
Handbook of Knowledge Representation
Edited by F. van Harmelen, V. Lifschitz and B. Porter
© 2008 Elsevier B.V. All rights reserved
DOI: 10.1016/S1574-6526(07)03001-5

3

Chapter 1

Knowledge Representation and
Classical Logic

Vladimir Lifschitz, Leora Morgenstern,
David Plaisted

1.1 Knowledge Representation and Classical Logic

Mathematical logicians had developed the art of formalizing declarative knowledge
long before the advent of the computer age. But they were interested primarily in for-
malizing mathematics. Because of the important role of nonmathematical knowledge
in AI, their emphasis was too narrow from the perspective of knowledge representa-
tion, their formal languages were not sufficiently expressive. On the other hand, most
logicians were not concerned about the possibility of automated reasoning; from the
perspective of knowledge representation, they were often too generous in the choice of
syntactic constructs. In spite of these differences, classical mathematical logic has ex-
erted significant influence on knowledge representation research, and it is appropriate
to begin this Handbook with a discussion of the relationship between these fields.

The language of classical logic that is most widely used in the theory of knowl-
edge representation is the language of first-order (predicate) formulas. These are the
formulas that John McCarthy proposed to use for representing declarative knowledge
in his Advice Taker paper [171], and Alan Robinson proposed to prove automatically
using resolution [230]. Propositional logic is, of course, the most important subset
of first-order logic; recent surge of interest in representing knowledge by proposi-
tional formulas is related to the creation of fast satisfiability solvers for propositional
logic (see Chapter 2). At the other end of the spectrum we find higher-order languages
of classical logic. Second-order formulas are particularly important for the theory of
knowledge representation, among other reasons, because they are sufficiently expres-
sive for defining transitive closure and related concepts, and because they are used in
the definition of circumscription (see Section 6.4).

Now a few words about the logical languages that are not considered “classical”.
Formulas containing modal operators, such as operators representing knowledge and
belief (Chapter 15), are not classical. Languages with a classical syntax but a nonclas-

http://dx.doi.org/10.1016/S1574-6526(07)03002-7
http://dx.doi.org/10.1016/S1574-6526(07)03006-4
http://dx.doi.org/10.1016/S1574-6526(07)03015-5

4 1. Knowledge Representation and Classical Logic

sical semantics, such as intuitionistic logic and the superintuitionistic logic of strong
equivalence (see Section 7.3.3), are not discussed in this chapter either. Nonmonotonic
logics (Chapters 6 and 19) are nonclassical as well.

This chapter contains an introduction to the syntax and semantics of classical logic
and to natural deduction; a survey of automated theorem proving; a concise overview
of selected implementations and applications of theorem proving; and a brief discus-
sion of the suitability of classical logic for knowledge representation, a debate as old
as the field itself.

1.2 Syntax, Semantics and Natural Deduction

Early versions of modern logical notation were introduced at the end of the 19th cen-
tury in two short books. One was written by Gottlob Frege [89]; his intention was
“to express a content through written signs in a more precise and clear way than it
is possible to do through words” [261, p. 2]. The second, by Giuseppe Peano [204],
introduces notation in which “every proposition assumes the form and the precision
that equations have in algebra” [261, p. 85]. Two other logicians who have contributed
to the creation of first-order logic are Charles Sanders Peirce and Alfred Tarski.

The description of the syntax of logical formulas in this section is rather brief.
A more detailed discussion of syntactic questions can be found in Chapter 2 of the
Handbook of Logic in Artificial Intelligence and Logic Programming [68], or in intro-
ductory sections of any logic textbook.

1.2.1 Propositional Logic

Propositional logic was carved out of a more expressive formal language by Emil
Post [216].

Syntax and semantics

A propositional signature is a nonempty set of symbols called atoms. (Some authors
say “vocabulary” instead of “signature”, and “variable” instead of “atom”.) Formulas
of a propositional signature σ are formed from atoms and the 0-place connectives !
and " using the unary connective ¬ and the binary connectives ∧, ∨, → and ↔.
(Some authors write & for ∧, ⊃ for →, and ≡ for ↔.)1

The symbols FALSE and TRUE are called truth values. An interpretation of a propo-
sitional signature σ (or an assignment) is a function from σ into {FALSE, TRUE}. The
semantics of propositional formulas defines which truth value is assigned to a formula
F by an interpretation I . It refers to the following truth-valued functions, associated
with the propositional connectives:

x ¬(x)

FALSE TRUE
TRUE FALSE

1Note that ! and " are not atoms, according to this definition. They do not belong to the signature, and
the semantics of propositional logic, defined below, treats them in a special way.

http://dx.doi.org/10.1016/S1574-6526(07)03007-6
http://dx.doi.org/10.1016/S1574-6526(07)03006-4
http://dx.doi.org/10.1016/S1574-6526(07)03002-7

V. Lifschitz, L. Morgenstern, D. Plaisted 5

x y ∧(x, y) ∨(x, y) →(x, y) ↔(x, y)

FALSE FALSE FALSE FALSE TRUE TRUE
FALSE TRUE FALSE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE FALSE FALSE
TRUE TRUE TRUE TRUE TRUE TRUE

For any formula F and any interpretation I , the truth value FI that is assigned to F
by I is defined recursively, as follows:

• for any atom F , FI = I (F),

• !I = FALSE, "I = TRUE,

• (¬F)I = ¬(F I),

• (F) G)I =)(F I ,GI) for every binary connective).

If the underlying signature is finite then the set of interpretations is finite also, and
the values of FI for all interpretations I can be represented by a finite table, called the
truth table of F .

If FI = TRUE then we say that the interpretation I satisfies F , or is a model of F
(symbolically, I |= F).

A formula F is a tautology if every interpretation satisfies F . Two formulas, or sets
of formulas, are equivalent to each other if they are satisfied by the same interpreta-
tions. It is clear that F is equivalent to G if and only if F ↔ G is a tautology.

A set Γ of formulas is satisfiable if there exists an interpretation satisfying all
formulas in Γ . We say that Γ entails a formula F (symbolically, Γ |= F) if every
interpretation satisfying Γ satisfies F .2

To represent knowledge by propositional formulas, we choose a propositional sig-
nature σ such that interpretations of σ correspond to states of the system that we want
to describe. Then any formula of σ represents a condition on states; a set of formulas
can be viewed as a knowledge base; if a formula F is entailed by a knowledge base Γ
then the condition expressed by F follows from the knowledge included in Γ .

Imagine, for instance, that Paul, Quentin and Robert share an office. Let us agree
to use the atom p to express that Paul is in the office, and similarly q for Quentin
and r for Robert. The knowledge base {p, q} entails neither r nor ¬r . (The semantics
of propositional logic does not incorporate the closed world assumption, discussed
below in Section 6.2.4.) But if we add to the knowledge base the formula

(1.1)¬p ∨ ¬q ∨ ¬r,

expressing that at least one person is away, then the formula ¬r (Robert is away) will
be entailed.

Explicit definitions

Let Γ be a set of formulas of a propositional signature σ . To extend Γ by an explicit
definition means to add to σ a new atom d , and to add to Γ a formula of the form

2Thus the relation symbol |= is understood either as “satisfies” or as “entails” depending on whether its
first operand is an interpretation or a set of formulas.

http://dx.doi.org/10.1016/S1574-6526(07)03006-4

6 1. Knowledge Representation and Classical Logic

d ↔ F , where F is a formula of the signature σ . For instance, if

σ = {p, q, r}, Γ = {p, q},
as in the example above, then we can introduce an explicit definition that makes d an
abbreviation for the formula q ∧ r (“both Quentin and Robert are in”):

σ ′ = {p, q, r, d}, Γ ′ = {p, q, d ↔ (q ∧ r)}.
Adding an explicit definition to a knowledge base Γ is, in a sense, a trivial modi-

fication. For instance, there is a simple one-to-one correspondence between the set of
models of Γ and the set of models of such an extension: a model of the extended set
of formulas can be turned into the corresponding model of Γ by restricting it to σ . It
follows that the extended set of formulas is satisfiable if and only if Γ is satisfiable.
It follows also that adding an explicit definition produces a “conservative extension”:
a formula that does not contain the new atom d is entailed by the extended set of
formulas if and only if it is entailed by Γ .

It is not true, however, that the extended knowledge base is equivalent to Γ . For
instance, in the example above {p, q} does not entail d ↔ (q ∧ r), of course. This
observation is related to the difference between two ways to convert a propositional
formula to conjunctive normal form (that is, to turn it into a set of clauses): the more
obvious method based on equivalent transformations on the one hand, and Tseitin’s
procedure, reviewed in Section 2.2 below, on the other. The latter can be thought of as
a sequence of steps that add explicit definitions to the current set of formulas, inter-
spersed with equivalent transformations that make formulas smaller and turn them into
clauses. Tseitin’s procedure is more efficient, but it does not produce a CNF equivalent
to the input formula; it only gives us a conservative extension.

Natural deduction in propositional logic

Natural deduction, invented by Gerhard Gentzen [96], formalizes the process of intro-
ducing and discharging assumptions, common in informal mathematical proofs.

In the natural deduction system for propositional system described below, derivable
objects are sequents of the form Γ + F , where F is a formula, and Γ is a finite set
of formulas (“F under assumptions Γ ”). For simplicity we only consider formulas
that contain neither " nor ↔; these connectives can be viewed as abbreviations. It
is notationally convenient to write sets of assumptions as lists, and understand, for
instance, A1, A2 + F as shorthand for {A1, A2} + F , and Γ, A + F as shorthand
for Γ ∪ {A} + F .

The axiom schemas of this system are

F + F

and

+ F ∨ ¬F.

The inference rules are shown in Fig. 1.1. Most of the rules can be can be divided into
two groups—introduction rules (the left column) and elimination rules (the right col-
umn). Each of the introduction rules tells us how to derive a formula of some syntactic
form. For instance, the conjunction introduction rule (∧I) shows that we can derive

http://dx.doi.org/10.1016/S1574-6526(07)03002-7

V. Lifschitz, L. Morgenstern, D. Plaisted 7

(∧I) Γ +F #+G
Γ,#+F∧G (∧E) Γ +F∧G

Γ +F
Γ +F∧G

Γ +G

(∨I) Γ +F
Γ +F∨G

Γ +G
Γ +F∨G (∨E) Γ +F∨G #1,F+H #2,G+H

Γ,#1,#2+H

(→I) Γ,F+G
Γ +F→G (→E) Γ +F #+F→G

Γ,#+G

(¬I) Γ,F+!
Γ +¬F (¬E) Γ +F #+¬F

Γ,#+!

(C) Γ +!
Γ +F

(W) Γ +Σ
Γ,#+Σ

Figure 1.1: Inference rules of propositional logic.

a conjunction if we derive both conjunctive terms; the disjunction introduction rules
(∨I) show that we can derive a disjunction if we derive one of the disjunctive terms.
Each of the elimination rules tells us how we can use a formula of some syntactic
form. For instance, the conjunction elimination rules (∧E) show that a conjunction
can be used to derive any of its conjunctive terms; the disjunction elimination rules
(∨E) shows that a disjunction can be used to justify reasoning by cases.

