
1

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Principles of Causal Inference

Vasant G. Honavar

Dorothy Foehr Huck and J. Lloyd Huck Chair in Biomedical Data Sciences and Artificial Intelligence
Professor of Data Sciences, Informatics, Computer Science and Engineering, Bioinformatics & Genomics, 
Public Health Sciences and Neuroscience
Center for Artificial Intelligence Foundations and Scientific Applications
Institute for Computational and Data Sciences
Huck Institutes of the Life Sciences
Clinical and Translational Sciences Institute
Northeast Big Data Hub
Pennsylvania State University
vhonavar@psu.edu
http://faculty.ist.psu.edu/vhonavar
http://ailab.ist.psu.edu

mailto:vhonavar@psu.edu
http://faculty.ist.psu.edu/vhonavar
http://ailab.ist.psu.edu


2

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Graphical Causal Models
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Motivating Examples
• Democracy and GDP 

• You can get (ok) measures of democracy and GDP  growth for every 
country in the world. 

• So you observe these measures for all countries. 
• Can you tell  from these data whether democracy has a positive effect 

on  GDP growth?
• No. Maybe something else determines both democracy and 

GDP growth, and we cannot measure it.
• Cardiovascular health and brushing teeth: 

• Suppose we find that there is a high correlation between brushing teeth 
regularly and low incidence of heart disease. 

• Can you conclude that not brushing teeth is a cause of heart disease?
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Confounding

D Y

U

• You find P(Y !D = d) ≠ P(Y !D = d'). Why?
• Intuition: Measured association between D and Yconsists of

• causal effect of D on Y and 
• confounding due to U

• Formalize intuition? How can we generally “read off”  
dependencies from causal graphs?

• Sometimes our causal assumptions can be  tested!
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Motivation for d-separation

• Step 1. Assuming a specific graph, which 
dependencies/correlations  would we see in the data?

• Step 2. We will think  about what “causal effect” actually
means.

• Step 3. We will try to equate causal effects with  
population quantities (“causal inference”)



6

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Population
• Passively  

observable  
features/v
ariables

• Population  
means etc.

Sample
• Estimators of  

population  
quantities

• E.g. sample  
mean

Quantities of  
Interest

• Actions
• Effects
• Changes to the  

population

Sam
plin

g

Stat
isti

ca
l

Infe
ren

ce

Causal
Inference

Causal Inference

Causal Graph
• Causal

Assumptions
• Mechanisms
• Unobservable  

Variables

Using Assu
mptions

Define



7

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Causal Graphs

• Three elements:
• Variables (nodes)
• Edges: Possible direct causaleffects (we will make this more 

precise)
• Missing edges: Strong assumption about absent causal effects 

• Causal graphs are Directed Acyclic Graphs
• Edges are directed
• No directed cycles, so no variable causing itself indirectly

• Semantics: Every node is independent of its non descendents
given its parents (we will make this more precise)
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DAG Terminology

D Y

U

• Descendants of variables =  children, grandchildren...
• Ancestors of variables =  parents, grandparents...
• A path is a sequence of neighboring arrows, without crossing  a variable 

more than once
• Direction of the arrow does not matter (when it does, we will say 

directed paths)
• What are the edges and paths in this graph that start from D? 

D → Y,    D ← U ,    D ← U → Y,      D → Y ← U
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Causal DAGs

• Nodes are independent of non-
descendants given their parents 

d-separation: 
• a graph theoretic criterion

for reading independence statements
• can be computed in linear time (in the 

number of edges)

Earthquake

Radio

Burglary

Alarm

Call
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Three Basic Paths

• Aside from direct connections A →  B, only three 
different  paths involving three variables possible inDAGs:

• A →  B →  C(chain of mediation)
• A ←  B → C (common cause/fork)
• A →  B ← C (collider)

• Strategy: Understand how different paths lead to  
(conditional) (in)dependence between A and B

• Of course, A →  B means that A.     B  
• That is ,  A i s  not independent of B )
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Chain of Mediation

• Rumor A on a given day (P(A =  1) =  0.5), 
• Person  B knows the rumor sometimes (B =  1), 
• Person B sometimes  spreads rumor to person C (C =  1). 
• B or C do not invent  rumors beyond A
• You measure A, B, C for multiple distinct days. 

• Will C be  informative about A?
• Yes, when C knows a rumor, a rumor A definitely occurred
• P(A = 1!C = 1) = 1 > P(A = 1) = 0.5 or A C

• What happens to this dependence when we only look at
dayswhen B = 1?
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Chain of Mediation

Example: 
• You measure A, B, C for multiple distinct days. 

• A C

• What happens to this dependence when we only look atdayswhere B = 1?
• P(A =  1!B =  1) =  1 because B is truthful and does not  invent 

rumors. 
• We are sure there was a rumor when we know  B =  1
• So P(A = 1!B = 1) = P(A = 1!B = 1,C) ⟹ A C !B

(i.e., A is independent of C given B)
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Chain of Mediation
A B C

• In chain of mediation: A C , but A C !B
• We say this path is open unconditionally, but conditional on  

the middle node it isblocked
• As in “blocking the information flow”
• Note that P(A!C =  1) >  P(A), so that C predicts A, while  

the causal influence actually flows along A " B " C .
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Common Cause

A

B

C

• Example: B denotes Season; A, daily ice cream sales in the
city; and C, daily  number of drownings in the city

• Question: Does knowing C help you predictA?
• B is a common cause of both Aand C
• A  andC are correlated
• Knowing the number of drownings is high, implies 

probably B =  summer, and that means ice cream sales C 
are  relatively high

• So P(A) ≠P(A|C ), or A.    C
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Common Cause

A

B

C

• Example: B denotes Season; A, daily ice cream sales in the 
city; and C, daily  number of drownings in the city. A. C

• What if we look at a subset of the data where  season is held
constant, e.g. B = summer?

• During summer, you see still variation in ice cream sales 
and  drownings

• But once you fix B, changes in B cannot 
influence A or C.

• A C|B
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Common Cause

A

B

C

• So in the common cause/fork graph, A #$%# C but A ⊥C !B
• Unconditionally, the path is open. Conditional on the middle  

node, it is blocked
• This is exactly like in the chain of mediation, but different  

“causal story”
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Collider

A

B

C

• Example: A and Cdenote independent coin flips(results are 0 or 1).
• Suppose B is the sum of A and B, so 0, 1, or2

• Can you predict A when you know C ?
• No! Because A     C

• But suppose you know one coin A =  1 and B = 1. Can you then 
predict the other coin C?

• Yes, it HAS to be0
• So here A ⊥C , but A "#$"C !B
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Descendants of Colliders

B

D

• A and C are independent coin flips, 

• B is the sum of A and B
• D =  1 if B =  2, 0 otherwise

• You know A =  1 and D =  0. Can you predict C?
• Yes, same reasoning: C has to be 0, otherwise D would be 1
• So A. C !D: Conditioning on descendants of colliders has same

qualitative consequencesasconditioning on colliders themselves

A C
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Conditioning on Colliders: Visualization

A

B

C

• Sometimes helpful: Boxed variable indicates we condition on it
• Bi-directed arc between the start and end node indicates  

associations created by conditioning on collider
• Does not indicate cyclic causation; rather equivalent to an  

additional common cause of the nodes connected by the bi-
directed arc

• Is then treated as a normal path
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d-separation

• Chain of mediation: Path is open unconditionally, but blocked  
conditional on the middle node. A #$%#C but A ⊥C !B.

• Common cause/fork: Path is open unconditionally, but  blocked  
conditional on  the middle node.  A #$%#C but A ⊥C !B.

• Collider: Path is blocked unconditionally, but  open 
conditional on the middle node or one of its  descendants. 
A ⊥C but A #$%#C !B.

• What if there are multiple, longer paths between A and C ?  
Will A and C be (conditionally) independent? d-separation  
gives the answer
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d-separation
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𝑑-separation?

• X      Z ? No.
• X      Z |U ? No
• X      Z |U, V ? Yes

Z

VU

X
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d-separation

A B

C D

E F

G

I

H

J

C D?
C D | A?
C D | A, B?
I(C    D | A, B, J)?
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d-separation

A B

C D

E F

G

I

H

J

C D? – No
C D | A? – No
C D | A, B? – Yes 
I(C    D | A, B, J)? – No 
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d-separation: Example

• Z and Y d-separated?
• Yes: Collider W blocks only path

• What happens when I condition on U?
• Just like conditioning on W : Openspath

Z & W " X " Y
• Conditional on U, Z and Y are d-connected

• What happens when I condition on U, X?
• Definition: Path blocked if middle node  of chain/fork is conditioned or 

collider  not conditioned or both
• So U, X d-separates Z and Y

W

Z X

U

Y
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d-separation
• Theorem [Verma & Pearl, 1998]: If a set of evidence variables E d-

separates X and Z in an SCM then 𝑋 𝑍 | 𝐸
• d-separation can be computed in linear time using a depth-first 

search like algorithm.
• d-separation can be used to test whether finding out about the 

value of one variable might give us any additional hints about some 
other variable, given what we already know. 
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Causal Graphs as Structural Equations
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Causal Graphs as Structural Equations
• What are UA and UB ?

• Unobserved factors that causally
influence the observables (coin
flips in this example), and
structural errors

• UA and UB are random variables, and
hence so are the observedvariables

UA UB

A

C

B
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A

C

Causal Graphs as Structural Equations
• 𝑈!. 𝑈#
• 𝐴 = 𝑓! 𝑈!
• 𝐵 = 𝑓# 𝑈#
• 𝐶 = 𝑓$ 𝐴, 𝐵 , e.g., 𝐶 = 𝐴 + 𝐵
• A structural causal model describes

• Our qualitative beliefs about nature 
assigns values to variables of interest 
in a domain of study

• Causal assumptions
• 𝐸 𝐴 = 𝐸 𝑓! 𝑈!

= ∑%! 𝑈! = 𝑢! 𝑃(𝑓! 𝑢! )

B
Observables

UA UB

Unobservables
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Structural Causal Models
Three main ingredients:
• Observed variablesV
• Unobserved variablesU

• Unobserved causes of V
• U may contain infinitely many variables (U1, U2,...)
• U describe unobserved causes of any relevant feature of a unit
• We usually do not make distributional assumptions on U

(and hence V )
• Structural functions f for eachobservable in V

• When we do not specify f the form of f , we say that 
functions are nonparametric

• V =  endogenous variables (explained in the model)
• U =  exogenous variables (not explained in the model)
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SCM provide a language for expressing counterfactuals
• 𝑑𝑜 𝑋 denotes intervention on 𝑋
• Intervention on X has the effect of removing all incoming 

links into 𝑋 (or eliminating all direct causes of 𝑋)

31
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Connecting the SCM and Joint Probability Distribution
• Under some assumptions (Causal Markov Condition) 

an SCM represents a factorization of the  joint 
probability distribution over the observables:

• The above equation specifies the full joint probability 
distribution over the model variables.

• More on this later

Õ
=

=
n

i
iin XesDirectCausXPXXXP

1
21 ))(|(),...,,(
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What is a Direct Cause?
• The direct causes of Xi  are the variables which will

change the distribution of Xi  as we vary them while 
holding everything else unchanged

X1

X2

X4X3

P(X3 = x3 | do(X1 = x1), do(X2 = x2), do(X4 = x4)) ¹
P(X3 = x3 | do(X1 = x1’), do(X2 = x2), do(X4 = x4))

P(X3 = x3 | do(X1 = x1), do(X2 = x2), do(X4 = x4)) =
P(X3 = x3 | do(X1 = x1), do(X2 = x2), do(X4 = x4’))



34

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

A

C

Causal Graphs as Structural Equations
• 𝑈!. 𝑈#
• 𝐴 = 𝑓! 𝑈!
• 𝐵 = 𝑓# 𝑈#
• 𝐶 = 𝑓$ 𝐴, 𝐵 , e.g., 𝐶 = 𝐴 + 𝐵
• A structural causal model describes

• Our qualitative beliefs about 
nature assigns values to variables 
of interest in a domain of study

• Causal assumptions

B
Observables

UA UB

Unobservables

• Suppose 𝐶 = 𝐴+ 𝐵. 
• Intuitively, what’s the causal effect of 𝐴on 𝐶?
• 𝐶&'( − 𝐶&') = 1 + 𝐵 − 0 + 𝐵 = 1
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Linear Structural Models
• Structural causal  model is NOT a regression. 
• It is not an algebraic equation
• It is a causal model: LHS is caused by RHS!

• Rearranging 𝐶 = 𝐴+ 𝐵 to obtain 𝐴 = 𝐶 − 𝐵 does not make 
sense!

• However, 
• You can use observed 𝐵 and observed 𝐶 to predict 𝐴 (perfectly) 
𝐸[𝐴 |𝐵, 𝐶] = 𝐶 − 𝐵

• Even perfect regression fit does not tell you anything  about
causation!

