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Summary of Randomized Experiments

* Completely randomized design is more informative than Bernoulli
design
* Because it eliminates a priori uninformative treatment assignments, e.g.,
those with almost all units assigned a single treatment
* The stratified design is superior to completely randomized design when
the information used to specify the strata is predictive of the potential
outcomes
* Inthe best case, the level of the pre-treatment covariate defining a
stratum perfectly predicts both potential outcomes for the stratum
* In the worst case, the strata correspond to random partitioning of
units, and membership in a stratum is not predictive of potential
outcomes for the stratum
* Similar arguments apply to the paired randomized design
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Neyman’s Approach to Causality

Causal estimation
* Define the estimand

* Look for an unbiased estimator of the estimand
* Calculate the true sampling variance of the estimator

* Look for an unbiased estimator of the true sampling variance
of the estimator (impossible in the context of causal inference)

* Assume approximate normality to obtain p-value and
confidence interval
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Finite Sample versus Super Population

* Finite sample inference:
* Only concerned with units in the sample
* Only source of randomness is random assignment to
treatment groups

* Super population inference:
* Extend inferences to greater population
* Two sources of randomness: random sampling, random
assignment
* “repeated sampling”
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Estimand: Average causal effect

* In the finite sample setting, the average causal effect of
treatment is defined as:

N T=1 N  T=o0
z:i=1 Yy 2:i=1 \fi

T =YT=1_yT=0 —
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Estimator

* For completely randomized experiments 7 is an
unbiased estimator of T

$ = yT=1 _ yT=0
N T=1 N T=0
_ 2i=1 TLYL . Zi=1(1 - TL)YL
NTreated NControl

where T; = 1 if the ith individual is treated and 0
otherwise.
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Example: Sleep or Caffeine?

* Is sleep or caffeine better for memory? _ T El
* 24 adults were given a list of words to T =) &
memorize, then randomly divided into two W ’ f
groups and sent over to take a break l |
e J

* During the break one group took a nap for — s
an hour and a half, while the other group

stayed awake and then took a caffeine pill
after an hour

* Y: number of words recalled

Mednick et al., “Comparing the benefits of caffeine, naps and placebo on verbal, motor and
perceptual memory”, Behavioral Brain Research, 2008; 193: 79-86.
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Sleep or Caffeine

o |
N

15
1

# of Words Recalled

10

T T
Caffeine Sleep

* Suppose the requisite assumptions (exchangeability etc.) hold
* Can we determine whether sleep or caffeine lead to better recall?

PennStat e
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Sleep versus Caffeine

* Estimand:
* The average word recall for all 24 people if they had slept —
average word recall for all 24 people if they had caffeine

* Note that the estimator assumes exchangeability of the treated
and untreated populations

* Estimate varies from one random assignment to another
* Estimator is unbiased if E() =1
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Neyman’s Theorem 1

Estimation of Sample Average Causal Effect

Consider a completely randomized experiment where 2N units are
randomly selected into the treatment and control groups of equal
size. Let T; be the binary treatment variable and Y; the outcome
under T;. Consider the following estimator of the sample average
causal effect T,

n n SZ SZ SZ
Where E(?) = 7 and var (£) = S1—+ ~<—— T<where S% and S2

are the (sample) variance of the potential outcomes ¥7=1 and
YiT=O respectively and S%C their (sample) covariance.
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Neyman’s Theorem 1
2N
1
t= ﬁZTiYi —@-ny
=

2
Where E(f) =t and var () = Sty S 2N ;T—there S% and SZ are

the S)sample) variance of the potentlal outcomes Y= and
respectively and S%. their (sample) covariance.

* Under randomization, the sample variances of ¥/ =* and ¥ =° can
be estimated without bias using the sample variances of the
observed outcomes for the treatment and control groups

* The sample covariance between the two potential outcomes cannot
be estimated directly because we never observe them jointly

* Neyman (1923) further demonstrated that the standard estimator
of the variance of the average treatment effect is too conservative
(i.e., too large)
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Neyman’s Theorem 2

Bounds for Variance of Sample Average Causal Effect Estimator

If 7 represents the estimator of the average treatment effect
defined in Neyman’s theorem 1, then its variance satisfies the

following inequality
—2N 2N

where the upper bound is obtained under the constant treatment
effect assumption.
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Neyman’s Theorem 3

Estimation of Population Average Causal Effect

Consider the same experiment and estimator, 7, as defined in
Neyman’s Theorem 1 except that the potential outcomes are

a random sample from the population with marginal means p;and
Ho and marginal variances o and o¢.

Consider the population average causal effect as the estimator, i.e.,
2 2
U1 — Uo Then, E(T) =T and var (1) = %+ ;"—
* Therefore, we can estimate the variance of 7 directly from the data
without bias using the sample variance of the observed outcomes

for the treatment and control groups.