Besides introduction and elimination rules, the deductive system includes the con-
tradiction rule (C) and the weakening rule (W).

In most inference rules, the set of assumptions in the conclusion is simply the
union of the sets of assumptions of all the premises. The rules (→I), (¬I) and (∨E)
are exceptions; when one of these rule is applied, some of the assumptions from the
premises are “discharged”.

An example of a proof in this system is shown in Fig. 1.2. This proof can be
informally summarized as follows. Assume ¬p, q → r and p ∨ q. We will prove r by
cases.

Case 1: p. This contradicts the assumption ¬p, so that r follows.
Case 2: q. In view of the assumption q → r , r follows also.
Consequently, from the assumptions ¬p and q → r we have derived (p∨q) → r .
The deductive system described above is sound and complete: a sequent Γ + F

is provable in it if and only if Γ |= F . The first proof of a completeness theorem for
propositional logic (involving a different deductive system) is due to Post [216].

Meta-level and object-level proofs

When we want to establish that a formula F is entailed by a knowledge base Γ , the
straightforward approach is to use the definition of entailment, that is, to reason about
interpretations of the underlying signature. For instance, to check that the formulas
¬p and q → r entail (p ∨ q) → r we can argue that no interpretation of the signature
{p, q, r} can satisfy both ¬p and q → r unless it satisfies (p ∨ q) → r as well.

A sound deductive system provides an “object-level” alternative to this meta-level
approach. Once we proved the sequent Γ + F in the deductive system described
above, we have established that Γ entails F . For instance, the claim that the formulas
¬p and q → r entail (p ∨ q) → r is justified by Fig. 1.2. As a matter of convenience,
informal summaries, as in the example above, can be used instead of formal proofs.

8 1. Knowledge Representation and Classical Logic

1. ¬p + ¬p — axiom
2. q → r + q → r — axiom
3. p ∨ q + p ∨ q — axiom
4. p + p — axiom
5. p,¬p + ! — by (¬E) from 4, 1
6. p,¬p + r — by (C) from 5
7. q + q — axiom
8. q, q → r + r — by (→E) from 7, 2
9. p ∨ q, ¬p, q → r + r — by (∨E) from 3, 6, 8

10. ¬p, q → r + (p ∨ q) → r — by (→I) from 9

Figure 1.2: A proof in propositional logic.

Since the system is not only sound but also complete, the object-level approach to
establishing entailment is, in principle, always applicable.

Object-level proofs can be used also to establish general properties of entailment.
Consider, for instance, the following fact: for any formulas F1, . . . , Fn, the implica-
tions Fi → Fi+1 (i = 1, . . . , n−1) entail F1 → Fn. We can justify it by saying that if
we assume F1 then F2, . . . , Fn will consecutively follow using the given implications.
By saying this, we have outlined a method for constructing a proof of the sequent

F1 → F2, . . . , Fn−1 → Fn + F1 → Fn

that consists of n−1 implication eliminations followed by an implication introduction.

1.2.2 First-Order Logic

Syntax

In first-order logic, a signature is a set of symbols of two kinds—function constants
and predicate constants—with a nonnegative integer, called the arity, assigned to each
symbol. Function constants of arity 0 are called object constants; predicate constants
of arity 0 are called propositional constants.

Object variables are elements of some fixed infinite sequence of symbols, for in-
stance, x, y, z, x1, y1, z1, Terms of a signature σ are formed from object variables
and from function constants of σ . An atomic formula of σ is an expression of the form
P(t1, . . . , tn) or t1 = t2, where P is a predicate constant of arity n, and each ti is a term
of σ .3 Formulas are formed from atomic formulas using propositional connectives and
the quantifiers ∀, ∃.

An occurrence of a variable v in a formula F is bound if it belongs to a subformula
of F that has the form ∀vG or ∃vG; otherwise it is free. If at least one occurrence of v
in F is free then we say that v is a free variable of F . Note that a formula can contain
both free and bound occurrences of the same variable, as in

(1.2)P(x) ∧ ∃xQ(x).

3Note that equality is not a predicate constant, according to this definition. Although syntactically it is
similar to binary predicate constants, it does not belong to the signature, and the semantics of first-order
logic, defined below, treats equality in a special way.

V. Lifschitz, L. Morgenstern, D. Plaisted 9

We can avoid such cases by renaming bound occurrences of variables:

(1.3)P(x) ∧ ∃x1Q(x1).

Both formulas have the same meaning: x has the property P , and there exists an object
with the property Q.

A closed formula, or a sentence, is a formula without free variables. The universal
closure of a formula F is the sentence ∀v1 . . . vnF , where v1, . . . , vn are the free
variables of F .

The result of the substitution of a term t for a variable v in a formula F is the
formula obtained from F by simultaneously replacing each free occurrence of v by t .
When we intend to consider substitutions for v in a formula, it is convenient to denote
this formula by an expression like F(v); then we can denote the result of substituting
a term t for v in this formula by F(t).

By ∃!vF(v) (“there exists a unique v such that F(v)”) we denote the formula

∃v∀w(F(w) ↔ v = w),

where w is the first variable that does not occur in F(v).
A term t is substitutable for a variable v in a formula F if, for each variable w

occurring in t , no subformula of F that has the form ∀wG or ∃wG contains an occur-
rence of v which is free in F . (Some authors say in this case that t is free for x in F .)
This condition is important because when it is violated, the formula obtained by sub-
stituting t for v in F does not usually convey the intended meaning. For instance, the
formula ∃x(f (x) = y) expresses that y belongs to the range of f . If we substitute, say,
the term g(a, z) for y in this formula then we will get the formula ∃x(f (x) = g(a, z)),
which expresses that g(a, z) belongs to the range of f —as one would expect. If, how-
ever, we substitute the term g(a, x) instead, the result ∃x(f (x) = g(a, x)) will not
express that g(a, x) belongs to the range of f . This is related to the fact that the term
g(a, x) is not substitutable for y in ∃x(f (x) = y); the occurrence of x resulting from
this substitution is “captured” by the quantifier at the beginning of the formula. To
express that g(a, x) belongs to the range of f , we should first rename x in the for-
mula ∃x(f (x) = y) using, say, the variable x1. The substitution will produce then the
formula ∃x1(f (x1) = g(a, x)).

Semantics

An interpretation (or structure) of a signature σ consists of

• a nonempty set |I |, called the universe (or domain) of I ,

• for every object constant c of σ , an element cI of |I |,
• for every function constant f of σ of arity n > 0, a function f I from |I |n to |I |,
• for every propositional constant P of σ , an element P I of {FALSE, TRUE},
• for every predicate constant R of σ of arity n > 0, a function RI from |I |n to

{FALSE, TRUE}.
The semantics of first-order logic defines, for any sentence F and any interpreta-

tion I of a signature σ , the truth value FI that is assigned to F by I . Note that the

10 1. Knowledge Representation and Classical Logic

definition does not apply to formulas with free variables. (Whether ∃x(f (x) = y)
is true or false, for instance, is not completely determined by the universe and by
the function representing f ; the answer depends also on the value of y within the
universe.) For this reason, stating correctly the clauses for quantifiers in the recur-
sive definition of FI is a little tricky. One possibility is to extend the signature σ by
“names” for all elements of the universe, as follows.

Consider an interpretation I of a signature σ . For any element ξ of its universe
|I |, select a new symbol ξ∗, called the name of ξ . By σ I we denote the signature
obtained from σ by adding all names ξ∗ as object constants. The interpretation I can
be extended to the new signature σ I by defining (ξ∗)I = ξ for all ξ ∈ |I |.

For any term t of the extended signature that does not contain variables, we will
define recursively the element t I of the universe that is assigned to t by I . If t is an
object constant then t I is part of the interpretation I . For other terms, t I is defined by
the equation

f (t1, . . . , tn)
I = f I (tI1 , . . . , tIn)

for all function constants f of arity n > 0.
Now we are ready to define FI for every sentence F of the extended signature σ I .

For any propositional constant P , P I is part of the interpretation I . Otherwise, we
define:

• R(t1, . . . , tn)
I = RI (tI1 , . . . , tIn),

• !I = FALSE, "I = TRUE,

• (¬F)I = ¬(F I),

• (F) G)I =)(F I ,GI) for every binary connective),

• ∀wF(w)I = TRUE if F(ξ∗)I = TRUE for all ξ ∈ |I |,
• ∃wF(w)I = TRUE if F(ξ∗)I = TRUE for some ξ ∈ |I |.
We say that an interpretation I satisfies a sentence F , or is a model of F , and

write I |= F , if FI = TRUE. A sentence F is logically valid if every interpretation
satisfies F . Two sentences, or sets of sentences, are equivalent to each other if they
are satisfied by the same interpretations. A formula with free variables is said to be
logically valid if its universal closure is logically valid. Formulas F and G that may
contain free variables are equivalent to each other if F ↔ G is logically valid.

A set Γ of sentences is satisfiable if there exists an interpretation satisfying all
sentences in Γ . A set Γ of sentences entails a formula F (symbolically, Γ |= F) if
every interpretation satisfying Γ satisfies the universal closure of F .

Sorts

Representing knowledge in first-order languages can be often simplified by introduc-
ing sorts, which requires that the definitions of the syntax and semantics above be
generalized.

Besides function constants and predicate constants, a many-sorted signature in-
cludes symbols called sorts. In addition to an arity n, we assign to every function

V. Lifschitz, L. Morgenstern, D. Plaisted 11

constant and every predicate constant its argument sorts s1, . . . , sn; to every func-
tion constant we assign also its value sort sn+1. For instance, in the situation calculus
(Section 16.1), the symbols situation and action are sorts; do is a binary function sym-
bol with the argument sorts action and situation, and the value sort situation.

For every sort s, we assume a separate infinite sequence of variables of that sort.
The recursive definition of a term assigns a sort to every term. Atomic formulas are
expressions of the form P(t1, . . . , tn), where the sorts of the terms t1, . . . , tn are the
argument sorts of P , and also expressions t1 = t2 where t1 and t2 are terms of the
same sort.

An interpretation, in the many-sorted setting, includes a separate nonempty uni-
verse |I |s for each sort s. Otherwise, extending the definition of the semantics to
many-sorted languages is straightforward.

A further extension of the syntax and semantics of first-order formulas allows one
sort to be a “subsort” of another. For instance, when we talk about the blocks world,
it may be convenient to treat the sort block as a subsort of the sort location. Let b1
and b2 be object constants of the sort block, let table be an object constant of the sort
location, and let on be a binary function constant with the argument sorts block and
location. Not only on(b1, table) will be counted as a term, but also on(b1, b2), because
the sort of b2 is a subsort of the second argument sort of on.