• When we use an equation, we need to state whether it is structural 
causal model or a regression

• We will use 
• 𝑌 = 𝑓𝑌 (… ) for structural models and
• 𝐸 𝑌 𝐷 = 𝑓 ( 𝐷 ) for regressions
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Linear Structural Equations
• 𝐶 = 𝐴 + 𝐵 is aspecial caseof alinear structural model
𝑌 = 𝛼 + 𝛽𝐷 + 𝜖𝑌

• This is NOT a regression. A regression describes 
𝐸[𝑌 |𝐷]: The mean of 𝑌 given observations of𝐷

• A structural model is a mechanism for the generation of 𝑌 ,
and predicts 𝑌 when you control 𝐷, and can be represented
using acausal graph

• A regression is associational, you observe 𝐷, predict𝑌
• The regression error is, by construction, independent of 𝐷
• The structural error 𝜖𝑌may be independent of 𝐷, if there  is 

no variable that influences 𝑌 that also influences 𝐷 (clear 
fromgraph!)
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Parametric versus Nonparametric Structural Equations

• In general, causal graphs are representations of
• non-parametric structural equations (as general as possible)

• Causal graphs based on parametric e.g., linear structural 
equations are very  restrictive, but easier to understand

• We will often use linear models to highlight basic ideas and 
then (try to) generalize them to nonparametric models
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A

C

Causal Effects as Interventions

B
Observables

UA UB

Unobservables

• Suppose 𝐶 = 𝐴+ 𝐵. 
• How can we obtain the causal 

effect of 𝐴 on 𝐶?
• By intervening on 𝐴

independent of other variables 
and comparing 𝐶&'( with 𝐶&')

• 𝐶&'( − 𝐶&') = 1
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Causal Effects as Interventions

D Y

U

• What structural equation does the above model describe?
• D = fD (U)
• Y =  fY (D,U)
• What happens to the causal graph and the structural 

equations when we  intervene on 𝐷 i.e., “𝑑𝑜” 𝐷 = 1?



40

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Causal Effects as Interventions

D = 1 Y

U

• D = 1
• Y =  fY (1,U)

D Y

U
Intervene on D

• D = fD (U)
• Y =  fY (D,U)
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Causal Effects as Interventions
• 𝐷 = 1
• 𝑌 = 𝑓𝑌 (1, 𝑈)
• This 𝑌 under the intervention is a function of 𝑈 (so differs  

across units because 𝑈 may vary across units)
• The mean of 𝑌 under the intervention 𝑑𝑜(𝐷 = 1) is averaged  

over 𝑈: �

𝐸[𝑌 |𝑑𝑜(𝐷 = 1)] =7
&

𝑓' (1, 𝑢)𝑃(𝑈 = 𝑢)

If D is a binary explanatory or “treatment” variable, we call

𝐸[𝑌 |𝑑𝑜(𝐷 = 1)] − 𝐸[𝑌 |𝑑𝑜(𝐷 = 0)]

the causal effect of 𝐷 on 𝑌
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Causal Effects as Interventions
• 𝐸[𝑌 |𝑑𝑜(𝐷 = 1)] − 𝐸[𝑌 |𝑑𝑜(𝐷 = 0)] is the causal effect of 
𝐷 on𝑌

• 𝐸[𝑌 |𝑑𝑜(𝐷 = 1)] is the average outcome if one forces 𝐷
= 1 for all individuals 

• Correlation is not causation
𝐸 𝑌 𝐷 = 1 − 𝐸 𝑌 𝐷 = 0

≠ 𝐸[𝑌 |𝑑𝑜(𝐷 = 1)] − 𝐸[𝑌 |𝑑𝑜(𝐷 = 0)]
• Observation is notintervention
• Seeing is not the same as doing!
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Causal Effects as Interventions

• 𝐸[𝑌 |𝑑𝑜(𝐷 = 1)] − 𝐸[𝑌 |𝑑𝑜(𝐷 = 0)] is the causal 
effect of 𝐷 on𝑌

• We refer to learning
𝐸[𝑌 |𝑑𝑜(𝐷 = 1)] − 𝐸[𝑌 |𝑑𝑜(𝐷 = 0)]

as  the identifying the causal effect of 𝐷on𝑌
• To “identify” something with something else is to

assert (with justification that the two  things are equal
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Identifying causal effects
• We refer to learning

𝐸[𝑌 |𝑑𝑜(𝐷 = 1)] − 𝐸[𝑌 |𝑑𝑜(𝐷 = 0)]
as  the identifying the causal effect of 𝐷on𝑌

• Two approaches to identify 𝐸[𝑌 |𝑑𝑜(𝐷 = 𝑑)]:
• Intervene in the real world

• Intervene on 𝐷 independently of other variables (e.g., conduct a 
randomized experiment): ∀𝑑 𝑑𝑜 (𝐷 = 𝑑 )

• Observe the resulting interventional outcomes
• Calculate the causal effect of 𝐷 on 𝑌

• Under identifiability  assumptions (SUTVA) try to (uniquely) equate a 
causal effect of interest with a  function of the population 
distribution 𝑃(𝑌,𝐷, 𝑋), which we  observe passively without 
intervening
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Population
► Observable

fea-

► P(Y ,X )
► E [Y],

E[Y !X ]

Sample
► Estimators of  

population  
quantities

► E.g. sample  
mean

Quantities of Interest
► Actions
► Effects
► Changes to the  

population
► Counterfactuals

Causal Graph
► Causal 

Assumptions
► Mechanisms
► Unobservable  

Variables

Sam
plin

g

Stat
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ca
l

Inf
ere
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Causal In-

tures/variables ference

Using  
Assumptions

Testable Implications

Define
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Structural Causal Models – The Story so far
• Directed acyclic graphs or causal graphs

• Three canonical path types 
• A ! " B ! " C
• A # " B ! " C
• A ! " B # " C

• 𝑑-separation: Variables 𝑍 d-separates variables 𝑋 and 𝑌 if 𝑍 blocks
every path between 𝑋 and 𝑌

• 𝑑-separation implies conditional independence
• If 𝑍 d-separates 𝑋 from 𝑌 in a causal graph 𝐺

that is, (X Y | Z) ( → 𝑋 𝑌 |𝑍
• (Note the overloading of    )
• 𝑑-separation is testable from data using 

suitable  independence tests
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Structural causal models – the story so far  
• Causal graphs specify a set of structural equations or a structural 

causal model (SCM)
• SCM causally connect observable variables in 𝑉 with other 

observable variables and / or unobservable variables in 𝑈
(“error” terms) via structural functions𝑓

• f specifycausal mechanisms that describe how nature assigns values 
to observable variables based on the values of other variables

• Structural equations are not regressions, which are purely  predictive
• Structural causal models can be used to specify causal effects in terms of 

interventions  𝑑𝑜(𝐷 = 𝑑 )a minimal intervention on only 𝐷, 
independent of other variables, by setting it to some value 𝑑

• Average causal effect of (binary) 𝐷 on𝑌 is given by
𝐸[𝑌 |𝑑𝑜(𝐷 = 1)] − 𝐸[𝑌 |𝑑𝑜(𝐷 = 0)]
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Exercise
• Consider a linear causal model given by

𝑍 = 𝛼* + 𝑈*
𝐷 = 𝛼+ + 𝛽*+𝑍 + 𝑈+
𝑌 = 𝛼, + 𝛽+,𝐷 + 𝑈,

where 𝑈*, 𝑈+, 𝑈, ,WLOG are assumed to have zero mean.
• Draw the corresponding linear structural causal model, 

assuming that the exogenous variables 𝑈*, 𝑈+, 𝑈, are 
independent

• Calculate the causal effect of 𝐷 on 𝑌 and of 𝑍 on 𝑌
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Exercise
𝑍 = 𝛼* + 𝑈*

𝐷 = 𝛼+ + 𝛽*+𝑍 + 𝑈+
𝑌 = 𝛼, + 𝛽+,𝐷 + 𝑈,

where 𝑈*, 𝑈+, 𝑈, , are independent and  have zero mean. 

Show that: 
𝐸 [𝐷 │𝑑𝑜(𝑍 = 1) ] − 𝐸 [𝐷 │𝑑𝑜(𝑍 = 0) ] = 𝛽𝑍𝐷
𝐸 [𝑌 │𝑑𝑜(𝐷 = 1) ] − 𝐸 [𝑌 │𝑑𝑜(𝐷 = 0) ] = 𝛽𝐷𝑌

𝐸 [𝑌 │𝑑𝑜(𝑍 = 1) ] − 𝐸 [𝑌 │𝑑𝑜(𝑍 = 0) ] = 𝛽𝑍𝐷 · 𝛽𝐷𝑌
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Exercise
𝑍 = 𝛼* + 𝑈*

𝐷 = 𝛼+ + 𝛽*+𝑍 + 𝑈+
𝑌 = 𝛼, + 𝛽+,𝐷 + 𝑈,

𝑈* 𝑈+ but 𝑈+ 𝑈,

• Draw the structural causal model
• What are the testable implications?
• What is the causal effect of 𝑍 on 𝑌?

𝐸 [𝑌 │𝑑𝑜(𝑍 = 1) ] − 𝐸 [𝑌 │𝑑𝑜(𝑍 = 0) ]
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Exercise
• Consider the structural causal 

model shown 
• Write down the structural 

equations
• Calculate the causal effect of 𝑍 on 
𝑌
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Exercise
𝑍 = 𝛼* + 𝑈*

𝐷 = 𝛼+ + 𝛽*+𝑍 + 𝑈+
𝑌 = 𝛼, + 𝛽+,𝐷 + 𝑈,

𝑈* 𝑈+ but 𝑈+ 𝑈,

• Draw the structural causal model
• What are the testable implications?
• What is the causal effect of 𝑍 on 𝑌?

𝐸 [𝑌 │𝑑𝑜(𝑍 = 1) ] − 𝐸 [𝑌 │𝑑𝑜(𝑍 = 0) ]
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Path Tracing in Linear Graphs
• If a graph represents a linear SCM, where additionally all  variables are 

assumed to be normally distributed with mean 0  and variance 1, then to
find 𝐸 𝑌 𝑍 = 1 − 𝐸 𝑌 𝑍 = 0
• List all open (not blocked) paths between Z and Y
• Multiply all path/structural coefficients (=  causal effects)  along a 

given path, and sum up the results
• Conditional causal effects are a bit more involved

• In this course, we will use an approximate solution:
• For 𝐸[𝑌 |𝑍 = 1,𝑋 = 𝑥] − 𝐸[𝑌 |𝑍 = 0,𝑋 = 𝑥], if 𝑋 does

not  open up additional paths between 𝑍 and Y , do the  above, but  
only across paths that are not blocked conditional on 𝑋
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Path Tracing in Linear Graphs: Colliders

Z D Y
βZD βYD

• What’s 𝐸 𝑌 𝑍 = 1 − 𝐸 𝑌 𝑍 = 0 ?
• Zero
• Why?
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Path Tracing in Linear Graphs: Colliders

Z D Y
βZD βYD

• 𝐸 𝑌 𝑍 = 1 − 𝐸 𝑌 𝑍 = 0 = 0
• Let’s say 𝛽𝑍𝐷 and 𝛽𝐷𝑌 are positive.
• Is𝐸[𝑌 |𝑍 = 1,𝐷 = 1] − 𝐸[𝑌 |𝑍 = 0,𝐷 = 1] positive?

• Look at units with same D =  1, but different Z .
• If you have 𝑍 = 0 but still 𝐷 = 1, that must be because 𝑌 makes  

up for lack of 𝑍
• So mean difference is negative
• 𝐸[𝑌 |𝑍 = 1,𝐷 = 1] − 𝐸[𝑌 |𝑍 = 0,𝐷 = 1] ≈ −𝛽𝑍𝐷 · 𝛽𝐷𝑌
• We will return to this. See section 3.8, Pearl, Glymour, Jewell (2016) and

Pearl (2013): “Linear Models: A Useful Microscope for Causal Analysis”
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Estimating causal effect in the presence of confounding
X

D Y

• Confounder is any variable that impacts both “treatment” and 
”outcome”

• Which paths does the association between D and Y consist  of?
• Causal effect of 𝐷 on 𝑌 and 
• Confounding due to 𝑋

• We want to estimate 𝐸[𝑌 |𝑑𝑜(𝐷 = 𝑑)]
• How?



