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Regression:  Caveats

Causal interpretation of regressions requires many assumptions
Threats to validity include:
- Modeling assumptions : e.g., what if we use a linear model and 

causal relationship is non-linear
- Multicollinearity: if covariates are correlated, we can’t get 

accurate coefficients
- Omitted variables: Omission of confounders can invalidate 

findings
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Doubly robust methods: Best of both worlds?

• Both propensity score weighting and regression models 
require correctly specified models
• E.g., if propensity score or regression is modeled as a 

linear combination, but is non-linear, then it is not 
correctly specified

• Doubly robust methods combine “best of” propensity score 
and regression methods
• If either propensity score or regression is correctly specified, 

then doubly robust method yields unbiased estimates
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Augmented IPW or Doubly Robust Estimator

• Doubly Robust Estimator (DR) or Augmented IPW

• Combines thepropensity score weighting with theoutcome regression

Treatment𝑇 Outcome𝑌

Outcome regression model𝑦
= 𝜇(𝑡,𝑤)

Propensity score 
model

J. Robins, A. Rotnitzky, and L. Zhao. "Estimation of regression coefficients when some regressors are not always observed." Journal of the American statistical
Association 89.427 (1994): 846-866.

Confounders 𝑊



73

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Doubly robust methods revisited

Augmented IPW
• Model both 𝜇 𝑡, 𝑤 and 𝑒(𝑤)
• Consistent if either (𝜇 𝑡, 𝑤 or (𝑒(𝑤) is consistent
• Theoretically converges at a faster rate than COM or IPW

W

T Y

�̂� =
1
𝑛'
!"#

$

�̂� 𝑡!, 𝑤! +
𝑡!

�̂� 𝑤!
+

(1 − 𝑡!)
1 − �̂� 𝑤!,

𝑦! − �̂� 𝑡!, 𝑤!

Outcome 
modeling IPW weighting Residual bias
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Doubly Robust Models: Caveat

• If either propensity score or regression is correctly specified, 
then doubly robust model is unbiased.
• Seems like doubly robust method should be strictly better 

(less biased) than either propensity score weighting or 
regression
• But, if both propensity score or regression are slightly 

incorrect, then doubly robust estimator may become very 
biased
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Doubly Robust Methods

Intuition Combine propensity score weighting and 
regression models to provide unbiased estimate 
when either propensity score or regression is 
correctly specified

Keep in 
mind

Fundamental assumptions (ignorability, etc.) must 
still hold.
If both models are slightly incorrect, doubly 
robust estimator can be more biased
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Covariate balancing propensity score (CBPS)
• Since propensity score plays a dual role - theprobability of being treated 

and covariate balancing score, CBPS estimates thepropensity score by
solving:

E𝛽
2%3(4%)
5(4%;7)

− (892%)3(4%)
895(4%;7)

= 0

• where 

• 𝑓(𝑤) is a user-specified function of 𝑤 e.g., 𝑓(𝑤) = 𝑤 balances 
the distribution of covariates with respect to their first moments 
etc.

• 𝑒(𝑤:; 𝛽) is an estimate of propensity score parameterized by 𝛽
• CBPS is robust to mild mis-specification of the propensity score

K. Imai and M. Ratkovic. 2014 Covariate balancing propensity score. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1):243–263
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SampleandCovariateRe-weighting

Data-Driven Variable Decomposition (D2VD)
• Assumption: Observed variables can be 

decomposed into confounders (𝑊),
adjustment  variables (𝑍) and theirrelevant
variables

• D2VDdistinguishes theconfounders and 
adjustment variables, while eliminating the
irrelevant variables.

Kuang, Kun, et al. "Treatment effect estimation with data-driven variable decomposition." AAAI’17.

