































| PennState<br>Institute for Compu<br>and Data Sciences          | Center for Artificial In<br>Artificial Intelligence | telligence Foundations and Scientific Applications<br>Research Laboratory | CTSI Clinical and Translational Science Institute |
|----------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------|
| Pote                                                           | ntial Outcom                                        | es framework                                                              |                                                   |
|                                                                | Zeus                                                |                                                                           |                                                   |
| PennState<br>College of Information<br>Sciences And Technology |                                                     | Principles of Causal Inference                                            | Vasant G Honavar                                  |













| Average equal offers            |              |              |
|---------------------------------|--------------|--------------|
| Average causal effect           |              |              |
|                                 |              |              |
| <b>уа</b> =0 <b>уа</b> =1       | <b>үа</b> =0 | <b>γа</b> =1 |
| heia 0 1 Leto<br>ronos 1 0 Ares | 0            | 1            |
| emeter 0 0 Athena               | 1            | 1            |
| ades 0 0 Hephaesti              | us 0         | 1            |
| lestia 0 0 Aphrodite            | . 0          | 1            |
| oseidon 1 0 Cyclope             | 0            | 1            |
| era 0 0 Persephor               | ne 1         | 1            |
| eus 0 1 Hermes                  | 1            | 0            |
| rtemis 1 1 Hebe                 | 1            | 0            |
| pollo 1 0 Dionysus              | 1            | 0            |

|                                        | <b>үа</b> =0                        | <b>уа</b> =1                           |                                                               | <b>үа</b> =0                           | <b>уа</b> =1                           | -                                                              |
|----------------------------------------|-------------------------------------|----------------------------------------|---------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------------------|
| Rheia                                  | 0                                   | 1                                      | Leto                                                          | 0                                      | 1                                      |                                                                |
| Rionos                                 | 1                                   | 0                                      | Ares                                                          | 1                                      | 1                                      |                                                                |
| Demeter                                | 0                                   | 0                                      | Allena                                                        | 1                                      | 1                                      |                                                                |
| Hades                                  | 0                                   | 0                                      | Hepnaestus                                                    | 0                                      | 1                                      |                                                                |
| Hestia                                 | 0                                   | 0                                      | Aphrodite                                                     | 0                                      | 1                                      |                                                                |
| Poseidon                               | 1                                   | 0                                      | Cyclope                                                       | 0                                      | 1                                      |                                                                |
| Hera                                   | 0                                   | 0                                      | Persephone                                                    | 1                                      | 1                                      |                                                                |
| Zeus                                   | 0                                   | 1                                      | Hermes                                                        | 1                                      | 0                                      |                                                                |
| Artemis                                | 1                                   | 1                                      | Hebe                                                          | 1                                      | 0                                      |                                                                |
| Apollo                                 | 1                                   | 0                                      | Dionysus                                                      | 1                                      | 0                                      |                                                                |
| 12 indi<br>helped<br>(causal<br>Averag | vidual<br>by the<br>sharp<br>e caus | s have<br>e treat<br>null h<br>al effe | individual ca<br>ment and 6<br>ypothesis dc<br>ct is zero (ca | ausal e<br>were l<br>bes no<br>lusal n | effects<br>narme<br>t hold)<br>ull hyp | , of whom 6 were<br>d by the treatment<br>)<br>pothesis holds) |
| 0                                      |                                     |                                        |                                                               |                                        |                                        |                                                                |







## PennState Institute for Computational

Center for Artificial Intelligence Foundations and Scientific Applications CTSI Clinical and Taxatal Artificial Intelligence Research Laboratory