* The variance of the population estimator is greater than the
variance of the sample estimator because the former has an extra
variability induced by random sampling from a population.
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Neyman’s Theorem 4

Asymptotic Properties of the Difference-in-Means Estimator

Consider the same setting as in Theorem 3 where we denote the

difference-in-means estimator as £ . Then we have:
* Consistency Ty — 1
« Asymptotic normality VN(£y —7) > MO0, 02 + @)

Arich set of results on estimation, estimators, and their
convergence properties can be found on texts on statistical
estimation
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Sleep versus Caffeine

* Estimator is unbiased if E(f) =1
* For completely randomized experiments,
N - N =
Zi=1 TiYiT ! . Zi=1(1 - Ti)YiT 0
Nr N¢

is an unbiased estimator of

N =1 N T=o0
% Ty

.Y
— — =1"i
T = YT—l YT—O — =1

if the treated and untreated populations are exchangeable
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Additional remarks

* Theorems 1 and 2 refer to sample estimates and hold for samples
of any size

* However, Theorems 3 and 4 are about population estimates for
which sample sizes must be large enough for the distribution of
the estimator to be approximately normal

* Need larger N if the distribution is highly skewed, or some
individuals are outliers or if some outcomes are rare

Principles of Causal Inference Vasant G Honavar
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Confidence Intervals

A * [T A
TXzZ \/ var(7)
* [—z%, z*] is the interval within which the desired probability
mass falls in the standard normal distribution
* Confidence intervals due to Neyman!
* In the finite sample case, confidence interval may be too
wide, and hence inference too conservative
* A 95% confidence interval will contain the estimand at least
95% of the time
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Science Institute

Confidence Intervals

@ 95% Interval

An illustration of 95% confidence
interval for the mean
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Remarks about Neyman’s approach

* The estimation approach provides a best guess but doesn’t tell you
how much you know about that guess.

* For example, a best guess with N = 10 seems to tell us less
about the effect than N = 1000.

* For example, a best guess when 95% of Y =1and 5% of Y =0
seems to tell us less than when outcomes are evenly split
between 0 and 1.

* When the sample size is small, we use the t-distribution
instead of the normal distribution
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Fisher’s approach to causal claims

Randomization of Treatment

The treatment is said to be randomized if the
treatment variable T; is independent of all potential
outcomes, Y;(t) or equivalently ¥ =¢ for all units, i.e.,
VivtY,(O) [IT;

Make claims or guesses about the causal effects.

* We could claim, for example, that coffee had no effect
on recall.

* And then we ask “How much evidence does the
experiment provide about that claim?”

* This evidence is summarized in a p-value.
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Ingredients of a hypothesis test

* Ahypothesis is a statement about a relationship among
potential outcomes.

* Atest statistic summarizes the relationship between
treatment and observed outcomes.

* The experimental design allows us to link the hypothesis and the test
statistic: calculate a test statistic that describes a relationship
between potential outcomes.

* The design also tells us how to generate a distribution of possible
test statistics implied by the hypothesis.

* A p-value describes the relationship between our observed test statistic
and the distribution of possible hypothesized test statistics.
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The design links test statistic and hypothesis

What we observe for unit i (Yi) is either what we would have
observed in treatment ¥;7 =1 or what we would have observed in
control ¥7=9 but not both.

Yi= TV — (1 - )Y
So, if =1 = Y= then i = ¥=°

what we actually observe for unit i is what we would have
observed in the control condition

This observation implies a test statistic for the null
hypothesis, namely the causal effect is zero.
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How do we reject the null hypothesis?

* Compare at the behavior of the observed test statistic (in our
case, causal effect) under random assignment of treatment to
the test statistic under null hypothesis

* Calculate a test statistic from the data (assuming random
assignment of units to treatment groups

* Based on this statistic, with some probability we can reject
the null hypothesis, that is, show that it does not hold

* Calculate the 2-sided p value

@ IR ) Principles of Causal Inference Vasant G Honavar
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How do you reject the null hypothesis?

True value under the null hypothesis
and most likely observation

) '

95% statistical
significance threshold

Observed p-value
(statistical significance)

Observed

very unlikel
B Yy result (value)

observations

very unlikely
observations

probability of observation
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How do we get a p-value from a single randomized experiment?

* Recall the idea of sharp null hypothesis: Vi t; = 0
* Consider the results of a randomized experiment with 8 subjects

Results of a randomized experiment with 8 subjects.

Name T Y Y (0) Y(1)

Andy 1 10 ) 10

Ben 1 5 . 5

Chad 1 16 . 16

Daniel 1 3 . 3

Edith 0

Frank 0

George 0 8 8

Hank 0 10 10 .

— —_ 10+5+4+16+3 5+7+8+10 34-30

T=Y(1)-Y(0) = 7 7 = 7 =1
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How do we get p-value from a single randomized experiment?

* Recall the idea of sharp null hypothesis: Vi t; = 0

Results of a randomized experiment with 8 subjects if Vi t; = 0
Name T Y Y (0) Y(1)
Andy 1 10 10 10
Ben 1 5 5 5
Chad 1 16 16 16
Daniel 1

Edith 0

Frank 0

George 0

Hank 0 10 10 10
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How do we get p-value from a single randomized experiment?

* Recall the idea of sharp null hypothesis: Vi t; = 0
* Suppose we randomize treatment assignment now

Results of a randomized experiment with 8 subjects if Vi t; = 0
Name T v Y(0) Y T,Y andt
Andy 1 10 10 o denote the
Ben 0 5 5 5 vectors of
Chad 1 16 16 16 tre§tment
Daniel 0 assignments,
Edith 1 outcomes,
Frank 0 and ACE
George 1 8 respectively
Hank 0 10 10 10

10+16+5+8 5+3+7+10 39-25

t(T,Y|S.Null) = Y(1) —Y(0) = 3.5

4 4 4

@ Bennstate Principles of Causal Inference Vasant G Honavar
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How do we get the distribution with a single random experiment?

