

Principles of Causal Inference Vasant G Honavar
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Chin of Mediation

O—E—0©

Example:

* Youmeasure A, B, C for multiple distinct days.
- AJC

»  What happens to this dependence when we only look atdays where B = 1?
* P(A= 1|B= 1)= 1becauseBiis truthful and doesnot invent

rumors.
*  We are sure there was arumor when weknow B = 1
 SoP(A=1B=1)=PA=1B=1C) =AlLC|B

(i.e., Ais independent of C given B)

Principles of Causal Inference Vasant G Honavar
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Chain of Mediation

B—E—©

* In chain of mediation: AL C ,but A 1L C|B

* We saythis path is open unconditionally, but conditional on
the middle node it is blocked

* Asin “blocking the information flow”

* Note that P(A|C = 1) > P(A), sothat Cpredicts A, while
the causal influence actually flows along A -~ B - C.
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7 e

* Example: B denotes Season; A, daily ice cream salesin the
city; and C, daily number of drownings in the city
* Question: Does knowing C help you predictA?
e Bisacommon cause of bothAand C

Common Cause

* A and Care correlated

* Knowing the number of drownings is high, implies
probably B = summer, and that means ice cream sales C

are relatively high
* SoP(A) #P(A|C),orAl C

PennState -
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Common Cause

7 e

* Example: B denotes Season; A, daily ice cream salesin the
city; and C, daily number of drowningsin thecity. AL C
* What if we look at asubset of the data where seasonis held
constant, e.g. B = summer?
* During summer, you seestill variation in ice cream sales
and drownings
* But once you fix B, changes in B cannot
influence A or C.
- AlC|B
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Common Cause

7 e

+ Soin the common causeffork graph, A L C but A LC|B
» Unconditionally, the path is open. Conditional on the middle
node, it is blocked

» This is exactly like in the chain of mediation, but different
“causal story”
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» Example: A and C denote independent coin flips (results are O or 1).

» Suppose B isthe sumof Aand B, so0, 1, or2
+ Can you predict A when you know C?
* No!Because Al C

+ But suppose you know one coin A= 1and B =1. Can you then

predict the other coin C?
* Yes,it HAS to be 0

* SohereAIC,butAl C|B
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Descendants of Colliders @

* A and C areindependent coinflips,
* Bisthe sumof Aand B

« D= 1if B= 2, 0otherwise

* YouknowA= 1andD = 0. Canyou predict C?

* Yes,samereasoning: C hasto be 0, otherwise D would be 1

* SoA JL C |D: Conditioning on descendants of colliders has same
qualitative consequences as conditioning on colliders themselves

Principles of Causal Inference Vasant G Honavar
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Conditioning on Colliders: Visualization

» Sometimes helpful: Boxed variable indicates we condition on it

» Bi-directed arc between the start and end node indicates
associations created by conditioning on collider

* Does not indicate cyclic causation; rather equivalent to an
additional common cause of the nodes connected by the bi-
directed arc

* Isthen treated asanormal path

PennState -
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d-separation

© « Chain of mediation: Path is open unconditionally, but blocked
conditional on the middle node. A L C 1Lt A1C|B.
@/ \@ »  Common cause/fork: Path is open unconditionally, but blocked
conditional on the middle node. A L C but A LLC|B.
/\ * Callider: Path is blocked unconditionally, but open

@ © conditional on the middle node or one of its descendants.
ALCbutA) C|B.

*  What if there are multiple, longer paths between A and C?
Will A and Cbe (conditionally) independent? d-separation
gives the answer

@

®
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d-separation

» A path p is blocked by a set of nodes Z if and only if
1. p contains a chain of nodes A— B — C or a fork
A < B — C such that the middle node B is in Z (i.e., B is
conditioned on), or
2. p contains a collider A — B «+ C such that the collision
node B is not in Z, and no descendant of B is in Z

» If Z blocks every path between two nodes X and Y, then X
and Y are d-separated, conditional on Z, and thus are
independent conditional on Z

» We sometimes write (X 1LY|Z)¢, “Z d-separates X from Y

in graph G”
» (X1Y|Z)c — X1LY|Z (testable implication of the graph)
» “d-separation” = “directional separation” (in directed graphs)

» Path p may be very long, but as long as you block sub-path,
you block the whole path

» X, Y, Z may contain multiple variables

PennState -
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d-separation?

XL 7?2 No.
XL Z|U2No
*X I Z|U V?Yes
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d-separation

C 1 D?
C1LD|A?

CuL DA, B?
I((CLD|A,B,J)?

Principles of Causal Inference Vasant G Honavar

23



&)

PennState ) Center for Artificial Intelligence Foundations and Scientific Applications CTSI b i
RSt Artificial Intelligence Research Laboratory
d-separation

C 1L D?—-No
C1D|A?-No

CurL D|A,B?-Yes
I((CLD|A,B,J)?-No
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@ O—O)
Z and Y d-separated?
* Yes: Collider W blocks only path
What happens when | condition on U? @

+ Just like conditioning on W : Opens path
Z«W->X->Y

Conditional on U, Z and Y are d-connected

What happens when | condition on U, X?

Definition: Path blocked if middle node of chain/fork is conditioned or
collider not conditioned or both

* SoU, X d-separatesZand Y

Principles of Causal Inference
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d-separation

* Theorem [Verma & Pearl, 1998]: If a set of evidence variables E d-
separates Xand ZinanSCM then X1l Z | E

* d-separation can be computed in linear time using a depth-first
search like algorithm.

* d-separation can be used to test whether finding out about the
value of one variable might give us any additional hints about some
other variable, given what we already know.

PennState -
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Causal Graphs as Structural Equations
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Causal Graphs asStructural Equations

* WhatareUsand Ug? @

* Unobserved factors that causally
influence the observables (coin
flips in this example), and @
structural errors

e Uzand Up are random variables, and
hence so are the observed variables

(o e

PennState -
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Causal Graphs asStructural Equations

* Uyl Up @

. A= FU TN

* B = fg(Up) servables

o (C =fC(A'B)' e.g.,C =A+8B @ > ’

e A structural causal model describes

* Our qualitative beliefs about nature
assigns values to variables of interest I Unobservables |
in a domain of study (Ua ) { Us)

e Causal assumptions

© E(A) =E(fa(Uy)
= ZuA(UA = uy)P(f (ug))

Principles of Causal Inference Vasant G Honavar
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Structural Causal Models

Three main ingredients:

» Observed variables V
* Unaobserved variables U
» Unobserved causes of V
* U may contain infinitely many variables (U1, Uz, ...)
» U describe unobserved causes of any relevant feature of a unit
*  Weusually do not make distributional assumptions on U
(and hence V)
Structural functions f for each observable in V
* When we do not specify f the form of f, we say that
functions are nonparametric
» V= endogenous variables (explained in the model)

» U= exogenous variables (not explained in the model)

PennState -
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SCM provide a language for expressing counterfactuals
* do(X) denotes intervention on X

* Intervention on X has the effect of removing all incoming
links into X (or eliminating all direct causes of X)

PennState -
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Connecting the SCM and Joint Probability Distribution

* Under some assumptions (Causal Markov Condition)
an SCM represents a factorization of the joint
probability distribution over the observables:

n
P(X|,X5,.,X,)= H P(X, | DirectCauses(X;))
i=1

* The above equation specifies the full joint probability
distribution over the model variables.

* More on this later

Principles of Causal Inference Vasant G Honavar
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What is a Direct Cause?

The direct causes of X; are the variables which will
change the distribution of X; as we vary them while
holding everything else unchanged

P(X3= x3| do(X1= x1), do(X2= x2), do(X4 = Xx4)

) #
P(X3= x3| do(X1= x1"), do(X2= x2), do(X4 = x4))

P(X3= x3| do(X1= x1), do(X2= x2), do(X4 = x4)) =
P(X3= x3| do(X1= x1), do(X2= x2), do(X4= X4'))

PennState -
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Causal Graphs asStructural Equations

* Uyl Up @

. A= FU TN

* B = fg(Up) servables

o (C =fC(A'B)' e.g.,C =A+8B @ > ’

e A structural causal model describes

e Our qualitative beliefs about
nature assigns values to variables L. Unobservables |
of interest in a domain of study (Ua ) { Us)

e Causal assumptions

* SupposeC = A+ B.
* Intuitively, what's the causal effect of Aon C?
e« %=1 _(¢2=0_(14+B)—(0+B)=1

Principles of Causal Inference Vasant G Honavar

34



Center for Artificial Intelligence Foundations and Scientific Applications CTSI b i
Artificial Intelligence Research Laboratory

Linear Structural Models

+ Structural causal model is NOT aregression.
» It is not an algebraic equation
» It is a causal model: LHS is caused by RHS!
* RearrangingC = A+ B toobtainA = € — B does not make
sense!
* However,
* Youcan useobserved B and observed C to predict A (perfectly)
E[A|B,C] =C-B
» Even perfect regression fit does not tell you anything about
causation!
*  When we use an equation, we need to state whether it is structural
causal model or a regression
* We will use
* Y = fv(.)for structural models and
« E[Y|D]= f(D) for regressions

Principles of Causal Inference Vasant G Honavar
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Linear Structural Equations

* C = A + Bisaspecial caseof alinear structural model
Y = a+ BD +ey

* This is NOT aregression. A regression describes
E[Y |D]: The meanofY given observations of D

e A structural model is a mechanism for the generation of Y,
and predicts Y when you control D, and can be represented
using a causal graph

* A regression is associational, you observe D, predictY

* The regression error is, by construction, independent of D

* The structural error ey may be independent of D, if there is
no variable that influences Y that alsoinfluences D (clear
from graph!)

Principles of Causal Inference Vasant G Honavar
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Parametric versus Nonparametric Structural Equations

* In general, causal graphs are representations of
* non-parametric structural equations (asgeneral as possible)

 Causal graphs based on parametric e.g., linear structural
equations are very restrictive, but easierto understand

*  We will often uselinear models to highlight basic ideas and
then (try to) generalize them to nonparametric models

Principles of Causal Inference Vasant G Honavar
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Causal Effects as Interventions

SupposeC = A+ B. @

How can we obtain the causal

effect of A on C? / \

By intervening on A Observables
independent of other variables @

and comparing C%=! with €4=9
Ca=1 _ Ca=0 =1

Unobservables

fun {Us

PennState -
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Causal Effects as Interventions

©—

*  What structural equation does the above model describe?

* D=fp (V)

* Y= fr(DV)

*  What happens to the causal graph and the structural
equations when we interveneon D i.e,, “do” D = 1?