## Association

- In the real-world, we only observe the factual outcomes, and do not by definition, observe the counterfactual outcome
- All we have are the observed treatment A and observed outcome Y

|          | Α | Y |            | Α | Y |            | Α | Y |
|----------|---|---|------------|---|---|------------|---|---|
| Rheia    | 0 | 0 | Zeus       | 1 | 1 | Aphrodite  | 1 | 1 |
| Kronos   | 0 | 1 | Artemis    | 0 | 1 | Cyclope    | 1 | 1 |
| Demeter  | 0 | 0 | Apollo     | 0 | 1 | Persephone | 1 | 1 |
| Hades    | 0 | 0 | Leto       | 0 | 0 | Hermes     | 1 | 0 |
| Hestia   | 1 | 0 | Ares       | 1 | 1 | Hebe       | 1 | 0 |
| Poseidon | 1 | 0 | Athena     | 1 | 1 | Dionysus   | 1 | 0 |
| Hera     | 1 | 0 | Hephaestus | 1 | 1 |            |   |   |
|          |   |   |            |   |   |            |   |   |

- We can obtain from data, the proportion of individuals who developed outcome Y among those who received treatment value a
- · Note that observational data yield observational probabilities

PennState College of Information Sciences And Technology Principles of Causal Inference

Vasant G Honavar

|                                                                |                | _      |                                                     |                |                    |                                  |        |         |                                                            |
|----------------------------------------------------------------|----------------|--------|-----------------------------------------------------|----------------|--------------------|----------------------------------|--------|---------|------------------------------------------------------------|
| PennState<br>Institute for Con<br>and Data Science             | nputatio<br>es | nal    | Center for Artificial In<br>Artificial Intelligence | tellig<br>Rese | gence l<br>earch L | Foundations and Sci<br>aboratory | entifi | ic Appl | ications CTSI Clinical and Translational Science Institute |
| Asso                                                           | cia            | ati    | on                                                  |                |                    |                                  |        |         |                                                            |
|                                                                | Α              | Y      |                                                     | A              | Y                  |                                  | A      | Y       |                                                            |
| Rheia<br>Kronos                                                | 0<br>0         | 0<br>1 | Zeus<br>Artemis                                     | 1<br>0         | 1<br>1             | Aphrodite<br>Cyclope             | 1<br>1 | 1<br>1  |                                                            |
| Demeter                                                        | 0              | 0      | Apollo                                              | 0              | 1                  | Persephone                       | 1      | 1       |                                                            |
| Hades                                                          | 0              | 0      | Leto                                                | 0              | 0                  | Hermes                           | 1      | 0       |                                                            |
| Hestia                                                         | 1              | 0      | Ares                                                | 1              | 1                  | Hebe                             | 1      | 0       |                                                            |
| Poseidon                                                       | 1              | 0      | Athena                                              | 1              | 1                  | Dionysus                         | 1      | 0       |                                                            |
| Hera                                                           | 1              | 0      | Hephaestus                                          | 1              | 1                  |                                  |        |         |                                                            |
|                                                                |                |        |                                                     |                |                    |                                  |        |         |                                                            |
| • 7 indi                                                       | vid            | ual    | s died (Y=1) a                                      | am             | ong                | the 13 that                      | we     | ere t   | reated (A=1)                                               |
| • Dr(V                                                         |                | 11/    | (-1) - 7/1                                          | 2.             | Sim                | $V_{\rm plarby} Pr(V)$           | _      | 111     | (-0) - 3/7                                                 |
| • FI(I                                                         |                |        | 1 - 1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -             |                |                    | 111a11y, FI(I)                   | _      | цч      | -0) - 3/7                                                  |
| • wher                                                         | ין ו<br>י      | r(Y    | = 1 A = 1                                           | =              | Pr(                | Y = 1 A =                        | 0),    | we      | say that $A$ and $Y$                                       |
| are in                                                         | de             | per    | ndent                                               |                |                    |                                  |        |         |                                                            |
| <ul> <li>Wher</li> </ul>                                       | וP ו           | (Y     | f = 1   A = 1)                                      | ≠              | Pr(                | Y = 1 A =                        | 0),    | we      | say that $A$ and $Y$                                       |
| are as                                                         | sso            | ciat   | ted or depen                                        | dei            | nt                 |                                  |        |         |                                                            |
| PennState<br>College of Information<br>Sciences And Technology |                |        |                                                     | Princ          | ciples of          | f Causal Inference               |        |         | Vasant G Honavar                                           |