𝑤

�̂� =E 𝑌 −𝜑(𝑧) ;95(<)
5(<)(895 < )

𝑋

• 𝜑 𝑧 is a latent representation optimized to compensate for the 
effect of confounders on 𝑌
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Differentiated confounder balancing (DCB)
• DCB selects confounders adjusts the weights of both 

confounders and samples tobalance thedistribution of 
samples in the treated and untreated groups

• Bypasses the estimation of propensity scores

Kuang, K., Cui, P., Li, B., Jiang, M., Wang, Y., Wu, F. and Yang, S., 2019. Treatment effect estimation via differentiated confounder balancing 
and regression. ACM Transactions on Knowledge Discovery from Data (TKDD), 14(1), pp.1-25.
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Tree-based Methods

• Classification AndRegression Trees (CART)
• Recursively partition the data space based on

GINI index or entropy

• Fit a simple prediction model for each partition

Leaf specific effect:

A specific leaf node
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Tree-based Methods
• Bayesian Additive Regression Trees (BART)
• A Bayesian ensemble of trees model
• Nonparametric Bayesian regression

Hill, Jennifer L. "Bayesian nonparametric modeling for causal inference." Journal of Computational and Graphical Statistics 20.1 (2011): 217-240.
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Advantages of BART

• Easy to implement
• Little need for parameter tuning

• Posterior provides uncertainty of the estimation

• Can handle large number of covariates or confounders 
• Can handle discrete as well as continuous treatment

variables and missing data
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Tree-based Methods: Causal Forests

• An ensemble of trees

• A variant of Breiman's random forest algorithm

• Trees and forests help find matches adaptively
• Extended to multiple treatments

S. Wager, and S. Athey. "Estimation and inference of heterogeneous treatment effects using random forests." Journal of the American Statistical
Association 113.523 (2018): 1228-1242.
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Tree-based Methods: Causal Forests
• Estimate causal effect 

using two data sets
• One data set used to 

build a tree
• Second data set used to 

estimate leaf-specific 
causal effects

• Advantage:
• Can estimate CATE
• Consistency of CATE

estimates
• Nice Asymptotic

properties

𝑆! 𝑆"

Grow a tree

Estimate leaf-
specific effect
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Causal forests for propensity estimation

• Use the entire data set
to grow the tree

• Estimate propensity at
each leaf

• Ensembles possible
• Each leaf node at least

𝑘 observations

𝐷𝑎𝑡𝑎

Grow a tree
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Deep learning for causal effect estimation
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Doubly robust methods revisited

• Both propensity score weighting and regression models 
require correctly specified models
• E.g., if propensity score or regression is modeled as a 

linear combination, but is non-linear, then it is not 
correctly specified

• Doubly robust methods combine “best of” propensity score 
and regression methods
• If either propensity score or regression is correctly specified, 

then doubly robust method yields unbiased estimates
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Augmented IPW or Doubly Robust Estimator

• Doubly Robust Estimator (DR) or Augmented IPW

• Combines thepropensity score weighting with theoutcome regression

Treatment𝑇 Outcome𝑌

Outcome regression model𝑦
= 𝜇(𝑡,𝑤)

Propensity score 
model

J. Robins, A. Rotnitzky, and L. Zhao. "Estimation of regression coefficients when some regressors are not always observed." Journal of the American statistical
Association 89.427 (1994): 846-866.

Confounders 𝑊
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Doubly robust methods revisited
Augmented IPW
• Model both 𝜇 𝑡, 𝑤 and 𝑒(𝑤)
• Consistent if either (𝜇 𝑡, 𝑤 or (𝑒(𝑤) is consistent
• Theoretically converges at a faster rate than COM or IPW

• If either propensity score or regression is correctly specified, 
then doubly robust model is unbiased

W

T Y

�̂� =
1
𝑛'
%&'

(

�̂� 𝑡%, 𝑤% +
𝑡%

�̂� 𝑤%
+

(1 − 𝑡%)
1 − �̂� 𝑤%,

𝑦% − �̂� 𝑡%, 𝑤%

Outcome 
modeling IPW weighting Residual bias
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Deep learning for causal effect estimation

• Deep outcome modeling 
• Covariate balancing through representation learning
• Generative modeling
• Adversarial learning
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Deep outcome modeling
• We train two deep neural networks 
• one to predict treated outcome
• One to predict the control outcome

• After training, we  use the trained model to predict outcomes 
7𝑌: 1 and 7𝑌: 0 or (conditional outcomes)

• Estimate ATE or CATE  by averaging the predicted outcomes (or 
conditional outcomes)
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Balanced representation learning

1 Shalit, U., Johansson, F.D. and Sontag, D., 2017, Estimating individual treatment effect: generalization bounds and algorithms. 
In International Conference on Machine Learning (pp. 3076-3085). PMLR.