* Recall the idea of sharp null hypothesis: Vi t; = 0
) N

* Suppose we computationally cycle through all (N/Z)
assignments

* We get a distribution of the test statistics t(T, Y|S. Null) under the
sharp null

* Once you have the distribution of T under the sharp null hypothesis,
you can rank the test statistics t(T, Y|S. Null)

random

p-value = P(¢(T,Y) = t(T, Y |S. Null) = 2z ““’EIZ“S'N“””

* If the number of subjects is large, so is the number of assignments in
which case the test statistic under sharp null will have a normal
distribution with zero mean, allowing us to compute the
approximate p-value from the normal distribution

@ SEEED o Principles of Causal Inference Vasant G Honavar
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p value and a value

* pvalue The probability of observing a
test statistic at least as large as the
one observed, by random chance,
assuming that the null hypothesis is
true.

* «a value The p-value threshold at
which you’re okay with rejecting the = e
null hypothesis (typically 0.01 or 0.05)

Probability

P-value

* 1-sided p-value offer evidence against the null hypothesis

* 2-sided p-value is used to reject the possibility that the observed
effect is due to chance

* The smaller the p-value, the greater the confidence (1 — p-value)
with which you can reject the null hypothesis

@ enpoate Principles of Causal Inference Vasant G Honavar
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A single test of a single hypothesis

* If weset a =.01) we are saying that we are comfortable
with false positive errors in no more than 1% of tests of a
given treatment assighment in a given experiment

* Asingle test of a single hypothesis should detect signal when
it exists — it should be have high statistical power (i.e. low
false negative error rates)

Principles of Causal Inference Vasant G Honavar
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Diagnosing false positive rates by simulation

* Across repetitions of the chosen design:
* Create a true null hypothesis.

* Test the true null.
* The p-value should be large if the test is operating correctly.

* The proportion of small p-values should be no larger than a if the
test is operating correctly.

Principles of Causal Inference Vasant G Honavar
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Causal inference from observational data

* An observational study can be viewed as a conditionally randomized
experiment if the following conditions hold:

* Treatments correspond to well-defined interventions that can be
imagined in the data

* The conditional probability of receiving every possible treatment,
though not decided by the investigators, depends only on the
measured covariates L

* The probability of receiving every treatment conditional on L is
greater than 0

* These conditions, taken together, are called identifiability assumptions

* We know how to draw valid causal inference from conditionally
randomized experiments

* |f we assume that the above identifiability conditions hold, we can
draw valid causal inferences from observational data

@ IR ) Principles of Causal Inference Vasant G Honavar
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Causal inference from Observational Data

Other possible approach to causal inference:
* Apredictor of treatment, referred to asan instrumental variable, was
randomly assigned conditional on the measured covariates”
What weshould do:
* Carefully specify
* The randomized experiment that wewould like to, but cannot,
conduct
* How the observational study emulates that randomized

experiment
* In ideal randomized experiments, the data contain sufficient
information to identify causal effects
* In contrast, without identifiability assumptions, the information in
observational data is insufficient to identify causal effects
* More on this later

@ enpoate Principles of Causal Inference Vasant G Honavar
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Exchangeability

* If L is the only covariate with unequal distributionin T = 0 and
T =1, then Yt [[T|L must hold
* This implies that we can use inverse probability weighting to
estimate the Causal Risk Ratio, and hence, the causal effect of
TonY

* But: In observational studies, the value of T likely depends on
several covariates Ly - Ly

* Crucial question: Are all such L; with unequal distribution among
treatment groups observed?

* We cannot ever know the answer to the previous question.
Hence, there is no guarantee that Y [[T |L; -+ Ly holds

* When we estimate causal effects from observational data, we do
so under the hope that conditional exchangeability, at least
approximately, holds

@ enpoate Principles of Causal Inference Vasant G Honavar
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Positivity
* Positivity holds if
Pr(T =t|L=1)> 0Vl withPr(L = [) #0
* CRRcan be estimated only if some subjects are assigned to each
treatment

* If exchangeability is achieved conditional on some variables, then
positivity must only hold for these

* In observational studies, neither positivity nor exchangeability are
guaranteed

* Inverse probability weighting is meaningful only if positivity holds

Principles of Causal Inference Vasant G Honavar
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Violation of positivity
* If there are no untreated individuals (T = 0) with L = 1, there

would be no data for simulating what would have happened had
all treated individuals been untreated

* Why? Because there are no untreated (T = 0) individuals with
L = 1 who are exchangeable with treated individuals (T = 1)
withL =1

Principles of Causal Inference Vasant G Honavar
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Consistency

« Consistency requires that Yt =Y for every individual with T =t

* The observed outcome for every treated (untreated) individual
equal her outcome had she been treated (not treated)

Principles of Causal Inference Vasant G Honavar
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Causal Effects: the story so far

* Fundamental problem in causal inference: at most one
potential outcome observed for each unit

* The other potential outcome lies in an unobserved counterfactual
world — what would have happened, under a different treatment

For treated units:
Y'=1 s observed, Y=0 is not.