Generally, a subsort relation is an order (reflexive, transitive and anti-symmetric
relation) on the set of sorts. In the recursive definition of a term, f (t1, . . . , tn) is a term
if the sort of each ti is a subsort of the ith argument sort of f . The condition on sorts
in the definition of atomic formulas P(t1, . . . , tn) is similar. An expression t1 = t2 is
considered an atomic formula if the sorts of t1 and t2 have a common supersort. In the
definition of an interpretation, |I |s1 is required to be a subset of |I |s2 whenever s1 is a
subsort of s2.

In the rest of this chapter we often assume for simplicity that the underlying signa-
ture is nonsorted.

Uniqueness of names

To talk about Paul, Quentin and Robert from Section 1.2.1 in a first-order language,
we can introduce the signature consisting of the object constants Paul, Quentin, Robert
and the unary predicate constant in, and then use the atomic sentences

(1.4)in(Paul), in(Quentin), in(Robert)

instead of the atoms p, q, r from the propositional representation.
However some interpretations of this signature are unintuitive and do not corre-

spond to any of the 8 interpretations of the propositional signature {p, q, r}. Those are
the intepretations that map two, or even all three, object constants to the same element
of the universe. (The definition of an interpretation in first-order logic does not require
that cI

1 be different from cI
2 for distinct object constants c1, c2.) We can express that

PaulI , QuentinI and RobertI are pairwise distinct by saying that I satisfies the “unique
name conditions”

(1.5)Paul 2= Quentin, Paul 2= Robert, Quentin 2= Robert.

http://dx.doi.org/10.1016/S1574-6526(07)03016-7

12 1. Knowledge Representation and Classical Logic

Generally, the unique name assumption for a signature σ is expressed by the for-
mulas

(1.6)∀x1 . . . xmy1 . . . yn(f (x1, . . . , xm) 2= g(y1, . . . , yn))

for all pairs of distinct function constants f , g, and

∀x1 . . . xny1 . . . yn(f (x1, . . . , xn) = f (y1, . . . , yn)

(1.7)→ (x1 = y1 ∧ · · · ∧ xn = yn))

for all function constants f of arity > 0. These formulas entail t1 2= t2 for any distinct
variable-free terms t1, t2.

The set of equality axioms that was introduced by Keith Clark [57] and is often
used in the theory of logic programming includes, in addition to (1.6) and (1.7), the
axioms t 2= x, where t is a term containing x as a proper subterm.

Domain closure

Consider the first-order counterpart of the propositional formula (1.1), expressing that
at least one person is away:

(1.8)¬in(Paul) ∨ ¬in(Quentin) ∨ ¬in(Robert).

The same idea can be also conveyed by the formula

(1.9)∃x¬in(x).

But sentences (1.8) and (1.9) are not equivalent to each other: the former entails the
latter, but not the other way around. Indeed, the definition of an interpretation in first-
order logic does not require that every element of the universe be equal to cI for some
object constant c. Formula (1.9) interprets “at least one” as referring to a certain group
that includes Paul, Quentin and Robert, and may also include others.

If we want to express that every element of the universe corresponds to one of the
three explicitly named persons then this can be done by the formula

(1.10)∀x(x = Paul ∨ x = Quentin ∨ x = Robert).

This “domain closure condition” entails the equivalence between (1.8) and (1.9); more
generally, it entails the equivalences

∀xF(x) ↔ F(Paul) ∧ F(Quentin) ∧ F(Robert),

∃xF(x) ↔ F(Paul) ∨ F(Quentin) ∨ F(Robert)

for any formula F(x). These equivalences allow us to replace all quantifiers in an ar-
bitrary formula with multiple conjunctions and disjunctions. Furthermore, under the
unique name assumption (1.5) any equality between two object constants can be equiv-
alently replaced by " or !, depending on whether the constants are equal to each
other. The result of these transformations is a propositional combination of the atomic
sentences (1.4).

Generally, consider a signature σ containing finitely many object constants
c1, . . . , cn are no function constants of arity > 0. The domain closure assumption

V. Lifschitz, L. Morgenstern, D. Plaisted 13

for σ is the formula

(1.11)∀x(x = c1 ∨ · · · ∨ x = cn).

The interpretations of σ that satisfy both the unique name assumption c1 2= cj

(1 ! i < j ! n) and the domain closure assumption (1.11) are essentially iden-
tical to the interpretations of the propositional signature that consists of all atomic
sentences of σ other than equalities. Any sentence F of σ can be transformed into
a formula F ′ of this propositional signature such that the unique name and domain
closure assumptions entail F ′ ↔ F . In this sense, these assumptions turn first-order
sentences into abbreviations for propositional formulas.

The domain closure assumption in the presence of function constant of arity > 0
is discussed in Sections 1.2.2 and 1.2.3.

Reification

The first-order language introduced in Section 1.2.2 has variables for people, such as
Paul and Quentin, but not for places, such as their office. In this sense, people are
“reified” in that language, and places are not. To reify places, we can add them to the
signature as a second sort, add office as an object constant of that sort, and turn in into
a binary predicate constant with the argument sorts person and place. In the modified
language, the formula in(Paul) will turn into in(Paul, office).

Reification makes the language more expressive. For instance, having reified
places, we can say that every person has a unique location:

(1.12)∀x∃!p in(x, p).

There is no way to express this idea in the language from Section 1.2.2.
As another example illustrating the idea of reification, compare two versions of the

situation calculus. We can express that block b1 is clear in the initial situation S0 by
writing either

(1.13)clear(b1, S0)

or

(1.14)Holds(clear(b1), S0).

In (1.13), clear is a binary predicate constant; in (1.14), clear is a unary function
constant. Formula (1.14) is written in the version of the situation calculus in which
(relational) fluents are reified; fluent is the first argument sort of the predicate constant
Holds. The version of the situation calculus introduced in Section 16.1 is the more
expressive version, with reified fluents. Expression (1.13) is viewed there as shorthand
for (1.14).

Explicit definitions in first-order logic

Let Γ be a set of sentences of a signature σ . To extend Γ by an explicit definition of a
predicate constant means to add to σ a new predicate constant P of some arity n, and
to add to Γ a sentence of the form

∀v1 . . . vn(P (v1, . . . , vn) ↔ F),

http://dx.doi.org/10.1016/S1574-6526(07)03016-7

14 1. Knowledge Representation and Classical Logic

where v1, . . . , vn are distinct variables and F is a formula of the signature σ . About
the effect of such an extension we can say the same as about the effect of adding an
explicit definition to a set of propositional formulas (Section 1.2.1): there is an obvious
one-to-one correspondence between the models of the original knowledge base and the
models of the extended knowledge base.

With function constants, the situation is a little more complex. To extend a set Γ
of sentences of a signature σ by an explicit definition of a function constant means to
add to σ a new function constant f , and to add to Γ a sentence of the form

∀v1 . . . vnv(f (v1, . . . , vn) = v ↔ F),

where v1, . . . , vn, v are distinct variables and F is a formula of the signature σ such
that Γ entails the sentence

∀v1 . . . vn∃!vF.

The last assumption is essential: if it does not hold then adding a function constant
along with the corresponding axiom would eliminate some of the models of Γ .

For instance, if Γ entails (1.12) then we can extend Γ by the explicit definition of
the function constant location:

∀xp(location(x) = p ↔ in(x, p)).

Natural deduction with quantifiers and equality

The natural deduction system for first-order logic includes all axiom schemas and
inference rules shown in Section 1.2.1 and a few additional postulates. First, we add
the introduction and elimination rules for quantifiers:

(∀I)
Γ + F(v)

Γ + ∀vF(v)
(∀E)

Γ + ∀vF(v)

Γ + F(t)

where v is not a free variable where t is substitutable
of any formula in Γ for v in F (v)

(∃I)
Γ + F(t)

Γ + ∃vF(v)
(∃E)

Γ + ∃vF(v) #, F (v) + G

Γ,# + G

where t is substitutable where v is not a free variable
for v in F (v) of any formula in #, G

Second, postulates for equality are added: the axiom schema expressing its reflexivity

+ t = t

and the inference rules for replacing equals by equals:

(Repl)
Γ + t1 = t2 # + F(t1)

Γ,# + F(t2)

Γ + t1 = t2 # + F(t2)

Γ,# + F(t1)

where t1 and t2 are terms substitutable for v in F(v).
This formal system is sound and complete: for any finite set Γ of sentences and any

formula F , the sequent Γ + F is provable if and only if Γ |= F . The completeness
of (a different formalization of) first-order logic was proved by Gödel [100].

V. Lifschitz, L. Morgenstern, D. Plaisted 15

1. (1.9) + (1.9) — axiom
2. ¬in(x) + ¬in(x) — axiom
3. x = P + x = P — axiom
4. x = P, ¬in(x) + ¬in(P) — by Repl from 3, 2
5. x = P, ¬in(x) + ¬in(P) ∨ ¬in(Q) — by (∨I) from 4
6. x = P, ¬in(x) + (1.8) — by (∨I) from 5
7. x = Q + x = Q — axiom
8. x = Q, ¬in(x) + ¬in(Q) — by Repl from 7, 2
9. x = Q, ¬in(x) + ¬in(P) ∨ ¬in(Q) — by (∨I) from 8

10. x = Q, ¬in(x) + (1.8) — by (∨I) from 9
11. x = P ∨ x = Q + x = P ∨ x = Q — axiom
12. x = P ∨ x = Q, ¬in(x) + (1.8) — by (∨E) from 11, 6, 10
13. x = R + x = R — axiom
14. x = R, ¬in(x) + ¬in(R) — by Repl from 13, 2
15. x = R, ¬in(x) + (1.8) — by (∨I) from 14
16. (1.10) + (1.10) — axiom
17. (1.10) + x = P ∨ x = Q

∨ x = R — by (∀E) from 16
18. (1.10), ¬in(x) + (1.8) — by (∨E) from 17, 12, 15
19. (1.9), (1.10) + (1.8) — by (∃E) from 1, 18

Figure 1.3: A proof in first-order logic.

As in the propositional case (Section 1.2.1), the soundness theorem justifies es-
tablishing entailment in first-order logic by an object-level argument. For instance,
we can prove the claim that (1.8) is entailed by (1.9) and (1.10) as follows: take x
such that ¬in(x) and consider the three cases corresponding to the disjunctive terms
of (1.10); in each case, one of the disjunctive terms of (1.8) follows. This argument is
an informal summary of the proof shown in Fig. 1.3, with the names Paul, Quentin,
Robert replaced by P , Q, R.

Since proofs in the deductive system described above can be effectively enumer-
ated, from the soundness and completeness of the system we can conclude that the set
of logically valid sentences is recursively enumerable. But it is not recursive [56], even
if the underlying signature consists of a single binary predicate constant, and even if
we disregard formulas containing equality [135].

As discussed in Section 3.3.1, most descriptions logics can be viewed as decidable
fragments of first-order logic.

