

PennState Institute for Computational and Data Sciences

Neyman's Theorem 1

Estimation of Sample Average Causal Effect

Consider a completely randomized experiment where 2N units are randomly selected into the treatment and control groups of equal size. Let T_i be the binary treatment variable and Y_i the outcome under T_i . Consider the following estimator of the sample average causal effect τ .

$$\hat{\tau} = \frac{1}{N} \sum_{i=1}^{2N} T_i Y_i - (1 - T_i) Y_i$$

Where $\mathbb{E}(\hat{\tau}) = \tau$ and $var(\hat{\tau}) = \frac{S_T^2}{2N} + \frac{S_C^2}{2N} - \frac{S_{TC}^2}{N}$ where S_T^2 and S_C^2

are the (sample) variance of the potential outcomes $Y_i^{T=1}$ and $Y_i^{T=0}$ respectively and S_{TC}^2 their (sample) covariance.

PennState

Principles of Causal Inference

PennState Institute for Computational and Data Sciences

Neyman's Theorem 1

$$\hat{\tau} = \frac{1}{N} \sum_{i=1}^{2N} T_i Y_i - (1 - T_i) Y_i$$

Where $\mathbb{E}(\hat{\tau}) = \tau$ and $var(\hat{\tau}) = \frac{S_T^2}{2N} + \frac{S_C^2}{2N} - \frac{S_{TC}^2}{N}$ where S_T^2 and S_C^2 are the (sample) variance of the potential outcomes $Y_i^{T=1}$ and $Y_i^{T=0}$ respectively and S_{TC}^2 their (sample) covariance.

- Under randomization, the sample variances of $Y_i^{T=1}$ and $Y_i^{T=0}$ can be estimated without bias using the sample variances of the observed outcomes for the treatment and control groups
- The sample covariance between the two potential outcomes cannot be estimated directly because we never observe them jointly
- Neyman (1923) further demonstrated that the standard estimator of the variance of the average treatment effect is too conservative (i.e., too large)

PennState

Principles of Causal Inference

Center for Artificial Intelligence Foundations and Scientific Applications CTS Clinical and Tanal Artificial Intelligence Research Laboratory

Neyman's Theorem 2

PennState Institute for Computational and Data Sciences

Bounds for Variance of Sample Average Causal Effect Estimator

If $\hat{\tau}$ represents the estimator of the average treatment effect defined in Neyman's theorem 1, then its variance satisfies the following inequality

$$var\left(\hat{\tau}\right) \le \frac{S_T^2}{2N} + \frac{S_C^2}{2N}$$

where the upper bound is obtained under the constant treatment effect assumption.

PennState

Principles of Causal Inference

PennState Institute for Computational and Data Sciences

Sleep versus Caffeine

- Estimator is unbiased if $E(\hat{\tau}) = \tau$
- For completely randomized experiments,

$$\hat{\tau} = \frac{\sum_{i=1}^{N} T_i Y_i^{T=1}}{N_T} - \frac{\sum_{i=1}^{N} (1 - T_i) Y_i^{T=0}}{N_C}$$

is an unbiased estimator of

$$\tau = \overline{Y^{T=1}} - \overline{Y^{T=0}} = \frac{\sum_{i=1}^{N} Y_i^{T=1}}{N} - \frac{\sum_{i=1}^{N} Y_i^{T=0}}{N}$$

if the treated and untreated populations are exchangeable

PennState

Principles of Causal Inference

PennState Institute for Computational and Data Science:

How do we get p-value from a single randomized experiment?

• Recall the idea of sharp null hypothesis: $\forall i \; \tau_i = 0$

Results of a randomized experiment with 8 subjects if $\forall i \ \tau_i = 0$						
Name	Т	Y	Y(0)	Y(1)		
Andy	1	10	10	10		
Ben	1	5	5	5		
Chad	1	16	16	16		
Daniel	1	3	3	3		
Edith	0	5	5	5		
Frank	0	7	7	7		
George	0	8	8	8		
Hank	0	10	10	10		

PennState

Principles of Causal Inference

Center for Artificial Intelligence Foundations and Scientific Applications CTSI Clicked and Transla Artificial Intelligence Research Laboratory PennState putational How do we get p-value from a single randomized experiment? • Recall the idea of sharp null hypothesis: $\forall i \ \tau_i = 0$ • Suppose we randomize treatment assignment now Results of a randomized experiment with 8 subjects if $\forall i \ \tau_i = 0$ T , Y and τ *Y*(0) Name Т Y Y(1) denote the 10 Andy 10 10 1 vectors of 0 5 Ben 5 5 treatment Chad 1 16 16 16 assignments, Daniel 0 3 3 0 outcomes, 1 Edith 5 5 5 and ACE 0 7 7 Frank 7 respectively 1 George 8 8 8 0 10 10 10 Hank

+(T VIC Mall)	_	$\overline{V(1)}$	$\overline{V(0)}$	_
$t(\mathbf{T}, \mathbf{Y} S.Null)$	=	Y(1)	-Y(0)	=

PennState

10 + 16 + 5 + 8

4

Vasant G Honavar

= 3.5

 $\frac{5+3+7+10}{4} = \frac{39-25}{4}$

Principles of Causal Inference

PennState Institute for Computa and Data Sciences	PennState Institute for Computational and Data Sciences Center for Artificial Intelligence Foundations and Scientific Applications CES Clicket and Involutional Artificial Intelligence Research Laboratory							
Coun	Counterfactual response types and interactions							
Classifica Possible r	cation of individuals according to their counterfactual responses: e response types							
	Туре	$Y^{A=0}$	$Y^{A=1}$	_				
	Doomed	1	1	-				
	Preventive	1	0					
	Causative	0	1					
	Immune	0	0					
				-				
PennState Collings of Information Sciences And Technology		Principles of Ca	usal Inference		Vasant G Honavar			