PennState -
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Causal Effects as Interventions

Intervene on D

&—® - )—®

* D=fr(U) - D=1
s Y= fy(D,V) < Y= fy(1,U)

PennState -
@ Principles of Causal Inference

Science Institute

Vasant G Honavar

40



@ PennState Center for Artificial Intelligence Foundations and Scientific Applications CTSI Clical and Tansttonl
RSt Artificial Intelligence Research Laboratory

a

Causal Effects as Interventions
e D=1
Y =fyr@U)
» This Y under the intervention is afunction of U (so differs
across units because U may vary across units)

* The mean of Y under the intervention do(D = 1) is averaged
over U: 0

EIY [do(D = D] = ) fy LwPU = u)

If D is abinary explanatory or “treatment” variable, we call

E[Y|do(D = 1)] — E[V|do(D = 0)]

the causal effect of D on Y

Principles of Causal Inference Vasant G Honavar
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Causal Effects as Interventions

* E[Y|do(D
DonY

* E[Y |do(D = 1)] isthe average outcome if oneforces D
=1 for all individuals

* Correlation is not causation
E[Y|D = 1]— E[Y|D = 0]
# E[Y|do(D = 1)] — E[Y|do(D = 0)]
* QObservation is notintervention
* Seeing is not the same as doing!

1)] — E[Y |do(D = 0)] isthe causal effect of

PennState -
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Causal Effects as Interventions

e E[Y|do(D = 1)] — E[Y |do(D = 0)] isthe causal
effectof DonY
*  We refer to learning
E[Y|do(D = 1)] — E[Y|do(D = 0)]
as the identifying the causal effect of D on Y

* To “identify” something with something else is to
assert (with justification that thetwo things are equal

Principles of Causal Inference Vasant G Honavar
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Identifying causal effects

* We refer to learning
E[Y|do(D = 1)] — E[Y|do(D = 0)]
as the identifying the causal effect of D on Y

* Two approachesto identify E[Y |do(D = d)]:
* Intervene in the real world
* Intervene on D independently of other variables (e.g., conduct a
randomized experiment): Vd do (D = d)
* Observe the resulting interventional outcomes
* Calculate the causal effectof D onY

* Under identifiability assumptions (SUTVA) try to (uniquely) equate a
causal effect of interest with a function of the population
distribution P(Y, D, X), which we observe passively without
intervening

Principles of Causal Inference Vasant G Honavar
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Population Quantities of Interest
» Observable » Actions
0 Ty | >
tures/variables, ference > Cha to the
> P(Y, X) population
» Counterfactuals

Sample
Define

» Estimators of

population
quantities Causal Graph
» E.g. sample » Causal
mean Assumptions
» Mechanisms
» Unobservable
Variables
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Structural Causal Models — The Story so far

» Directed acyclic graphs or causal graphs
* Three canonical path types
- A> B> C
- A« B> C
- A> B+« C
* d-separation: Variables Z d-separates variables X and Y if Z blocks
every path between X and Y
» d-separation implies conditional independence
* [fZ d-separates X from Y in a causal graph G
thatis XL Y|Z);, - X LY |Z
+ (Note the overloading of 1)
» d-separation is testable from data using
suitable independence tests

Principles of Causal Inference Vasant G Honavar
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Structural causal models — the story so far

* Causal graphs specify a set of structural equations or a structural
causal model (SCM)

*  SCM causally connect observable variables in V' with other
observable variables and / or unobservable variables in U
(“error” terms) via structural functions f

*  f specify causal mechanisms that describe how nature assigns values
to observable variables based on the values of other variables

* Structural equations are not regressions, which are purely predictive

* Structural causal models can be used to specify causal effects in terms of
interventions do(D = d ) aminimal intervention on only D,
independent of other variables, by settingit to somevalue d

* Average causal effect of (binary) D onY is given by

E[Y|do(D = 1)] — E[Y|do(D = 0)]

Principles of Causal Inference Vasant G Honavar
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Exercise

* Consider a linear causal model given by

Z:az+UZ
D=QD+BZDZ+UD
Y:ay‘l'BDyD‘l'Uy

where U, Up, Uy, WLOG are assumed to have zero mean.

* Draw the corresponding linear structural causal model,
assuming that the exogenous variables Uz, Up, Uy are
independent

* Calculate the causal effectof DonY andof ZonY
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Exercise

Z=a;+ U,
D =ap+ BzpZ +Up
Y =ay + BpyD + Uy
where Uy, Up, Uy, are independent and have zero mean.

@ Bzp @ Bpy @

Show that:

E[D |do(Z = 1)]— E[D |do(Z = 0)] = Bz
E[Y |do(D = 1)]— E[Y |do(D = 0)] = Bor
E[Y |doZ = 1)]—- E[Y |do(Z = 0)] =Bz - Bov

PennState -
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Exercise
Z == (ZZ + UZ

D=aD +BZDZ+UD
Y:ay‘l'BDyD‘l'Uy
Uy L Up but Up i Uy

e Draw the structural causal model
* What are the testable implications?
e What s the causal effect of Z on Y?

E[Y |do(Z = 1)]- E[Y |do(Z = 0)]
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Exercise

* Consider the structural causal
model shown

* Write down the structural
equations

* Calculate the causal effect of Z on
Y
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Exercise
Z == (ZZ + UZ

D=aD +BZDZ+UD
Y:ay‘l'BDyD‘l'Uy
Uy L Up but Up i Uy

e Draw the structural causal model
* What are the testable implications?
e What s the causal effect of Z on Y?

E[Y |do(Z = 1)]- E[Y |do(Z = 0)]
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Path Tracing in Linear Graphs

* |If agraph represents alinear SCM, where additionally all variables are
assumedto be normally distributed with mean0 and variance 1, then to
findE[Y|Z = 1] — E[Y|Z = 0]

* List all open (not blocked) paths between Z and Y
* Multiply all path/structural coefficients (= causal effects) along a
given path, and sum up the results

* Conditional causal effects are abit more involved

* Inthis course, wewill usean approximate solution:

e ForE[Y|Z = 1,X = x] — E[Y|Z = 0,X = x],if X does
not open up additional paths between Z and Y, do the above, but
only across paths that are not blocked conditional on X

Principles of Causal Inference Vasant G Honavar
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Path Tracing in Linear Graphs: Colliders

Q :BZD Q BYD Q
- What'sE[Y|Z = 1]— E[Y|Z = O]

e Zero
* Why?
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Path Tracing in Linear Graphs: Colliders

@ IBZD @ IBYD @

* E[Y|Z = 1]- E[Y|Z = 0]=0

* Let’s sayfzp and Spy are positive.

* ISE[Y|Z = 1,D = 1] — E[Y|Z = 0,D = 1] positive?
e Look at units with sasmeD = 1, but different Z.

* IfyouhaveZ = 0butstill D = 1, that must be becauseY makes
up for lack of Z

* Someandifference is negative

e E[Y|Z = 1,D = 1] — E[Y|Z = 0,D = 1] = —Bzp * Bor

* We will return to this. See section 3.8, Pearl, Glymour, Jewell (2016) and
Pearl (2013): “Linear Models: A Useful Microscope for Causal Analysis”
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Estimating causal effect in the presence of confounding

©—

Confounder is any variable that impacts both “treatment” and
"outcome”

Which paths does the association between D and Y consist of?
* Causal effect of D onY and
* Confounding dueto X

* Wewantto estimate E[Y |do(D = d)]
* How?
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Estimating causal effect in the presence of confounding

* HowcanweobtainE[Y |do(D = d)]
* Interveneon D, i.e.,, do(D = d ) independently of all other
variables
* If you cannot intervene on D, find control variables that can be used to
* block all “non-causal” paths between D and Y
* while leaving open all causal paths between D and Y

* without opening up any “non-causal” paths (colliders...) between
DandY

Principles of Causal Inference Vasant G Honavar
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Estimating causal effect in the presence of confounding

Q)
(—®

do(X = 1)@ do(X = 0)@

- +

* Suppose we control for X
* We block the non-causal paths between D and Y without

eliminating the
paths

causal paths or introducing any non-causal

* Now we can estimate the causal effect of D on Y separately
from observational data with X = 0 and with X = 1 and take
a weighted average of the two effects where the weights

correspond to P(X = 1) and P(X = 0)
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The Back-Door Criterion

 Given an ordered pair of variables (D, Y ) in aDAG G, aset of variables X
satisfies the backdoor criterion relative to (D, Y ) if
e nonodein X is adescendantof D, and
* X blocks every path between D and Y that contains an arrow into D
» Ordered pair because we are interested in the causal effectif D on Y
* A path that starts with an arrow into D is called aback-door path
» Blocking back-door paths makes sure we block “bad” paths
* Not conditioning on descendants of D ensures thatweleave all “good
paths open and that we do not open up new bad paths
» Applicable for any DAG, and hence non-parametric, distribution-free
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The Back-Door Criterion: Example

*  Suppose we want the causal effect of interest D onY .

*  Which variables do weneedto adjust for?

e X, in order to block back-door path
DEX> M ¥ ) V)

* Does (X, V) alsosatisfy the back-door
criterion?

* Yes, blocks only back-door path,
no descendant @ @ @

*  May wecondition on M?
* No, M is a descendant of D

Principles of Causal Inference Vasant G Honavar
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Backdoor criterion: Example

* Suppose we want to estimate the causal effect of a drug X
on recovery Y

* X,Y,W are observed, Z is not.

* |s there any unobserved confounder?

* Yes, Z is an unobserved confounder

* How do we de-confound the causal effect X on Y'?

* Look for an observed variable that satisfies the backdoor
criterion

* W is such a variable — it blocks the backdoor path
X@AZ>W >Y,Wisnot adescendent of X

* Upon adjusting for W we have
P(Y = yldo(X = x)) = Z P(Y = yIX = x,W = w)P(w)

* Hence, the causal effect of X on Y is identifiable from
observational data
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Usi the Back-Door Criterion for Identification @

e Bi-directed arc is additional unobserved confounder of

XandY andhence D andY "
* Does X fulfill the BDCwrt D and Y in this graph?
s WewantE[Y |do(D = 1)]— E[Y |do(D = 1)]
* Wemeasure P(Y,D, X ). @ @
*  Wesomehow needto condition on X
* Question: How can were-expressE[Y |do(D = 1)] as

something that is conditional on X without making
additional assumptions?

e law of Iterated Expectations!
E[Y |do(D = 1)]=

ZE[Y|do(D —1),X = x] P(X = x|do(D = 1))
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Using the Back-Door Criterion for Identification
E[Y |do(D = 1)] =

Z E[Y|do(D = 1),X = x] - P(X = x|do(D = 1))

X

(x)

- WhatisP(X = x|do(D = 1))? @4,@

e D doesnot affect X, so
P(X = x|do(D = 1)) = P(X = x)
E[Y |do(D = 1)] =

Z E[Y|do(D = 1),X = ] - P(X = x)

X
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Usmg the Back-Door Criterion for Identification
E[Y |do(D = 1)] =

Z E[¥|do(D = 1),X = x] - P(X = %)

X

» Howto getrid of the other do(D = 1)?