Key idea: A deep neural network or kernel function can map the 
covariates into a representation space where the treated and 
control distributions are nearly identical  
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Balanced representation learning for causal effect estimation

• Target agnostic regression network (TARNet)

1 Shalit, U., Johansson, F.D. and Sontag, D., 2017, Estimating individual treatment effect: generalization bounds and algorithms. 
In International Conference on Machine Learning (pp. 3076-3085). PMLR.

>𝑌 1 = ℎ(𝜙 𝑊 ,1)

>𝑌 0 = ℎ(𝜙 𝑊 ,0)

𝑎𝑟𝑔𝑚𝑖𝑛C,D
8
E𝑀𝑆𝐸(𝑌:(𝑇:),ℎ 𝜙(𝑤: , 𝑇:) + 𝜆𝑅(ℎ)

𝜙

Intuition:
• 𝜙 is trained to 

simultaneously 
predict both 
7𝑌: 1 and 7𝑌: 0
or their 
conditional 
counterparts

• Can we do 
better?  
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Integral probability metrics for representation balancing

• Wasserstein distance or earthmover distance
• Measures the amount of probability mass that needs to be 

“transported” to transform one distribution into another

Wasserstein distance = cost of the optimal transport plan
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Integral probability metrics for representation balancing

• Maximum mean discrepancy distance
• Normed distance between the means of two densities say, 
𝑝 and 𝑞 after a kernel function 𝜙 has mapped them to a 
representation space 

𝑀𝑀𝐷(𝑝, 𝑞, 𝐹) = sup
3∈G

Ep[𝑓(𝑥)]− Eq [𝑓(𝑦)] 2

• When 𝑝 = 𝑞, 𝑀𝑀𝐷 𝑝, 𝑞, 𝐹 is close to 0
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Representation balancing for causal effect estimation
• Counterfactual regression network (CFRNet)

1 Shalit, U., Johansson, F.D. and Sontag, D., 2017, Estimating individual treatment effect: generalization bounds and algorithms. 
In International Conference on Machine Learning (pp. 3076-3085). PMLR.

>𝑌 1 = ℎ(𝜙 𝑊 ,1)

>𝑌 0 = ℎ(𝜙 𝑊 ,0)

𝑎𝑟𝑔𝑚𝑖𝑛),+,,-.
'
(𝑀𝑆𝐸(𝑌%(𝑇%),ℎ 𝜙(𝑥% , 𝑇%) + 𝛼𝐼𝑃𝑀(𝜙 𝑥 𝑇 = 1 ,𝜙 𝑥 𝑇 = 0) + 𝜆𝑅(ℎ)

𝜙

• Intuition: Minimize 
an integral 
probability metric 
between the 
treated and 
untreated 
distributions in the 
representation 
space

𝑋
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Representation balancing for causal effect estimation
• Counterfactual regression network (CFRNet)

• The mean squared error of estimated causal effect is bounded by 
the sum of the factual loss, the counterfactual loss, and the 
variance of the (conditional) outcome

• The regularizer 𝑅(ℎ), typically, 𝐿2 penalty on the weights 
controls the complexity of the model for outcome prediction)

1 Shalit, U., Johansson, F.D. and Sontag, D., 2017, Estimating individual treatment effect: generalization bounds and algorithms. 
In International Conference on Machine Learning (pp. 3076-3085). PMLR.

𝑎𝑟𝑔𝑚𝑖𝑛),+,,-.
'
(𝑀𝑆𝐸(𝑌%(𝑇%),ℎ 𝜙(𝑥% , 𝑇%) + 𝛼𝐼𝑃𝑀(𝜙 𝑋 𝑇 = 1 ,𝜙 𝑥 𝑇 = 0) + 𝜆𝑅(ℎ)
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Representation balancing for causal effect estimation
Weighted CFRNet: CFRNet with consistency guarantees
• Incorporates inverse propensity weighting into CFRNet

1 Johansson, F.D., Shalit, U., Kallus, N. and Sontag, D., 2022. Generalization Bounds and Representation Learning for Estimation of 
Potential Outcomes and Causal Effects. Journal of Machine Learning Research, 23(166), pp.1-50.

