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Unobserved Confounding, Bounds, and Sensitivity Analysis
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Adjusting for confounders revisited

W

T Y

E[𝑌(1) − 𝑌(0)] = EW [E[𝑌|𝑇 = 1,𝑊] − E[𝑌|𝑇 = 0,𝑊]]
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Unobserved Confounding

W U

T Y

E[𝑌(1) − 𝑌(0)] = EW,U [E[𝑌|𝑇 = 1,𝑊, 𝑈] − E[𝑌|𝑇 = 0,𝑊, 𝑈]]

≅ EW [E[𝑌|𝑇 = 1,𝑊] − E[𝑌|𝑇 = 0,𝑊]]?

• Suppose 𝑈 is an unobserved confounder
• We cannot adjust for 𝑈
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Bounds

Sensitivity Analysis

• No-Assumptions Bound 
• Monotone Treatment Response 
• Monotone Treatment Selection 
• Optimal Treatment Selection

• Linear Single Confounder 
• More General Settings
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• The assumption that there is no unobserved 
confounding is unrealistic in practice

• The credibility of inference decreases with the strength of 
the assumptions made1

Unobserved Confounding

1Manski, C.F., 2003. Partial identification of probability distributions (Vol. 5). New York: Springer.
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• What can we do in the presence of 
unobserved confounding?
• Turn a blind eye and get a point 

estimate of the causal effect of 𝑇 on 𝑌

Unobserved Confounding W U

T Y

E[𝑌(1) − 𝑌(0)] ≅ EW [E[𝑌|𝑇 = 1,𝑊] − E[𝑌|𝑇 = 0,𝑊]]
• Weaken the assumption that there is no unobserved confounding
• Bound the causal effect
• Trivial bound is easy to get
• Potential outcomes are bounded: ∀𝑡 𝑎 ≤ 𝑌(𝑡) ≤ 𝑏
• ∀𝑖 (𝑎 − 𝑏) ≤ 𝑌! 1 − 𝑌! 0 ≤ (𝑏 − 𝑎)
• (𝑎 − 𝑏) ≤ E[𝑌(1) − 𝑌(0)] ≤ (𝑏 − 𝑎)

• Can we do better?
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Observational-Counterfactual decomposition
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Observational-Counterfactual decomposition
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Observational-Counterfactual decomposition

We get 
• No (causal) assumptions bound on the causal effects

Assuming that counterfactual outcomes are bounded
• ∀𝑡 𝑎 ≤ 𝑌(𝑡) ≤ 𝑏
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No assumptions bound compared to the trivial bound

• Trivial bound 

• Bounds the effect within an interval of length
2 𝑏 − 𝑎

• No assumptions bound

• Bounds the effect within an interval of length 
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Non-negative Monotone Treatment Response
• Suppose the potential outcomes are bounded in [𝑎, 𝑏]
• Suppose treatment never hurts ∀𝑖 𝑌!(1) ≥ 𝑌!(0)
• Then ∀𝑖 ITE! ≥ 0
• That is, ITE lower bound changes from 𝑎 − 𝑏 to 0
• Then it is easy to prove that the ATE lower bound also 

changes from 𝑎 − 𝑏 to 0
Proof (using factual counterfactual decomposition)
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Example
• Suppose potential outcomes are bounded between 0 and 1
• Suppose E 𝑌 𝑇 = 1 = 0.9 and E 𝑌 𝑇 = 0 = 0.2 and 𝜋 = 0.3
• No assumptions bound

• Nonnegative MTR lower bound 

• Combining the two, we have
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Non-positive Monotone Treatment Response
• Suppose the potential outcomes are bounded in [𝑎, 𝑏]
• Suppose treatment never helps ∀𝑖 𝑌!(0) ≥ 𝑌!(1)
• Then ∀𝑖 ITE! ≤ 0
• That is, ITE upper bound changes from 𝑏 − 𝑎 to 0
• Then it is easy to prove that the ATE upper bound also 

changes from 𝑏 − 𝑎 to 0

Prove that in the case of non-positive treatment response 
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Monotone Treatment Selection
• Treatment group’s potential outcomes are better than the 

control group’s

Under monotone  treatment selection, we can prove that the 
ATE is bounded from the above by the associational difference
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Monotone Treatment Selection
• Under monotone  treatment selection, we can prove that the ATE is 

bounded from the above by the associational difference

Proof: From observational-counterfactual decomposition, we have:

• Because 
E 𝑌 1 𝑇 = 1 = E 𝑌 𝑇 = 1
E 𝑌 0 𝑇 = 0 = E 𝑌 𝑇 = 0and
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Monotone Treatment Selection (MTS), non-negative Monotone 
Treatment Response (MTR) and No-Assumptions Lower Bound Combined
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Optimal Treatment Selection
• Under optimal  treatment selection, individuals get the treatment 

that is best for them 

• Under optimal treatment selection, we can prove that
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Optimal Treatment Selection
• Under optimal  treatment selection

• From the no assumptions bound, we have

Upper bound

Lower bound
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Optimal Treatment Selection Bound

Example
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OTS Bound on the Sign of the Effect
• OTS implies
• Hence, we have

• Observational-counterfactual decomposition
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OTS Bound on the Sign of the Effect
• OTS implies
• Under OTS, we proved an upper bound

• Analogously, we can prove a lower bound 

Example

Under OTS the above bound dictates

Thus establishing the sign of the effect (positive in this case)



23

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Combining OTS bounds
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Sensitivity Analysis
• The previous bounds made no assumptions regarding confounders
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Sensitivity Analysis
• Suppose 
• some confounders  𝑊 are observed 
• others 𝑈 are unobserved

• If 𝑈were observed, we would have

• When 𝑈 is unobserved, we can only get

• Can we assess the sensitivity of                               with respect to 𝑈?
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Single omitted confounder, linear causal model

• Goal: recover 𝛿
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Single omitted confounder, linear causal model
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Single omitted confounder, linear causal model

• From the structural equation for 𝑌 we have

• From the structural equation for 𝑇 we have

• Putting everything together
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Single omitted confounder, linear causal model

• So the ATE estimate we have if we adjust for only𝑊
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Sensitivity contour plots
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Generalizing sensitivity analysis
• Cinelli, C., Kumor, D., Chen, B., Pearl, J. and Bareinboim, E., 2019 Sensitivity analysis of 

linear structural causal models. In International conference on machine learning (pp. 
1252-1261). PMLR.
• Cinelli and Hazlett (2020), ‘Making sense of sensitivity: extending omitted variable bias’
• Veitch and Zaveri (2020), Sense and Sensitivity Analysis: Simple Post-Hoc Analysis of Bias 

Due to Unobserved Confounding
• Liu et al. (2013), ‘An introduction to sensitivity analysis for unobserved con-founding in 

nonexperimental prevention research’
• Rosenbaum (2002), Observational Studies
• Rosenbaum (2010), Design of Observational Studies
• Rosenbaum (2017), Observation and Experiment
• Franks et al. (2019), ‘Flexible Sensitivity Analysis for Observational Studies Without 

Observable Implications’
• Yadlowsky et al. (2020), Bounds on the conditional and average treatment effect with 

unobserved confounding factors
• Vanderweele and Arah (2011), ‘Bias formulas for sensitivity analysis of unmeasured 

confounding for general outcomes, treatments, and confounders’
• Ding and VanderWeele (2016), ‘Sensitivity Analysis Without Assumptions’
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