» Conditionalon X , observingD = 1isthe
sameasdoing D = 1, at least with

respecttoY E[Y |do(D = 1)] =

Z E[Y|D = 1,X

X

Hence the causal effect of D on Y is given by

x] - P(X = x)

Y.(E[YID =1,%

Principles of Causal Inference
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Estimation
Causal effect of D on Y is given by

Y.(E[YID=1X=x] —E[Y|D = 0,X = x])P(X = x)

*  With population data:
* Compute x -specific difference in means, then compute weighted
average of those x —specific differences, using P(X = x)

*  With sample:

* One-on-one matching. For every unit in sample with X = xand
D = 1,find a matching personwith X = x, butD = 0.

* Compute pair-wise differencein Y .

* Take their mean.
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The Back-Door Criterion

 Given an ordered pair of variables (D, Y ) in aDAG G, aset of variables X
satisfies the backdoor criterion relative to (D, Y ) if
e nonodein X is adescendantof D, and
* X blocks every path between D and Y that contains an arrow into D
» Ordered pair because we are interested in the causal effectif D on Y
* A path that starts with an arrow into D is called aback-door path
» Blocking back-door paths makes sure we block “bad” paths
* Not conditioning on descendants of D ensures thatweleave all “good
paths open and that we do not open up new bad paths
» Applicable for any DAG, and hence non-parametric, distribution-free
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Back-door criterion A ~
l / c \
T > E >
* Which nodes satisfy the back-door criterion for causal effect
of TonY?
* {A, C}
* {B,C}
* {C, D}
* {A, B, C}
* {A, C, D}

* {8,C, D}
*{A,B,C D}

<<=
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Back-door criterion Dissected

* All backdoor paths start with an
arrow into the treatment variable

* This implies they can be blocked by
conditioning on parents of the
treatment, if they are observed

* Parents of treatment (POT) criterion:
Any causal effect of Ton Y can be
identified by conditioning on all of
the parents of T if they are
observed.

* Sets of nodes meeting POT criterion:
*{A C}

Principles of Causal Inference
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Back-door criterion Dissected 2

criterion: If no backdoor path shares

* Parents of the outcome (POO) l > C
> E

/
\t

< <—J<w

a node with any causal path (other T
than T and Y), then conditioning on

all parents of the outcome Y (if they

are observed) that do not lie on a

causal path from T to Y identifies

the total causal effectof T on Y.

* Do these sets of nodes meet the
POO criterion?
* {C,D} Yes
* {C, D, E} No. (Why?)

Principles of Causal Inference
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Back-door criterion Dissected

* All unconditionally open backdoor
paths must contain a variable that is
a joint direct or indirect cause of
treatment T and outcome, Y.

* Joint Ancestor (JAN) Criterion:
Conditioning exclusively on all joint
ancestors of T and Y identifies the
total causal effect of T on Y. (Must
avoid conditioning on additional
variables)

* Can you find a set of nodes meet the
JAN criterion?

* {A,B,C} Yes

Principles of Causal Inference
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Back-door criterion Dissected

Clini
Scient

covariates that satisfy the criteria are indeed observed.
* Backdoor criterion implies ignorability (of Rubin’s potential

omitted).

* Identifiability using the backdoor criteria or any of its special
cases (PQT, POO, JAN) assume that there exist at least one set of

outcomes framework) and identifies a set of covariates that
when controlled and adjusted for, ensure ignorability when the
causal graph is correctly specified (meaning all of the relevant
variables are included, and no edges that should be present are
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Back-door criterion Dissected

* What if the complete structure of the DAG is unknown?

criterion

outcome, or both (VanderWeele and Shpitser, 2011).

* Confounder selection criterion (COS) is implied by the backdoor

* Even if the DAG is only partially specified, if there is a set of
observed covariates that meets the backdoor criterion (i.e., if
we are willing to assume that the unobserved variables do not
influence who gets treated), then it suffices to condition on all
observed pretreatment covariates that either cause treatment,
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Confounding in the language of causal calculus

« Confounder is any factor that makes P(Y1X)=P(Y|do(x))
* To de-confound two variables X and Y
* We need to block all non-causal paths between X and Y
without perturbing any causal paths
* A backdoor path is any path from X to Y that starts
with an arrow pointing into X
* X and Y will be de-confounded if we block every
such backdoor path
* |f we do this by controlling for some variables Z, we
need to make sure that no member of Zis a
descendent of X on a causal path
* That is all there is to it!
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Confounding through the lens of causal calculus

X A

Source: The book of Why, Pearl and Mackenzie

However,

v What do we need to control for in
order to de-confound X and Y?
* Nothing!
* There is no backdoor path
into X
¢ A, B are descendants of X
(and hence should not be
controlled for)

* B passes a classical epidemiological definition of confounding
* But if we control for B, we introduce confounding rather than

eliminating it!

@ PennState
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Confounding through the lens of causal calculus

§ 3

Source: The book of Why, Pearl and Mackenzie
What do we need to control for in order to de-confound X and Y?
* There is a backdoor path X €B 2Y
* We can block it only by blocking B
* |f Bis observable, we are all set
* If Bis unobservable
* We cannot control for it, so there is no way we can de-confound X and Y,
so there is no way to estimate the causal effect of X on Y without running
aRCT
 Current statistical practice would advocate controlling for A, a proxy of B —
but this only partially eliminates the confounding bias and introduces a
collider biasl
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Confounding through the lens of causal calculus

Source: The book of Why, Pearl and Mackenzie

What do we need to control for in order to de-confound X and Y?
* There is a backdoor path X €A 2B <C - Y which is already blocked by B

* Some of the correlation based statistical definitions of confounding would
identify B as a confounder!

* B becomes a confounder when we control for it!
* Example
* B—Seatbelt use, X — Smoking, A — Attitude towards societal norms, C—
Attitude towards safety and health related measures, Y — lung cancer
* A 2006 study found B to be correlated with both X and Y
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Confounding through the lens of causal calculus

A B (]
-9

D

_’.

Source: The book of Why, Pear| and Mackenzie

What do we need to control for in order to de-confound X and Y?

* A, B, C, D are pre-treatment variables, X is the treatment

* The only backdoor path X €A = B €D-> E->Y is already blocked by the
collider B, so no need to control for anything!

* Standard statistical practice would be to control for B and C

* Reinforced by Rubin (2009): “To avoid conditioning on some observed
covariates ... is non-scientific ad hockery”

* Controlling for B and C introduces confounding (unless we control for A or
D as well

PennState -
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Confounding in the language of causal calculus

« Confounder is any factor that makes P(Y1X)=P(Y|do(x))
* To de-confound two variables X and Y
* We need to block all non-causal paths between X and Y
without perturbing any causal paths
* A backdoor path is any path from X to Y that starts
with an arrow pointing into X
* X and Y will be de-confounded if we block every
such backdoor path
* |f we do this by controlling for some variables Z, we
need to make sure that no member of Zis a
descendent of X on a causal path
* That is all there is to it!
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Confounding through the lens of causal calculus

* Wrong! Rubin (2009): “To avoid conditioning on some observed
covariates ... is non-scientific ad hockery”

* Wrong! A major 2007 paper in the Journal of the American
Medical Association advises investigators to condition on
variables that are predictive of treatment assignment without
regard to whether they are predictive of outcome.
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Confounding and causal models

e If we canidentify and measure the confounders, wecan control
forthem

e But as Pearl's work has shown, standard epidemiological and
statistical criteria for identifying confounders are flawed

e Both false positive and false negative confounders canyield
misleading conclusions

e Causal calculus and tools based on graph theoretic criteria like d-
separation provide effective methods for identifying the
confounders (and only the confounders)
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Review exercises — Back door criterion
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O—0)—0

*  Which set of variables in this graph satisfy the BDC with respect to the
causal effect of DonY?

*  Theemptyset!

* E[Y|do(D = 1)]- E[Y|do(D = 0) = E[Y|D =1]- E[Y|D=0]
(correlation is causation)
* No pathsinto D - just like weintervened onit
* But you may have learned in statistics that...

* “M correlates with D and Y, so you need to control for it. Otherwise,
you have omitted-variable bias”

* Badidea: Conditional on M, D and Y are d-separated!

*  Montgomery et al. 2018 AJPS estimate that 50 % of political science
studies suffer from this problem (of controlling for post-treatment variables)

PennState -
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»  Which set of variables in this graph satisfy the BDC wrt effect of D on Y?
* The empty set - no controls necessary
* E[Y|do(D = 1)]- E[Y]|do(D = 0)]
= E[Y|D= A1]- E[Y|D = 0].
* What is E[Y|D]?
* E[Y|D] = E[Y] byd-separation.

» Correct estimator equals
« E[Y]- E[Y]= 0.Whichis also clear from thegraph.
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“M correlates with D and Y . You may have leamed in stats
that you need to control for M; or else suffer from omitted

variable bias”

Bad idea: Conditional on M, D and Y are d-connected!
Collider!

E[Y|D = 1,M = m] #E[Y|D = 1]
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Post-Treatment Variables: General Case ..
(u)

O—W—O
\/

» This graph applies to situations where there are no back-door
paths into D. Perhaps via randomization, or you block them by
conditioning on X (not shown).

+ Conditioning on M is forbidden by the BDC and will have two
consequences:

* You block a causal path, which you do not want
» You open up anon-causal path, which you do not want
» This introduces bias, and it can go in anydirection
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Post-Treatment Variables: Remarks

» Although it is intuitively clear using causal graphs, the fact
that conditioning on the descendants of the treatment may
actually introduce bias is not well-known

» Usually not mentioned in textbooks that do not use causal
graphs

* Even if mentioned, not really explained (see for example
“Mostly Hamless Econometrics”, section on “Bad Control”)

* What is somewhat better known is “selection bias” is also
often related to post-treatment variables
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Why does a music record get into the Rolling Stone?

*  Schmutz 2005: Why do music records get into the Rolling Stone
500 Greatest Albums of All Time?