57

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Estimating causal effect in the presence of confounding
X

D Y

• How can we obtain𝐸[𝑌 |𝑑𝑜(𝐷 = 𝑑)]
• Intervene on 𝐷, i.e., 𝑑𝑜 𝐷 = 𝑑 independently of all other 

variables
• If you cannot intervene on 𝐷, find control variables that can be used to 

• block all “non-causal” paths between 𝐷 and 𝑌
• while leaving open all causal paths between 𝐷 and 𝑌
• without opening up any “non-causal” paths (colliders...) between 
𝐷 and 𝑌
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Estimating causal effect in the presence of confounding
X

D Y

1𝑑𝑜(𝑋 = 1)

D Y

0𝑑𝑜(𝑋 = 0)

D Y

= +

• Suppose we control for 𝑋
• We block the non-causal paths between D and Y without 

eliminating the causal paths or introducing any non-causal 
paths

• Now we can estimate the causal effect of D on Y separately 
from  observational data with 𝑋 = 0 and with 𝑋 = 1 and take 
a weighted average of the two effects where the weights 
correspond to 𝑃(𝑋 = 1) and 𝑃(𝑋 = 0)
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The Back-Door Criterion

• Given an ordered pair of variables (𝐷, 𝑌 ) in a DAG 𝐺, a set of  variables 𝑋
satisfies the backdoor criterion relative to (𝐷, 𝑌 ) if
• no node in 𝑋 is a descendant of 𝐷, and
• 𝑋 blocks every path between 𝐷 and 𝑌 that contains an  arrow into 𝐷

• Ordered pair becausewe are interested in the causal effect if𝐷 on 𝑌
• A path that starts with an arrow into 𝐷 is called a back-door  path

• Blocking back-door paths makes sure we block “bad” paths
• Not conditioning on descendants of 𝐷 ensures that we leave all  “good” 

paths open and that we do not open up new  bad paths
• Applicable for any DAG, and hence non-parametric, distribution-free
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The Back-Door Criterion: Example
• Suppose we want the causal effect of interest 𝐷 on𝑌 . 
• Which  variables do we need to adjust for?

• X, in order to block back-door path
D ß X à M à Y

• Does (𝑋, 𝑉 ) also satisfy the back-door  
criterion?

• Yes, blocks only back-door path, 
no  descendant

• May we condition on𝑀?
• No, 𝑀 is a descendant of 𝐷

D M Y

X V
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Backdoor criterion: Example
• Suppose we want to estimate the causal effect of a drug 𝑋

on recovery 𝑌
• 𝑋, 𝑌,𝑊 are observed, 𝑍 is not.
• Is there any unobserved confounder? 
• Yes, 𝑍 is an unobserved confounder 
• How do we de-confound the causal effect 𝑋 on 𝑌?
• Look for an observed variable that satisfies the backdoor 

criterion 
• 𝑊 is such a variable – it blocks the backdoor path 
𝑋 � 𝑍à𝑊à 𝑌,𝑊 is not a descendent of 𝑋

• Upon adjusting for 𝑊 we have

• Hence, the causal effect of X on Y is identifiable from 
observational data

Z W

X Y

𝑃 𝑌 = 𝑦 𝑑𝑜 𝑋 = 𝑥 = 5
!
𝑃 𝑌 = 𝑦 𝑋 = 𝑥,𝑊 = 𝑤 𝑃(𝑤)
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Using the Back-Door Criterion for Identification

D Y

X• Bi-directed arc  is  additional unobserved confounder of 
𝑋 and 𝑌 and hence 𝐷 and 𝑌

• Does  𝑋 fulfill the BDC wrt 𝐷 and  𝑌 in this graph?
• We want 𝐸 𝑌 𝑑𝑜 𝐷 = 1 − 𝐸 𝑌 𝑑𝑜 𝐷 = 1
• We  measure𝑃(𝑌, 𝐷, 𝑋 ).
• We somehow need to condition on X
• Question: How can we re-express E [Y |do(D =  1)] as  

something that is conditional on X without making
additional assumptions?

• Law  of Iterated Expectations!
𝐸 𝑌 𝑑𝑜 𝐷 = 1 =

7
+

𝐸 [ 𝑌 | 𝑑 𝑜 𝐷 = 1 , 𝑋 = 𝑥 ] 𝑃(𝑋 = 𝑥 | 𝑑 𝑜 ( 𝐷 = 1 ) )
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Using the Back-Door Criterion for Identification

D Y

X
𝐸 𝑌 𝑑𝑜 𝐷 = 1 =

7
+

𝐸[𝑌 |𝑑𝑜(𝐷 = 1), 𝑋 = 𝑥] · 𝑃(𝑋 = 𝑥 |𝑑𝑜(𝐷 = 1))

• What is 𝑃(𝑋 = 𝑥 |𝑑𝑜(𝐷 = 1))?
• 𝐷 does not affect 𝑋, so 
𝑃(𝑋 = 𝑥 |𝑑𝑜(𝐷 = 1)) = 𝑃(𝑋 = 𝑥 )

𝐸 𝑌 𝑑𝑜 𝐷 = 1 =

5
"

𝐸[𝑌 |𝑑𝑜(𝐷 = 1), 𝑋 = 𝑥] · 𝑃(𝑋 = 𝑥)
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Using the Back-Door Criterion for Identification

D Y

X

• How to get rid of the other 𝑑𝑜(𝐷 = 1)?
• Conditional on 𝑋 , observing 𝐷 = 1 is the

same as doing 𝐷 = 1, at least with 
respect to𝑌

𝐸 𝑌 𝑑𝑜 𝐷 = 1 =

5
"

𝐸[𝑌 |𝑑𝑜(𝐷 = 1), 𝑋 = 𝑥] · 𝑃(𝑋 = 𝑥)

𝐸 𝑌 𝑑𝑜 𝐷 = 1 =

5
"

𝐸[𝑌 |𝐷 = 1, 𝑋 = 𝑥] · 𝑃(𝑋 = 𝑥)

Hence the causal effect of 𝐷 on 𝑌 is given by

∑B (𝐸 [𝑌 | 𝐷 = 1, 𝑋 = 𝑥] − 𝐸[𝑌 | 𝐷 = 0, 𝑋 = 𝑥])𝑃(𝑋 = 𝑥)
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Estimation

• With population data: 
• Compute 𝑥 -specific difference in  means, then compute weighted 

averageofthose 𝑥 −specific differences, using 𝑃(𝑋 = 𝑥)
• With sample: 

• One-on-one matching. For every unit in sample  with 𝑋 = 𝑥 and 
𝐷 = 1, find a matching person with 𝑋 = 𝑥 , but 𝐷 = 0. 

• Compute pair-wise difference in Y . 
• Take their mean.

Causal effect of 𝐷 on 𝑌 is given by

∑B (𝐸 [𝑌 | 𝐷 = 1, 𝑋 = 𝑥] − 𝐸[𝑌 | 𝐷 = 0, 𝑋 = 𝑥])𝑃(𝑋 = 𝑥)
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The Back-Door Criterion

• Given an ordered pair of variables (𝐷, 𝑌 ) in a DAG 𝐺, a set of  variables 𝑋
satisfies the backdoor criterion relative to (𝐷, 𝑌 ) if
• no node in 𝑋 is a descendant of 𝐷, and
• 𝑋 blocks every path between 𝐷 and 𝑌 that contains an  arrow into 𝐷

• Ordered pair becausewe are interested in the causal effect if𝐷 on 𝑌
• A path that starts with an arrow into 𝐷 is called a back-door  path

• Blocking back-door paths makes sure we block “bad” paths
• Not conditioning on descendants of 𝐷 ensures that we leave all  “good” 

paths open and that we do not open up new  bad paths
• Applicable for any DAG, and hence non-parametric, distribution-free
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Back-door criterion

• Which nodes satisfy the back-door criterion for causal effect 
of T on Y?

• {A, C}
• {B, C}
• {C, D}
• {A, B, C}
• {A, C, D}
• {B, C, D}
• {A, B, C, D}
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Back-door criterion Dissected 
• All backdoor paths start with an 

arrow into the treatment variable
• This implies they can be blocked by 

conditioning on parents of the 
treatment, if they are observed

• Parents of treatment (POT) criterion: 
Any causal effect of T on Y can be 
identified by conditioning on all of 
the parents of T if they are 
observed.

• Sets of nodes meeting POT criterion:
• {A, C}
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Back-door criterion Dissected 
• Parents of the outcome (POO) 

criterion: If no backdoor path shares 
a node with any causal path (other 
than 𝑇 and 𝑌), then conditioning on 
all parents of the outcome 𝑌 (if they 
are observed) that do not lie on a 
causal path from 𝑇 to 𝑌 identifies 
the total causal effect of 𝑇 on 𝑌.

• Do these sets of nodes meet the 
POO criterion?

• {C,D} Yes
• {C, D, E} No. (Why?)
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Back-door criterion Dissected 
• All unconditionally open backdoor 

paths must contain a variable that is 
a joint direct or indirect cause of 
treatment 𝑇 and outcome, 𝑌.

• Joint Ancestor (JAN) Criterion: 
Conditioning exclusively on all joint 
ancestors of 𝑇 and 𝑌 identifies the 
total causal effect of 𝑇 on 𝑌. (Must 
avoid conditioning on additional 
variables)

• Can you find a set of nodes meet the 
JAN criterion?

• {A,B,C} Yes
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Back-door criterion Dissected 
• Identifiability  using the backdoor criteria or any of its special 

cases (POT, POO, JAN) assume that there exist at least one set of 
covariates that satisfy the  criteria are indeed observed. 

• Backdoor criterion implies ignorability (of Rubin’s potential 
outcomes framework) and identifies a set of covariates that 
when controlled and adjusted for, ensure ignorability when the 
causal graph is correctly specified (meaning all of the relevant 
variables are included, and no edges that should be present are 
omitted).
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Back-door criterion Dissected 
• What if the complete structure of the DAG is unknown?
• Confounder selection criterion (COS) is implied by the backdoor 

criterion
• Even if the DAG is only partially specified, if there is a set of 

observed covariates that meets the backdoor criterion (i.e., if 
we are willing to assume that the unobserved variables do not 
influence who gets treated), then it suffices to condition on all 
observed pretreatment covariates that either cause treatment, 
outcome, or both (VanderWeele and Shpitser, 2011).
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Confounding in the language of causal calculus

• Confounder is any factor that makes
• To de-confound two variables X and Y

• We need to block all non-causal paths between X and Y 
without perturbing any causal paths

• A backdoor path is any path from X to Y that starts 
with an arrow pointing into X

• X and Y will be de-confounded if we block every 
such backdoor path

• If we do this by controlling for some variables Z, we 
need to make sure that no member of Z is a 
descendent of X on a causal path 

• That is all there is to it!

		P Y |X( )≠ P Y |do X( )( )
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Confounding through the lens of causal calculus

However,
• B passes a classical epidemiological definition of confounding
• But if we control for B, we introduce confounding rather than 

eliminating  it!

Source: The  book of Why, Pearl and Mackenzie

What do we need to control for in 
order to de-confound X and Y?
• Nothing!

• There is no backdoor path 
into X

• A, B are descendants of X 
(and hence should not be 
controlled for)



75

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Confounding through the lens of causal calculus

What do we need to control for in order to de-confound X and Y?
• There is a backdoor path X ßB àY
• We can block it only by blocking B
• If B is observable, we are all set
• If B is unobservable

• We cannot control for it, so there is no way we can de-confound X and Y, 
so there is no way to estimate the causal effect of X on Y without running 
a RCT

• Current statistical practice would advocate controlling for A, a proxy of B –
but this only partially eliminates the confounding bias and introduces a 
collider biasl

Source: The  book of Why, Pearl and Mackenzie
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Confounding through the lens of causal calculus

What do we need to control for in order to de-confound X and Y?
• There is a backdoor path X ßA àB ßC à Y which is already blocked by B
• Some of the correlation based statistical definitions of confounding would 

identify B as a confounder!
• B becomes a confounder when we control for it!
• Example 

• B – Seatbelt use, X – Smoking, A – Attitude towards societal norms, C –
Attitude towards safety and health related measures, Y – lung cancer

• A 2006 study found B to be correlated with both X and Y

Source: The  book of Why, Pearl and Mackenzie
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Confounding through the lens of causal calculus

What do we need to control for in order to de-confound X and Y?
• A, B, C, D are pre-treatment variables, X is the treatment
• The only backdoor path X ßA à B ßDà EàY is already blocked by the 

collider B, so no need to control for anything!
• Standard statistical practice would be to control for B and C
• Reinforced by Rubin (2009): “To avoid conditioning on some observed 

covariates … is non-scientific ad hockery”
• Controlling for B and C introduces confounding (unless we control for A or  

D as well)

Source: The  book of Why, Pearl and Mackenzie
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Confounding in the language of causal calculus

• Confounder is any factor that makes
• To de-confound two variables X and Y

• We need to block all non-causal paths between X and Y 
without perturbing any causal paths

• A backdoor path is any path from X to Y that starts 
with an arrow pointing into X

• X and Y will be de-confounded if we block every 
such backdoor path

• If we do this by controlling for some variables Z, we 
need to make sure that no member of Z is a 
descendent of X on a causal path 

• That is all there is to it!