| PennState<br>Institute for Computa<br>and Data Sciences | ational Center for Artificial                                                                                   | or Artificial Int<br>Intelligence F                                   | telligence Foundations and<br>Research Laboratory | Scientific Applications | CTSI Clinical and Translational Science Institute |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|-------------------------|---------------------------------------------------|
| Exerc                                                   | cise: Co                                                                                                        | mpute                                                                 | e the averag                                      | e causal eff            | ect.                                              |
| Pot                                                     | ential Outco                                                                                                    | mes                                                                   |                                                   |                         |                                                   |
|                                                         | $   \begin{array}{r} Y^{a=0} \\     13 \\     6 \\     4 \\     5 \\     6 \\     6 \\     8 \\   \end{array} $ | $   \frac{y^{a=1}}{14} \\   0 \\   1 \\   2 \\   3 \\   1 \\   10   $ |                                                   |                         |                                                   |
| PennState<br>Enter & Premstate                          | 8                                                                                                               | 9                                                                     | Principles of Causal Inference                    |                         | Vasant G Honavar                                  |



| PennState<br>Institute for Computational<br>and Data Sciences | Artificial Intelligence Foundations and Scientific Applications CTSI Clicke Intelligence Research Laboratory | nd Translational<br>Istitute |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------|
| Exercise: Cor                                                 | npute the association                                                                                        |                              |
| • This is the same                                            | table as before, except                                                                                      |                              |
| <ul> <li>Only factual out</li> </ul>                          | comes are available                                                                                          |                              |
| Counterfactual                                                | outcomes are missing (denoted by ?)                                                                          |                              |
|                                                               |                                                                                                              |                              |
|                                                               | $A \qquad Y A = 0 \ Y A = 1$                                                                                 |                              |
|                                                               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                        |                              |
|                                                               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                        |                              |
|                                                               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                        |                              |
|                                                               | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                       |                              |
|                                                               | $\begin{array}{c c} 1 & 1 \\ \hline 1 & 2 & 9 \end{array}$                                                   |                              |
|                                                               |                                                                                                              |                              |
| PennState<br>Codege of Information<br>Sciences And Technology | Principles of Causal Inference Vasant G                                                                      | i Honavar                    |


















## PennState Institute for Comp and Data Science

PennState College of Information Center for Artificial Intelligence Foundations and Scientific Applications Clinical and framulations Artificial Intelligence Research Laboratory

## Positivity

 For any value of covariates, the probability of receiving treatment is non-zero

$$\forall x \ 0 < P(T = 1 | X = x) < 1$$

• Why do we need positivity?

$$\tau = \mathbb{E} [Y (1) - Y (0)]$$
  
=  $\mathbb{E}_X [\mathbb{E}[Y (1)|T = 1, X] - \mathbb{E}[Y (0)|T = 0, X]]$   
=  $\sum_x P(X = x) \left( \sum_y y P(Y = y|T = 1, X = x) - \sum_y y P(Y = y|T = 0, X = x) \right)$   
=  $\sum_x P(X = x) \left( \sum_y y \frac{P(Y = y, T = 1, X = x)}{P(T = 1|X = x)P(X = x)} - \sum_y y \frac{P(Y = y, T = 0, X = x)}{P(T = 0|X = x)P(X = x)} \right)$   
Without positivity, we will be conditioning on an event with 0 probability