»  Compare these 500 records to 1,200 additional, also successful
records (e.g. no. 1records)

* Result: Strong negative association between being ano. 1 record
and being included in Rolling Stone list

» Maybe Rolling Stone journalists are snobby and disregard
commercial success?

* Orit’s selection bias...

Source: Elwert and Winship 2014, “‘Endogenous Selection Bias”
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Why does a music record get into the Rolling Stone?

* If Schmutz 2005 had sampled randomly, inclusion in data
S= 1 would have only been driven by acoin flip

» Sample is conditional on S= 1, but S is d-separated from
everything, so could be ignored
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Why does amusic record get into the Rolling Stone?

p <
(rs)—(®

»  Schmutz 2005 did not sample from general population;
included units depending on No.1 and RS variable
* OpensNo.1 - S« RSpath

» Creates non-causal association between No.1 and RSeven
without confounders
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Motherhood and wages

* Can you study the causal relationship between motherhood
and wages offered by employers?
* Selection bias (wages are reported only for employed
women)
* Mothers’ choice to be employed may be influenced by
the wages offered
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Selection Bias

+  Similar problems may occur whenever units are sampled based on
some success (or failure) measure

» This is essentially what every business school’s “case studies” do

+ If weareinterested in the causal effect of some factor on
“success”, sample everyone, not only the successful

* However, sometimes sample selection is hard to avoid (e.g.
motherhood-wage example)

 Solutions are possible that use parametric assumptions on the
structural functions (e.g. linearity) or distributional assumptions
on the errors (e.g. normality)

»  Work of James Heckman (Nobel-laureate in Economics)

PennState -
@ Principles of Causal Inference Vasant G Honavar
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Recap of Terminology

* Causal graphs are our assumptions

+ Sometimes, they have testable implications, via d-
separation of variables

* Weobserve P(Y, X, D) (“observables”); sowealso
observe
* P(X) and E[Y|X] etc.

* Unless we actually are in a situation where we have
resources to intervene, wedon’t observe E[Y|do(D)]

» The process of getting from E[Y |do(D)] to something like
> EIY|D, X= x]P(X = x) using our assumptions is called
identification

Principles of Causal Inference Vasant G Ponavar
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Plan

» Covariate-Specific Effects: Definition and Identification

» Contrast covariate-specific effects with multiple interventions;
identification in easy case

» Multiple Interventions: Complicated case, identification under
linearity assumption

» Tofind solution to nonparametric version, introduce “do-
Calculus”

PennState -
@ Principles of Causal Inference Vasant G Ponavar
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(x)

3

Covariate-specific Effects

&

* Whatis E[Y|do(D = 1), X = x]?
 It's the effect of setting D = 1 for those units with X = x
» Covariate-specific effect

» Effect heterogeneity:
* E[Y|do(D = 1),X = x]- E[Y|do(D = 0), X = x] may
differ for different x! In fact, almost always will (X
“moderates” effect of D on'Y)

Principles of Causal Inference Vasant G Ponavar
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Covariate-specific Effects: Examples

* Messages D, socio-economic characteristics X , turnout Y
(Imai/Strauss 2011)

* Limited budget for messages D, which people (X ) should you
target asto maximize turnout?

* X ethnic heterogeneity in avillage, D size of vote district, Y electoral
result (candidate with extreme preferences, educated candidate)

* Beath et al. 2016:
* When vote districts are small you elect an extremist who bargains
hard for your ethnically homogeneous borough

* If the voting districts are large, you tend to elect a candidate that
represents the preferences of the electorate at large

Principles of Causal Inference Vasant G Penavar
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Covariate-specific Effects: Identification

(x)

3

&

* When we used the BDC, wefirst wrote E[Y |[do(D = 1)]=
ZE[Y|do(D = 1),X = x]P(X = x|do(D = 1))
X

»  What were the next two steps?
e P(x= x|do(D= 1))= P(X = x) becauseif X fulfills BDC, it
contains no descendants of D
e E[Y|do(D = 1),X = x]= E[Y|D = 1,X = x]:
» Conditional on X, doing D is like observing D

Principles of Causal Inference Vasant G Honavar
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Covariate-specific Effects: Identification

&6

» Sowehave already proven that
e E[Y|do(D =1),X=x]= E[YID=1,X=x]ifX
fulfills BDC
» More general: X-specific effect identified if some set (X, Z )
fulfills BDC (e.g. if X alone does not).
» So for X -specific effect, you always condition on X, don’t
average over X

Principles of Causal Inference Vasant G Honavar
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Covariate-specific Effects vs. Causal Interactions
s E[Y|do(D = 1),X = x] - E[Y|do(D = 0), X = x] will be
usually different from
E[Y|do(D = 1),do(X = x)] - E[Y|do(D = 0),do(X = x))]
» Justlike E[Y |do(D = 1)] will be usually different from
E[Y|D=1]
+ “Doing” two or more variables: “multiple interventions”
* IfE[Y|do(D = 1),do(X = x)] — E[Y|do(D = 0),do(X = x))]
varies for different x, then D and X “causally” interact
+ Sending messagesto low-income people will affect their turnout
differently than sending messages and increasing their income!
 The distinction between covariate-specific effects/effect
heterogeneity and causal interaction gets totally lost in
traditional statistics

Principles of Causal Inference Vasant G Honevar
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The Back-Door Criterion for Multiple Interventions

» Given an ordered pair of sets of variables (D, Y) inaDAG G, aset
of variables X satisfies the backdoor criterion relative to (D, Y) if

* nonode in X isa descendant of D, and
» X blocks every path between D and Y'in Gp

* Disaset,soD= (D1, D2...)
» Otherwise, nothing changes!

Principles of Causal Inference Vasant G Honavar
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Multiple Interventions: Where the BDC fails

» Let’s first analyze this graph:
« D1 affects X, D2 affects Y
* X affects D2 and Y
« Doaffects Y
*  Example:
* Medical treatment D1 at time 1.
* X health status after awhile.

 If healthy, stop treatment. If not, give
treatment D2 at time 2.
» Then check health Y again

Source: Biostatistics, James Robins

Principles of Causal Inference
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Time-Varying Treatments: Problem with BDC @

* Question: What's the effect of agiven “strategy”

(D1, D2) on Y ?

» Put differently, can weidentify the joint direct @
effect of (D1, D2)?

*  Which variables do we need to adjustfor?

Principles of Causal Inference Vasant G Honavar
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Time-Varying Treatments: Problem with BDC @

+ To get at the effect on Y of interventions

D;and D,:

* Youneedto adjust for X', whichisa
common causeof D2and Y
e But Xis also descendant of D1in G, so

+ X doesnot fulfill BDC!

» Conditioning on X would block part of
the effect of D1 weare actually
interested in!

+ “Post-treatment confounder”
* Is there a way around this?

* Notif all we have is BDC

Principles of Causal Inference
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Time-Varying Treatment: Linear Version @

» If the SCM of this graph is linear,
which paths constitute the effect of
D1onYif D2 isfixed? @

* Di- YandDi—» X-> Y

@ PennState

Principles of Causal Inference Vasant G Honavar

104



@ PennState Center for Artificial Intelligence Foundations and Scientific Applications CTSI L
RSt Artificial Intelligence Research Laboratory

Time-Varying Treatment: Linear Version @
*  Write down the formula for the effect of D1 on Y
if D2 is fixed using this graph e
® Bov+ Bxv Box
X
* How would you estimate Bpy and Bxy? <>
* Regression of Y on D1, X and Dz Bo Bx,
* And Bpix?
* Regression of X on D, @ Bxy
» Then just multiply estimates of Bxy and
Boix and add estimate of Bp:y Bo /v
 This is an example of two-stage

estimation @

Principles of Causal Inference Vasant G Honavar
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Do-Calculus

Do-calculus is for causal inference what

Newton’s laws of motion are for classical physics

PennState -
@ SIS Principles of Causal Inference
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Structural Causal Models: The Story So Far

Causal conclusions require causal assumptions

e Structural causal models encode causal assumptions
* Causal assumptions have testable implications — conditional
independence relations (via d-separation)
* Causal effects are defined in terms of interventions
* Average causal effect of (binary) D onY is given by
E[Y|do(D = 1)] — E[Y|do(D = 0)]
*  Weobserve (samples from) P(Y, X, D) and hence we can obtain
P(X) and E[Y |X] etc.
* Unless we have the resources and ability to experiment, we
seldom observe P(Y|do(D)) and hence can’t use it to obtain

E[Y |do(D)]

Principles of Causal Inference Vasant G Hainavar
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Structural Causal Models: The Story So Far
* Causal effects are defined in terms of interventions
* Average causal effect of (binary) D onY is given by
E[Y|do(D = 1)] — E[Y|do(D = 0)]
*  Weobserve (samplesfrom) P (Y, X, D) and hence we can obtain
P(X) and E[Y |X] etc.
* Unless we have the resources and ability to experiment, we
seldom observe P(Y|do(D)) and hence can’t use it to obtain
E[Y |do(D)]

* |dentification of causal effects from observational data entails
reducing E'[Y |do(D)] to an expression that is free of do(), e.g.,
Y« EIY|D,X]P(X = x) using the causal assumption encoded in the
causal graph

* Once such reductionis done, E [Y |do(D)] can be estimated from
observational data

Principles of Causal Inference Vasant G Haornavar
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Structural Causal Models: The Story So Far
* |dentification of causal effects from observational data entails
reducing E'[Y |do(D)] to an expression that is free of do(), e.g.,
Yx E[Y|D,X]P(X = x) using the causal assumptions encoded in the
causal graph
* Once such reductionisdone, E [Y |do(D)] can be estimated from
observational data
* |n some cases, such identification is trivial. In other cases, it is not
* Primary challenge: observed or unobserved confounders
* |f we know the confounders X, and they are observed, we can adjust
forthemE[Y |do(D)] = X, E[Y|D,X]P(X = x)
* How do we know which confounders to adjust for?

* Confounders are precisely those variables which make
P(Y|do(D) # P(Y|D)

Principles of Causal Inference Vasant G Haoravar
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Structural Causal Models: The Story So Far

* If we know the confounders X, and they are observed, we can adjust for
themE[Y |do(D)] = Y, E[Y|D,X]P(X = x)

* How do we know which confounders to adjust for?