		P Y |X( )≠ P Y |do X( )( )
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Confounding through the lens of causal calculus

• Wrong! Rubin (2009): “To avoid conditioning on some observed 
covariates … is non-scientific ad hockery”

• Wrong! A major 2007 paper in the Journal of the American 
Medical Association advises investigators to condition on 
variables that are predictive of treatment assignment without 
regard to whether they are predictive of outcome.
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Artificial
Intelligence

Spring
2019

Confounding and causal models 
• If we can identify and measure the confounders, wecan  control 

for them
• But as Pearl’s work has shown, standard epidemiological and 

statistical criteria for  identifying confounders areflawed
• Both false positive and false negative confounders can yield  

misleading conclusions
• Causal calculus and tools based on graph theoretic criteria like d-

separation provide effective methods for identifying the
confounders (and only theconfounders)
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Review exercises – Back door criterion
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D M Y

• Which set of variables in this graph satisfy the BDC with respect to the 
causal effect  of D on Y ?

• The empty set!
• E[Y |do(D = 1)] − E[Y |do(D = 0) = E[Y |D = 1] −  E [Y |D = 0] 

(correlation is causation)
• No paths into D - just like we intervened on it
• But you may have learned in statistics that…

• “M correlates with D and Y, so you need  to control for it. Otherwise, 
you have omitted-variablebias”

• Bad idea: Conditional on M, D and Y are d-separated! 
• Montgomery et al. 2018 AJPS estimate that 50 % of political  science 

studies suffer from this problem (of controlling for post-treatment variables)
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D M Y

U

• Which set of variables in this graph satisfy the  BDC wrt effect of D on Y ?
• The empty set  - no  controls necessary
• E[Y !do(D = 1)] ' E[Y !do(D = 0)] 

= E[Y !D =   1] ' E[Y !D = 0].
• What is E[Y !D]?
• E [Y !D] =  E [Y ] by d-separation. 
• Correct estimatorequals

• E [Y ] ' %E [Y ] =  0. Which is also clear from thegraph.
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D M Y

U

• “M correlates with D and Y . You may have learned in stats 
that you need  to control for M; or else suffer from omitted 
variable bias”

• Bad idea: Conditional on M, D and Y are d-connected!  
Collider!

• E[Y !D = 1,M = m] ≠ E[Y !D = 1]
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Post-Treatment Variables: General Case

D M Y

U

• This graph applies to situations where there are no back-door  
paths into D. Perhaps via randomization, or you block them  by 
conditioning on X (not shown).

• Conditioning on M is forbidden by the BDC and will have two  
consequences:
• You block a causal path, which you do not want
• You open up a non-causal path, which you do not want

• This introduces bias, and it can go in anydirection
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Post-Treatment Variables: Remarks

• Although it is intuitively clear using causal graphs, the fact
that conditioning on the descendants of the treatment may
actually introduce bias is not well-known

• Usually not mentioned in textbooks that do not use causal
graphs

• Even if mentioned, not really explained (see for example
“Mostly HarmlessEconometrics”, section on “Bad Control”)

• What is somewhat better known is “selection bias” is also
often related to post-treatment variables
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Why does a music record get into the Rolling Stone?

• Schmutz 2005: Why do music records get into the Rolling  Stone 
500 Greatest Albums of All Time?

• Compare these 500 records to 1,200 additional, also successful  
records (e.g. no. 1records)

• Result: Strong negative association between being a no. 1  record 
and being included in Rolling Stone list

• Maybe Rolling Stone journalists are snobby and disregard  
commercial success?

• Or it’s selection bias...

Source: Elwert and Winship 2014, “Endogenous  Selection Bias”



88

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Why does a music record get into the Rolling Stone?

• If Schmutz 2005 had sampled randomly, inclusion in data
S = 1 would have only been driven by a coin flip

• Sample is conditional on S = 1, but S is d-separated from  
everything, so could be ignored
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Why does a music record get into the Rolling Stone?

No.1

RS S

• Schmutz 2005 did not sample from general population;  
included units depending on No.1 and RS variable

• Opens No.1 " % S & RS path
• Creates non-causal association between No.1 and RS even  

without confounders
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Motherhood and wages

• Can you study the causal relationship between motherhood 
and wages offered by employers?

• Selection bias (wages are reported only for employed 
women)

• Mothers’ choice to be employed may be influenced by 
the wages offered
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91 / 37

Selection Bias
• Similar problems may occur whenever units are sampled based  on 

some success (or failure) measure
• This is essentially what every business school’s “case studies”  do
• If we are interested in the causal effect of some factor on  

“success”, sample everyone, not only thesuccessful
• However, sometimes sample selection is hard to avoid (e.g.  

motherhood-wage example)
• Solutions are possible that use parametric assumptions on the  

structural functions (e.g. linearity) or distributional  assumptions 
on the errors (e.g. normality)
• Work of James  Heckman (Nobel-laureate in Economics)
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Recap of Terminology
• Causal graphs are our assumptions
• Sometimes, they have testable implications, via d-

separation  of variables
• We observe P(Y , X, D) (“observables”); so we also

observe
• P(X ) and E[Y !X ] etc.

• Unless we actually are in a situation where we have 
resources  to intervene, we don’t observe E [Y !do(D)]

• The process of getting from E [Y !do(D)] to something like
∑+ E [Y !D, X = x ]P(X = x ) using our assumptions is called

identification
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Plan

• Covariate-Specific Effects: Definition and Identification
• Contrast covariate-specific effects with multiple interventions;  

identification in easy case
• Multiple Interventions: Complicated case, identification under  

linearity assumption
• To find solution to nonparametric version, introduce  “do-

Calculus”
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Covariate-specific Effects

D Y

X

• What is E[Y !do(D = 1), X = x]?
• It’s the effect of setting D =  1 for those units with X = x
• Covariate-specific effect
• Effect heterogeneity:

• E[Y !do(D = 1), X = x] ' E[Y !do(D = 0), X = x] may
differ  for different x ! In fact, almost always will (X 
“moderates”  effect of D on Y)

95 / 35
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Covariate-specific Effects: Examples
• Messages D, socio-economic characteristics X , turnout Y

(Imai/Strauss 2011)
• Limited budget for messages D, which people (X ) should  you 

target as to maximizeturnout?
• X ethnic heterogeneity in a village, D size of vote district, Y  electoral 

result (candidate with extreme preferences, educated  candidate)
• Beath et al. 2016: 

• When vote districts are small you elect an extremist who bargains 
hard for your ethnically homogeneous borough

• If the voting districts are large, you tend to elect a candidate that 
represents the preferences of the electorate at large
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Covariate-specific Effects: Identification

D Y

X

• When we used the BDC, we first wrote E [Y !do(D =  1)] =

7
+

E[Y !do(D = 1), X = x]P(X = x!do(D = 1))

• What were the next two steps?
• P(x =  x $do(D =  1)) =  P(X = x ) because if X fulfills BDC, it  

contains no descendants of D
• E[Y $do(D = 1), X = x] = E[Y $D = 1,X = x]:
• Conditional on X , doing D is like observingD
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Covariate-specific Effects: Identification

D Y

X

• Sowehavealready proven that
• E[Y !do(D = 1), X = x] = E[Y !D = 1,X = x] if X

fulfills  BDC
• More general: X-specific effect identified if some set (X, Z )

fulfills BDC (e.g. if X alone doesnot).
• So for X -specific effect, you always condition on X , don’t

averageover X



99

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar12 / 35

Covariate-specific Effects vs. Causal Interactions
• E[Y !do(D = 1), X = x] ' E[Y !do(D = 0), X = x] will be  

usually different from
E[Y !do(D = 1), do(X = x)] ' E[Y !do(D = 0), do(X = x))]

• Just like E [Y !do(D =  1)] will be usually different from
E [Y !D = 1]

• “Doing” two or more variables: “multiple interventions”
• If E[Y !do(D = 1), do(X = x)] ' E[Y !do(D = 0), do(X = x))]

varies for different x , then D and X “causally” interact
• Sending messages to low-income people will affect their  turnout 

differently than sending messages and increasing  their income!
• The distinction between covariate-specific effects/effect

heterogeneity and causal interaction gets totally lost in
traditional statistics
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The Back-Door Criterion for Multiple Interventions

• Given an ordered pair of sets of variables (D, Y ) in a DAG G , a set
of variables X satisfies the backdoor criterion relative to (D,Y ) if

• no node in X is a descendant of D, and
• X blocks every path between D and Y in GD

• D is a set, so D =  (D1, D2...)
• Otherwise, nothing changes!
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Multiple Interventions: Where the BDC fails

• Let’s first analyze this graph:
• D1  affects X , D2 affects Y
• X  affects D2  and Y
• D2 affects Y

• Example:
• Medical treatment D1 at time 1. 
• X  health status after a while. 
• If healthy,  stop treatment. If not, give 

treatment  D2 at time 2. 
• Then check health Y  again

D1

X

D2

YSource: Biostatistics, James Robins



102

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Time-Varying Treatments: Problem with BDC

• Question: What’s the effect of a given  “strategy” 
(D1, D2) on Y ? 

• Put  differently, can we identify the  joint direct 
effect of (D1, D2)?

• Which variables do we need to adjust for?

D1

X

D2

Y
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Time-Varying Treatments: Problem with BDC

• To get at the effect on Y of interventions 
D1 and D2 : 
• You need to adjust for X ,  which is a 

common cause of D2 and Y
• But X is also descendant of D1 in G , so

• X does not fulfill BDC!
• Conditioning on X would block part of 

the  effect of D1 we are actually 
interested in!

• “Post-treatment confounder”
• Is there a way around this?
• Not if all we have is BDC

D1

X

D2

Y
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Time-Varying Treatment: Linear Version

• If the SCM of this graph is linear,
which paths constitute the effect of
D1 on Y if D2 is fixed?

• D1 % $ Y and D1 % $ X % Y

D1

X

D2

Y
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Time-Varying Treatment: Linear Version

• Write down the formula for the effect of D1 on Y 
if D2 is fixed using  this graph
• βD Y +  βXY %"βD X

1 1

• How would you estimate βD1Y and βXY?
• Regression of Y on D1, X andD2

• And βD1X ?
• Regression of X onD1

• Then just multiply estimates of βXY and
βD1X and add estimate of βD1Y

• This is an example of two-stage
estimation

D1

X

D2

Y

βD1Y

βXY

βD1X

βXD2

βD2Y
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Do-calculus is for causal inference what 
Newton’s laws of motion are for classical physics

Do-Calculus
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• Causal conclusions require causal assumptions

• Structural causal models encode causal assumptions
• Causal assumptions have testable implications – conditional 

independence relations (via d-separation)
• Causal effects are defined in terms of interventions 

• Average causal effect of (binary) 𝐷 on𝑌 is given by
𝐸[𝑌 |𝑑𝑜(𝐷 = 1)] − 𝐸[𝑌 |𝑑𝑜(𝐷 = 0)]

• We observe (samples from)  𝑃(𝑌, 𝑋, 𝐷) and hence we can obtain
𝑃(𝑋) and 𝐸[𝑌 |𝑋] etc.

• Unless we have the resources and ability to experiment, we 
seldom observe 𝑃 𝑌 𝑑𝑜 𝐷 and hence can’t use it to obtain 
𝐸[𝑌 |𝑑𝑜(𝐷)]

Structural Causal Models: The Story So Far



108

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar108 /
35

• Causal effects are defined in terms of interventions 
• Average causal effect of (binary) 𝐷 on𝑌 is given by

𝐸[𝑌 |𝑑𝑜(𝐷 = 1)] − 𝐸[𝑌 |𝑑𝑜(𝐷 = 0)]
• We observe (samples from)  𝑃(𝑌, 𝑋, 𝐷) and hence we can obtain
𝑃(𝑋) and 𝐸[𝑌 |𝑋] etc.