Limitations of first-order logic

The sentence

∀xy(Q(x, y) ↔ P(y, x))

expresses that Q is the inverse of P . Does there exist a first-order sentence expressing
that Q is the transitive closure of P ? To be more precise, does there exist a sentence F
of the signature {P,Q} such that an interpretation I of this signature satisfies F if and
only if QI is the transitive closure of P I ?

The answer to this question is no. From the perspective of knowledge represen-
tation, this is an essential limitation, because the concept of transitive closure is the

http://dx.doi.org/10.1016/S1574-6526(07)03003-9

16 1. Knowledge Representation and Classical Logic

mathematical counterpart of the important commonsense idea of reachability. As dis-
cussed in Section 1.2.3 below, one way to overcome this limitation is to turn to
second-order logic.

Another example illustrating the usefulness of second-order logic in knowledge
representation is related to the idea of domain closure (Section 1.2.2). If the underlying
signature contains the object constants c1, . . . , cn and no function constants of arity
> 0 then sentence (1.11) expresses the domain closure assumption: an interpretation I
satisfies (1.11) if and only if

|I | = {cI
1, . . . , cI

n}.
Consider now the signature consisting of the object constant c and the unary function
constant f . Does there exist a first-order sentence expressing the domain closure as-
sumption for this signature? To be precise, we would like to find a sentence F such
that an interpretation I satisfies F if and only if

|I | = {cI , f (c)I , f (f (c))I , . . .}.
There is no first-order sentence with this property.

Similarly, first-order languages do not allow us to state Reiter’s foundational axiom
expressing that each situation is the result of performing a sequence of actions in the
initial situation ([225, Section 4.2.2]; see also Section 16.3 below).

1.2.3 Second-Order Logic

Syntax and semantics

In second-order logic, the definition of a signature remains the same (Section 1.2.2).
But its syntax is richer, because, along with object variables, we assume now an infinite
sequence of function variables of arity n for each n > 0, and an infinite sequence of
predicate variables of arity n for each n " 0. Object variables are viewed as function
variables of arity 0.

Function variables can be used to form new terms in the same way as function
constants. For instance, if α is a unary function variable and c is an object constant then
α(c) is a term. Predicate variables can be used to form atomic formulas in the same
way as predicate constants. In non-atomic formulas, function and predicate variables
can be bound by quantifiers in the same way as object variables. For instance,

∀αβ∃(∀x(((x) = α(β(x)))

is a sentence expressing the possibility of composing any two functions. (When we say
that a second-order formula is a sentence, we mean that all occurrences of all variables
in it are bound, including function and predicate variables.)

Note that α = β is not an atomic formula, because unary function variables are not
terms. But this expression can be viewed as shorthand for the formula

∀x(α(x) = β(x)).

Similarly, the expression p = q, where p and q are unary predicate variables, can be
viewed as shorthand for

∀x(p(x) ↔ q(x)).

http://dx.doi.org/10.1016/S1574-6526(07)03016-7

V. Lifschitz, L. Morgenstern, D. Plaisted 17

The condition “Q is the transitive closure of P ” can be expressed by the second-
order sentence

(1.15)∀xy(Q(x, y) ↔ ∀q(F (q) → q(x, y))),

where F(q) stands for

∀x1y1(P (x1, y1) → q(x1, y1))

∧ ∀x1y1z1((q(x1, y1) ∧ q(y1, z1)) → q(x1, z1))

(Q is the intersection of all transitive relations containing P).
The domain closure assumption for the signature {c, f } can be expressed by the

sentence

(1.16)∀p(G(p) → ∀x p(x)),

where G(p) stands for

p(c) ∧ ∀x(p(x) → p(f (x)))

(any set that contains c and is closed under f covers the whole universe).
The definition of an interpretation remains the same (Section 1.2.2). The semantics

of second-order logic defines, for each sentence F and each interpretation I , the cor-
responding truth value FI . In the clauses for quantifiers, whenever a quantifier binds
a function variable, names of arbitrary functions from |I |n to I are substituted for it;
when a quantifier binds a predicate variable, names of arbitrary functions from |I |n to
{FALSE, TRUE} are substituted.

Quantifiers binding a propositional variable p can be always eliminated: ∀pF(p)
is equivalent to F(!) ∧ F("), and ∃pF(p) is equivalent to F(!) ∨ F("). In the
special case when the underlying signature consists of propositional constants, second-
order formulas (in prenex form) are known as quantified Boolean formulas (see
Section 2.5.1). The equivalences above allow us to rewrite any such formula in the
syntax of propositional logic. But a sentence containing predicate variables of arity
> 0 may not be equivalent to any first-order sentence; (1.15) and (1.16) are examples
of such “hard” cases.

Object-level proofs in second-order logic

In this section we consider a deductive system for second-order logic that contains all
postulates from Sections 1.2.1 and 1.2.2; in rules (∀E) and (∃I), if v is a function
variable of arity > 0 then t is assumed to be a function variable of the same arity, and
similarly for predicate variables. In addition, we include two axiom schemas asserting
the existence of predicates and functions. One is the axiom schema of comprehension

+ ∃p∀v1 . . . vn(p(v1, . . . , vn) ↔ F),

where v1, . . . , vn are distinct object variables, and p is not free in F . (Recall that ↔ is
not allowed in sequents, but we treat F ↔ G as shorthand for (F → G)∧ (G → F).)

http://dx.doi.org/10.1016/S1574-6526(07)03002-7

18 1. Knowledge Representation and Classical Logic

1. F + F — axiom
2. F + p(x) → p(y) — by (∀E) from 1
3. + ∃p∀z(p(z) ↔ x = z) — axiom (comprehension)
4. ∀z(p(z) ↔ x = z) + ∀z(p(z) ↔ x = z) — axiom
5. ∀z(p(z) ↔ x = z) + p(x) ↔ x = x — by (∀E) from 4
6. ∀z(p(z) ↔ x = z) + x = x → p(x) — by (∧E) from 5
7. + x = x — axiom
8. ∀z(p(z) ↔ x = z) + p(x) — by (→ E) from 7, 6
9. F,∀z(p(z) ↔ x = z) + p(y) — by (→ E) from 8, 2

10. ∀z(p(z) ↔ x = z) + p(y) ↔ x = y — by (∀E) from 4
11. ∀z(p(z) ↔ x = z) + p(y) → x = y — by (∧E) from 10
12. F,∀z(p(z) ↔ x = z) + x = y — by (→ E) from 9, 11
13. F + x = y — by (∃E) from 1, 12
14. + F → x = y — by (→ I) from 13

Figure 1.4: A proof in second-order logic. F stands for ∀p(p(x) → p(y)).

The other is the axioms of choice

+ ∀v1 . . . vn∃vn+1p(v1, . . . , vn+1)

→ ∃α∀v1 . . . vn(p(v1, . . . , vn,α(v1, . . . , vn)),

where v1, . . . , vn+1 are distinct object variables.
This deductive system is sound but incomplete. Adding any sound axioms or infer-

ence rules would not make it complete, because the set of logically valid second-order
sentences is not recursively enumerable.

As in the case of first-order logic, the availability of a sound deductive system
allows us to establish second-order entailment by object-level reasoning. To illustrate
this point, consider the formula

∀p(p(x) → p(y)) → x = y,

which can be thought of as a formalization of “Leibniz’s principle of equality”: two
objects are equal if they share the same properties. Its logical validity can be justified
as follows. Assume ∀p(p(x) → p(y)), and take p to be the property of being equal
to x. Clearly x has this property; consequently y has this property as well, that is,
x = y. This argument is an informal summary of the proof shown in Fig. 1.4.

1.3 Automated Theorem Proving

Automated theorem proving is the study of techniques for programming computers
to search for proofs of formal assertions, either fully automatically or with varying
degrees of human guidance. This area has potential applications to hardware and soft-
ware verification, expert systems, planning, mathematics research, and education.

Given a set A of axioms and a logical consequence B, a theorem proving program
should, ideally, eventually construct a proof of B from A. If B is not a consequence
of A, the program may run forever without coming to any definite conclusion. This is
the best one can hope for, in general, in many logics, and indeed even this is not always
possible. In principle, theorem proving programs can be written just by enumerating

V. Lifschitz, L. Morgenstern, D. Plaisted 19

all possible proofs and stopping when a proof of the desired statement is found, but
this approach is so inefficient as to be useless. Much more powerful methods have
been developed.

History of theorem proving

Despite the potential advantages of machine theorem proving, it was difficult initially
to obtain any kind of respectable performance from machines on theorem proving
problems. Some of the earliest automatic theorem proving methods, such as those of
Gilmore [99], Prawitz [217], and Davis and Putnam [70] were based on Herbrand’s
theorem, which gives an enumeration process for testing if a theorem of first-order
logic is true. Davis and Putnam used Skolem functions and conjunctive normal form
clauses, and generated elements of the Herbrand universe exhaustively, while Prawitz
showed how this enumeration could be guided to only generate terms likely to be use-
ful for the proof, but did not use Skolem functions or clause form. Later Davis [66]
showed how to realize this same idea in the context of clause form and Skolem
functions. However, these approaches turned out to be too inefficient. The resolu-
tion approach of Robinson [229, 230] was developed in about 1963, and led to a
significant advance in first-order theorem provers. This approach, like that of Davis
and Putnam [70], used clause form and Skolem functions, but made use of a unifi-
cation algorithm to find the terms most likely to lead to a proof. Robinson also used
the resolution inference rule which in itself is all that is needed for theorem proving
in first-order logic. The theorem proving group at Argonne, Illinois took the lead in
implementing resolution theorem provers, with some initial success on group theory
problems that had been intractable before. They were even able to solve some previ-
ously open problems using resolution theorem provers. For a discussion of the early
history of mechanical theorem proving, see [67].

About the same time, Maslov [168] developed the inverse method which has been
less widely known than resolution in the West. This method was originally defined
for classical first-order logic without function symbols and equality, and for formulas
having a quantifier prefix followed by a disjunction of conjunctions of clauses. Later
the method was extended to formulas with function symbols. This method was used
not only for theorem proving but also to show the decidability of some classes of first-
order formulas. In the inverse method, substitutions were originally represented as
sets of equations, and there appears to have been some analogue of most general uni-
fiers. The method was implemented for classical first-order logic by 1968. The inverse
method is based on forward reasoning to derive a formula. In terms of implementation,
it is competitive with resolution, and in fact can be simulated by resolution with the
introduction of new predicate symbols to define subformulas of the original formula.
For a readable exposition of the inverse method, see [159]. For many extensions of the
method, see [71].