* Confounders are precisely those variables which make
P(Y|do(D) # P(Y|D)

* Backdoor criterion allows us to identify the confounders

* A path that starts with anarrow into D is called aback-door path

Institute for Computational
Data Sciences

* Blocking back-door paths makes sure we block bad, i.e., non-causal,
paths

* Not conditioning on descendants of D ensures that we leave all
good, i.e., causal, paths open and that wedo not open up new
bad paths

Principles of Causal Inference Vasant G Honavar
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Structural Causal Models: The Story So Far

e Backdoor criterion (BDC) allows us to identify the confounders
* BDCimplies
* Parents of treatment criterion
* Parents of outcome criterion
* Joint ancestors (of treatment and outcome)
* Is BDC powerful enough to identify all causal effects that are
identifiable from any causal graph?
* No!
* More formally, BDC is sound, but not complete for identifiability of
causal effects from causal graphs
* Isthere a general algorithm that we can use to identify any causal
effect that is identifiable from a causal graph?

Principles of Causal Inference Vasant G Honavar
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Identifying causal effects

Surgeon General (1964):
- o P(c|do(s))=P(c|s)
Smoking Cancer

Tobacco Industry (and Ron Fisher) |
Genotype (unobserved)
P(c | do(s)) =P (c)

[ ] [ ]
Smoking Cancer

Combined: -
oo P (c | do(s)) is not identifiable!

. .
o———0
Smoking Cancer

PennState -
@ o Principles of Causal Inference Vasant G Honavar
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The Front-Door Criterion (FDC)

Suppose we assume:
Causal assumptions:

* Smoking gene (G) causes both smoking
(S) and Lung Cancer (C)
* Smoking (S) causes lung Tar (T)
* Tar (T) causes Lung Cancer (C)
Smoking Tar cancer ¢ Causal effect of interest is
E[C|do(S = 1)] — E[C|do(S = 0)]

Smoking Gene

Suppose

¢ We have collected observational dataon S, T, C for a set of
individuals

* We cannot collect data for G because we do not know if a
smoking gene exists

Principles of Causal Inference Vasant G Honavar
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Dat

The Front-Door Criterion (FDC)

Suppose we assume:

Causal assumptions:

* Smoking gene (G) causes both smoking
(S) and Lung Cancer (C)

* Smoking (S) causes lung Tar (T)

* Tar (T) causes Lung Cancer (C)

* Causal effect of interest is

E[C|do(S = 1)] — E[C|do(S = 0)]

Smoking Gene

Smoking Tar Cancer

* Are there any confounders?

* Yes. G is the only confounder

* Are there any variables that satisfy the back-door criterion
with respect to (S,C) ?

Principles of Causal Inference Vasant G Honavar
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The Front-Door Criterion (FDC)

Suppose we assume: Causal assumptions:
Smoking Gene * Smoking gene (G) causes both smoking
(S) and Lung Cancer (C)
* Smoking (S) causes lung Tar (T)
e Tar (T) causes Lung Cancer (C)
* Causal effect of interest is

Smoking Tar Cancer E[CldO(S = 1)] - E[CldO(S = 0)]

Are there any variables that satisfy the back-door criterion
with respect to (S, C)?

S, T and C are not candidates

What about G?

G would satisfy the backdoor criterion if it were observed!
But it is not!

Principles of Causal Inference Vasant G Honavar
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The Front-Door Criterion (FDC)

Suppose we assume: Causal assumptions:
Smoking Gene * Smoking gene (G) causes both smoking
(S) and Lung Cancer (C)
* Smoking (S) causes lung Tar (T)
e Tar (T) causes Lung Cancer (C)
* Causal effect of interest is
Smoking Tar Cancer E[C |d0(5 = 1)] - E[C |dO(S = 0)]

* We cannot use the back door to adjust for G
* |s there another way?

Principles of Causal Inference Vasant G Honavar
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The Front-Door Criterion (FDC)

Suppose we assume: E[C|do(S = 1)] — E[C|do(S = 0)]
Smoking Gene * We cannot use BDC to adjust for G
* |s there another way?
* We can get the causal effect of Son T
* We can get the causal effect of T on C

* And combine them to get the causal
Smoking Tar Cancer effect of Son C

Principles of Causal Inference Vasant G Honavar
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The Front-Door Criterion (FDC)
E[C|do(S = 1)] — E[C|do(S = 0)]

Smoking Tar Cancer
* We can get the causal effectof Son T

* Why?

* When we condition on S, There is no unblocked backdoor path
from S to C because S € G > C < T is already blocked by the
collider C

* We canobserve P(T|S =1) — P(T|S = 0) to get the causal
effectof SonT

Principles of Causal Inference Vasant G Honavar
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The Front-Door Criterion (FDC)
E[C|do(S = 1)] — E[C|do(S = 0)]

Smoking Tar Cancer
* We can get the causal effect of T on C

* How?

* We can block the backdoor path into T whichisT € S € G 2>
C by adjusting for S

* Wecanget P(C|do(T = 1)) — P(S|do(T = 0)) using the
backdoor adjustment formula

Principles of Causal Inference Vasant G Honavar
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The Front-Door Criterion (FDC)
E[C|do(S = 1)] — E[C|do(S = 0)]
Smoking Tar Cancer
We have the causal effect of S on T and of T on C
Can we use these to get the causal effect of S on C?
Cancer can come aboutin2ways: T =1orT =0
If we do(S = 1), the probabilities of these states are P(T
= 1|do(S = 1)) and P(T = 0|do(S = 1))
If we do(S = 0), they are P(T = 1|do(S = 0)) and P(T
= 0|do(S = 0))
If T = 0, the probability of canceris P(C| T = 0)
If T = 1, the probability of canceris P(C| T = 1)
We can compute P(C|do(S)) by weighting the two scenarios
according to their respective probabilities under do(S)
We canthenget E[C|do(S = 1)] — E[C|do(S = 0)]

Principles of Causal Inference Vasant G Honavar
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The Front-Door Criterion (FDC)
E[C|do(S = 1)] — E[C|do(S = 0)]

Smoking Tar Cancer

* What did we do?

* To obtain the causal effect of S on C, we adjusted for S and T
which lie on the front-door path from S to C

P(Cldo(S)) = ZP(T =t,S)ZP(C|S — 5T =0DP(S = 5)

t s

* Thereis do on the LHS but no do on the RHS!

* @, the unobserved confounder does not appear in the RHS

* |f the causal graph shown is an accurate model of causal
mechanism of cancer, the controversy about whether and to what
extent smoking causes cancer could have been answered by an
observational study that measured S, T, and C

PennState -
@ Sl o sty Principles of Causal Inference Vasant G Honavar
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Front-Door Criterion
* Glynn and Kashin (2018) studied the effect of job training services
on earnings (without assuming a SCM)
* Data from RCT compared with an observational study
* They did not use a causal diagram but compared RCT with results
of back-door and front-door adjustments
* Motivation is unobserved — back door criterion can’t be applied,
but Glynn and Kashin did with other potential confounders like
age, gender, race, education
* Strictly speaking, front-door criterion can also not be applied
exactly — because of the direct link from Motivation to Showed up
* Adjustment using FDC beats that using BDC in terms of
agreement with RCT Motvation
* Study shows the power of FDC

Glynn, Adam N., and Konstantin Kashin. "Front-door versus back-door adjustment with unmeasured
confounding: Bias formulas for front-door and hybrid adjustments with application to a job training .
program." Journal of the American Statistical Association 113, no. 523 (2018): 1040-1049. Signed Up Showed Up Eamings

PennState -
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Structural Causal Models: The Story So Far

* Backdoor criterion (BDC) allows us to adjust for confounders

* BDCis not powerful enough to identify all causal effects that are
identifiable from any causal graph.

* Front-door criterion allows us (under some conditions when there are
unobserved confounders) to identify causal effects that cannot be
identified using BDC

e BDCis sound, but not complete for identifiability of causal effects
from causal graphs
* Sois FDC

* Is there a general algorithm that we can use to identify any causal

effect that is identifiable from a causal graph?

Principles of Causal Inference Vasant G Honavar
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The do-Calculus

* Are there some simple rules which you can apply to any DAG in
order to check whether and how any causal effect — based covariate
specific, joint, etc. - can be identified?

* The do-calculus! (Judea Pearl)
* Perhaps the most important body of work in causal inference

e Three rules/laws/theorems:
 Insertion/Deletion of Observations
* Action/Observation Exchange
* Insertion/Deletion of Actions

* “Observation” = conditioning on variable

e “Action” = do-ingvariable

PennState -
@ Principles of Causal Inference Vasant G Honavar
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Identifying causal effects

* Postulate a causal graph (causal assumptions)
* See how the estimand (causal effect of interest) can be written

as a function of the postulated causal graph
* Check whether this function can be calculated from
observations (using do calculus)

PennState -
@ aven Principles of Causal Inference Vasant G Honavar
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Causal identifiability

* Given a causal Bayesian network G, we say that a causal
effect P(Y|do (X)) is identifiable when P(Y|do(X)) can
be computed using only the joint distribution over the
observable variables

PennState -
@ Principles of Causal Inference Vasant G Honavar
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Bayesian network factorization

Given a probability distribution P and a DAG G, P factorizes
according to G if

P(Xy -+ Xp) = [lj=1 P(X;|Parents(X;))
Where V i € [n], Parents(X;) are parents of X; in G

Principles of Causal Inference Vasant G Honavar
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Modularity of interventions

If we intervene on a set of nodes with indices S € [n] setting them to
constants, then for all i € [n] we have:

* Ifi & S, then P(X;|Parents(X;)) remains unchanged
¢ Ifi €S, then

* P(X; = v|Parents(X;)) = 1 if the intervention sets X; = v

* P(X; = v|Parents(X;)) = 0 if the intervention sets X; =u # v
* What does this mean?

* Interventions are local: intervening on a variable X; changes only the
DGP for X;; It does not change the DGP for any other variables

¢ It is because of modularity that we can encode many different
interventional distributions in a single causal graph

Principles of Causal Inference Vasant G Honavar
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Local Causal Markov Condition

* Each node in a Causal Graph is independent of its non-
descendents conditioned on its parents

Minimality

* |n addition to Causal Markov condition, we have
neighboring nodes in a causal graph are dependent

PennState -
@ Principles of Causal Inference Vasant G Honavar
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Because of modularity, we can encode many
interventional distributions in a single causal graph

(3} Cawed graph for chwervatioral datrs (b) Cawved goaph afier intervention on 7 (e} Cawed geaph afier interventon on Ty
baticn (ireey distribation) (mierven distrbuton)
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Global Markov Property

Theorem: Given that P is Markov with respect to G (satisfies
the local Markov assumption — every node is independent of
its non-descendents conditioned on its parents in G), if X and
Y are d-separated in G conditioned on Z, then X and Y are
independent in P conditioned on Z.