• Unless we have the resources and ability to experiment, we 
seldom observe 𝑃 𝑌 𝑑𝑜 𝐷 and hence can’t use it to obtain 
𝐸[𝑌 |𝑑𝑜(𝐷)]

• Identification of causal effects from observational data entails 
reducing 𝐸[𝑌 |𝑑𝑜(𝐷)] to an expression that is free of 𝑑𝑜( ), e.g., 
∑B 𝐸 𝑌 𝐷,𝑋 𝑃(𝑋 = 𝑥) using  the causal assumption encoded in the 
causal graph

• Once such reduction is done, 𝐸[𝑌 |𝑑𝑜(𝐷)] can be estimated from 
observational data

Structural Causal Models: The Story So Far
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• Identification of causal effects from observational data entails 
reducing 𝐸[𝑌 |𝑑𝑜(𝐷)] to an expression that is free of 𝑑𝑜( ), e.g., 
∑B 𝐸 𝑌 𝐷,𝑋 𝑃(𝑋 = 𝑥) using  the causal assumptions encoded in the 
causal graph

• Once such reduction is done, 𝐸[𝑌 |𝑑𝑜(𝐷)] can be estimated from 
observational data

• In some cases, such identification is trivial. In other cases, it is not
• Primary challenge: observed or unobserved confounders

• If we know the confounders𝑋, and they are observed, we can adjust 
for them 𝐸 𝑌 𝑑𝑜 𝐷 = ∑B 𝐸 𝑌 𝐷,𝑋 𝑃(𝑋 = 𝑥)

• How do we know which confounders to adjust for?
• Confounders are precisely those variables which make 
𝑃(𝑌|𝑑𝑜(𝐷) ≠ 𝑃(𝑌|𝐷)

• Unless we actually are in a situation where we have resources  
to intervene, we don’t observe E [Y !do(D)]

Structural Causal Models: The Story So Far
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• If we know the confounders𝑋, and they are observed, we can adjust for 
them 𝐸 𝑌 𝑑𝑜 𝐷 = ∑B 𝐸 𝑌 𝐷,𝑋 𝑃(𝑋 = 𝑥)

• How do we know which confounders to adjust for?
• Confounders are precisely those variables which make 

𝑃(𝑌|𝑑𝑜(𝐷) ≠ 𝑃(𝑌|𝐷)
• Backdoor criterion allows us to identify the confounders
• A path that starts with an arrow into 𝐷 is called a back-door  path

• Blocking back-door paths makes sure we block bad, i.e., non-causal, 
paths

• Not conditioning on descendants of 𝐷 ensures that we leave all  
good, i.e., causal, paths open and that we do not open up new  
bad paths

Structural Causal Models: The Story So Far
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• Backdoor criterion (BDC) allows us to identify the confounders
• BDC implies 

• Parents of treatment criterion
• Parents of outcome criterion
• Joint ancestors (of treatment and outcome)

• Is BDC powerful enough to identify all causal effects that are 
identifiable from any causal graph?
• No!
• More formally, BDC is sound, but not complete for identifiability of 

causal effects from causal graphs
• Is there a general algorithm that we can use to identify any causal 

effect that is identifiable from a causal graph?

Structural Causal Models: The Story So Far
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Identifying causal effects

Surgeon General (1964):
P (c | do(s)) = P (c | s)

Smoking Cancer

Tobacco Industry (and Ron Fisher)
Genotype (unobserved)

Smoking Cancer

P (c | do(s)) = P (c)

Combined:

Cancer

P (c | do(s)) is not identifiable!

Smoking
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The Front-Door Criterion (FDC)
Suppose we assume:

Suppose 
• We have collected observational data on 𝑆, 𝑇, 𝐶 for a set of 

individuals
• We cannot collect data for 𝐺 because we do not know if a 

smoking gene exists

Causal assumptions:
• Smoking gene (𝐺) causes both smoking 

(𝑆) and Lung Cancer (𝐶)
• Smoking (𝑆) causes lung Tar (𝑇)
• Tar (𝑇) causes Lung Cancer (𝐶)
• Causal effect of interest is 
𝐸[𝐶 |𝑑𝑜(𝑆 = 1)] − 𝐸[𝐶 |𝑑𝑜(𝑆 = 0)]
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The Front-Door Criterion (FDC)
Suppose we assume:

Causal assumptions:
• Smoking gene (𝐺) causes both smoking 

(𝑆) and Lung Cancer (𝐶)
• Smoking (𝑆) causes lung Tar (𝑇)
• Tar (𝑇) causes Lung Cancer (𝐶)
• Causal effect of interest is 
𝐸[𝐶 |𝑑𝑜(𝑆 = 1)] − 𝐸[𝐶 |𝑑𝑜(𝑆 = 0)]

• Are there any confounders? 
• Yes. 𝐺 is the only confounder
• Are there any variables that satisfy the back-door criterion 

with respect to (𝑆, 𝐶) ?
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The Front-Door Criterion (FDC)
Suppose we assume: Causal assumptions:

• Smoking gene (𝐺) causes both smoking 
(𝑆) and Lung Cancer (𝐶)

• Smoking (𝑆) causes lung Tar (𝑇)
• Tar (𝑇) causes Lung Cancer (𝐶)
• Causal effect of interest is 
𝐸[𝐶 |𝑑𝑜(𝑆 = 1)] − 𝐸[𝐶 |𝑑𝑜(𝑆 = 0)]

• Are there any variables that satisfy the back-door criterion 
with respect to 𝑆, 𝐶 ?

• 𝑆, 𝑇 and 𝐶 are not candidates
• What about 𝐺?
• 𝐺 would satisfy the backdoor criterion if it were observed!
• But it is not!
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The Front-Door Criterion (FDC)
Suppose we assume: Causal assumptions:

• Smoking gene (𝐺) causes both smoking 
(𝑆) and Lung Cancer (𝐶)

• Smoking (𝑆) causes lung Tar (𝑇)
• Tar (𝑇) causes Lung Cancer (𝐶)
• Causal effect of interest is 
𝐸[𝐶 |𝑑𝑜(𝑆 = 1)] − 𝐸[𝐶 |𝑑𝑜(𝑆 = 0)]

• We cannot use the back door to adjust for 𝐺
• Is there another way?
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The Front-Door Criterion (FDC)
Suppose we assume: 𝐸[𝐶 |𝑑𝑜(𝑆 = 1)] − 𝐸[𝐶 |𝑑𝑜(𝑆 = 0)]

• We cannot use BDC  to adjust for 𝐺
• Is there another way?
• We can get the causal effect of 𝑆 on 𝑇
• We can get the causal effect of 𝑇 on 𝐶
• And combine them to get the causal 

effect of 𝑆 on 𝐶
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The Front-Door Criterion (FDC)
𝐸[𝐶 |𝑑𝑜(𝑆 = 1)] − 𝐸[𝐶 |𝑑𝑜(𝑆 = 0)]

• We can get the causal effect of 𝑆 on 𝑇
• Why? 
• When we condition on 𝑆, There is no unblocked backdoor path 

from 𝑆 to 𝐶 because  𝑆ß 𝐺à 𝐶ß 𝑇 is already blocked by the 
collider 𝐶

• We can observe 𝑃(𝑇|𝑆 = 1) − 𝑃(𝑇|𝑆 = 0) to get the causal 
effect of 𝑆 on 𝑇
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The Front-Door Criterion (FDC)
𝐸[𝐶 |𝑑𝑜(𝑆 = 1)] − 𝐸[𝐶 |𝑑𝑜(𝑆 = 0)]

• We can get the causal effect of 𝑇 on 𝐶
• How? 
• We can block the backdoor path into 𝑇 which is 𝑇ß 𝑆ß G à
𝐶 by adjusting for 𝑆

• We can get 𝑃(𝐶|𝑑𝑜 𝑇 = 1 ) − 𝑃(𝑆|𝑑𝑜 𝑇 = 0 ) using the 
backdoor adjustment formula
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The Front-Door Criterion (FDC)
𝐸[𝐶 |𝑑𝑜(𝑆 = 1)] − 𝐸[𝐶 |𝑑𝑜(𝑆 = 0)]

• We have the causal effect of 𝑆 on 𝑇 and of  𝑇 on 𝐶
• Can we use these to get the causal effect of 𝑆 on 𝐶?
• Cancer can come about in 2 ways: 𝑇 = 1 or 𝑇 = 0
• If we 𝑑𝑜 𝑆 = 1 , the probabilities of these states are 𝑃(𝑇
= 1|𝑑𝑜(𝑆 = 1)) and 𝑃(𝑇 = 0|𝑑𝑜(𝑆 = 1))

• If we 𝑑𝑜(𝑆 = 0), they are 𝑃(𝑇 = 1|𝑑𝑜(𝑆 = 0)) and 𝑃(𝑇
= 0|𝑑𝑜(𝑆 = 0))

• If 𝑇 = 0, the probability of cancer is 𝑃(𝐶| 𝑇 = 0)
• If 𝑇 = 1, the probability of cancer is 𝑃(𝐶| 𝑇 = 1)
• We can compute 𝑃(𝐶|𝑑𝑜(𝑆)) by weighting the two scenarios 

according to their respective probabilities  under  𝑑𝑜(𝑆)
• We can then get 𝐸[𝐶 |𝑑𝑜(𝑆 = 1)] − 𝐸[𝐶 |𝑑𝑜(𝑆 = 0)]
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The Front-Door Criterion (FDC)
𝐸[𝐶 |𝑑𝑜(𝑆 = 1)] − 𝐸[𝐶 |𝑑𝑜(𝑆 = 0)]

• What did we do?
• To obtain the causal effect of 𝑆 on 𝐶, we adjusted for 𝑆 and 𝑇

which lie on the front-door path from 𝑆 to 𝐶

𝑃 𝐶 𝑑𝑜 𝑆 =L
C

𝑃(𝑇 = 𝑡, 𝑆)L
D

𝑃 𝐶 𝑆 = 𝑠, 𝑇 = 𝑡 𝑃(𝑆 = 𝑠)

• There is 𝑑𝑜 on the LHS but no 𝑑𝑜 on the RHS!
• 𝐺, the unobserved confounder does not appear in the RHS
• If the causal graph shown is an accurate model of causal 

mechanism of cancer, the controversy about whether and to what 
extent  smoking causes cancer could have been answered by an 
observational study that measured 𝑆, 𝑇, and 𝐶
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Front-Door Criterion

Glynn, Adam N., and Konstantin Kashin. "Front-door versus back-door adjustment with unmeasured 
confounding: Bias formulas for front-door and hybrid adjustments with application to a job training 
program." Journal of the American Statistical Association 113, no. 523 (2018): 1040-1049.

• Glynn and Kashin (2018) studied the effect of job training services 
on earnings (without assuming a SCM)

• Data from RCT compared with an observational study
• They did not use a causal diagram but compared RCT with results 

of back-door and front-door adjustments
• Motivation is unobserved – back door criterion can’t be applied, 

but Glynn and Kashin did with other potential confounders like 
age, gender, race, education

• Strictly speaking, front-door criterion can also not be applied 
exactly – because of the direct link from Motivation to Showed up

• Adjustment using FDC beats that using BDC in terms of 
agreement with RCT

• Study shows the power of FDC 
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• Backdoor criterion (BDC) allows us to adjust for confounders
• BDC is not powerful enough to identify all causal effects that are 

identifiable from any causal graph.
• Front-door criterion allows us (under some conditions when there are 

unobserved confounders) to identify causal effects that cannot be 
identified using BDC
• BDC is sound, but not complete for identifiability of causal effects 

from causal graphs
• So is FDC

• Is there a general algorithm that we can use to identify any causal 
effect that is identifiable from a causal graph?

Structural Causal Models: The Story So Far



126

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

The do-Calculus

• Are there some simple rules which you can apply to  any DAG in
order to check whether and how any causal effect – based covariate 
specific, joint, etc. - can be identified?
• The do-calculus! (Judea Pearl)
• Perhaps the most important body of work in causal inference

• Three rules/laws/theorems:
• Insertion/Deletion of Observations
• Action/Observation Exchange
• Insertion/Deletion of Actions

• “Observation” =  conditioning on variable
• “Action” =  do-ing variable
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Identifying causal effects

• Postulate a causal graph (causal assumptions)
• See how the estimand (causal effect of interest) can be written 

as a function of the postulated  causal graph
• Check whether this function can be calculated from 

observations (using do calculus)
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Causal identifiability

• Given a causal Bayesian network 𝐺, we say that a causal 
effect 𝑃 𝑌 𝑑𝑜 𝑋 is identifiable when 𝑃 𝑌 𝑑𝑜 𝑋 can 
be computed using only the joint distribution over the 
observable variables
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Bayesian network factorization

Given a probability distribution 𝑃 and a DAG 𝐺, 𝑃 factorizes 
according to 𝐺 if  
𝑃 𝑋(⋯𝑋E = ∏F'(

E 𝑃 𝑋F|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋F)
Where ∀ 𝑖 ∈ 𝑛 , 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋F) are parents of 𝑋F in 𝐺
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Modularity of interventions

If we intervene on a set of nodes with indices 𝑆 ⊆ 𝑛 setting them to 
constants, then for all 𝑖 ∈ 𝑛 we have:
• If 𝑖 ∉ 𝑆, then 𝑃(𝑋F|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋F)) remains unchanged
• If 𝑖 ∈ 𝑆, then 

• 𝑃(𝑋F = 𝑣|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋F)) = 1 if the intervention sets 𝑋F = 𝑣
• 𝑃(𝑋F = 𝑣|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋F)) = 0 if the intervention sets 𝑋F = 𝑢 ≠ 𝑣

• What does this mean?
• Interventions are local: intervening on a variable 𝑋F changes only the 

DGP for 𝑋F; It does not change the DGP for any other variables
• It is because of modularity that we can encode many different 

interventional distributions in a single causal graph
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Local Causal Markov Condition

• Each node in a Causal Graph is independent of its non-
descendents conditioned on its parents

Minimality

• In addition to Causal Markov condition,  we have 
neighboring nodes in a causal graph are dependent
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Because of modularity, we can encode many 
interventional distributions in a single causal graph
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Global Markov Property

Theorem: Given that 𝑃 is Markov with respect to 𝐺 (satisfies 
the local Markov assumption – every node is independent of 
its non-descendents conditioned on its parents in 𝐺), if 𝑋 and 
𝑌 are d-separated in 𝐺 conditioned on 𝑍, then 𝑋 and 𝑌 are 
independent in 𝑃 conditioned on 𝑍. 