In the West, the initial successes of resolution led to a rush of enthusiasm, as resolu-
tion theorem provers were applied to question-answering problems, situation calculus
problems, and many others. It was soon discovered that resolution had serious ineffi-
ciencies, and a long series of refinements were developed to attempt to overcome them.
These included the unit preference rule, the set of support strategy, hyper-resolution,
paramodulation for equality, and a nearly innumerable list of other refinements. The
initial enthusiasm for resolution, and for automated deduction in general, soon wore

20 1. Knowledge Representation and Classical Logic

off. This reaction led, for example, to the development of specialized decision pro-
cedures for proving theorems in certain theories [190, 191] and the development of
expert systems.

However, resolution and similar approaches continued to be developed. Data
structures were developed permitting the resolution operation to be implemented
much more efficiently, which were eventually greatly refined [222] as in the Vam-
pire prover [227]. One of the first provers to employ such techniques was Stickel’s
Prolog Technology Theorem Prover [252]. Techniques for parallel implementations
of provers were also eventually considered [34]. Other strategies besides resolution
were developed, such as model elimination [162], which led eventually to logic pro-
gramming and Prolog, the matings method for higher-order logic [3], and Bibel’s
connection method [28]. Though these methods are not resolution based, they did
preserve some of the key concepts of resolution, namely, the use of unification and
the combination of unification with inference in clause form first-order logic. Two
other techniques used to improve the performance of provers, especially in competi-
tions [253], are strategy selection and strategy scheduling. Strategy selection means
that different theorem proving strategies and different settings of the coefficients are
used for different kinds of problems. Strategy scheduling means that even for a given
kind of problem, many strategies are used, one after another, and a specified amount
of time is allotted to each one. Between the two of these approaches, there is consid-
erable freedom for imposing an outer level of control on the theorem prover to tailor
its performance to a given problem set.

Some other provers dealt with higher-order logic, such as the TPS prover of An-
drews and others [4, 5] and the interactive NqTHM and ACL2 provers of Boyer,
Moore, and Kaufmann [142, 141] for proofs by mathematical induction. Today, a vari-
ety of approaches including formal methods and theorem proving seem to be accepted
as part of the standard AI tool kit.

Despite early difficulties, the power of theorem provers has continued to increase.
Notable in this respect is Otter [177], which is widely distributed, and coded in C with
very efficient data structures. Prover9 is a more recent prover of W. McCune in the
same style, and is a successor of Otter. The increasing speed of hardware has also sig-
nificantly aided theorem provers. An impetus was given to theorem proving research
by McCune’s solution of the Robbins problem [176] by a first-order equational theo-
rem prover derived from Otter. The Robbins problem is a first-order theorem involving
equality that had been known to mathematicians for decades but which no one was able
to solve. McCune’s prover was able to find a proof after about a week of computation.
Many other proofs have also been found by McCune’s group on various provers; see
for example the web page http://www.cs.unm.edu/~veroff/MEDIAN_ALGEBRA/.
Now substantial theorems in mathematics whose correctness is in doubt can be
checked by interactive theorem provers [196].

First-order theorem provers vary in their user interfaces, but most of them permit
formulas to be entered in clause form in a reasonable syntax. Some provers also permit
the user to enter first-order formulas; these provers generally provide various ways of
translating such formulas to clause form. Some provers require substantial user guid-
ance, though most such provers have higher-order features, while other provers are
designed to be more automatic. For automatic provers, there are often many differ-
ent flags that can be set to guide the search. For example, typical first-order provers

http://www.cs.unm.edu/~veroff/MEDIAN_ALGEBRA/

V. Lifschitz, L. Morgenstern, D. Plaisted 21

allow the user to select from among a number of inference strategies for first-order
logic as well as strategies for equality. For equality, it may be possible to specify a
termination ordering to guide the application of equations. Sometimes the user will
select incomplete strategies, hoping that the desired proof will be found faster. It is
also often possible to set a size bound so that all clauses or literals larger than a cer-
tain size are deleted. Of course one does not know in advance what bound to choose,
so some experimentation is necessary. A sliding priority approach to setting the size
bound automatically was presented in [211]. It is sometimes possible to assign vari-
ous weights to various symbols or subterms or to variables to guide the proof search.
Modern provers generally have term indexing [222] built in to speed up inference,
and also have some equality strategy involving ordered paramodulation and rewriting.
Many provers are based on resolution, but some are based on model elimination and
some are based on propositional approaches. Provers can generate clauses rapidly;
for example, Vampire [227] can often generate more than 40,000 clauses per second.
Most provers rapidly fill up memory with generated clauses, so that if a proof is not
found in a few minutes it will not be found at all. However, equational proofs involve
considerable simplification and can sometimes run for a long time without exhaust-
ing memory. For example, the Robbins problem ran for 8 days on a SPARC 5 class
UNIX computer with a size bound of 70 and required about 30 megabytes of memory,
generating 49,548 equations, most of which were deleted by simplification. Some-
times small problems can run for a long time without finding a proof, and sometimes
problems with a hundred or more input clauses can result in proofs fairly quickly.
Generally, simple problems will be proved by nearly any complete strategy on a mod-
ern prover, but hard problems may require fine tuning. For an overview of a list of
problems and information about how well various provers perform on them, see the
web site at www.tptp.org, and for a sketch of some of the main first-order provers in
use today, see http://www.cs.miami.edu/~tptp/CASC/ as well as the journal articles
devoted to the individual competitions such as [253, 254]. Current provers often do
not have facilities for interacting with other reasoning programs, but work in this area
is progressing.

In addition to developing first-order provers, there has been work on other logics,
too. The simplest logic typically considered is propositional logic, in which there are
only predicate symbols (that is, Boolean variables) and logical connectives. Despite
its simplicity, propositional logic has surprisingly many applications, such as in hard-
ware verification and constraint satisfaction problems. Propositional provers have even
found applications in planning. The general validity (respectively, satisfiability) prob-
lem of propositional logic is NP-hard, which means that it does not in all likelihood
have an efficient general solution. Nevertheless, there are propositional provers that
are surprisingly efficient, and becoming increasingly more so; see Chapter 2 of this
Handbook for details.

Binary decision diagrams [43] are a particular form of propositional formulas for
which efficient provers exist. BDD’s are used in hardware verification, and initiated a
tremendous surge of interest by industry in formal verification techniques. Also, the
Davis–Putnam–Logemann–Loveland method [69] for propositional logic is heavily
used in industry for hardware verification.

Another restricted logic for which efficient provers exist is that of temporal logic,
the logic of time (see Chapter 12 of this Handbook). This has applications to con-

http://www.tptp.org
http://www.cs.miami.edu/~tptp/CASC/
http://dx.doi.org/10.1016/S1574-6526(07)03002-7
http://dx.doi.org/10.1016/S1574-6526(07)03012-X

22 1. Knowledge Representation and Classical Logic

currency. The model-checking approach of Clarke and others [48] has proven to be
particularly efficient in this area, and has also stimulated considerable interest by in-
dustry.

Other logical systems for which provers have been developed are the theory of
equational systems, for which term-rewriting techniques lead to remarkably effi-
cient theorem provers, mathematical induction, geometry theorem proving, constraints
(Chapter 4 of this Handbook), higher-order logic, and set theory.

Not only proving theorems, but finding counterexamples, or building models, is
of increasing importance. This permits one to detect when a theorem is not provable,
and thus one need not waste time attempting to find a proof. This is, of course, an
activity which human mathematicians often engage in. These counterexamples are
typically finite structures. For the so-called finitely controllable theories, running a
theorem prover and a counterexample (model) finder together yields a decision pro-
cedure, which theoretically can have practical applications to such theories. Model
finding has recently been extended to larger classes of theories [51].

Among the current applications of theorem provers one can list hardware verifica-
tion and program verification. For a more detailed survey, see the excellent report by
Loveland [164]. Among potential applications of theorem provers are planning prob-
lems, the situation calculus, and problems involving knowledge and belief.

There are a number of provers in prominence today, including Otter [177], the
provers of Boyer, Moore, and Kaufmann [142, 141], Andrew’s matings prover [3],
the HOL prover [101], Isabelle [203], Mizar [260], NuPrl [62], PVS [201], and many
more. Many of these require substantial human guidance to find proofs. The Omega
system [240] is a higher order logic proof development system that attempts to over-
come some of the shortcomings of traditional first-order proof systems. In the past it
has used a natural deduction calculus to develop proofs with human guidance, though
the system is changing.

Provers can be evaluated on a number of grounds. One is completeness; can they,
in principle, provide a proof of every true theorem? Another evaluation criterion is
their performance on specific examples; in this regard, the TPTP problem set [255] is
of particular value. Finally, one can attempt to provide an analytic estimate of the effi-
ciency of a theorem prover on classes of problems [212]. This gives a measure which
is to a large extent independent of particular problems or machines. The Handbook
of Automated Reasoning [231] is a good source of information about many areas of
theorem proving.

We next discuss resolution for the propositional calculus and then some of the
many first-order theorem proving methods, with particular attention to resolution. We
also consider techniques for first-order logic with equality. Finally, we briefly discuss
some other logics, and corresponding theorem proving techniques.

1.3.1 Resolution in the Propositional Calculus

The main problem for theorem proving purposes is given a formula A, to determine
whether it is valid. Since A is valid iff ¬A is unsatisfiable, it is possible to determine
validity if one can determine satisfiability. Many theorem provers test satisfiability
instead of validity.

The problem of determining whether a Boolean formula A is satisfiable is one of
the NP-complete problems. This means that the fastest algorithms known require an

http://dx.doi.org/10.1016/S1574-6526(07)03004-0

V. Lifschitz, L. Morgenstern, D. Plaisted 23

amount of time that is asymptotically exponential in the size of A. Also, it is not likely
that faster algorithms will be found, although no one can prove that they do not exist.

Despite this negative result, there is a wide variety of methods in use for testing
if a formula is satisfiable. One of the simplest is truth tables. For a formula A over
{P1, P2, . . . , Pn}, this involves testing for each of the 2n valuations I over {P1, P2,
. . . , Pn} whether I |= A. In general, this will require time at least proportional to 2n

to show that A is valid, but may detect satisfiability sooner.

Clause form

Many of the other satisfiability checking algorithms depend on conversion of a formula
A to clause form. This is defined as follows: An atom is a proposition. A literal is an
atom or an atom preceded by a negation sign. The two literals P and ¬P are said to
be complementary to each other. A clause is a disjunction of literals. A formula is in
clause form if it is a conjunction of clauses. Thus the formula

(P ∨ ¬R) ∧ (¬P ∨ Q ∨ R) ∧ (¬Q ∨ ¬R)

is in clause form. This is also known as conjunctive normal form. We represent clauses
by sets of literals and clause form formulas by sets of clauses, so that the above formula
would be represented by the following set of sets:

{{P,¬R}, {¬P,Q,R}, {¬Q,¬R}}.
A unit clause is a clause that contains only one literal. The empty clause { } is under-
stood to represent FALSE.

It is straightforward to show that for every formula A there is an equivalent formula
B in clause form. Furthermore, there are well-known algorithms for converting any
formula A into such an equivalent formula B. These involve converting all connectives
to ∧, ∨, and ¬, pushing ¬ to the bottom, and bringing ∧ to the top. Unfortunately, this
process of conversion can take exponential time and can increase the length of the
formula by an exponential amount.