/(1,2)
-(2) = 𝑒 𝑋
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Representation balancing for causal effect estimation
Weighted CFRNet: CFRNet with consistency guarantees
• Incorporates inverse propensity weighting into CFRNet

1 Johansson, F.D., Shalit, U., Kallus, N. and Sontag, D., 2022. Generalization Bounds and Representation Learning for Estimation of 
Potential Outcomes and Causal Effects. Journal of Machine Learning Research, 23(166), pp.1-50.
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Representation balancing for causal effect estimation
Extensions with inverse propensity weighting: doubly robust estimates
DragonNet

1 Shi, C., Blei, D.M. and Veitch, V., 2019, December. Adapting neural networks for the estimation of treatment effects. In Proceedings 
of the 33rd International Conference on Neural Information Processing Systems (pp. 2507-2517)..

• Instead of adding an IPM loss, we predict propensity scores 
and add a nudge parameter
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Semiparametric Theory for Causal Effect Estimation 

• Causal inference from observational data is about estimating a 
target parameter 𝑇 𝑃 = 𝐴𝑇𝐸 of distribution 𝑃 of treatment effects
• Because we lack counterfactuals, we do not know the true 

distribution 𝑃 of treatment effects
• We do know (can estimate) some constraints on 𝑃, e.g., the 

treatment mechanism 
• We can encode these constraints into a likelihood that 

parametrically defines a family P of approximate data informed 
distributions of 𝑃
• Within P, there exists a sample-inferred distribution V𝑃 that we can 

use in place of 𝑃 in 𝑇 𝑃
• How to choose an optimal  V𝑃?
• We can use maximum likelihood estimate, but…
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Semiparametric Theory for Causal Effect Estimation 

• How to choose an optimal  V𝑃?
• We can use maximum likelihood estimate, but…
• The likelihood may contain ‘nuisance’ terms that we do not care to 

estimate accurately
• MLE in such setting may yield a biased estimate of the target 𝑇(𝑃)

because it tries obtain accurate estimates of the nuisance terms as 
well
• We can sharpen the focus of the likelihood on 𝑇(𝑃) using a nudge 

parameter 𝜖 along an  efficient influence curve (EIC)
• The resulting ATE estimate is asymptotically unbiased, efficient, and 

has confidence intervals with (asymptotically) correct coverage
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Representation balancing for causal effect estimation
DragonNet

1 Shi, C., Blei, D.M. and Veitch, V., 2019, December. Adapting neural networks for the estimation of treatment effects. In Proceedings 
of the 33rd International Conference on Neural Information Processing Systems (pp. 2507-2517)..

• Semi parametric estimation yields

𝑥% 𝑥%
𝑥% 𝑥% 𝑥%
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Targeted Maximum Likelihood Estimation (TMLE)
• TMLE iteratively uses a nuisance parameter 𝜖 to nudge the outcome 

models towards sharper estimates of the ATE
1. Fit ℎ by predicting outcomes (e.g., using TARNet) and 

minimizing 𝑀𝑆𝐸(𝑌, ℎ(𝑋, 𝑇 ))
2. Fit 𝜋 by predicting treatment (e.g., using logistic regression) 

and 𝐵𝐶𝐸(𝑇, 𝜋(𝑋, 𝑇 ))
3. Plug-in ℎ and 𝜋 functions to fit 𝜖 and estimate ℎ∗(𝑋, 𝑇 )where

by minimizing 𝑀𝑆𝐸(𝑌, ℎ∗(𝑋, 𝑇 )).
4. Plug-in ℎ∗(𝑋, 𝑇 )to estimate ATE: 
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From TMLE to targeted regularization in DragonNet
• Targeted regularization adapts TMLE to a neural network loss function

1. (a) Use Dragonnet to predict ℎ(Φ(𝑋), 𝑇 ) and 𝜋(Φ(𝑋), 𝑇 ).
(b) Calculate the standard ML loss for the network using a 

hyperparameter 𝛼:

2. (a) Compute ℎ∗(Φ(𝑋), 𝑇 ) as above

(b) Calculate regularization loss: 𝑀𝑆𝐸(𝑌, ℎ∗(Φ(𝑋), 𝑇 ))
3. Combine and minimize the losses from 1 and 2 using a 

hyperparameter 𝛽
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Adversarial training of representations for 
causal effect estimation
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Adversarial Networks

Generative
Model Real world Discriminative

Model

real or fake?
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Generative Model

• How to generate different samples from the model?
• Input random noise

• Generative model as a neural network
• computes 𝒙 = 𝑮(𝒛|𝜽)
• differentiable
• does not have to be invertible
• 𝒛 typically is very high dimensional (higher than 𝒙)

Generative
Model

noise (𝒛)
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Discriminative Model
• Discriminative model is a critic
• A good critic can tell real from 

fake data
• Discriminative model as a neural net
• differentiable
• computes 𝑫(𝒙), with value 1 if 

real, 0 if fake

Discriminative
Model

real or fake?
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Training Procedure: Basic Idea

• 𝐺 tries to fool 𝐷
• 𝐷 tries not to be fooled
• Models are trained simultaneously
• As 𝐺 gets better, 𝐷 has a more 

challenging task
• As 𝐷 gets better, 𝐺 has a more 

challenging task
• Ultimately, we don’t care about the 𝐷
• Its role is to force 𝐺 to work harder

Discriminative
Model

real or fake?

Generative
Model

noise (𝒛)

Real world
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Loss Functions
• Loss function for D
• Maximize the likelihood that model says ‘real’ to 

samples from the world and ‘fake’ to generated 
samples
• 𝓛𝑫 = −𝔼𝒙~𝐰𝐨𝐫𝐥𝐝 𝐥𝐧 𝑫 𝒙 −𝔼𝒛 𝐥𝐧 𝟏 −𝑫(𝑮 𝒛 )

• What should the loss function be for 𝐺?
• 𝓛𝑮 = −𝓛𝑫

• But because first term doesn’t matter for 𝐺 (why?)
• 𝓛b = 𝔼𝒛 𝐥𝐧 𝟏 −𝑫(𝑮 𝒛 )

• Known as a minimax procedure

Discriminative
Model

real or fake?

Generative
Model

noise (𝒛)

Real world
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Loss function: Discriminator
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Loss function: Generator
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Training Procedure
• Train both models simultaneously via 

stochastic gradient descent using mini-
batches consisting of
• some generated samples
• some real-world samples

• Training of 𝐷 is straightforward
• Error for 𝐺 comes via back propagation 

through 𝐷
• Freeze 𝐷 weights and propagate 𝓛𝑮

through 𝐷 to determine 𝝏𝓛𝑮/𝝏𝒙
• 𝐷 can be trained without altering 𝐺, and 

vice versa
• May want multiple training epochs of 

just 𝐷 so it can stay ahead
• May want multiple training epochs of 

just 𝐺 because it has a harder task

Discriminative
Model

real or fake?

Generative
Model

noise (𝒛)

Real world
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Idea:
• Factual outcome àobserved labels  
• Counterfactual outcome àmissing labels
• Missing labels generated using GANs
Approach: A combination of twoGANs
• Counterfactual GAN:
• Input: the data with missinglabels
• Goal: estimate the counterfactual outcome
• Output: the complete data

• ITE GAN
• Input: the complete data from counterfactual block
• Output: causal effect estimate

Yoon, Jinsung, James Jordon, and Mihaela van der Schaar. "GANITE: Estimation of individualized treatment effects using generative adversarial nets. 

Generative adversarial networks for ITE estimation
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Generative adversarial networks for ITE estimation (GANITE)



116

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Counterfactual GAN



117

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

ITE GAN
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• CEVAE
• Assumption: many proxies of the hidden 

confounder(s) are available 
• Estimate of a latent-variable model using VAE
• Discover the hidden confounders
• Infer how the hidden confoundersaffect  

the treatment and outcome
• Advantages:
• Weaker assumptions about 
• the datagenerating  process and 
• the structure of the hidden  confounders

Variational autoencodersfor Causal Effect 
Estimation
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Account for hidden confounders
• CEVAE : Relaxing the unconfoundness assumption.

Note: (𝑖) denote applications of the rules of do-calculus

Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." Advances in Neural Information Processing Systems. 2017.