𝑋 ∐G 𝑌|𝑍 → 𝑋 ∐H 𝑌|𝑍
Exercise: Prove that the following are equivalent:
• Global Markov property
• Local Causal Markov condition
• Bayesian network factorization
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Truncated factorization

Original factorization

𝑃 𝑋(⋯𝑋E =\
F'(

E

𝑃 𝑋F|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋F)

Now if we intervene on a set of nodes with indices 𝑆 ⊆ 𝑛
setting them to constants, then for all 𝑖 ∈ 𝑛 we have:
• 𝑃 𝑋(⋯𝑋E|𝑑𝑜(𝑆 = 𝑠 = ∏F∉J

E 𝑃 𝑋F|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋F) if 
𝑋(⋯𝑋E assume values consistent with the intervention 

• 𝑃 𝑋(⋯𝑋E|𝑑𝑜(𝑆 = 𝑠 = 0 otherwise
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Backdoor adjustment theorem
• Given an ordered pair of variables (𝑇, 𝑌 ) in a DAG 𝐺, a set of  

variables 𝑊 satisfies the backdoor criterion relative to (𝑇, 𝑌 ) if
• no node in 𝑊 is a descendant of 𝑇, and
• 𝑊 blocks every path from 𝑇 to 𝑌

Theorem: If the modularity and positivity assumptions hold, and 
𝑊 satisfies the backdoor criterion with respect to 𝑇, 𝑌 ,we can 
identify the causal effect of 𝑇 on 𝑌:

𝑃 𝑌|𝑑𝑜(𝑇 = 𝑡) =L
K

𝑃 𝑌 𝑡, 𝑤 𝑃(𝑤)
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Backdoor adjustment theorem
Proof: By marginalization, we have:

𝑃 𝑌|𝑑𝑜(𝑇 = 𝑡) =L
K

𝑃 𝑌 𝑑𝑜 𝑇 = 𝑡 ,𝑤 𝑃 𝑤|𝑑𝑜(𝑇 = 𝑡)

Because 𝑊 satisfies BDC, we have:

𝑃 𝑌|𝑑𝑜(𝑇 = 𝑡) =L
K

𝑃 𝑌 𝑡, 𝑤 𝑃 𝑤|𝑑𝑜(𝑇 = 𝑡)

• If 𝑊 contains all of the parents of 𝑌 (other than 𝑇) modularity directly 
implies that 𝑃 𝑌 𝑑𝑜 𝑇 = 𝑡 ,𝑤 = 𝑃 𝑌 𝑡, 𝑤

• Why?
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Backdoor adjustment theorem
Proof: Because 𝑊 satisfies BDC, we have:

𝑃 𝑌|𝑑𝑜(𝑇 = 𝑡) =7
,

𝑃 𝑌 𝑡, 𝑤 𝑃 𝑤|𝑑𝑜(𝑇 = 𝑡)

• If 𝑊 contains all of the parents of 𝑌 (other than 𝑇) modularity directly 
implies that 𝑃 𝑌 𝑑𝑜 𝑇 = 𝑡 , 𝑤 = 𝑃 𝑌 𝑡, 𝑤

• In general, if  𝑊 block backdoor paths into 𝑇
• in the modified causal graph for 𝑃 𝑌 𝑑𝑜 𝑇 = 𝑡 , 𝑤 , all  𝑇 → 𝑌

associations must flow along the directed paths from 𝑇 to 𝑌
• In the original causal graph for 𝑃 𝑌 𝑡, 𝑤 all of the all  𝑇 → 𝑌

associations must flow along the directed paths from 𝑇 to 𝑌 (because 
flow of associations along backdoor paths through 𝑇 are blocked by 𝑊

• By modularity, the resulting interventional distribution is identical to 
the  corresponding observational distribution!
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Backdoor adjustment theorem
Proof: Because 𝑊 satisfies BDC, we have:

𝑃 𝑌|𝑑𝑜(𝑇 = 𝑡) =L
K

𝑃 𝑌 𝑡, 𝑤 𝑃 𝑤|𝑑𝑜(𝑇 = 𝑡)

• Now, 𝑃 𝑤|𝑑𝑜(𝑇 = 𝑡) = 𝑃(𝑤)
• Why?
• How might 𝑇 influence 𝑊 in the causal graph modified by 𝑑𝑜(𝑇 = 𝑡)?

• Not through any path with an edge into 𝑇 (𝑇 has no incoming 
edges)

• Not through any path with an edge out of 𝑇, because such a path 
would have to have a collider that is conditioned on (but W 
contains no descendent of 𝑇 as per BDC)

• 𝑃 𝑌|𝑑𝑜(𝑇 = 𝑡) = ∑K 𝑃 𝑌 𝑡, 𝑤 𝑃 𝑤) ∎
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Frontdoor Adjustment
• How can we identify the causal effect of 𝑇 on 𝑌 in 

a causal graph even when we can’t adjust for the 
confounder 𝑊 because it is unobserved?

• If there is a mediator(s) like 𝑀 along the causal 
path between 𝑇 and 𝑌, we can isolate the 
association that flows through 𝑀 as the only 
causal association between 𝑇 and 𝑌 (association 
flowing along directed paths from 𝑇 to 𝑌). 
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Frontdoor Adjustment
1. Identify the causal effect 𝑃(𝑀 | 𝑑𝑜(𝑇 = 𝑡)) of 𝑇 on 𝑀. How? 

• Because 𝑌 is a collider f T that is not conditioned on, 𝑌
blocks backdoor paths into 𝑇

• So using BDA, we have: 
𝑃(𝑀 | 𝑑𝑜(𝑇 = 𝑡)) = 𝑃(𝑀|𝑇 = 𝑡)

2. Identify the causal effect 𝑃(𝑌 | 𝑑𝑜(𝑀 = 𝑚)) of 𝑀 on 𝑌. How?
• Since 𝑇 blocks the backdoor path into 𝑀, we can use BDA to 

adjust for 𝑇

𝑃(𝑌 | 𝑑𝑜(𝑀 = 𝑚)) =7
-
𝑃 𝑌 𝑀 = 𝑚, 𝑇 = 𝑡 𝑃(𝑇 = 𝑡)

3. Combine the above steps to identify the causal effect of 𝑇 on 
𝑌 (through 𝑀):

𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡)) = ∑. 𝑃 𝑀 = 𝑚 𝑑𝑜 𝑇 = 𝑡 𝑃(𝑌|𝑑𝑜(𝑀 = 𝑚)
= ∑. 𝑃 𝑀 = 𝑚 𝑇 = 𝑡 ∑-/ 𝑃 𝑌 𝑀 = 𝑚, 𝑇 = 𝑡/ 𝑃(𝑇 = 𝑡′)
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Frontdoor criterion

• A set of variables 𝑀 satisfies the frontdoor criterion relative 
to 𝑇 and 𝑌 if:

• 𝑀 completely mediates the effect of 𝑇 on 𝑌 (all causal 
paths from 𝑇 to 𝑌 go through 𝑀).

• There is no unblocked backdoor path from 𝑇 to 𝑀.
• All backdoor paths from 𝑀 to 𝑌 are blocked by 𝑇
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Frontdoor adjustment 

Frontdoor adjustment theorem: If a set of variables 𝑀 satisfies the 
frontdoor criterion relative to 𝑇 and 𝑌
𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡))

= ∑L𝑃 𝑀 = 𝑚 𝑇 = 𝑡 ∑CM 𝑃 𝑌 𝑀 = 𝑚, 𝑇 = 𝑡M 𝑃(𝑇 = 𝑡′)

Proof: 
• Tedious without do-calculus. 
• Compact using do-calculus.
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• Backdoor criterion (BDC) allows us to adjust for confounders
• BDC is not powerful enough to identify all causal effects that are 

identifiable from any causal graph.
• Front-door criterion allows us (under some conditions when there are 

unobserved confounders) to identify causal effects that cannot be 
identified using BDC
• BDC is sound, but not complete for identifiability of causal effects 

from causal graphs
• FDC is sound, but not complete for identifiability of causal effects 

from causal graphs
• Is there a general recipe that we can use to identify any causal effect 

that is identifiable from a causal graph?

Structural Causal Models: The Story So Far
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The do-Calculus

• Are there some simple rules which you can apply to  any DAG in
order to check whether and how any causal effect – based covariate 
specific, joint, etc. - can be identified?
• The do-calculus! (Judea Pearl)
• Perhaps the most important body of work in causal inference

• Three rules/laws/theorems:
• Insertion/Deletion of Observations
• Action/Observation Exchange
• Insertion/Deletion of Actions

• “Observation” =  conditioning on variable
• “Action” =  do-ing variable
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Identifying causal effects

• Given a causal Bayesian network 𝐺, we say that a causal effect 
𝑃 𝑌 𝑑𝑜 𝑋 is identifiable when 𝑃 𝑌 𝑑𝑜 𝑋 can be 
computed using only the joint distribution over the observable 
variables

General recipe for identifying causal effects
• Postulate a causal graph (causal assumptions)
• See how the estimand (causal effect of interest) can be written 

as a function of the postulated  causal graph
• Check whether this function can be calculated from 

observations (using do calculus)
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Some notation

• Let 𝐺 be a causal model on a graph, and 𝑊,𝑋, 𝑌, 𝑍 be 
disjoint disjoint subsets of the variables in the causal model.

• Let 𝐺N denote the perturbed graph in which all edges 
pointing to 𝑋 from the parents of 𝑋 in 𝐺 have been 
deleted. This is the graph that models the results of an 
intervention on 𝑋.

• Let  𝐺N denote the graph in which all edges out of 𝑋 to the 
children of 𝑋 in  𝐺 have been deleted. 

• We will also freely use notations like𝐺NO* to denote 
combinations of the above operations.

denotes the graph in which all edges pointing out from to the children of have been deleted. We will also freely use notations like to denote combinations of these operations.
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Do-calculus
Theorem (Rules of do-calculus): Given a causal graph 𝐺, an 
associated distribution 𝑃, and disjoint sets of variables 𝑌, 𝑇, 𝑍, and 
𝑊, the following rules hold:
• 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑍 = 𝑧,𝑊 = 𝑤)

= 𝑃(Y | 𝑑𝑜(𝑇 = 𝑡),𝑊 = 𝑤) if 𝑌 ∐G0
𝑍 | 𝑇, 𝑊. 