The exponential increase in size in converting to clause form can be avoided by
adding extra propositions representing subformulas of the given formula. For example,
given the formula

(P1 ∧ Q1) ∨ (P2 ∧ Q2) ∨ (P3 ∧ Q3) ∨ · · · ∨ (Pn ∧ Qn)

a straightforward conversion to clause form creates 2n clauses of length n, for a for-
mula of length at least n2n. However, by adding the new propositions Ri which are
defined as Pi ∧ Qi , one obtains the new formula

(R1 ∨ R2 ∨ · · · ∨ Rn) ∧ ((P1 ∧ Q1) ↔ R1) ∧ · · · ∧ ((Pn ∧ Qn) ↔ Rn).

When this formula is converted to clause form, a much smaller set of clauses results,
and the exponential size increase does not occur. The same technique works for any
Boolean formula. This transformation is satisfiability preserving but not equivalence
preserving, which is enough for theorem proving purposes.

24 1. Knowledge Representation and Classical Logic

Ground resolution

Many first-order theorem provers are based on resolution, and there is a propositional
analogue of resolution called ground resolution, which we now present as an introduc-
tion to first-order resolution. Although resolution is reasonably efficient for first-order
logic, it turns out that ground resolution is generally much less efficient than Davis
and Putnam-like procedures for propositional logic [70, 69], often referred to as DPLL
procedures because the original Davis and Putnam procedure had some inefficiencies.
These DPLL procedures are specialized to clause form and explore the set of possible
interpretations of a propositional formula by depth-first search and backtracking with
some additional simplification rules for unit clauses.

Ground resolution is a decision procedure for propositional formulas in clause
form. If C1 and C2 are two clauses, and L1 ∈ C1 and L2 ∈ C2 are complementary
literals, then

(C1 − {L1}) ∪ (C2 − {L2})
is called a resolvent of C1 and C2, where the set difference of two sets A and B is
indicated by A−B, that is, {x: x ∈ A, x /∈ B}. There may be more than one resolvent
of two clauses, or maybe none. It is straightforward to show that a resolvent D of two
clauses C1 and C2 is a logical consequence of C1 ∧ C2.

For example, if C1 is {¬P,Q} and C2 is {¬Q,R}, then one can choose L1 to be
Q and L2 to be ¬Q. Then the resolvent is {¬P,R}. Note also that R is a resolvent of
{Q} and {¬Q,R}, and { } (the empty clause) is a resolvent of {Q} and {¬Q}.

A resolution proof of a clause C from a set S of clauses is a sequence
C1, C2, . . . , Cn of clauses in which each Ci is either a member of S or a resolvent
of Cj and Ck , for j, k less than i, and Cn is C. Such a proof is called a (resolution)
refutation if Cn is { }. Resolution is complete:

Theorem 1.3.1. Suppose S is a set of propositional clauses. Then S is unsatisfiable iff
there exists a resolution refutation from S.

As an example, let S be the set of clauses

{{P }, {¬P,Q}, {¬Q}}.
The following is a resolution refutation from S, listing with each resolvent the two
clauses that are resolved together:

1. P given
2. ¬P,Q given
3. ¬Q given
4. Q 1, 2, resolution
5. { } 3, 4, resolution

(Here set braces are omitted, except for the empty clause.) This is a resolution refuta-
tion from S, so S is unsatisfiable.

Define R(S) to be
⋃

C1,C2∈S resolvents(C1, C2). Define R1(S) to be R(S) and
Ri+1(S) to be R(S ∪ Ri (S)), for i > 1. Typical resolution theorem provers essen-
tially generate all of the resolution proofs from S (with some improvements that will

V. Lifschitz, L. Morgenstern, D. Plaisted 25

be discussed later), looking for a proof of the empty clause. Formally, such provers
generate R1(S), R2(S), R3(S), and so on, until for some i, Ri (S) = Ri+1(S), or the
empty clause is generated. In the former case, S is satisfiable. If the empty clause is
generated, S is unsatisfiable.

Even though DPLL essentially constructs a resolution proof, propositional reso-
lution is much less efficient than DPLL as a decision procedure for satisfiability of
formulas in the propositional calculus because the total number of resolutions per-
formed by a propositional resolution prover in the search for a proof is typically much
larger than for DPLL. Also, Haken [107] showed that there are unsatisfiable sets S
of propositional clauses for which the length of the shortest resolution refutation is
exponential in the size (number of clauses) in S. Despite these inefficiencies, we intro-
duced propositional resolution as a way to lead up to first-order resolution, which has
significant advantages. In order to extend resolution to first-order logic, it is necessary
to add unification to it.

1.3.2 First-Order Proof Systems

We now discuss methods for partially deciding validity. These construct proofs of
first-order formulas, and a formula is valid iff it can be proven in such a system. Thus
there are complete proof systems for first-order logic, and Gödel’s incompleteness
theorem does not apply to first-order logic. Since the set of proofs is countable, one
can partially decide validity of a formula A by enumerating the set of proofs, and
stopping whenever a proof of A is found. This already gives us a theorem prover, but
provers constructed in this way are typically very inefficient.

There are a number of classical proof systems for first-order logic: Hilbert-style
systems, Gentzen-style systems, natural deduction systems, semantic tableau systems,
and others [87]. Since these generally have not found much application to automated
deduction, except for semantic tableau systems, they are not discussed here. Typically
they specify inference rules of the form

A1, A2, . . . , An

A

which means that if one has already derived the formulas A1, A2, . . . , An, then one
can also infer A. Using such rules, one builds up a proof as a sequence of formulas,
and if a formula B appears in such a sequence, one has proved B.

We now discuss proof systems that have found application to automated deduc-
tion. In the following sections, the letters f, g, h, . . . will be used as function symbols,
a, b, c, . . . as individual constants, x, y, z and possibly other letters as individual vari-
ables, and = as the equality symbol. Each function symbol has an arity, which is
a non-negative integer telling how many arguments it takes. A term is either a vari-
able, an individual constant, or an expression of the form f (t1, t2, . . . , tn) where f
is a function symbol of arity n and the ti are terms. The letters r, s, t, . . . will denote
terms.

Clause form

Many first-order theorem provers convert a first-order formula to clause form before
attempting to prove it. The beauty of clause form is that it makes the syntax of first-
order logic, already quite simple, even simpler. Quantifiers are omitted, and Boolean

26 1. Knowledge Representation and Classical Logic

connectives as well. One has in the end just sets of sets of literals. It is amazing that
the expressive power of first-order logic can be reduced to such a simple form. This
simplicity also makes clause form suitable for machine implementation of theorem
provers. Not only that, but the validity problem is also simplified in a theoretical sense;
one only needs to consider the Herbrand interpretations, so the question of validity
becomes easier to analyze.

Any first-order formula A can be transformed to a clause form formula B such
that A is satisfiable iff B is satisfiable. The translation is not validity preserving. So
in order to show that A is valid, one translates ¬A to clause form B and shows that
B is unsatisfiable. For convenience, assume that A is a sentence, that is, it has no free
variables.

The translation of a first-order sentence A to clause form has several steps:

• Push negations in.

• Replace existentially quantified variables by Skolem functions.

• Move universal quantifiers to the front.

• Convert the matrix of the formula to conjunctive normal form.

• Remove universal quantifiers and Boolean connectives.

This transformation will be presented as a set of rewrite rules. A rewrite rule X → Y
means that a subformula of the form X is replaced by a subformula of the form Y .

The following rewrite rules push negations in:

(A ↔ B) → (A → B) ∧ (B → A),

(A → B) → ((¬A) ∨ B),

¬¬A → A,

¬(A ∧ B) → (¬A) ∨ (¬B),

¬(A ∨ B) → (¬A) ∧ (¬B),

¬∀xA → ∃x(¬A),

¬∃xA → ∀x(¬A).

After negations have been pushed in, we assume for simplicity that variables in the
formula are renamed so that each variable appears in only one quantifier. Existen-
tial quantifiers are then eliminated by replacing formulas of the form ∃xA[x] by
A[f (x1, . . . , xn)], where x1, . . . , xn are all the universally quantified variables whose
scope includes the formula A, and f is a new function symbol (that does not already
appear in the formula), called a Skolem function.

The following rules then move quantifiers to the front:

(∀xA) ∨ B → ∀x(A ∨ B),

B ∨ (∀xA) → ∀x(B ∨ A),

(∀xA) ∧ B → ∀x(A ∧ B),

B ∧ (∀xA) → ∀x(B ∧ A).

V. Lifschitz, L. Morgenstern, D. Plaisted 27

Next, the matrix is converted to conjunctive normal form by the following rules:

(A ∨ (B ∧ C)) → (A ∨ B) ∧ (A ∨ C),

((B ∧ C) ∨ A) → (B ∨ A) ∧ (C ∨ A).

Finally, universal quantifiers are removed from the front of the formula and a conjunc-
tive normal form formula of the form

(A1 ∨ A2 ∨ · · · ∨ Ak) ∧ (B1 ∨ B2 ∨ · · · ∨ Bm) ∧ · · · ∧ (C1 ∨ C2 ∨ · · · ∨ Cn)

is replaced by the set of sets of literals

{{A1, A2, . . . , Ak}, {B1, B2, . . . , Bm}, . . . , {C1, C2, . . . , Cn}}.
This last formula is the clause form formula which is satisfiable iff the original formula
is.

As an example, consider the formula

¬∃x(P (x) → ∀yQ(x, y)).

First, negation is pushed past the existential quantifier:

∀x(¬(P (x) → ∀yQ(x, y))).

Next, negation is further pushed in, which involves replacing → by its definition as
follows:

∀x¬((¬P(x)) ∨ ∀yQ(x, y)).

Then ¬ is moved in past ∨:

∀x((¬¬P(x)) ∧ ¬∀yQ(x, y)).

Next the double negation is eliminated and ¬ is moved past the quantifier:

∀x(P (x) ∧ ∃y¬Q(x, y)).

Now, negations have been pushed in. Note that no variable appears in more than one
quantifier, so it is not necessary to rename variables. Next, the existential quantifier is
replaced by a Skolem function:

∀x(P (x) ∧ ¬Q(x, f (x))).

There are no quantifiers to move to the front. Eliminating the universal quantifier
yields the formula

P(x) ∧ ¬Q(x, f (x)).