For untreated (control) units:
Yt=0is observed, Yt=1 is not.

Principles of Causal Inference Vasant G Honavar
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Causal Effects: the story so far

* Causality is tied to an action (treatment)

* Potential outcomes represent the outcome for each unit under
treatment and control

* A causal effect compares the potential outcome under treatment to
the potential outcome under control for each unit

* In reality, only one potential outcome observed for each unit, so
need multiple units to estimate causal effects

Principles of Causal Inference Vasant G Honavar
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Causal Effects: the story so far

* Estimating causal effects is easy if we can do randomized
control trials
¢ To estimate causal effects from observational data:

* We specify the randomized control trial that we would
like to, but cannot conduct

* Under “reasonable” assumptions, show how the target
trial can be emulated using observational data

* Consistency
* Conditional exchangeability
* Positivity

Principles of Causal Inference Vasant G Honavar
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Effect Modification

* Wesay that VV isamodifier of the effect of T onY when the average
causal effect of T on'Y varies across levels of 1.

* Since the average causal effect can be measured using different effect
measures (e.g,, risk difference, risk ratio), the presence of effect modification
depends on the effect measure being used

* Additivemeasure E (Y= — YT=0|V = 1) # (Y= —YT=|V = 0)

* Multiplicative measure:
Y™V =1 eV =0)
E(YT=0lV =1)  E(YT=O|V =0)

e Example: V = nationality of a patient undergoing surgery

@ Pe"'ﬁtaa,‘f1 (Hern"an & Robins) Principles of Causal Inference Vasant G Honavar
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Does covariate V modify the effect of T on Y?

* Compute the causal effect of T on Y at each stratum (possible
value) of V

* If the causal effects are different across different strata, we say
that ¥V modifies the causal effect of T on Y

* Suppose Nationality modifies the causal effect on surgery on
outcome

* Suppose quality of heart surgery is better in Canada compared
to US

* If so, an intervention that improves the quality of surgery in US
would eliminate the effect modification by nationality

* Nationality is a surrogate effect modifier
* Quality of care is a causal effect modifier

@ IR ) Principles of Causal Inference Vasant G Honavar
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Why do we care about effect modifiers?

* There is no such thing as the causal effect of T on Y'!

* What we have is the average causal effectof Ton Y ina
population with a particular mix of causal effect modifiers!

* Effect modifiers may impact the transportability of causal
effects across populations
* Because differences in the distribution of effect modifiers!
* Heath effects of increasing health spending per capita by
$100 cannot be transported across say, Ethiopia and United
States

* Health effects of hypertension reducing drugs may be
transportable across Northern Europe and Midwestern

United States
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Effect modification and adjustment methods

* Inverse propensity weighting yields average causal effect in the
population

* Stratification with respect to covariates to ensure exchangeability
gives conditional causal effects by strata

* Matching based on covariates is another way to ensure
exchangeability — matched populations are exchangeable

* We choose the smaller population (say untreated) and find
matching subset of individuals from the larger (treated)
population

* We compute the causal effect of the treatment on the
untreated population (if they were they treated)
* Note:
* These methods will yield slightly different results.
* They are all right — they are estimating slightly different effects!

Principles of Causal Inference Vasant G Honavar
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Interactions

* We have focused so far on causal effects of a single treatment,
e.g., a drug, on the entire population or a subset of it

* Many causal questions in the real world are about effects of two
or more interventions e.g., a low-carb diet, exercise
* How can we ask causal questions like
* What is the effect of low-carb diet if you also exercise?
* What is the effect of low-carb diet if you do not exercise?
* When such simultaneous interventions on two or more

treatments are feasible, we can often implement more effective
interventions

* This requires a framework for identifying interactions between
treatments

Principles of Causal Inference Vasant G Honavar
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Interaction and joint intervention

Interventions on two or more treatments. For example:
Y : Death (1: yes; 0:no),
A: Heart transplant (1: yes; 0: no),
E: Multivitamin complex (1: yes; 0: no)
There are 4 potential outcomes:
YA=O' E=0’ YA=0, E=1’ YA=1, E=0’ and YA=1‘ E=1

* There is interaction between A and E if the causal effectof AonY
differs between interventions E = 0to E = 1 (and vice versa).

@ Pe"'ﬁtaa,‘f1 (Hern"an & Robins) Principles of Causal Inference Vasant G bongvar
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Interaction and joint intervention

* There is interaction between A and E if the causal effectof AonY
differs between interventions E = 0to E = 1 (and vice versa).
* We say that there is interaction between 4 and E if
P(YA=1’E=1 — 1) — P(YA=0'E=1 — 1)
+ P(yA=1,E=O — 1) — P(yA=0,E=0 — 1)
* Exercise: Show that the above inequality implies that:
P(YA=1'E=1 — 1) — P(yA=O,E=0 — 1)
+ P(yA=O,E=1 — 1) _ P(YA=0’E=0 — 1)

@ Pe"'ﬁtaa,‘f1 (Hern"an & Robins) Principles of Causal Inference Vasant G bongvar
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Identifying interactions

* Because interaction is concerned with the joint causal effect of A and E

on Y, identifying interaction requires
* Exchangeability
* Consistency
* Positivity
» for both treatments A and E