Туре	1,1	0,1	1,0	0,0	Туре	1,1	0,1	1,0	0,0
1 2	1 1	1 1	1 1	1 0	9 10	0 0	1 1	1 1	1 0
3	1	1	0	1	11	0	1	0	1
4	1	1	0	0	12	0	1	0	0
5	1	0	1	1	13	0	0	1	1
6	1	0	1	0	14	0	0	1	0
7	1	0	0	1	15	0	0	0	1
8	1	0	0	0	16	0	0	0	0

 Pennstate Institute for Computational and Data Sciences
 Center for Artificial Intelligence Foundations and Scientific Applications
 CTSI
 Clience Institute

 Counterfactual response types and interactions

PennState

Principles of Causal Inference

Vasant G Honavar

PennState Institute for Con and Data Science	tions CTSI Clinical and Translational Science Institute							
counterfactual outcome								
			T -0	Constitution				
Person	T	Y 1=1	Y 1=0	Covariates				
1	1	0.4		X 1				
2	0	0.8	0.6	X ₂				
3	1	0.3		X₃				
4	0	0.3	0.1	X 4				
5	1	0.5		X 5				
6	0	0.6	0.5	X ₆				
7	0		0.1	X7				
Causal effect of treatment = $E[Y^{T=1} - Y^{T=0}]$								
PennState College of Information Sciences And Technicatogy		Vasant G Honavar						

Principles of Causal Inference

Vasant G Honavar

PennStat

Principles of Causal Inference

Vasant G Honavar

PennState Institute for Computatic and Data Sciences	Center for Artificial Intelligence Fo Artificial Intelligence Research Lab	undations and Scient	tific Applications CTSI Clinical and Translational Science Institute	
Conditior	Conditional Probabilities: Example			
• US	Census for 2012 Election	Age group	# of voters in thousand	
חנוע	t = 1 - 1	18-29	20,359	
P(V)	der s age < 45)?	30-44	30,756	
		45-64	52,013	
20,35	9 + 30,756	65+	29,641	
1	32,948 ≈ 0.38	Total	132,948	
 Now let's say you are a politician and you know you do not reach people below 30. What is that your audience member is below 45? What's <i>P(Voter's age < 45 Voter Age > 29)</i>? Filter! 				
PennState College of Information Sciences And Technology	Principles of Ca	ausal Inference	Vasant G Honavar	

PennState Institute for Computational and Data Sciences	Center for Artificial Intelligence Foundations and Scientific Applications Artificial Intelligence Research Laboratory	Clinical and Translational Science Institute	
Conditional Probabilities: Example			
Age Grou 30-44 45-64 65+ Total	p # of voters in thousand 30,756 52,013 29,641 112,409		
P(Voter's age < 45 Voter Age > 29)?			
	$\frac{30,756}{112,409} \approx 0.27$		
• This is different from $P(Voter's age > 29, Voter's age < 45)$ $\frac{30,756}{132,948} \approx 0.23$			
PennState Crime of Information Sciences And Technology	Principles of Causal Inference	Vasant G Honavar	

PennState Institute for Computational and Data Sciences	Center for Artificial Intelligence Foundations and Scientific Applications Clinical and Frankational Artificial Intelligence Research Laboratory			
Joint Probabilities				
Age	group #	of voters in thousand		
18	-29	20,359		
30	-44	30,756		
45	-64	52,013		
6	5+	29,641		
To	otal	132,948		
 We can treat "Voter's age> 29" and "Voter's age< 45" as two binary random variables Then P(Voter's age > 29, Voter's age < 45) is the joint probability of two random variable P(Voter's age > 29, Voter's age < 45) = ^{30,756}/_{132,948} ≈ 0.23 				
PennState Sciences Aria Technology		Principles of Causal Inference		Vasant G Honavar

PennState	e Cent computational Artifi	er for Artificial Intelligence Foundations and cial Intelligence Research Laboratory	Scientific Applications CTS Clinical and Translational Science Institute
Conditional Probabilities and Joint Probabilities: Example			
•	Gender Male Male Male Female Female Female Female Female Total P(Male&h P(Male)? P(High so	Highest education achieved Never finished high school High school College Graduate School Never finished high school High school College Graduate School school)? Joint probabilit LoTP! Marginal probability.	# in hundreds of thousands 112 231 595 242 136 189 763 172 2440 y. 231/2440 1180/2440 ability. 420/2440
PennState Eclique d'information Sciences And Technology		Principles of Causal Inference	Vasant G Honavar

PennState Institute for Computational Artificial Intelligence Foundations and Scientific Applications CTS Clinical and Translational Artificial Intelligence Research Laboratory				
Conditional Probabilities and Joint Probabilities: Example				
Gender	Highest education achieved	# in hundreds of thousands		
Male	Never finished high school	112		
Male	High school	231		
Male	College	595		
Male	Graduate School	242		
Total		1180		
 P(High school Male)? Conditional probability. 231/1180 We see P(high school Male) = P(high school, Male)/P(Male) This is Bayes' Rule P(high school, Male) = P(high school Male) · P(Male) 				
PennState Globe ef Information Sciences And Technology	Principles of Causal Infe	orence Vasant G Honavar		