The clause form is then

{{P(x)}, {¬Q(x, f (x))}}.
Recall that if B is the clause form of A, then B is satisfiable iff A is. As in

propositional calculus, the clause form translation can increase the size of a formula
by an exponential amount. This can be avoided as in the propositional calculus by

28 1. Knowledge Representation and Classical Logic

introducing new predicate symbols for sub-formulas. Suppose A is a formula with
sub-formula B, denoted by A[B]. Let x1, x2, . . . , xn be the free variables in B. Let
P be a new predicate symbol (that does not appear in A). Then A[B] is transformed
to the formula A[P(x1, x2, . . . , xn)]∧∀x1∀x2 . . . ∀xn(P (x1, x2, . . . , xn) ↔ B). Thus
the occurrence of B in A is replaced by P(x1, x2, . . . , xn), and the equivalence of B
with P(x1, x2, . . . , xn) is added on to the formula as well. This transformation can be
applied to the new formula in turn, and again as many times as desired. The transfor-
mation is satisfiability preserving, which means that the resulting formula is satisfiable
iff the original formula A was.

Free variables in a clause are assumed to be universally quantified. Thus the clause
{¬P(x),Q(f (x))} represents the formula ∀x(¬P(x) ∨ Q(f (x))). A term, literal, or
clause not containing any variables is said to be ground.

A set of clauses represents the conjunction of the clauses in the set. Thus the
set {{¬P(x),Q(f (x))}, {¬Q(y), R(g(y))}, {P(a)}, {¬R(z)}} represents the formula
(∀x(¬P(x) ∨ Q(f (x)))) ∧ (∀y(¬Q(y) ∨ R(g(y)))) ∧ P(a) ∧ ∀z¬R(z).

Herbrand interpretations

There is a special kind of interpretation that turns out to be significant for mechanical
theorem proving. This is called a Herbrand interpretation. Herbrand interpretations
are defined relative to a set S of clauses. The domain D of a Herbrand interpretation I
consists of the set of terms constructed from function and constant symbols of S, with
an extra constant symbol added if S has no constant symbols. The constant and func-
tion symbols are interpreted so that for any finite term t composed of these symbols,
t I is the term t itself, which is an element of D. Thus if S has a unary function symbol
f and a constant symbol c, then D = {c, f (c), f (f (c)), f (f (f (c))), . . .} and c is
interpreted so that cI is the element c of D and f is interpreted so that f I applied to
the term c yields the term f (c), f I applied to the term f (c) of D yields f (f (c)), and
so on. Thus these interpretations are quite syntactic in nature. There is no restriction,
however, on how a Herbrand interpretation I may interpret the predicate symbols of S.

The interest of Herbrand interpretations for theorem proving comes from the fol-
lowing result:

Theorem 1.3.2. If S is a set of clauses, then S is satisfiable iff there is a Herbrand
interpretation I such that I |= S.

What this theorem means is that for purposes of testing satisfiability of clause sets,
one only needs to consider Herbrand interpretations. This implicitly leads to a me-
chanical theorem proving procedure, which will be presented below. This procedure
makes use of substitutions.

A substitution is a mapping from variables to terms which is the identity on all but
finitely many variables. If L is a literal and α is a substitution, then Lα is the result
of replacing all variables in L by their image under α. The application of substitutions
to terms, clauses, and sets of clauses is defined similarly. The expression {x1 3→ t1,
x2 3→ t2, . . . , xn 3→ tn} denotes the substitution mapping the variable xi to the term
ti , for 1 ! i ! n.

For example, P(x, f (x)){x 3→ g(y)} = P(g(y), f (g(y))).

V. Lifschitz, L. Morgenstern, D. Plaisted 29

If L is a literal and α is a substitution, then Lα is called an instance of L. Thus
P(g(y), f (g(y))) is an instance of P(x, f (x)). Similar terminology applies to clauses
and terms.

If S is a set of clauses, then a Herbrand set for S is an unsatisfiable set T of ground
clauses such that for every clause D in T there is a clause C in S such that D is an
instance of C. If there is a Herbrand set for S, then S is unsatisfiable.

For example, let S be the following clause set:

{{P(a)}, {¬P(x), P (f (x))}, {¬P(f (f (a)))}}.
For this set of clauses, the following is a Herbrand set:

{{P(a)}, {¬P(a), P (f (a))}, {¬P(f (a)), P (f (f (a)))}, {¬P(f (f (a)))}}.
The ground instantiation problem is the following: Given a set S of clauses, is there

a Herbrand set for S?
The following result is known as Herbrand’s theorem, and follows from Theo-

rem 1.3.2:

Theorem 1.3.3. A set S of clauses is unsatisfiable iff there is a Herbrand set T for S.

It follows from this result that a set S of clauses is unsatisfiable iff the ground in-
stantiation problem for S is solvable. Thus the problem of first-order validity has been
reduced to the ground instantiation problem. This is actually quite an achievement,
because the ground instantiation problem deals only with syntactic concepts such as
replacing variables by terms, and with propositional unsatisfiability, which is easily
understood.

Herbrand’s theorem implies the completeness of the following theorem proving
method:

Given a set S of clauses, let C1, C2, C3, . . . be an enumeration of all of the ground
instances of clauses in S. This set of ground instances is countable, so it can be enu-
merated. Consider the following procedure Prover:

procedure Prover(S)
for i = 1, 2, 3, . . . do

if {C1, C2, . . . , Ci} is unsatisfiable then return “unsatisfiable” fi
od

end Prover

By Herbrand’s theorem, it follows that Prover(S) will eventually return “unsatisfiable”
iff S is unsatisfiable. This is therefore a primitive theorem proving procedure. It is
interesting that some of the earliest attempts to mechanize theorem proving [99] were
based on this idea. The problem with this approach is that it enumerates many ground
instances that could never appear in a proof. However, the efficiency of propositional
decision procedures is an attractive feature of this procedure, and it may be possible
to modify it to obtain an efficient theorem proving procedure. And in fact, many of
the theorem provers in use today are based implicitly on this procedure, and thereby
on Herbrand’s theorem. The instance-based methods such as model evolution [23,
25], clause linking [153], the disconnection calculus [29, 245], and OSHL [213] are

30 1. Knowledge Representation and Classical Logic

based fairly directly on Herbrand’s theorem. These methods attempt to apply DPLL-
like approaches [69] to first-order theorem proving. Ganzinger and Korovin [93] also
study the properties of instance-based methods and show how redundancy elimination
and decidable fragments of first-order logic can be incorporated into them. Korovin
has continued this line of research with some later papers.

Unification and resolution

Most mechanical theorem provers today are based on unification, which guides the
instantiation of clauses in an attempt to make the procedure Prover above more ef-
ficient. The idea of unification is to find those instances which are in some sense the
most general ones that could appear in a proof. This avoids a lot of work that results
from the generation of irrelevant instances by Prover.

In the following discussion ≡ will refer to syntactic identity of terms, literals, etc.
A substitution α is called a unifier of literals L and M if Lα ≡ Mα. If such a substitu-
tion exists, L and M are said to be unifiable. A substitution α is a most general unifier
of L and M if for any other unifier β of L and M , there is a substitution (such that
Lβ ≡ Lα(and Mβ ≡ Mα(.

It turns out that if two literals L and M are unifiable, then there is a most general
unifier of L and M , and such most general unifiers can be computed efficiently by a
number of simple algorithms. The earliest in recent history was given by Robinson
[230].

We present a simple unification algorithm on terms which is similar to that pre-
sented by Robinson. This algorithm is worst-case exponential time, but often efficient
in practice. Algorithms that are more efficient (and even linear time) on large terms
have been devised since then [167, 202]. If s and t are two terms and α is a most
general unifier of s and t , then sα can be of size exponential in the sizes of s and t ,
so constructing sα is inherently exponential unless the proper encoding of terms is
used; this entails representing repeated subterms only once. However, many symbolic
computation systems still use Robinson’s original algorithm.

procedure Unify(r, s);
[[return the most general unifier of terms r and s]]

if r is a variable then
if r ≡ s then return { } else

(if r occurs in s then return fail else
return {r 3→ s}) else

if s is a variable then
(if s occurs in r then return fail else

return {s 3→ r}) else
if the top-level function symbols of r and s

differ or have different arities then return fail
else

suppose r is f (r1 . . . rn) and s is f (s1 . . . sn);
return(Unify_lists([r1 . . . rn], [s1 . . . sn]))

end Unify;

V. Lifschitz, L. Morgenstern, D. Plaisted 31

procedure Unify_lists([r1 . . . rn], [s1 . . . sn]);
if [r1 . . . rn] is empty then return {}

else
) ← Unify(r1, t1);

if) ≡ fail then return fail fi;
α ← Unify_lists([r2 . . . rn]), [s2 . . . sn]))

if α ≡ fail then return fail fi;
return {) ◦ α}

end Unify_lists;

For this last procedure,) ◦ α is defined as the composition of the substitutions)
and α, defined by t () ◦ α) = (t))α. Note that the composition of two substitutions is a
substitution. To extend the above algorithm to literals L and M , return fail if L and M
have different signs or predicate symbols. Suppose L and M both have the same sign
and predicate symbol P . Suppose L and M are P(r1, r2, . . . , rn) and P(s1, s2, . . . ,
sn), respectively, or their negations. Then return Unify_lists([r1 . . . rn], [s1 . . . sn]) as
the most general unifier of L and M .

As examples of unification, a most general unifier of the terms f (x, a) and f (b, y)
is {x 3→ b, y 3→ a}. The terms f (x, g(x)) and f (y, y) are not unifiable. A most gen-
eral unifier of f (x, y, g(y)) and f (z, h(z), w) is {x 3→ z, y 3→ h(z), w 3→ g(h(z))}.

One can also define unifiers and most general unifiers of sets of terms. A substitu-
tion α is said to be a unifier of a set {t1, t2, . . . , tn} of terms if t1α ≡ t2α ≡ t3α · · · .
If such a unifier α exists, this set of terms is said to be unifiable. It turns out that if
{t1, t2, . . . , tn} is a set of terms and has a unifier, then it has a most general unifier, and
this unifier can be computed as Unify(f (t1, t2, . . . , tn), f (t2, t3, . . . , tn, t1)) where f
is a function symbol of arity n. In a similar way, one can define most general unifiers
of sets of literals.

Finally, suppose C1 and C2 are two clauses and A1 and A2 are nonempty subsets of
C1 and C2, respectively. Suppose for convenience that there are no common variables
between C1 and C2. Suppose the set {L: L ∈ A1} ∪ {¬L: L ∈ A2} is unifiable, and
let α be its most general unifier. Define the resolvent of C1 and C2 on the subsets A1
and A2 to be the clause

(C1 − A1)α ∪ (C2 − A2)α.

A resolvent of C1 and C2 is defined to be a resolvent of C1 and C2 on two such sets
A1 and A2 of literals. A1 and A2 are called subsets of resolution. If C1 and C2 have
common variables, it is assumed that the variables of one of these clauses are renamed
before resolving to insure that there are no common variables. There may be more
than one resolvent of two clauses, or there may not be any resolvents at all.

Most of the time, A1 and A2 consist of single literals. This considerably simplifies
the definition, and most of our examples will be of this special case. If A1 ≡ {L}
and A2 ≡ {M}, then L and M are called literals of resolution. We call this kind of
resolution single literal resolution. Often, one defines resolution in terms of factoring
and single literal resolution. If C is a clause and) is a most general unifier of two
distinct literals of C, then C) is called a factor of C. Defining resolution in terms of
factoring has some advantages, though it increases the number of clauses one must
store.