X[lcYIZ-X1IpYI|Z
Exercise: Prove that the following are equivalent:
* Global Markov property
* Local Causal Markov condition

* Bayesian network factorization

Principles of Causal Inference Vasant G Honavar

133



@ PennState Center for Artificial Intelligence Foundations and Scientific Applications CTSI G
Artificial Intelligence Research Laboratory

Institute for Computational
and Data Sciences

Truncated factorization

Original factorization .
P(X;-X,) = nP(Xi|Parents(Xi))
i=1

Now if we intervene on a set of nodes with indices S € [n]
setting them to constants, then for all i € [n] we have:
* P(Xy - Xyldo(S = 5) = [ljes P(X;|Parents(X;)) if

X -+ X;, assume values consistent with the intervention
* P(X; -+ Xp|do(S = s) = 0 otherwise

Principles of Causal Inference Vasant G Honavar
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Backdoor adjustment theorem

* Givenan ordered pair of variables (T, Y ) in aDAG G, aset of
variables W satisfies the backdoor criterion relative to (T, Y ) if
* nonodein W isadescendantof T, and
* W blocks every path fromT to Y
Theorem: If the modularity and positivity assumptions hold, and
W satisfies the backdoor criterion with respect to (T,Y ), we can
identify the causal effect of T on Y:

P(Y|do(T = t)) = 2 P(Y|t,w)P(w)

Principles of Causal Inference Vasant G Honavar
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Backdoor adjustment theorem

Proof: By marginalization, we have:
P(Y|do(T = t)) = Z P(Y|do(T = t),w)P(w|do(T = 1))
w
Because W satisfies BDC, we have:

P(Y|do(T = ) = Z P(Y|t,w)P(w|do(T = £))

e If W contains all of the parents of Y (other than T) modularity directly
implies that P(Y|do(T = t),w) = P(Y|t,w)
* Why?

Principles of Causal Inference Vasant G Honavar
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Backdoor adjustment theorem

Proof: Because W satisfies BDC, we have:

P(Y|do(T = t)) = Z P(Y|t,w)P(w|do(T = t))

e If W contains all of the parents ‘gf Y (other than T) modularity directly
implies that P(Y|do(T = t),w) = P(Y|t,w)
* In general, if W block backdoor pathsinto T
* in the modified causal graph for P(Y|do(T = t),w),all T > Y
associations must flow along the directed paths from T to Y
* Inthe original causal graph for P(Y|t,w) all of theall T -» Y
associations must flow along the directed paths from T to Y (because
flow of associations along backdoor paths through T are blocked by W
* By modularity, the resulting interventional distribution is identical to
the corresponding observational distribution!

Principles of Causal Inference Vasant G Honavar

137



@ PennState Center for Artificial Intelligence Foundations and Scientific Applications CTSI b i
RSt Artificial Intelligence Research Laboratory

Backdoor adjustment theorem
Proof: Because W satisfies BDC, we have:

P(Y|do(T = t)) = Z P(Y|t,w)P(w|do(T = £))

w

Now, P(w|do(T =t)) = P(w)

* Why?

* How might T influence W in the causal graph modified by do(T = t)?

* Not through any path with an edge into T (T has no incoming
edges)

* Not through any path with an edge out of T, because such a path
would have to have a collider that is conditioned on (but W
contains no descendent of T as per BDC)

P(Y|do(T =t)) =Y, PY|t,w)P(w)) m

Principles of Causal Inference Vasant G Honavar
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Frontdoor Adjustment

* How can we identify the causal effect of T on Y in
a causal graph even when we can’t adjust for the
confounder W because it is unobserved?

* If there is a mediator(s) like M along the causal
path between T and Y, we can isolate the
association that flows through M as the only oo
causal association between T and Y (association e =sisms
flowing along directed paths from T to Y).

Tt @0

Step3

PennState -
@ Principles of Causal Inference Vasant G Honavar
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Frontdoor Adjustment

1. Identify the causal effect P(M | do(T = t)) of T on M. How?

e Because Y is a collider f T that is not conditioned on, Y
blocks backdoor paths into T

* So using BDA, we have:
P(M |do(T =t))=P(M|T =t)
2. |dentify the causal effect P(Y | do(M = m)) of M on Y. How?
* Since T blocks the backdoor path into M, we can use BDA to

only causal assoctation

adjust for T
P(Y oM =m) =) PUHIM=mT=0PT=t)
g o'é‘o
3. Combine the above steps to identify the causal effect of T on
Y (through M):

P(Y |do(T =t)) =YX P(M = m|do(T =t))P(Y|do(M = m)
=% P(M=m|T=0t)%, P(YIM =m,T =t)P(T =t)

PennState -
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Frontdoor criterion

¢ A set of variables M satisfies the frontdoor criterion relative
toT and Y if:

* M completely mediates the effect of T on Y (all causal
paths from T to Y go through M).

* There is no unblocked backdoor path from T to M.
* All backdoor paths from M to Y are blocked by T

Principles of Causal Inference Vasant G Honavar
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Frontdoor adjustment

Frontdoor adjustment theorem: If a set of variables M satisfies the

frontdoor criterion relativeto T and Y
P(Y | do(T =1t))

=YmPM=m|T=t)Y, PYIM =m, T =t")P(T =t")

Proof:
* Tedious without do-calculus.

* Compact using do-calculus.

Principles of Causal Inference
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Structural Causal Models: The Story So Far

e Backdoor criterion (BDC) allows us to adjust for confounders

e BDC is not powerful enough to identify all causal effects that are
identifiable from any causal graph.

* Front-door criterion allows us (under some conditions when there are
unobserved confounders) to identify causal effects that cannot be
identified using BDC

e BDCis sound, but not complete for identifiability of causal effects
from causal graphs

e FDCis sound, but not complete for identifiability of causal effects
from causal graphs

* Isthere a general recipe that we can use to identify any causal effect
that is identifiable from a causal graph?

Principles of Causal Inference Vasant G Honavar
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The do-Calculus

* Are there some simple rules which you can apply to any DAG in
order to check whether and how any causal effect — based covariate
specific, joint, etc. - can be identified?

* The do-calculus! (Judea Pearl)
* Perhaps the most important body of work in causal inference

e Three rules/laws/theorems:
 Insertion/Deletion of Observations
* Action/Observation Exchange
* Insertion/Deletion of Actions

* “Observation” = conditioning on variable

e “Action” = do-ingvariable

PennState -
@ Principles of Causal Inference Vasant G Honavar

144



@ PennState Center for Artificial Intelligence Foundations and Scientific Applications CTSI G
RSt Artificial Intelligence Research Laboratory

a

Identifying causal effects

* Given a causal Bayesian network G, we say that a causal effect
P(Y|do(X)) is identifiable when P(Y|do(X)) can be
computed using only the joint distribution over the observable
variables

General recipe for identifying causal effects

* Postulate a causal graph (causal assumptions)

* See how the estimand (causal effect of interest) can be written
as a function of the postulated causal graph

* Check whether this function can be calculated from
observations (using do calculus)

Principles of Causal Inference Vasant G Honavar
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Some notation

Let G be a causal model on a graph, and W, X,Y,Z be

¢ ¢ e —
T edges ponting oul rom‘\ o the chitdren of X Tiave been deleted. We will also Treely Use notations ke — 11, X, Z o denote com

Center for Artificial Intelligence Foundations and Scientific Applications CTSI iinical and Transitional

Science Institute

disjoint disjoint subsets of the variables in the causal model.

Let G denote the perturbed graph in which all edges
pointing to X from the parents of X in G have been
deleted. This is the graph that models the results of an
intervention on X.

Let Gy denote the graph in which all edges out of X to the

children of X in G have been deleted.
We will also freely use notations likeGx,,7 to denote
combinations of the above operations._

Principles of Causal Inference

Vasant G Honavar
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Do-calculus

Theorem (Rules of do-calculus): Given a causal graph G, an
associated distribution P, and disjoint sets of variables Y, T, Z, and
W, the following rules hold:

*P(Y|do(T=t),Z=2zW=w)
=P(Y | do(T =¢t),W =w) ifY]_[GTZ | T, W.
* P(Y|do(T =t),do(Z =z),W =w)
= P |do(T=t),Z=zW=w) ifYHC"rzZ | T, W
e P(Y|do(T =t),do(Z =z),W =w)
= P(Y|do(T =t),W =w) ifYHGmZ | T, W

where Z (W) denotes the set of nodes of Z that aren’t
ancestors of any node of W in G5 .

Principles of Causal Inference Vasant G Honavar
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Do-calculus Rule 1 (ignore observation) Intuition

Given a causal graph G, an associated distribution P, and disjoint sets
of variables Y, T, Z, and W,

P(Y | do(T =t),Z=2z,W =w)

=P(Y | do(T =¢t),W =w) ifY]_[GTZ | T, W
Consider the simpler case:
PY|Z=2zW=w)

=PY|W=w)ifY][[cZ|W

* This is simply d-separation under the Markov condition which
implies that d-separation in G implies conditional independence in P

* Hence Rule 1 is simply a generalization of the Global Markov
Property to the perturbed graph G7

Principles of Causal Inference Vasant G Honavar
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Do-calculus Rule 2 (ignore intervention) Intuition

Given a causal graph G, an associated distribution P, and disjoint
sets of variables Y, T, Z, and W,

* P(Y|do(T =t),do(Z =z),W =w)
= P(Y|do(T=t),Z=2zW=w) ifY]_[GTZZ | T, W
Consider the simpler case:
* P(Y|do(Z =2),W =w)
=PY|Z=2zW=w)ifY][ls, Z|W
* This is simply an application of BDC

* Hence, Rule 2 is is simply a generalization of BDC to the
perturbed graph G7

Principles of Causal Inference Vasant G Honavar
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Do-calculus Rule 3 (drop intervention) Intuition

Given a causal graph G, an associated distribution P, and disjoint
sets of variables Y, T, Z, and W,
* P(Y|do(T =t),do(Z =z),W =w)
= P(y|do(T =¢t),W =w) ifY]_[GmZ | T, W
where Z(W) denotes the set of nodes of Z that aren’t ancestors of
any node of W in Gz
Simpler case — remove intervention on T
* P(Y|do(Z =2),W =w)
= P/ W =w)if Y lgy, Z | W

Principles of Causal Inference Vasant G Honavar
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Do-calculus Rule 3 (drop intervention) Intuition

Given a causal graph G, an associated distribution P, and disjoint
sets of variables Y, Z, and W/,

* P(Y|do(Z=2),W=w) = P(y|W=w)ifY]_[GZ Z|w
where Z (W) denotes the set of nodes of Z that aren’t
ancestors of any node of W in G
 Under what conditions can we drop do(Z = z)?