• 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤)
= 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑍 = 𝑧,𝑊 = 𝑤) if 𝑌 ∐G01

𝑍 | 𝑇, 𝑊

• 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤)
= 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡),𝑊 = 𝑤) 𝑖𝑓 𝑌 ∐G01(2)

𝑍 | 𝑇, 𝑊

where 𝑍(𝑊) denotes the set of nodes of 𝑍 that aren’t 
ancestors of any node of 𝑊 in 𝐺P .
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Do-calculus Rule 1 (ignore observation) Intuition
Given a causal graph 𝐺, an associated distribution 𝑃, and disjoint sets 
of variables 𝑌, 𝑇, 𝑍, and 𝑊, 
𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑍 = 𝑧,𝑊 = 𝑤)

= 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡),𝑊 = 𝑤) if 𝑌 ∐G0
𝑍 | 𝑇, 𝑊

Consider the simpler case:
𝑃(𝑌 | 𝑍 = 𝑧,𝑊 = 𝑤)

= 𝑃(𝑌 | 𝑊 = 𝑤) if 𝑌 ∐G 𝑍 | 𝑊
• This is simply 𝑑-separation under the Markov condition which 

implies that 𝑑-separation in 𝐺 implies conditional independence in 𝑃
• Hence Rule 1 is simply a generalization of the Global Markov 

Property to the perturbed graph 𝐺P
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Do-calculus Rule 2 (ignore intervention) Intuition
Given a causal graph 𝐺, an associated distribution 𝑃, and disjoint 
sets of variables 𝑌, 𝑇, 𝑍, and 𝑊, 
• 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤)

= 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑍 = 𝑧,𝑊 = 𝑤) if 𝑌 ∐G01
𝑍 | 𝑇, 𝑊

Consider the simpler case:
• 𝑃(𝑌 | 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤)

= 𝑃(𝑌 | 𝑍 = 𝑧,𝑊 = 𝑤) if 𝑌 ∐G1 𝑍 | 𝑊

• This is simply an application of BDC
• Hence, Rule 2 is is simply a generalization of BDC to the 

perturbed graph 𝐺P
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Do-calculus Rule 3 (drop intervention) Intuition
Given a causal graph 𝐺, an associated distribution 𝑃, and disjoint 
sets of variables 𝑌, 𝑇, 𝑍, and 𝑊, 
• 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤)

= 𝑃(𝑦 | 𝑑𝑜(𝑇 = 𝑡),𝑊 = 𝑤) 𝑖𝑓 𝑌 ∐G01(2)
𝑍 | 𝑇, 𝑊

where 𝑍(𝑊) denotes the set of nodes of 𝑍 that aren’t ancestors of 
any node of 𝑊 in 𝐺P
Simpler case – remove intervention on 𝑇
• 𝑃(𝑌 | 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤)

= 𝑃(𝑦 | 𝑊 = 𝑤) 𝑖𝑓 𝑌 ∐G1(2)
𝑍 | 𝑊
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Do-calculus Rule 3 (drop intervention) Intuition
Given a causal graph 𝐺, an associated distribution 𝑃, and disjoint 
sets of variables 𝑌, 𝑍, and 𝑊, 
• 𝑃(𝑌 | 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤) = 𝑃(𝑦 | 𝑊 = 𝑤) 𝑖𝑓 𝑌 ∐G1(2)

𝑍 | 𝑊

where 𝑍(𝑊) denotes the set of nodes of 𝑍 that aren’t 
ancestors of any node of 𝑊 in 𝐺
• Under what conditions can we drop 𝑑𝑜 𝑍 = 𝑧 ?
• If 𝑌 is independent of 𝑑𝑜(𝑍 = 𝑧) given 𝑊 = 𝑤
• Normally, we would drop the incoming arrows into 𝑍 in the 

graph 𝐺 to obtain 𝐺*
• But there is conditioning on 𝑊, which complicates matters as 

we shall see next
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Do-calculus Rule 3 (drop intervention) Intuition
• Suppose 𝑍O is a node in 𝑍 that is an ancestor of a 

node in 𝑊
• When we condition on 𝑊, 𝐴, 𝑍O and become d-

connected in 𝐺!
• Consequently, we cannot drop the conditioning on 
𝑑𝑜(𝑍 = 𝑧) because 𝑍O ∈ 𝑍!

𝐴 𝐵

𝑍O

𝑊

𝑌
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Do-calculus Rule 3 (drop intervention) Intuition
• If 𝑍O is a node in 𝑍 that is an ancestor of a node in 
𝑊, when we condition on 𝑊, 𝐴, 𝑍O and 𝐵 become 
d-connected in 𝐺!

• If we drop the edges into 𝑍, resulting in 𝐺*, 𝑍 will 
still affect the distribution of 𝑌

• We cannot drop interventions on nodes in 𝑍 that 
are ancestors of any node in 𝑊.

• 𝑌 ∐(! 𝑍 | 𝑊 does not guarantee that 
𝑃(𝑌 | 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤) = 𝑃(𝑦 | 𝑊 = 𝑤)

• When can we drop 𝑑𝑜 𝑍 = 𝑧 and not affect the 
distribution of 𝑌?

• Only when we exclude nodes in 𝑍 that are 
ancestors of any node in 𝑊

𝐴 𝐵

𝑍O

𝑊

𝑌
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Do-calculus Rule 3 (drop intervention) Intuition
• When can we drop 𝑑𝑜 𝑍 = 𝑧 and not 

affect the distribution of 𝑌?
• When  𝑑-separation between 𝑍 and 𝑌

holds in the manipulated graph 
resulting from dropping arrows into 
nodes in 𝑍 that are NOT ancestors of 
any node in 𝑊.

𝐴 𝐵

𝑍(𝑊)

𝑊

𝑌
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Do-calculus Rule 3 (drop intervention) Intuition
Given a causal graph 𝐺, an associated distribution 𝑃, and 
disjoint sets of variables 𝑌, 𝑍, and 𝑊, 
𝑃(𝑌 | 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤) = 𝑃(𝑦 | 𝑊 = 𝑤) 𝑖𝑓 𝑌 ∐(!(#)

𝑍 | 𝑊

where 𝑍(𝑊) denotes the set of nodes of 𝑍 that 
aren’t ancestors of any node of 𝑊 in 𝐺
• We can drop 𝑑𝑜 𝑍 = 𝑧 and not affect the 

distribution of 𝑌 when Z are d-separated from 
𝑌 in the manipulated graph 𝐺*(O).

• That is, we drop the interventions 𝑑𝑜 𝑍 = 𝑧 only 
when doing so does not causally  impact 𝑌 when 
conditioning on (controlling for) 𝑊!

𝐴 𝐵

𝑍(𝑊)

𝑊

𝑌
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Do-calculus Rule 3 (drop intervention) Intuition
Given a causal graph 𝐺, an associated distribution 𝑃, and disjoint 
sets of variables 𝑌, 𝑇, 𝑍, and 𝑊, 
• 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤)

= 𝑃(𝑦 | 𝑑𝑜(𝑇 = 𝑡),𝑊 = 𝑤) 𝑖𝑓 𝑌 ∐G01(2)
𝑍 | 𝑇, 𝑊

where 𝑍(𝑊) denotes the set of nodes of 𝑍 that aren’t ancestors of 
any node of 𝑊 in 𝐺P
In the simpler case obtained by dropping 𝑑𝑜(𝑇 = 𝑡), we showed 
that 
• 𝑃(𝑌 | 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤) = 𝑃(𝑌 | 𝑊 = 𝑤) 𝑖𝑓 𝑌 ∐G1(2)

𝑍 | 𝑊

• Rule 3 is is simply a generalization of the preceding to the 
perturbed graph 𝐺P. 

• Rule 3 says that any intervention 𝑑𝑜 𝑍 = 𝑧 that does not affect 
the outcome or conditioning variables can be safely ignored.
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Do-calculus Rule 3 (drop intervention) Intuition
Given a causal graph 𝐺, an associated distribution 𝑃, and disjoint 
sets of variables 𝑌, 𝑇, 𝑍, and 𝑊, 
• 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤)

= 𝑃(𝑦 | 𝑑𝑜(𝑇 = 𝑡),𝑊 = 𝑤) 𝑖𝑓 𝑌 ∐G01(2)
𝑍 | 𝑇, 𝑊

where 𝑍(𝑊) denotes the set of nodes of 𝑍 that aren’t ancestors of 
any node of 𝑊 in 𝐺P
Rule 3 says that any intervention that does not affect the outcome 
or conditioning variables can be safely ignored.
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Do-calculus
Theorem (Rules of do-calculus): Given a causal graph 𝐺, an 
associated distribution 𝑃, and disjoint sets of variables 𝑌, 𝑇, 𝑍, and 
𝑊, the following rules hold:
• 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑍 = 𝑧,𝑊 = 𝑤)

= 𝑃(Y | 𝑑𝑜(𝑇 = 𝑡,𝑊 = 𝑤) if 𝑌 ∐G0
𝑍 | 𝑇, 𝑊. 

• 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤)
= 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑍 = 𝑧,𝑊 = 𝑤) if 𝑌 ∐G01

𝑍 | 𝑇, 𝑊

• 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤)
= 𝑃(𝑦 | 𝑑𝑜(𝑇 = 𝑡),𝑊 = 𝑤) 𝑖𝑓 𝑌 ∐G01(2)

𝑍 | 𝑇, 𝑊

where 𝑍(𝑊) denotes the set of nodes of 𝑍 that aren’t 
ancestors of any node of 𝑊 in 𝐺P .
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Do Calculus: a set of rules  identifying causal effects

Note: The rules can be proved using the semantics of the do 
operator, Global Markov condition, 𝑑-separation and the 
rules of probability
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Soundness and Completeness of do-calculus

• Soundness: Follows from Global Markov Property, 
semantics of Causal Graphs, and d-separation

• Completeness: Every causal effect that is identifiable from 
a causal graph can in fact be identified using the rules of 
do-calculus 
• Proofs 

• (Huang and Valtorta, 2006)
• (Shpitser and Pearl 2006)

• Graphical criterion for non-identifiability
• (Tian and Pearl, 2002)
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Exercises

• Use do-calculus to prove 
• Backdoor adjustment formula
• Frontdoor adjustment formula
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Getting comfortable with causal models
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Getting comfortable with causal models
• Easy case: all variables are observed
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Causal and non-causal associations

Season (𝑆)

Sprinkler (𝐾) Rain (𝑅)

Wet (𝑊)

Slippery (𝐿)

𝑝#

𝑝$

Type equation here.

𝑃 𝑆, 𝐾, 𝑅,𝑊, 𝐿 = 𝑃 𝐿 𝑊 𝑃 𝑊 𝐾, 𝑅 𝑃 𝐾 𝑆 𝑃(𝑅|𝑆)

𝑃(𝑊|𝐾 = 1) = 𝑃(𝑝#) + 𝑃(𝑝$)

=
𝑃(𝐾 = 1,𝑊)
𝑃(𝐾 = 1)

=
∑%,' 𝑃 𝑊|𝐾 = 1, 𝑟 𝑃 𝐾 = 1|𝑠 𝑃 𝑟|𝑠 𝑃 𝑠

∑%, 𝑃 𝐾 = 1|𝑠 𝑃 𝑠
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Causal and non-causal associations

Season (𝑆)

Sprinkler (𝐾) Rain (𝑅)

Wet (𝑊)

Slippery (𝐿)

𝑝#

Type equation here.

𝑃 𝑆, 𝐾, 𝑅,𝑊, 𝐿 = 𝑃 𝐿 𝑊 𝑃 𝑊 𝐾, 𝑅 𝑃 𝐾 𝑆 𝑃(𝑅|𝑆)

𝑃(𝑊|𝑑𝑜 𝐾 = 1 ) = 𝑃(𝑝#)

=
∑%,' 𝑃 𝑊|𝐾 = 1, 𝑟 𝑃(𝐾 = 1)𝑃 𝑟|𝑠 𝑃 𝑠

𝑃(𝐾 = 1)

= 5
%,'

𝑃 𝑊|𝐾 = 1, 𝑟 𝑃 𝑟|𝑠 𝑃 𝑠
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Causal and non-causal associations

Season (𝑆)

Sprinkler (𝐾) Rain (𝑅)

Wet (𝑊)

Slippery (𝐿)

𝑝#

𝑝$

Type equation here.

𝑃(𝑊|𝐾 = 1) = 𝑃(𝑝#) + 𝑃(𝑝$) (Association)

𝑃(𝑊|𝑑𝑜(𝐾 = 1)) = 𝑃(𝑝#) (Causation)

Causal models show us
• Why not all associations are 

causal
• When it is possible to 

distinguish one from the other
• How to identify causal effects 

(when they are identifiable) 
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Identification from (Markovian) Causal Models
Theorem: Given the causal diagram G of any Markovian model that 
all variables 𝑽 are measured, the causal effect 𝑄 = 𝑃(𝒀 | 𝑑𝑜(𝑿)) is 
identifiable for every subsets of variables 𝑿 and 𝒀 and is obtained 
from the truncated factorization, i.e., 

𝑃(𝒀|𝑑𝑜(𝑿) = L
𝑽\𝑿∪𝒀

\
l3∈ 𝑽\𝑿

𝑃 𝑉F|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑉F
Season (𝑆)

Sprinkler (𝐾) Rain (𝑅)

Wet (𝑊)

Slippery (𝐿)

𝑃(𝑊|𝑑𝑜(𝐾 = 1)) = 5
%,'

𝑃 𝑊|𝐾 = 1, 𝑟 𝑃 𝑟|𝑠 𝑃 𝑠
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Truncated Factorization, G-computation Lemma

The distribution generated by an intervention 𝑑𝑜(𝑿 = 𝒙) (in a 
Markovian  model induced by a causal graph 𝐺) is given by the 
truncated factorization:

𝑃(𝑽|𝑑𝑜 𝑿 = 𝒙 ) = \
l3∈𝑽\𝑿

𝑃 𝑉F|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑉F j
𝑿 = 𝒙

=
𝑃 𝑽

𝑃 𝑿|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑿
j
𝑿 = 𝒙

= 𝑃 𝑽|𝑿, 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑿) 𝑃(𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑿)) j
𝑿 = 𝒙
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Adjustment by Direct Parents

Theorem: Given a causal diagram 𝐺 of any Markovian system, the 
causal quantity 𝑄 = 𝑃(𝒀 | 𝑑𝑜(𝑿)) is identifiable whenever 
𝑿, 𝒀, 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑿) are observed. The expression of 𝑄 is then 
obtained by adjustment for 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑿) or 

𝑃(𝒀|𝑑𝑜(𝑿) = L
H&noECD(𝑿)

𝑃 𝒀|𝑿, 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑿 𝑃 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑿
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What if not all direct parents of treatment are observed?