Figure 1
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CEVAE : Relaxing the unconfoundness assumption

• How would the above estimate change if there is 
an edge from 𝑋 to 𝑡?
• It would not
• Why?
• Because we intervene on 𝑡!

[1] Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." Advances in Neural Information Processing Systems. 2017.
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CEVAE!
Variational Autoencoderfor Causal Effect Estimation 

Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." Advances in Neural Information Processing Systems. 2017.

• White nodes: deterministic neural network transitions
• Gray nodes: sampling from the corresponding distribution
• Circles: switching based on the value of 𝑡
• Approach: Use variational autoencoders to infer the complex non-

linear relationships between 𝑋 and (𝑍, 𝑡, 𝑦) and approximately 
recover 𝑝(𝑍, 𝑋, 𝑡, 𝑦)
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Detour: Variational Autoencoders
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The autoencoder (AE)
● Learn a low-dimensional representation of high-dimensional data
● AE consists of an encoder followed by a decoder

Encoder Decoder

low-dimensional  
“latent" space

compressed  
representation

h(x) reconstructed  
data

original high-dimensional  
vector space

7𝑿

high-dimensional  
vector space

original  
data X
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AE Architecture

Encoded Data

Encoder Decoder

● The encoder and decoder are usually neural networks
● Layers are often fully connected or convolutional (for image or 

time series data)

Input Data Reconstructed Data

Latent
Representation



125

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

AE learning objective
● An AE learns by minimizing the objective function

● Over  our set of training data where 𝑑 is a “distance function”, 
typically squared error, and 𝑁 is the number of training samples  

● Update weights in the encoder E and decoder D via gradient descent

𝐿 =
1
𝑁p𝑑(𝒙, q𝒙)
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From Autoencoder (AE) to Variational Autoencoder

Encoded DataInput Data Reconstructed Data

Latent 
Representation

Encoder Sample Decoder

σ2
1

σ2
2

μ1

μ2

Diagonal  
Multivariate  

Gaussian

Mean, Variance

Map a data set into a distribution
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Variational Autoencoder (VAE)

• Key idea:  make both the encoder and the decoder probabilistic
• i.e., the latent variables, 𝑧, are drawn from a probability 

distribution depending on the input, 𝑋, and the reconstruction is 
chosen probabilistically from 𝑧

Encoder 𝑞+(𝑧|𝑥) Decoder 𝑝5(𝑥|𝑧)
𝑥

Data
𝑧 (𝑥

Reconstruction
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Modeling a data distribution
● Given data in the form of some vectors 𝒙 ∈ 𝐷 in a vector space𝑉,

find a probability distribution 𝑝(𝒙) over 𝑉, “peaked” only on the 
data 𝐷

● Choose a formula pθ(x) for this distribution with parameters θ, 
and maximize

1
𝑁 logw

𝒙 ) *
𝑝+ (𝒙) =

1
𝑁 p
𝒙 ) *

log𝑝+ (𝑥)
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Low-dimensionality of data
● Data usually lies on a low-dimensional submanifold of some high-

dimensional ambient vector space
● We map data to the lower-dimensional subspace of interest

pθ(x) = ∫ pθ(x | z) p(z) dz

• where z is a “latent variable” from the subspace. For a VAE, 
we assume that

• pθ(x | z) ∼ normal with mean M(z) and variance Σ(z)2

• p(z) ∼ standard normal
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The decoder
● The VAE “decoder” is the map z ↦ (Mθ(z), Σθ(z)2)

● Mθ(z) and Σθ(z)2 are realized by neural networks

Mθ(z)
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A difficulty

● An easier integral would be

where the distributions q(x | z) and pθ(x | z) are nearly 
identical for each z

● Unfortunately, it is difficult to estimate pθ(x) from its integral

small for most zi ∼ p(z) , so we  
need a huge M to estimatethis.

large for most zi ∼ q(z | x), so we  
don’t need large N to estimate this.