@ - (Hem'an & Robins) Principles of Causal Inference
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Identifying interactions

* Suppose E is randomly and unconditionally assigned
* Then positivity and consistency hold and subgroups with treatments
E = 0and E = 1 are expected to be exchangeable
* |t follows that the definition of interaction between A and E
P(yA=1,E=1 — 1) _ P(yA=0,E=1 — 1)
+ P(yA=1,E=O — 1) _ P(YA=0’E=0 — 1)
* can be rewritten as

PYA1=1E=1)—-PY40 =1|E=1)
#P(Y4T1 =1|E =0) - P(Y4° = 1|E = 0)
* Thatis, when E is randomly assigned, interaction reduces to effect
modification (with effect modifier VV replaced by treatment E)

@ Pe"'ﬁtaa,‘f1 (Hern"an & Robins) Principles of Causal Inference Vasant G bongvar
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Identifying interactions

* If E is not assigned randomly investigators

* Identifying interactions be done “under the usual identifying
assumptions” by conditioning on the covariates

* A and E can be seenasa combined treatment with 4 possible levels.

* |dentification of interaction is no different from the identification
of the causal effect of one treatment.

* If exchangeability can be assumed for A but not for E, we cannot
generally assess the presence of interaction between A and E, but can
still assess the presence of effect modification by E.

* Why? Because one does not need any identifying assumptions
involving E to compute the effect of A in each of the strata of £ .

@ enpoate Principles of Causal Inference Vasant G Honavar
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Counterfactual response types and interactions

Classification of individuals according to their counterfactual responses:
Possible response types

Type y4=0  y4a=t
Doomed 1

Preventive 1 0
Causative 0 1
Immune 0 0

Principles of Causal Inference
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Counterfactual response types and interactions

Responses Y4 £ for each A, E value

Type 1,1 01 10 00 Type 1,1 01 1,0 0,0

1 1 1 1 1 9 0 1 1 1
2 1 1 1 0 10 0o 1 1 0
3 1 1 0 1 1 o 1 0o 1
4 1 1 0 0 12 0o 1 0 O
5 1 0o 1 1 13 0o 0 1 1
6 1 o 1 0 14 0O 0 1 0
7 1 0 O 1 15 O o0 0 1
8 1 0 0 0 16 0O 0 o0 oO

@ enpoate Principles of Causal Inference Vasant G Honavar
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Sufficient Causes

* Help represent the causal mechanisms involved in the interaction

between two treatments.
An oversimplified example:
*+ A= 1and setof background factors U1= 1 cause death,

* A= 0and setof background factors U2= 1 cause death,
* “Doomed” individuals: Uo = 1 cause death (regardless of

treatment)

Hemen& Robins: Figure5.1

Principles of Causal Inference Vasant G Honavar
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Sufficient Causes

In case of two treatments, there are nine possible sufficient causes
(not all of them necessarily exist)

Principles of Causal Inference Vasant G Honavar
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Back to causal effect estimation

Principles of Causal Inference
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Causal inference requires estimating the
counterfactual outcome

Person [T ly™2  Jy™0 [Covariates |
0.4 X1

1 1

2 0 0.6 Xz
3 1 0.3 X3
4 0 0.1 Xq
5 1 0.5 Xs
6 0 0.5 Xs
7 0 0.1 X7

Causal effect of treatment = E[YT=1 — yT=0)

Principles of Causal Inference

Vasant G Honavar
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Problem: counterfactual outcome is not observed!
* Missing data imputation problem

* Estimate missing data using various methods
* Imputation from similar individuals

‘

©

?T:O YT:1

. pT=0

is an estimated quantity
s Estimation of ¥7=°
* Matching

* Machine learning etc.

can be done in using

Principles of Causal Inference
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How to estimate the counterfactual outcome: Matching

* Based on the factual outcome of individual(s) similar except for
treatment
* Matching based on propensity scores
* Not recommended — why? Just because two individuals have
similar probabilities of being treated do not mean they have
similar potential outcomes!
* Matching using similarity or distance measure— unreliable in high
dimensions
* Matching in latent space
* Learn a low dimensional latent representation from the
covariates of treated and untreated individuals
* Find the closest untreated individual for a given treated
individual
We will have more to say about these methods later

Principles of Causal Inference Vasant G Honavar
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How to estimate the counterfactual outcome: Prediction

* Use the observed data (with factual outcomes) to predict the
counterfactual outcomes
* Supervised machine learning
* Avirtual zoo of methods
We will have more to say about these methods later

Principles of Causal Inference Vasant G Honavar
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Assumptions of the potential outcomes Framework

* Consistency — the potential outcome under T=a is the same as

the actual outcome under T=a
* Stable unit treatment value assumption (SUTVA) — Joe’s

response to treatment does not depend on Mary’s treatment

* May not always hold
* Positivity

* Exchangeability which requires unconfounded treatment
mechanism — Individuals, given their characteristics, are

assigned treatment without regard to their potential outcomes

* Trivially holds under randomization
* Otherwise unverifiable from observational data

Principles of Causal Inference
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Confounding revisited

* Confounding bias arises whenever a variable
influences both who is selected for treatment
and the outcome of the experiment