Principles of Causal Inference

Vasant G Honava























| PennState<br>Institute for Computational<br>and Data Sciences Center for Artificial Intelligence Foundations and Scientific Applications Artificial Intelligence Research Laboratory |                                                                                                                                                                                                                                                                                                                                                                          |           |         |       |                                        |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|-------|----------------------------------------|--|--|--|--|
| Analysis of RCT under the exchangeability assumption                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                          |           |         |       |                                        |  |  |  |  |
|                                                                                                                                                                                      | Person                                                                                                                                                                                                                                                                                                                                                                   | Τ         | Y (1)   | Y (0) | that the treated and                   |  |  |  |  |
|                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                        | 1 (Black) | 1       | ?     | untreated groups are                   |  |  |  |  |
|                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                        | 0 (Blue)  | ?       | 1     | similar with respect to the covariates |  |  |  |  |
|                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                        | 1 (Black) | 0       | ?     |                                        |  |  |  |  |
|                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                        | 0 (Blue)  | ?       | 0     |                                        |  |  |  |  |
|                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                        | 1 (Black) | 1       | ?     |                                        |  |  |  |  |
|                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                        | 0 (Blue)  | ?       | 0     |                                        |  |  |  |  |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                          |           |         |       |                                        |  |  |  |  |
| •                                                                                                                                                                                    | <ul> <li>Assignment to Blue and Black groups is randomized</li> <li>The proportion of "Pass", i.e., outcome 1, among the Black group is expected to be identical to those in the Blue group had it been the case that the Blue group were treated (received Black pens) instead of the Black group</li> <li>The treated and untreated groups are exchangeable</li> </ul> |           |         |       |                                        |  |  |  |  |
| R                                                                                                                                                                                    | PennState                                                                                                                                                                                                                                                                                                                                                                |           | a : · · |       |                                        |  |  |  |  |

| PennState<br>Institute for Computational<br>Artificial Intelligence Research Laboratory                                                                                                                           |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Analysis of RCT under the exchangeability assumption                                                                                                                                                              |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Person                                                                                                                                                                                                            | Τ         | Y (1) | Y (0) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 1                                                                                                                                                                                                                 | 1 (Black) | 1     | ?     | $\Pr[Y(1) = 1] = \Pr(Y = 1 T = 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 2                                                                                                                                                                                                                 | 0 (Blue)  | ?     | 1     | $\Pr[Y(1) = 0] = \Pr(Y = 0 T = 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 3                                                                                                                                                                                                                 | 1 (Black) | 0     | ?     | $\Pr[V(0) = 1] = \Pr(V = 1 T = 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 4                                                                                                                                                                                                                 | 0 (Blue)  | ?     | 0     | $\prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j$ |  |  |  |  |  |
| 5                                                                                                                                                                                                                 | 1 (Black) | 1     | ?     | $\Pr[Y(0) = 0] = \Pr(Y = 0 T = 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 6                                                                                                                                                                                                                 | 0 (Blue)  | ?     | 0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                                                                                                                                                                                                   |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| <ul> <li>When the treated and untreated groups are exchangeable, the unknown counterfactual probabilities are the same as observational probabilities</li> <li>In this case, causation is association!</li> </ul> |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Causal effect of treatment = $\Pr[Y(1) = 1] - \Pr[Y(0) = 1]$<br>= $\Pr(Y = 1 T = 1) - \Pr(Y = 1 T = 0) = (2/3) - (1/3) = 1/3$                                                                                     |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| PennState Principles of Causal Inference Vasant G Honavar                                                                                                                                                         |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
































|                                  | Assignments Cardinality of $\mathbb{W}^+$ | 4  | 8   | 16     | 32                  |  |
|----------------------------------|-------------------------------------------|----|-----|--------|---------------------|--|
| Bernoulli trial                  | 2 <sup>N</sup>                            | 16 | 256 | 65,536 | $4.2 \times 10^{9}$ |  |
| Completely randomized experiment | $\binom{N}{N/2}$                          | 6  | 70  | 12,870 | $0.6 \times 10^{9}$ |  |
| Stratified randomized experiment | $\binom{N/2}{N/4}^2$                      | 4  | 36  | 4,900  | $0.2 \times 10^9$   |  |
| Paired randomized experiment     | 2 <sup>N/2</sup>                          | 4  | 16  | 256    | 65,536              |  |
|                                  |                                           |    |     |        |                     |  |
|                                  |                                           |    |     |        |                     |  |