𝑝! 𝑥 =∫𝑝! 𝑥|𝑧 𝑝 𝑧 𝑑𝑧 ≈ ∑ "#$
%6~'(%)

* 𝑝! 𝑥|𝑧"

𝑝! 𝑥 =∫𝑝! 𝑥|𝑧 𝑞 𝑧|𝑥 𝑑𝑧 ≈ ∑ "#$
%6~+(%|-)

* 𝑝! 𝑥|𝑧"
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The fix
● We choose a formula for q(z | x) that depends on parameters ϕ
● For a VAE, we assume that

qϕ(z | x) ∼ normal with mean μϕ(x) and variance σϕ(x)2

and tune the parameters ϕ so qϕ(z | x) and pθ(z | x) are almost
identical

● By identical, we mean that the “KL-divergence”

between these distributions, is small

ϕ θ ∫ ϕKL(q ( ⋅ | x) | | p ( ⋅ | x)) := q (z | x) log
qϕ(z |x)

( pθ(z | x) ) dz,
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Variational Inference

• Use a simple distribution to approximate a complex distribution

• Variational parameter:
• Gaussian distribution: 𝜇, 𝜎
• Gaussian mixture: 𝜇 , 𝜎 , [𝑤]
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Theory: Variational Inference

• X: data
• Z: latent variable (hidden layer value)
• 𝜙: Inference network parameter (encoder: 𝑞.(z|x))
• Θ: generative network parameter (decoder: 𝑝/(x|z))



135

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Theory: Variational Inference

• Posterior distribution:

• Goal: use variational posterior 𝑞.(z|x) to approximate true 
posterior 𝑝/(z|x)

Intractable posterior!



136

Vasant G Honavar

Center for Artificial Intelligence Foundations and Scientific Applications
Artificial Intelligence Research Laboratory

Principles of Causal Inference Vasant G Honavar

Theory: Variational Inference
• Minimize KL-divergence between the variational posterior 

and true posterior

• is constant
• Minimizing                                  is same as maximizing

• KL-divergence is non-negative

Variational lower bound of data likelihood
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Variational Lower Bound of data likelihood (ELBO)

Regularization term Reconstruction term
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The Reparameterization Trick

• Problem with respect to the VLB: updating ϕ

• 𝑧~𝑞.(𝑧|𝑥) : need to differentiate through the sampling 
process w.r.tϕ
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The Reparameterization Trick

• Solution: make the encoder deterministic
• Gaussian distribution example:

• Previously: 𝑧~𝑁(𝜇, 𝜎)
• Now 𝑧 = 𝜇 + 𝜖 ∗ 𝜎, 𝜖~𝑁(0, 1)
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The encoder

● μϕ(x) and σϕ(x)2 are realized by neural networks

● The VAE “encoder” is the map x ↦ (μϕ(x),σϕ(x)2)

μ

σ2
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VAE Encoder

• The encoder takes input and returns parameters for a 
probability density (e.g., Gaussian): i.e.  𝑞0(𝑧|𝑥) gives the 
mean and co-variance matrix  

• We can sample from this distribution to get random values 
of the lower-dimensional representation 𝑧

• Implemented via a neural network:  each input 𝑥 gives a 
vector mean and diagonal covariance matrix that determine 
the Gaussian density 𝑞0(𝑧|𝑥)

• Parameters 𝜙 for the neural network are learned
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VAE Decoder
• The decoder takes latent variable z and returns 

parameters for a distribution.  E.g., 𝑝!(𝑧|𝑥) specifies the 
mean and variance for each element of the output

• Reconstruction  (𝑥 is produced by sampling. 
• Implemented via neural network, the neural network 

parameters 𝜃 are learned.  

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Encoder 𝑞+(𝑧|𝑥) Decoder 𝑝5(𝑥|𝑧)
𝑥

Data
𝑧 (𝑥

Reconstruction
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VAE generative model

• After training, 𝑞0(𝑧|𝑥") is close to a standard normal, 
𝒩(0,1) – easy to sample.  

• Using a sample of z from 𝑞0(𝑧|𝑥") as input to sample from 
𝑝!(𝑥|𝑧) gives an approximate reconstruction of 𝑥𝑖, at least 
in expectation.  

• If we sample any z from N(0,1) and use it as input to to 
sample from 𝑝!(𝑥|𝑧) then we can approximate the entire 
data distribution 𝑝(𝑥). i.e., we can generate new samples 
that look like the input but aren’t in the input 