* Sometimes the confounders are known
* Sometimes the confounders are
suspected

* The most basic version of confounding

* The true causal effect X = Y is mixed with
the spurious correlation induced by the
fork X €z2> Y

* Example:

* We are testing a drug but give it to
patients who are older, but not to
those who are younger

* Age becomes a confounder

@ PennState
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How can we cope with confounders?
» Randomized controlled trials
— not always feasible, costly
» Potential outcomes framework
» Matching, stratification - tantamount to identifying hidden
randomized experiments
» Predicting counterfactual outcomes
» Using machine learning
» Complicated by confounders
» Adjusting for confounders
—if Zis the only confounder and we have measured Z, we can
compare the treatment and control groups for each possible value of
Z and take a weighted average where the weights correspond to the
fraction of the population represented by each value of Z
—need to know what the confounders are
—need to be able to measure the confounders

@ IR ) Principles of Causal Inference Vasant G Honavar
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Confounding is a fact of life

* We can adjust for confounders if
* We know how to identify them
* We can measure them
* Standard statistical methodology provides little guidance for what
variables to control for
* You can end up controlling for the very thing you are trying to
measure
* You may fail to control for a confounder that you should
control for
* Even if you get lucky and control for the right confounders you
have no way of knowing that you have done so and hence may
hesitate to make causal claims even when they are true

Principles of Causal Inference Vasant G Honavar
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Confounding is a fact of life

* We can adjust for them if
* We know how to identify them
* We can measure them

* Most definitions of confounding, e.g., those used in the

epidemiology and social sciences literature, are flawed

 Suffer from false positives as well as false negatives
* No wonder that most scientific findings are false

* Correct definition using the language of causal calculus
* Confounder is any factor that leads makes

P(Y|X)¢P(Y|do(X))

* But checking this condition requires a causal model

@ PennSfaS:“e ) Principles of Causal Inference
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Causal Inference
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A quick review of relevant probability and statistics
A prelude to discussion of graphical causal models
and methods for causal inference

Principles of Causal Inference Vasant G Honavar
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Basic Setup

* Youthink of apopulation that consists of units. Examples:
* Every country in the world as of January 1, 2023
* Every UScitizen as of September 1, 2022
* Every student enrolled at Penn State as of September 1, 2022

* Each of these units can have features or attributes, which wewill call
* (random) variables. Examples:

* GDP of a country
* Income of a German citizen
*  Whether awebsite is in English

* “Random” because wedon’t know about the sources of variation
* Ignorance
* Fundamentally non-deterministic nature of the world

PennStat e
@ i Principles of Causal Inference Vasant G Honavar
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Basic Setup

* Population with units, features like Y and X

* P(X ) andP(Y ) describe the (marginal) distribution of these
features

* P(Y |X) describe the conditional distribution, filtered by X, or
based on knowledge of X

* P(Y,X) describesthe distribution of both features (joint
distribution)

* How can you get P(Y)from P(Y, X )?

@ IR ) Principles of Causal Inference Vasant G Honavar
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Random Variables

Let’s sayawebsite is either in English or not. This is abinary random variable Y
LetY = 1 if the languageis English, O otherwise. These are

* events or outcomes

The probability (mass) function P (Y ) isafunction from input eventsto
probabilities

PerhapsP(Y = 1) = 0.6. This means60% of all websites are in English
(frequency interpretation of probabilities)

Probabilities are = 0, and probabilities of all possible outcomes sumto 1
SinceY iseither Oor 1, P(Y = 0) hasto be 0.4

P(Y ) describesthe “shape” of somefeature in the population

Y isavariable, y isitsvalue, “realization” or “event” or outcome

P(Y ) isafunction

P(Y = y)istheprobabilitythat Y takesvalue y. Shorthand P(y )

@ SEEED ) Principles of Causal Inference Vasant G Honavar
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Conditional Probabilities

L]

L]

L]

Let X bethe number of visitors awebsite had in 2022
Let Y be a binary variable that is 1 if the website is in English
This is anatural number like Oor 1208 or 1.3 billion
P (X ) describes the distribution of X among all websites, e.g.
* P(X = 0)=0.23(23% of the websites had 0 visitors)
P(Y | X) isthe conditional probability of Y given X
The conditioning operator “ | ” is like afilter:
* Youlook at a subset of the population
PerhapsP(Y = 1|X = 0) = 0.2
*  Only 20% of those websites that have O visitors arein English
Once you've filtered the data, everything is just asbefore:
* P(Y|X = x)is= 0andthe probabilities sumto 1

@ ?e""Staff N Principles of Causal Inference
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Conditional Probabilities: Example
e USCensusfor 2012Election  Agegroup # of voters in thousand

18-29 20,359

P(Voter’s age < 45)? 30-44 30,756
45-64 52,013

20,359 + 30,756 65+ 29,641
132048 0.38 Total 132,948

* Now let’s say you are a politician and you know you do not
reach people below 30.

*  Whatis that your audience member is below 45?7

* What's P(Voter's age < 45|Voter Age > 29)?

* Filter!

Principles of Causal Inference Vasant G Honavar
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Conditional Probabilities: Example

Age Group # of voters in thousand

30-44 30,756
45-64 52,013
65+ 29,641
Total 112,409

P(Voter's age < 45|Voter Age > 29)?