* If Y isindependent of do(Z = z) given W = w

* Normally, we would drop the incoming arrows into Z in the
graph G to obtain G3

* But there is conditioning on W, which complicates matters as
we shall see next

Principles of Causal Inference Vasant G Honavar
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Do-calculus Rule 3 (drop intervention) Intuition

* Suppose Zy, is a node in Z that is an ancestor of a °
node in W

* When we condition on W, 4, Z};, and become d-
connected in G!

B

* Consequently, we cannot drop the conditioning on @
do(Z = z) because Zy, € Z!

Principles of Causal Inference Vasant G Honavar
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Do-calculus Rule 3 (drop intervention) Intuition

* If Zy, is a node in Z that is an ancestor of a node in
W, when we condition on W, 4, Z}, and B become @ @
d-connected in G!

* If we drop the edges into Z, resulting in G, Z will
still affect the distribution of Y

* We cannot drop interventions on nodes in Z that
are ancestors of any node in W.

*Yle, Z I W does not guarantee that
P(Y|do(Z=2),W=w)=Py|W=w)
* When can we drop do(Z = z) and not affect the Yy
distribution of Y?

* Only when we exclude nodes in Z that are
ancestors of any node in W

Principles of Causal Inference Vasant G Honavar
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Do-calculus Rule 3 (drop intervention) Intuition
* When can we drop do(Z = z) and not
affect the distribution of Y? @ @
* When d-separation between Z and Y
holds in the manipulated graph

resulting from dropping arrows into @

nodes in Z that are NOT ancestors of
any node in W.

and Dat
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Do-calculus Rule 3 (drop intervention) Intuition

Given a causal graph G, an associated distribution P, and
disjoint sets of variables Y, Z, and W,

P(Y|do(Z=2)W=w) = PO IW =w)if Y le-Z W @ @
where Z (W) denotes the set of nodes of Z that

aren’t ancestors of any node of W in G
* We can drop do(Z = z) and not affect the @
distribution of Y when Z are d-separated from

Y in the manipulated graph Gm.

* That is, we drop the interventions do(Z = z) only

when doing so does not causally impact Y when
conditioning on (controlling for) W'!

and Dat
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Do-calculus Rule 3 (drop intervention) Intuition

Given a causal graph G, an associated distribution P, and disjoint
sets of variables Y, T, Z, and W,

* P(Y|do(T =t),do(Z =z),W =w)

= P(y|do(T =¢t),W =w) ifY]_[GTZ Z|T,W
where Z(W) denotes the set of nodes of Z that aren’t ancestors of
any node of W in Gz

In the simpler case obtained by dropping do(T = t), we showed
that

* P(Y|do(Z=2),W=w) = P(Y|W=w)ifY]_[GmZ | W
* Rule 3 is is simply a generalization of the preceding to the
perturbed graph Gr.

* Rule 3 says that any intervention do(Z = z)that does not affect
the outcome or conditioning variables can be safely ignored.
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Do-calculus Rule 3 (drop intervention) Intuition

Given a causal graph G, an associated distribution P, and disjoint
sets of variables Y, T, Z, and W/,

* P(Y|do(T =t),do(Z =2z),W =w)
= P(y|do(T =¢t),W = ifY Z|lT,w
1 do(T = O, W = W) if ¥ Ugpy 2 | T,
where Z (W) denotes the set of nodes of Z that aren’t ancestors of
any node of Win Gz

Rule 3 says that any intervention that does not affect the outcome
or conditioning variables can be safely ignored.

PennState -
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Do-calculus

Theorem (Rules of do-calculus): Given a causal graph G, an
associated distribution P, and disjoint sets of variables Y, T, Z, and
W, the following rules hold:

*P(Y|do(T=t),Z=2zW=w)
=P(Y|do(T=t, W =w) ifY]_[GTZ | T, W.
* P(Y|do(T =t),do(Z =z),W =w)
= P |do(T=t),Z=zW=w) ifYHC"rzZ | T, W
e P(Y|do(T =t),do(Z =z),W =w)
= P(y|do(T=t),W=w)ifY]_[GmZ | T, W

where Z (W) denotes the set of nodes of Z that aren’t
ancestors of any node of W in G5 .
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Do Calculus: a set of rules identifying causal effects

Note: The rules can be proved using the semantics of the do
operator, Global Markov condition, d-separation and the
rules of probability

PennState -
@ Principles of Causal Inference Vasant G Honavar
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Soundness and Completeness of do-calculus

* Soundness: Follows from Global Markov Property,
semantics of Causal Graphs, and d-separation
* Completeness: Every causal effect that is identifiable from
a causal graph can in fact be identified using the rules of
do-calculus
* Proofs
* (Huang and Valtorta, 2006)
* (Shpitser and Pearl 2006)
e Graphical criterion for non-identifiability
e (Tian and Pearl, 2002)

Principles of Causal Inference Vasant G Honavar
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Exercises

e Use do-calculus to prove
* Backdoor adjustment formula
* Frontdoor adjustment formula

Principles of Causal Inference Vasant G Honavar
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Getting comfortable with causal models

Principles of Causal Inference Vasant G Honavar

162



@ PennState Center for Artificial Intelligence Foundations and Scientific Applications CTSI Clical and Tansttonl
RSt Artificial Intelligence Research Laboratory

Getting comfortable with causal models
* Easy case: all variables are observed

PennState -
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Causal and non-causal associations

Comny

P(S,K,R,W,L) = P(LIW)P(WI|K,R)P(K|S)P(R|S)

POWIK = 1) = P(py) + P(py)

_P(K=1W)
T OP(K=1) Type equation here.

_ Zor PWIK = 1,7)P(K = 1|s)P(r|s)P(s)
- s P(K = 1]s)P(s)

PennState -
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Causal and non-causal associations

P(S,K,R,W,L) = P(LIW)P(WI|K,R)P(K|S)P(R|S)

P(W|do(K = 1)) = P(p1)

_ s PWIK = 1,7)P(K = 1)P(r|s)P(s)
- P(K =1)

Type equation here.

- Z P(WIK = 1,7)P(r|s)P(s)

PennState -
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Causal and non-causal associations

Cammani 5
P(W|K = 1) = P(p1) + P(p>) (Association)
w @ P(W|do(K = 1)) = P(p,) (Causation)

m\\\ Causal models show us
@ * Why not all associations are
causal
* When it is possible to
distinguish one from the other
* How to identify causal effects
(when they are identifiable) Type equation here.

PennState o
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Identification from (Markovian) Causal Models

Theorem: Given the causal diagram G of any Markovian model that
all variables V are measured, the causal effect Q = P(Y | do(X)) is

identifiable for every subsets of variables X and Y and is obtained
from the truncated factorization, i.e.,

P(Y|do(X) = Z 1_[ P(Vi|Parents(V,))
V\XVY Ve V\X

@ P(W|do(K = 1)) = Z P(W|K = 1,7)P(r|s)P(s)

Principles of Causal Inference
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Truncated Factorization, G-computation Lemma

The distribution generated by an intervention do(X = x) (ina
Markovian model induced by a causal graph G) is given by the
truncated factorization:

P(V|do(X = x)) = P(Vl-|Parents(Vl-)) ‘ _
Viel_le X=x
B P(V)
~ P(X|Parents(X)) |X = x

= P(V|X, Parents(X))P(Parents(X)) ‘X _

Principles of Causal Inference Vasant G Honavar
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Adjustment by Direct Parents

Theorem: Given a causal diagram G of any Markovian system, the
causal quantity Q = P(Y | do(X)) is identifiable whenever
X,Y, Parents(X) are observed. The expression of Q is then
obtained by adjustment for Parents(X) or

P(Y|do(X) = Z P (Y|X, Parents(X)) P(Parents(X))

Parents(X)

Principles of Causal Inference Vasant G Honavar
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What if not all direct parents of treatment are observed?

Can we still identify the causal effect of treatment?
Yes, e.g., using BDA, FDA, and more generally, do-calculus!

* BDA can use backdoor variables that substitute for direct parents
of treatment

e Sisnotrecorded
* All other variables are
¢ Can you identify the causal

@ effect of K on W?

PennState -
@ Principles of Causal Inference Vasant G Honavar
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BDA Substitutes backdoor variables to direct parents of treatment?
e Sisnotrecorded

* All other variables are PV = ZP(W|K'S)P(S)
* Can you identify the causal
effect of K on W? = Z P(WIK,s,T)P(r|K,s)P(s)

* Yes! R satisfies BDC WRT WIISIK,R KRS

(K, W
@ - Z P(WIK,7)P(r|s)P(s)

S
/ ~

w =ZP(W|K,r)ZP(r|s)p(S)
Cwet ) =PIk, Y PG5

- Z P(WIK,7)P(r)

@ This is just BDA using R!

PennState -
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BDA Substitutes backdoor variables to direct parents of treatment

BDC requires:

* nonodeinZisadescendentof X = X I Z |Parents(X)

* Z blocks every path between Xand Ythat contains an arrow into X=Y
WParents(X) | Z X

P (Y|do(X)) = Z P(Y|X,parents(X)) P(parents(X))
parents(X)

= Z P(Y|X,parents(X), z) P(z, |X, parents(X)) P(parents(X))
parents(X),z

= Z P(Y|X,2z) P(z, |parents(X)) P(parents(X))
parents(X),z

= Z P(Y|X,z) z P(parents(X),z) = Z P(Y|X,2z)P(z)

parents(X)

PennState -
@ Principles of Causal Inference Vasant G Honavar
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pay

= Z P(y |, pay, 2)P(z| X, pay)P(pay)
zpay

= Z P(y|x,z)P(z|pay)P(pay) (4
zpay

= Y P12 Y Pz pa)=| Y PYIX, DP@)
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BDA Substitutes backdoor variables to direct parents of treatment
P (Y|do(X)) is identifiable if 3 Z that d-separates X from Y in Gy

Z3 7

P(y|do(x)) = ), PO | %2, 2)P(21, 24)

21,34

PennState -
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Backdoor adjustment and inverse probability weighting (IPW)
P(Y|do(X)) is identifiable if 3 Z that d-separates X from Y in Gx

P(Y|do(X = x)) = Z P (Y|X = x,2)P(2)

" PWY,x,2)P(2)
B Z P(x,z)

P(Y,x,z)P(z)
L P(I2)P(2)

_ P(Y,x,z)

P(x|z)
= Inverse propensity score

Principles of Causal Inference Vasant G Honavar
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Backdoor adjustment and inverse probability weighting (IPW)
P(Y|do(X)) is identifiable if 3 Z that d-separates X from Y in Gx

P(Y|do(X = x)) = Z P (Y|X = x,2)P(2)

P(Y,x, z)
P(x|z)

* IPW has the effect of estimating the interventional probability from
a suitably resampled data to mimic an interventional distribution!