Can we still identify the causal effect of treatment?
Yes, e.g., using BDA, FDA, and more generally, do-calculus!
• BDA can use backdoor variables that substitute for  direct parents 

of treatment

Season (𝑆)

Sprinkler (𝐾) Rain (𝑅)

Wet (𝑊)

Slippery (𝐿)

• 𝑆 is not recorded
• All other variables are
• Can you identify the causal 

effect of 𝐾 on 𝑊?
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BDA Substitutes backdoor variables to direct parents of treatment?

Season (𝑆)

Sprinkler (𝐾) Rain (𝑅)

Wet (𝑊)

Slippery (𝐿)

𝑃 𝑊 𝐾 = 5
%

𝑃 𝑊 𝐾, 𝑠 𝑃(𝑠)

= 5
%,'

𝑃 𝑊 𝐾, 𝑠, 𝑟 𝑃 𝑟 𝐾, 𝑠 𝑃(𝑠)

W∐𝑆|𝐾, 𝑅 𝐾∐𝑅|𝑆

= 5
%,'

𝑃 𝑊 𝐾, 𝑟 𝑃 𝑟|𝑠 𝑃(𝑠)

= 5
'

𝑃 𝑊 𝐾, 𝑟 5
%

𝑃 𝑟|𝑠 𝑃(𝑠)

= 5
'

𝑃 𝑊 𝐾, 𝑟 5
%

𝑃 𝑟, 𝑠

= 5
'

𝑃 𝑊 𝐾, 𝑟 𝑃(𝑟)

This is just BDA using 𝑅!

• 𝑆 is not recorded
• All other variables are
• Can you identify the causal 

effect of 𝐾 on 𝑊?
• Yes! 𝑅 satisfies BDC WRT 
(𝐾,𝑊)
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BDA Substitutes backdoor variables to direct parents of treatment
BDC requires:
• no node in 𝒁 is a descendent of 𝑿 ⟹ 𝑿 ⫫ 𝒁 |𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑿)
• Z blocks every path between X and Y that contains an arrow into X⟹Y

⫫𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑿) |	Z,	X

𝑃 (𝒀|𝑑𝑜(𝑿)) = 5
()'*+,% 𝑿

𝑃 𝒀|𝑿, 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑿 𝑃 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑿

= 5
()'*+,% 𝑿 ,𝒛

𝑃 𝒀|𝑿, 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑿 , 𝒛 𝑃(𝒛, |𝑿, 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑿)) 𝑃(𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑿))

= 5
()'*+,% 𝑿 ,𝒛

𝑃 𝒀|𝑿, 𝒛 𝑃 𝒛, 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑿)) 𝑃(𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑿))

= 5
𝒛

𝑃 𝒀|𝑿, 𝒛 5
()'*+,%(𝑿)

𝑃 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑿 , 𝒛 = 5
𝒛

𝑃 𝒀|𝑿, 𝒛 𝑃 𝒛
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BDA Substitutes backdoor variables to direct parents of treatment
𝑃 𝒀 𝑑𝑜 𝑿 is identifiable if  ∃ 𝒁 that d-separates 𝑿 from 𝒀 in 𝐺𝑿
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Backdoor adjustment and inverse probability weighting (IPW)
𝑃 𝒀 𝑑𝑜 𝑿 is identifiable if  ∃ 𝒁 that d-separates 𝑿 from 𝒀 in 𝐺𝑿

𝑃 𝒀 𝑑𝑜 𝑿 = 𝒙 =7
𝒛

𝑃 𝒀|𝑿 = 𝒙, 𝒛 𝑃 𝒛

=7
𝒛

𝑃 𝒀, 𝒙, 𝒛 𝑃(𝒛)
𝑃(𝒙, 𝒛)

=7
𝒛

𝑃 𝒀, 𝒙, 𝒛 𝑃(𝒛)
𝑃(𝒙|𝒛)𝑃(𝒛)

=7
𝒛

𝑃 𝒀, 𝒙, 𝒛
𝑃(𝒙|𝒛)

Inverse propensity score
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Backdoor adjustment and inverse probability weighting (IPW)
𝑃 𝒀 𝑑𝑜 𝑿 is identifiable if  ∃ 𝒁 that d-separates 𝑿 from 𝒀 in 𝐺𝑿

𝑃 𝒀 𝑑𝑜 𝑿 = 𝒙 =7
𝒛

𝑃 𝒀|𝑿 = 𝒙, 𝒛 𝑃 𝒛

=7
𝒛

𝑃 𝒀, 𝒙, 𝒛
𝑃(𝒙|𝒛)

• IPW has the effect of estimating the interventional probability from 
a suitably resampled data to mimic an interventional distribution!
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Backdoor adjustment under conditional intervention
• Suppose we contemplate an age-dependent policy whereby 

dosage 𝑋 of drug is to be administered to patients, depends on 
their age 𝑍. We write it as 𝑑𝑜(𝑋 = 𝑔(𝑍)).

• To find out the distribution of outcome 𝑌 that results from this 
policy, we seek to estimate 𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑔(𝑍))). 

• We can often get it via 𝑍-specific effect of 𝑃 𝑌 𝑑𝑜 𝑋 = 𝑥 , 𝑍 = 𝑧
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Backdoor adjustment under conditional intervention

𝑍 are pre-intervention variables and are not impacted by the 
intervention
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Do-calculus
Theorem (Rules of do-calculus): Given a causal graph 𝐺, an 
associated distribution 𝑃, and disjoint sets of variables 𝑌, 𝑇, 𝑍, and 
𝑊, the following rules hold:
• 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑍 = 𝑧,𝑊 = 𝑤)

= 𝑃(Y | 𝑑𝑜(𝑇 = 𝑡),𝑊 = 𝑤) if 𝑌 ∐G0
𝑍 | 𝑇, 𝑊. 

• 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤)
= 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑍 = 𝑧,𝑊 = 𝑤) if 𝑌 ∐G01

𝑍 | 𝑇, 𝑊

• 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡), 𝑑𝑜(𝑍 = 𝑧),𝑊 = 𝑤)
= 𝑃(𝑌 | 𝑑𝑜(𝑇 = 𝑡),𝑊 = 𝑤) 𝑖𝑓 𝑌 ∐G01(2)

𝑍 | 𝑇, 𝑊

where 𝑍(𝑊) denotes the set of nodes of 𝑍 that aren’t 
ancestors of any node of 𝑊 in 𝐺P .
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Artificial
Intelligence

Spring
2019

Do-calculus in action
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Identifiability of causal effect from graph

• Is the back-door criterion satisfied with respect to (𝑇, 𝑌)?
• No, because we cannot block the backdoor path into 𝑇 because 
𝑊1 is unobserved. 

• Is the front-door criterion satisfied with respect to (𝑇, 𝑌)?
• No (because 𝑊2 is unobserved, so there is non-causal association 

between 𝑀1 and 𝑌)

Front-Door Criterion: A set of 
variables 𝑍 is said to satisfy the 
front-door criterion relative to 
an ordered pair of variables 
(𝑇, 𝑌), if:
• 𝑍 intercepts all directed 

paths from 𝑇 to 𝑌
• There is no unblocked 

backdoor path from 𝑇 to 𝑍
• All backdoor paths from 𝑍 to 

𝑌 are blocked by 𝑇

Back-Door Criterion: A set of 
variables 𝑍 is said to satisfy the 
back-door criterion relative to 
an ordered pair of variables 
(𝑇, 𝑌), if:
• 𝑍 intercepts all backdoor 

paths from 𝑇 to 𝑌 (paths 
that contain an arrow into 𝑇)

• No node in 𝑍 is a 
descendent of 𝑇
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Theorem (soundness and completeness of do-calculus 
for causal identifiability from 𝑃(𝑽)). The causal quantity 
𝑄 = 𝑃(𝑌|𝑑𝑜(𝑋)) is identifiable from 𝑃(𝑽) and a causal 
graph 𝐺 if and only if there exists a sequence of 
application of the rules of do-calculus and the probability 
axioms that reduces 𝑄 into a do-free expression.

Do-calculus and Causal effect identification
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Identifiability of causal effect from graph
Unconfounded children criterion
• The unconfounded children criterion is 

satisfied if it is possible to block all 
backdoor paths from the treatment 
variable T to all of its children that are 
ancestors of Y with a single conditioning 
set (Tian & Pearl, 2002).

• Unconfounded children criterion 
• Sufficient (but not necessary) 

condition for identifiability when 𝑇 is a 
single treatment variable.

• Generalizes the back-door and front-
door criteria
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• Two models have the same distribution 𝑃(𝑽) over the 
observable variables 𝑽

• Yet they differ in 𝑃(𝑌|𝑑𝑜(𝑋)
• In other words, 𝑃(𝑽) does not uniquely specify 𝑃(𝑌|𝑑𝑜(𝑋)

Non-identifiability

• Is 𝑃(𝑌 | 𝑑𝑜(𝑋)) identifiable from 𝐺? 
• Is 𝑃(𝑌 | 𝑑𝑜(𝑋), 𝑍() identifiable from 𝐺? 
• Is 𝑃(𝑌 | 𝑑𝑜(𝑋), 𝑍y) identifiable from 𝐺?
• Is 𝑃(𝑌 | 𝑑𝑜(𝑋), 𝑍(, 𝑍y) identifiable from 𝐺?
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Lemma (Graph-subgraph ID (Tian and Pearl, 2002)) 

• If Q = 𝑃(𝑌 | 𝑑𝑜(𝑋)) is not identifiable in 𝐺, then 𝑄 is not 
identifiable in the graph resulting from adding a directed or 
bidirected edge to G. 

• Converse. If 𝑄 = 𝑃(𝑌|𝑑𝑜(𝑋)) is identifiable in 𝐺, 𝑄 is still 
identifiable in the graph resulting from removing a directed or 
bidirected edge from G.

Non-identifiability
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Theorem (Graphical criterion for non-identifiability of joint 
interventional distributions (Tian, 2002)). 

If there is a bidirected path connecting X to any of its children in 
G, then 𝑃(𝑽|𝑑𝑜(𝑋)) is not identifiable from 𝑃(𝑽) and G. 

Note: Bidirected path denotes unobserved confounding.

Non-identifiability
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For each backdoor path 
from 𝑇 to any child 𝑀 of 𝑇
that is an ancestor of
𝑌, it is possible to block 
that path (Pearl, 2009)

Necessary condition for identifiability
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Theorem: 
𝑃(𝑽|𝑑𝑜(𝑋)) is identifiable from 𝑃(𝑽) and G if and only if there  is 
NO bidirected path connecting X to any of its children in G. 

Note: Bidirected path denotes unobserved confounding.

Note: There is also a graphical criterion in terms of “hedges”. 

See Shpitser, I., & Pearl, J. (2008). Complete identification 
methods for the causal hierarchy. Journal of Machine Learning 
Research, 9, 1941-1979.

Identifiability: Necessary and sufficient condition

Tian and Pearl, 2002
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Some causal graphs where 𝑃(𝑌|𝑑𝑜(𝑋) is identifiable
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Some causal graphs where 𝑃(𝑌|𝑑𝑜(𝑋) is not identifiable
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Exercise: Apply do calculus to identify the causal 
effect of 𝑋 on 𝑌 (𝑈1 and 𝑈2 are unobserved)
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Identification of Multiple Interventions using do-Calculus D1

X

D2

Y
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Identification of Multiple Interventions using do-Calculus D1

X

D2

Y
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Identification of Multiple Interventions using do-Calculus
D1

X

D2

Y
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D1

X

D2

Y
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Exercise: Apply do calculus to identify the 
causal effect of 𝑋 on 𝑌 (𝑈 is unobserved)
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Pearl’s 𝑑𝑜-calculus is Complete for identifiability
• Tian and Pearl 2002 provided a sound algorithm for identifying 

causal effects using 𝑑𝑜-calculus
• Exploiting the Identify algorithm on structural causal models, 

we can prove that Pearl’s three inference rules are complete, 
thus confirming Pearl’s conjecture

• Huang and Valtorta, 2006
• Shpitser and Pearl, 2006

• Shpitser, building on the results of Tian, found a polynomial 
time  algorithm for identifying every causal effect 𝑃(𝑌|𝑑𝑜(𝑋))
that is identifiable 