30,756

112400 =~ %27

+ This is different from P(Voter's age > 29,Voter’s age < 45)
30,756

132,948

@ Penn‘sfa“e o Principles of Causal Inference Vasant G Honavar

~ 0.23

77



@ PennState Center for Artificial Intelligence Foundations and Scientific Applications CTS| Clical and Transationzl

Institute for C¢ itati | ags = .
Svtienshedi il Artificial Intelligence Research Laboratory

Joint Probabilities
Agegroup  # of voters in thousand

18-29 20,359
30-44 30,756
45-64 52,013
65+ 29,641
Total 132,948

two binary random variables

* Then P(Voter’s age > 29,Voter’s age
joint probability of two random variable

» P(Voter's age > 29,Voter’s age < 45) =

@ ?e""Stafqe N Principles of Causal Inference

* Wecantreat “Voter’s age> 29” and “Voter’s age< 45” as

< 45)isthe

30,756
132,948 0.23
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Independence

* Two binary features X and Y,
* P(X=1)= P(Y=1)= 0.5. They are “independent”.
Intuitively, what's P(X = 1, Y= 1)?
* In caseof independence,
* P(X=x,Y=y)= P(X=x)-P(Y=y)
* X andYareindependent& X LY
*  Now imagine this facts holds only if Z= 1.

* Then X and Y would be conditionally independent givenZ = 1,

X Ly|(z=1)
* What if Xand Y are independent givenZ? X L Y|Z
* (Conditional) Independence is often counterintuitive

@ enpoate Principles of Causal Inference
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Law of Total Probability

P(A) =), P(A, B = b) (Law of Total Probability)

Summing over values of B = “marginalizing over B”
P(A) = “marginal” Probability

Principles of Causal Inference
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Conditional Probabilities and Joint Probabilities: Example
US adult population

Gender  Highest education achieved # in hundreds of thousands

Male Never finished high school 112
Male High school 231
Male College 595
Male Graduate School 242
Female Never finished high school 136
Female High school 189
Female College 763
Female Graduate School 172
Total 2440

*  P(Male&high school)? Joint probability. 231/2440
*  P(Male)? LoTP! Marginal probability. 1180/2440
* P(High school)? LoTP! Marginal probability. 420/2440

Principles of Causal Inference Vasant G Honavar
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Conditional Probabilities and Joint Probabilities: Example

Gender  Highest education achieved # in hundreds of thousands

Male Never finished high school 112
Male High school 231
Male College 595
Male Graduate School 242
Total 1180

*  P(High school|Male)? Conditional probability. 231/1180

*  Wesee P(high school|Male) = P(high school, Male)/P(Male)
* Thisis Bayes’ Rule

e P(high school,Male) = P(high school|Male) - P(Male)

Principles of Causal Inference Vasant G Honavar
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Bayes Rule andLoTP

» BayesRule: P(A|B) = P(A, B)/P(B)
« SoP(A,B) = P(A|B)-P(B) and P(A, B) = P(B|A) - P(A)
* Intuition: To find prob. that A and B happens, look at probability

that B happens, and then at probability that A happens, knowing B
has happened (or samelogic, starting with A)

LoTP: P(A) =3, P(A, b)
» Using Bayes Rule, we have

P(A) = X, P(A, b)= X, P(AIB = b)-P(B = b)

Principles of Causal Inference Vasant G Honavar
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One more thing on Conditioning

You can apply LOTP to decompose P(Y | X ) usingZ
* Left-hand side is conditioned on (filtered along) X .

* Without further assumptions, right-hand sideis also completely
conditioned on X !

- SOP(Y|X) = Y,P(YIX,Z = 2) - P(Z = z[X)

Principles of Causal Inference
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Expected Value

» The expected value or mean of Y'is often called E[Y']
andis defined as
D yPY=y)
y

* Y whether awebsite isin English, P(Y = 1) = 0.6
E[Y]=1-P(Y = 1) +0-P(Y = 0) =06

 Which proves that the mean of a binary/Bernoulli
variable isequalto P(Y =1).

Vasant G Honavar
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Expected Value

» The expected value of afunction f (Y ) of arandom variableY
is

D W) -P(Y = y)
y

“Law of the unconscious statistican”
* Sononeedto find P(f (Y )) to find meanof f (V)

E[Y 2 — 1]

Iy(2=1) -P(Y =y)

(12— 1) - P(Y = 1) + (02 — 1) - P(Y
(0)(0.6) + (—1)(0.4)
= —0.4
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Conditional Expectations

* The expected value of Y, given X, is often called E[Y |X ]
and is defined as

E[Y [X] = Xy y- P(Y = yIX)
* Isthis anumber or a function?
« A function of arandom variable, because X may take on different values

E[YIX = x]= X, y-P(Y=y|X=x) isanumber

* Youlook only at websites with X = x, then compute the mean
of Y (filter!)