Principles of Causal Inference Vasant G Honavar
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Backdoor adjustment under conditional intervention

» Suppose we contemplate an age-dependent policy whereby
dosage X of drug is to be administered to patients, depends on
their age Z. We write it as do(X = g(Z)).

» To find out the distribution of outcome Y that results from this
policy, we seek to estimate P(Y = yldo(X = g(Z2))).

* We can often get it via Z-specific effect of P(Y|do(X = x),Z = z)
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Backdoor adjustment under conditional intervention
To compute P(Y = y|do(X = g(Z))), we condition on Z = z and write
PY = yldo(X = g(Z)))
—ZP = yldo(X = g(Z)),Z = 2)P(Z = z|do(X = g(Z)))

—ZP = yldo(X = g(2)),Z = 2)P(Z = 2)

P(Z = 2|do(X = ¢(2))) = P(Z = =)

Z are pre-intervention variables and are not impacted by the
intervention

Z P(Y = y|do(X = ), 2)|2=g(z) P(Z = 2)
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Do-calculus

Theorem (Rules of do-calculus): Given a causal graph G, an
associated distribution P, and disjoint sets of variables Y, T, Z, and
W, the following rules hold:

*P(Y|do(T=t),Z=2zW=w)
=P(Y | do(T =¢t),W =w) ifY]_[GTZ | T, W.
* P(Y|do(T =t),do(Z =z),W =w)
= P |do(T=t),Z=zW=w) ifYHC"rzZ | T, W
e P(Y|do(T =t),do(Z =z),W =w)
= P(Y|do(T =t),W =w) ifYHGmZ | T, W

where Z (W) denotes the set of nodes of Z that aren’t
ancestors of any node of W in G5 .

Principles of Causal Inference Vasant G Honavar

178



@ PennState Center for Artificial Intelligence Foundations and Scientific Applications CTSI b i

Institute for Computational

and Data Sciences Artificial Intelligence Research Laboratory

Do-calculus in action Genotype (Unobserved)

y >
Smoking Tar Cancer

P(cldo(s)) 3 Y Pc| do(s), DP(t] do(s)) Probability Axioms

=)' P(c|do(s), do())P(t| do(s)) Rule2 (TLC|S), . %

= Y, Pleldo)P(t|do(s)) Rue3 SLCI D . s

= ' Plcldo)P]s) Rue2 (SLT), ¢ —=

=33 P(c|do(t), s)P(s'| do®)P(t ) Probability Axioms

= Y, D Plts)P( ldo@)Pels)  Rule2 (TLC|S), P

t s

.......

Rule3 (TLS), P

Y Plelt, )PP 5)
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Identifiability of causal effect from graph

non-causal association

Back-Door Criterion: A set of
variables Z is said to satisfy the
back-door criterion relative to
an ordered pair of variables
(T,Y), if:

* Z intercepts all backdoor
paths from T to Y (paths
that contain an arrow into T')

* NonodeinZisa
descendent of T

causal association

Science Institute

Front-Door Criterion: A set of

variables Z is said to satisfy the

front-door criterion relative to

an ordered pair of variables

(T,Y), if:

e Z intercepts all directed
paths fromT to Y

* Thereis no unblocked
backdoor path from T to Z

e All backdoor paths from Z to
Y are blocked by T

* |s the back-door criterion satisfied with respect to (T,Y)?
* No, because we cannot block the backdoor path into T because

W is unobserved.

* Is the front-door criterion satisfied with respect to (T, Y)?
* No (because W, is unobserved, so there is non-causal association

between M; and Y)
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Do-calculus and Causal effect identification

Theorem (soundness and completeness of do-calculus
for causal identifiability from P(V)). The causal quantity
Q = P(Y|do(X)) is identifiable from P(V) and a causal
graph G if and only if there exists a sequence of
application of the rules of do-calculus and the probability
axioms that reduces Q into a do-free expression.
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Identifiability of causal effect from graph
Unconfounded children criterion

non-causal association

* The unconfounded children criterion is W Y
satisfied if it is possible to block all A
backdoor paths from the treatment
variable T to all of its children that are
ancestors of Y with a single conditioning
set (Tian & Pearl, 2002).

* Unconfounded children criterion

» Sufficient (but not necessary)
condition for identifiability when T is a
single treatment variable. -’

* Generalizes the back-door and front- causal association
door criteria

\

PennState -
@ g aven Principles of Causal Inference Vasant G Honavar

182



@ PennState ) Center for Artificial Intelligence Foundations and Scientific Applications CTSI o
el Il Artificial Intelligence Research Laboratory

and Dat

Non-identifiability

« Two models have the same distribution P(V) over the
observable variables V

* Yet they differ in P(Y|do(X)

* In other words, P(V) does not uniquely specify P(Y|do(X)

Is P(Y | do(X)) identifiable from G?

Is P(Y | do(X), Z,) identifiable from G?

Is P(Y | do(X), Z,) identifiable from G?

Is P(Y | do(X),Z,,Z,) identifiable from G?
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Non-identifiability
Lemma (Graph-subgraph ID (Tian and Pearl, 2002))

* If Q = P(Y | do(X)) is not identifiable in G, then Q is not
identifiable in the graph resulting from adding a directed or
bidirected edge to G.

* Converse. If Q = P(Y|do(X)) is identifiable in G, Q is still
identifiable in the graph resulting from removing a directed or
bidirected edge from G.
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Non-identifiability

Theorem (Graphical criterion for non-identifiability of joint
interventional distributions (Tian, 2002)).

If there is a bidirected path connecting X to any of its children in
G, then P(V|do(X)) is not identifiable from P(V) and G.

Note: Bidirected path denotes unobserved confounding.
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Necessary condition for identifiability

For each backdoor path ) W )
from T to any child M of T \ /
that is an ancestor of W

Y, itis possible to block

that path (Pearl, 2009)
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Identifiability: Necessary and sufficient condition

Theorem:
P(V|do(X)) is identifiable from P(V) and G if and only if there is
NO bidirected path connecting X to any of its children in G.

Note: Bidirected path denotes unobserved confounding.
Note: There is also a graphical criterion in terms of “hedges”.
See Shpitser, I., & Pearl, J. (2008). Complete identification

methods for the causal hierarchy. Journal of Machine Learning
Research, 9, 1941-1979.

Tian and Pearl, 2002
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Some causal graphs where P(Y|do(X) is identifiable
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Some causal graphs where P(Y|do(X) is not identifiable
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Exercise: Apply do calculus to identify the causal
effectof X on Y (U, and U, are unobserved)
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Identification of Multiple Interventions using do-Calculus @

|
|

We want E[Y|do(Dy = d1), do(D> = db)]
Can we transform do(D; = d1)?
» Yes, BDC/rule 2
Gives E[Y|D; = di, do(D> = d»)]. What
next?
» Use LoTP to condition on X, gives
> ElY|Dy = di,do(D, = db), X =
X] . P(X = X|D1 = dl,dO(Dg = dz))
How to simplify
P(X = X|D1 = dl,dO(DQ = d2))7
» Rule 3: D, has no effect on X. D; not
descendant of D, so nothing to
double-check
> So P(X = X|D1 = dl./dO(DQ = dg)) =
P(X = X|D1 = dl)
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» So far we have
E[Y|do(Dy = di),do(D2 = d)] =
Zx E[Y|D1 = d17dO(D2 = d2),X =
x| P(X = x|Dy = dh)
» What can we do about remaining
do(Dy = dp)?
» BDC/rule 2, gives >~ E[Y|D;, =
i, Dy =dp, X =x]- P(X =x|Dy = dh)
No do left, identification!

» This means that

E[Y|do(D; = d), do(D> =

)] — E[Y|do(Dy = d'), do(Ds = db»)]
=Y (E[Y|Dy=d,Dy = dp, X =

x]- P(X = x|Dy = d))— (E[Y|D; =
d',Ds = do, X = x]- P(X = x|Dy = d"))
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Identification of Multiple Interventions using do-Calculus

> E[Y|do(D; = d), do(D> =

d2)] — E[Y|do(D1 = d"),do(D2 = dy)]

= ZX(E[Y|D1 =d,Dr=dr, X =

x] BX = x| Dy = d))— (E[Y|Dy =

d.Dy=dy, X =x]- P(X =x|D; = d"))

» Adjust for how likely X = x is, given

actual intervention value Dy, and
average

» While with single intervention and BDC,
E[Y|do(D; = d)] — E[Y|do(D; = d')]
=> (ElYID1=d,X =x]- P(X =x)—
E[Y|Di=d' X =x]-P(X =x))

» =3 (E[Y|D1=d,X =x]— E[Y|D: =
d, X =x]) - P(X =x)

» Only adjust and average over X
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> E[Y|do(D:1 = d),do(Ds = @
d2)] — E[Y]|do(Dy = d'),do(D; = dy)]
=2 (E[YID1=d,Dy =, X =
x]- P(X =x|D; = d))— (E[Y|D, =
d' Dy =dy, X =x]- P(X =x|Dy =d"))
» Adjust for how likely X = x is, given
actual intervention value D;, and @
average

> Linear case: Regress X on Dy (“first
stage”) and Y on X, D1, Dy, and
multiply/sum up relevant estimates

» Nonparametric case: P(X|D1) is @
first-stage, E[Y|D1, Dy, X] is regression of
Y on Dl, D2, X

» Effect of D; on Y will depend X, so
equation makes sure you adjust for the
right X, which is influenced by D; @
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Exercise: Apply do calculus to identify the
causal effect of X on Y (U is unobserved)
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Pearl’s do-calculus is Complete for identifiability

* Tian and Pearl 2002 provided a sound algorithm for identifying
causal effects using do-calculus

* Exploiting the Identify algorithm on structural causal models,
we can prove that Pearl’s three inference rules are complete,
thus confirming Pearl’s conjecture

* Huang and Valtorta, 2006
* Shpitser and Pearl, 2006
* Shpitser, building on the results of Tian, found a polynomial

time algorithm for identifying every causal effect P(Y|do (X))
that is identifiable
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