* E[Y |X] onthe other hand is afunction of arandom variable
* So HY|X]= f(X)

*  We call this function f (X ) the regression of Y on X

Principles of Causal Inference Vasant G Honavar
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Properties of Expectations

Expectations are linear

Suppose a, b constants, then

© Elat bY]= Xy[at by P(Y = y)]
=at Yy[b-y-P(Y =y)]
= a+ b-E[Y]

Vasant G Honavar

Principles of Causal Inference

88



PennState Center for Artificial Intelligence Foundations and Scientific Applications CTS| e
Institute for Computational e . " Science Institute
and Data Sciences Artificial Intelligence Research Laboratory

Properties of Expectations

* If Xand Y areindependent, E[Y |X]= E[Y]and
« E[X|Y]= E[X] (“‘mean independence”)
» proof: exercise
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Properties of Expectations
* Law of Iterated Expectations (LIE)
* E[Y|X]isafunction of X
* Xisarandom variable, soe[Y |X] is arandom variable, so...it
hasa mean! What's g[E[Y |X]]?

E[E[Y|X]] = E[f(X)] =X, E[YIX = x]- P(X = Xx)
=) Dy P(Y=yIX = X)PX = )
x

=Dy P =ylX = 0PK =x)

y

=Yy P (Y =y) ww

= E[Y ] (definition)

Vasant G Honavar
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Properties of Expectations

» LIE is very similar to LoTP!
 Different wayto write LIE:
E[Y] =Y, E[Y|X = x]- P(X = x)

e “Overall meanis mean of subsetmeans”
¢ This is how we will useit most often
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Properties of Expectations

* What's g[E[Y|X]|X]?
* E[E[Y|X]IX]= Ee[Y|X] (Proof left as exercise)
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Linear Regression
* Y any random variable, X binary
o E[Y|X]= f(X)
» Specifically, if X = 0, then g[Y|X] = g[Y|X = 0]
* SoE[Y|X] = E[Y|X = 0]+ (E[Y|X = 1]- g[Y|X = 0])X
* Rename E[Y|X = 0] = a, g[Y|X = 1]- g[Y|X = 0]= B
* Gives E[Y|X]= a+ BX
* Looks familiar?
* Add Y to both sides, rearrange:
e Y=a+ X+ (Y- E[Y|X])
* Rename (Y - E[Y|X]) =€
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Linear Regression
* Under what assumptions can you estimate a and
B consistently?

» Forordinary least squares to be unbiased for a, 3, you have to
assume E[€|X] = 0

* Sowhat is E[€]X]?

o E[€EX] = E[Y - EY|X]IX]= E[Y|X]- e[EY]|X]|X]
(linearity of expectations)

* E[Y|X]- e[E[Y|X1X]= E[Y|X]- EY|X]=0

» Soin this case, with binary X', g[€ |X] = 0 holds by
construction —not something you need to assume

+ Extends to more regressors, as long asthey are discrete (proof
left as exercise)
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Remarks

*  When we have all the population data or very large sample of it, we know
P(Y,X)and Y= a + BX + €(at leastwith discrete X)

» A priori, knowing the distribution of X and Y perfectly does not tell us
anything about whether and how X affects Y

» Nor does the regression of Y on X contain any useful information
regarding whether and how X affects Y

* Regressions are not causal.
* Regressions are just conditional mean functions.
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Summary

* Statistics = sampling from apopulation and inferring the
characteristics of P(Y, X)

* Using statistical tools, wecannot eventalk about causality.

* Regressions per se have nothing to dowith causal effects

* We have covered some necessary tools to understand
population quantities like P(Y, X) and E[Y | X]

* Causalinference is about learning from these observed
* quantities about the consequences of actions, effects, and
mechanisms, using causalassumptions
* Causal graphs depict our assumptions
* “No causesin, no causesout” (Cartwright)
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“Analogue” or “Plug-In” Estimators: Probabilities

» Sayyou have a sample of size N from the population, and you
want to estimate the share of people with a high school degree
in the population P(Y = 1) using that sample

* “Analogue” estimator: Compute the sample counterpart to
the population quantity

N(y; = Male)

) :Ml =Z
Py ale) . N

* Where yiis the gender of sample i , and / () is the indicator
function that is 1 if the condition in parentheses is true, and 0
otherwise
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“Analogue” or “Plug-In” Estimators: Meansand Conditional Probabilities

* The sample analogue to the population mean is the sample

A 1(yi=y)
Meanp (Y = y) = XiL; ———

» Sample analogueto P(Y = y|X = x)is

N oI(Y = )IX = x)
Zizl I(X=x)

» Or you literally delete all observations for which xi+ x and apply
the analogue estimator from before to the rest of the data

* Forconditional meang[Y |[X = x] the analogueis

NoyI(X =x)
i=1 [(X =x)
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“Analogue” or “Plug-In” Estimators:
 If you have random samples, and you can increase the sample size, these
estimators will get closer and closer to the true population quantity (they
are “consistent for the population quantity”)
* Intuition:
* Suppose the population is finite.
* Then the analogue estimators applied to the full population are
exactly the same asthe population quantities
* The only assumptions are
* population quantities exist and are finite
* measurements are without error
* samplingis random
» Aside from that, nothing can go wrong. These estimators are
‘nonparametric”:
* No assumptions about distributions.
* No word about the functional form of E[Y | X ]
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Analogue Estimators

*  We can estimate “consistently” (conditional) probabilities and
(conditional) means/regression coefficients under minimal assumptions

For simplicity, we wil just assume we exactly know these quantities
» This is where the causal inference problem starts
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