32 1. Knowledge Representation and Classical Logic

Here are some examples. Suppose C1 is {P(a)} and C2 is {¬P(x),Q(f (x))}. Then
a resolvent of these two clauses on the literals P(a) and ¬P(x) is {Q(f (a))}. This is
because the most general unifier of these two literals is {x 3→ a}, and applying this
substitution to {Q(f (x))} yields the clause {Q(f (a))}.

Suppose C1 is {¬P(a, x)} and C2 is {P(y, b)}. Then { } (the empty clause) is a
resolvent of C1 and C2 on the literals ¬P(a, x) and P(y, b).

Suppose C1 is {¬P(x),Q(f (x))} and C2 is {¬Q(x), R(g(x))}. In this case, the
variables of C2 are first renamed before resolving, to eliminate common variables,
yielding the clause {¬Q(y), R(g(y))}. Then a resolvent of C1 and C2 on the literals
Q(f (x)) and ¬Q(y) is {¬P(x), R(g(f (x)))}.

Suppose C1 is {P(x), P (y)} and C2 is {¬P(z),Q(f (z))}. Then a resolvent of C1
and C2 on the sets {P(x), P (y)} and {¬P(z)} is {Q(f (z))}.

A resolution proof of a clause C from a set S of clauses is a sequence C1, C2,
. . . , Cn of clauses in which Cn is C and in which for all i, either Ci is an element of S
or there exist integers j, k < i such that Ci is a resolvent of Cj and Ck . Such a proof
is called a (resolution) refutation from S if Cn is { } (the empty clause).

A theorem proving method is said to be complete if it is able to prove any valid
formula. For unsatisfiability testing, a theorem proving method is said to be complete
if it can derive false, or the empty clause, from any unsatisfiable set of clauses. It is
known that resolution is complete:

Theorem 1.3.4. A set S of first-order clauses is unsatisfiable iff there is a resolution
refutation from S.

Therefore one can use resolution to test unsatisfiability of clause sets, and hence
validity of first-order formulas. The advantage of resolution over the Prover procedure
above is that resolution uses unification to choose instances of the clauses that are more
likely to appear in a proof. So in order to show that a first-order formula A is valid,
one can do the following:

• Convert ¬A to clause form S.

• Search for a proof of the empty clause from S.

As an example of this procedure, resolution can be applied to show that the first-
order formula

∀x∃y(P (x) → Q(x, y)) ∧ ∀x∀y∃z(Q(x, y) → R(x, z))

→ ∀x∃z(P (x) → R(x, z))

is valid. Here → represents logical implication, as usual. In the refutational approach,
one negates this formula to obtain

¬[∀x∃y(P (x) → Q(x, y)) ∧ ∀x∀y∃z(Q(x, y) → R(x, z))

→ ∀x∃z(P (x) → R(x, z))],
and shows that this formula is unsatisfiable. The procedure of Section 1.3.3 for trans-
lating formulas into clause form yields the following set S of clauses:

{{¬P(x),Q(x, f (x))}, {¬Q(x, y), R(x, g(x, y))}, {P(a)}, {¬R(a, z)}}.

V. Lifschitz, L. Morgenstern, D. Plaisted 33

The following is then a resolution refutation from this clause set:

1. P(a) (input)
2. ¬P(x),Q(x, f (x)) (input)
3. Q(a, f (a)) (resolution, 1, 2)
4. ¬Q(x, y), R(x, g(x, y)) (input)
5. R(a, g(a, f (a))) (3, 4, resolution)
6. ¬R(a, z) (input)
7. false (5, 6, resolution)

The designation “input” means that a clause is in S. Since false (the empty clause) has
been derived from S by resolution, it follows that S is unsatisfiable, and so the original
first-order formula is valid.

Even though resolution is much more efficient than the Prover procedure, it is
still not as efficient as one would like. In the early days of resolution, a number of
refinements were added to resolution, mostly by the Argonne group, to make it more
efficient. These were the set of support strategy, unit preference, hyper-resolution, sub-
sumption and tautology deletion, and demodulation. In addition, the Argonne group
preferred using small clauses when searching for resolution proofs. Also, they em-
ployed some very efficient data structures for storing and accessing clauses. We will
describe most of these refinements now.

A clause C is called a tautology if for some literal L, L ∈ C and ¬L ∈ C. It is
known that if S is unsatisfiable, there is a refutation from S that does not contain any
tautologies. This means that tautologies can be deleted as soon as they are generated
and need never be included in resolution proofs.

In general, given a set S of clauses, one searches for a refutation from S by per-
forming a sequence of resolutions. To ensure completeness, this search should be fair,
that is, if clauses C1 and C2 have been generated already, and it is possible to re-
solve these clauses, then this resolution must eventually be done. However, the order
in which resolutions are performed is nonetheless very flexible, and a good choice in
this respect can help the prover a lot. One good idea is to prefer resolutions of clauses
that are small, that is, that have small terms in them.

Another way to guide the choice of resolutions is based on subsumption, as fol-
lows: Clause C is said to subsume clause D if there is a substitution Θ such that
CΘ ⊆ D. For example, the clause {Q(x)} subsumes the clause {¬P(a),Q(a)}. C is
said to properly subsume D if C subsumes D and the number of literals in C is less
than or equal to the number of literals in D. For example, the clause {Q(x),Q(y)}
subsumes {Q(a)}, but does not properly subsume it. It is known that clauses properly
subsumed by other clauses can be deleted when searching for resolution refutations
from S. It is possible that these deleted clauses may still appear in the final refuta-
tion, but once a clause C is generated that properly subsumes D, it is never necessary
to use D in any further resolutions. Subsumption deletion can reduce the proof time
tremendously, since long clauses tend to be subsumed by short ones. Of course, if
two clauses properly subsume each other, one of them should be kept. The use of ap-
propriate data structures [222, 226] can greatly speed up the subsumption test, and
indeed term indexing data structures are essential for an efficient theorem prover, both
for quickly finding clauses to resolve and for performing the subsumption test. As an
example [222], in a run of the Vampire prover on the problem LCL-129-1.p from the

34 1. Knowledge Representation and Classical Logic

TPTP library of www.tptp.org, in 270 seconds 8,272,207 clauses were generated of
which 5,203,928 were deleted because their weights were too large, 3,060,226 were
deleted because they were subsumed by existing clauses (forward subsumption), and
only 8053 clauses were retained.

This can all be combined to obtain a program for searching for resolution proofs
from S, as follows:

procedure Resolver(S)
R ← S;

while false /∈ R do
choose clauses C1, C2 ∈ R fairly, preferring small clauses;
if no new pairs C1, C2 exist then return “satisfiable” fi;
R′ ← {D: D is a resolvent of C1, C2 and D is not a tautology};
for D ∈ R′ do

if no clause in R properly subsumes D
then R ← {D} ∪ {C ∈ R: D does not properly subsume C} fi;

od
od

end Resolver

In order to make precise what a “small clause” is, one defines ‖C‖, the symbol size
of clause C, as follows:

‖x‖= 1 for variables x
‖c‖= 1 for constant symbols c

‖f (t1, . . . , tn)‖ = 1 + ‖t1‖ + · · · + ‖tn‖ for terms f (t1, . . . , tn)
‖P(t1, . . . , tn)‖ = 1 + ‖t1‖ + · · · + ‖tn‖ for atoms P(t1, . . . , tn)

‖¬A‖= ‖A‖ for atoms A
‖{L1, L2, . . . , Ln}‖= ‖L1‖ + · · · + ‖Ln‖ for clauses {L1, L2, . . . , Ln}

Small clauses, then, are those having a small symbol size.
Another technique used by the Argonne group is the unit preference strategy, de-

fined as follows: A unit clause is a clause that contains exactly one literal. A unit
resolution is a resolution of clauses C1 and C2, where at least one of C1 and C2 is a
unit clause. The unit preference strategy prefers unit resolutions, when searching for
proofs. Unit preference has to be modified to permit non-unit resolutions to guarantee
completeness. Thus non-unit resolutions are also performed, but not as early. The unit
preference strategy helps because unit resolutions reduce the number of literals in a
clause.

Refinements of resolution

In an attempt to make resolution more efficient, many, many refinements were devel-
oped in the early days of theorem proving. We present a few of them, and mention a
number of others. For a discussion of resolution and its refinements, and theorem prov-
ing in general, see [53, 163, 45, 271, 87, 155]. It is hard to know which refinements
will help on any given example, but experience with a theorem prover can help to give
one a better idea of which refinements to try. In general, none of these refinements
help very much most of the time.

http://www.tptp.org

V. Lifschitz, L. Morgenstern, D. Plaisted 35

A literal is called positive if it is an atom, that is, has no negation sign. A literal
with a negation sign is called negative. A clause C is called positive if all of the literals
in C are positive. C is called negative if all of the literals in C are negative. A resolu-
tion of C1 and C2 is called positive if one of C1 and C2 is a positive clause. It is called
negative if one of C1 and C2 is a negative clause. It turns out that positive resolution
is complete, that is, if S is unsatisfiable, then there is a refutation from S in which all
of the resolutions are positive. This refinement of resolution is known as P1 deduction
in the literature. Similarly, negative resolution is complete. Hyper-resolution is essen-
tially a modification of positive resolution in which a series of positive resolvents is
done all at once. To be precise, suppose that C is a clause having at least one nega-
tive literal and D1,D2, . . . , Dn are positive clauses. Suppose C1 is a resolvent of C
and D1, C2 is a resolvent of C1 and D2, . . . , and Cn is a resolvent of Cn−1 and Dn.
Suppose that Cn is a positive clause but none of the clauses Ci are positive, for i < n.
Then Cn is called a hyper-resolvent of C and D1,D2, . . . , Dn. Thus the inference
steps in hyper-resolution are sequences of positive resolutions. In the hyper-resolution
strategy, the inference engine looks for a complete collection D1 . . . Dn of clauses to
resolve with C and only performs the inference when the entire hyper-resolution can
be carried out. Hyper-resolution is sometimes useful because it reduces the number of
intermediate results that must be stored in the prover.

Typically, when proving a theorem, there is a general set A of axioms and a par-
ticular formula F that one wishes to prove. So one wishes to show that the formula
A → F is valid. In the refutational approach, this is done by showing that ¬(A → F)
is unsatisfiable. Now, ¬(A → F) is transformed to A ∧ ¬F in the clause form trans-
lation. One then obtains a set SA of clauses from A and a set SF of clauses from
¬F . The set SA ∪ SF is unsatisfiable iff A → F is valid. One typically tries to show
SA ∪ SF unsatisfiable by performing resolutions. Since one is attempting to prove F ,
one would expect that resolutions involving the clauses SF are more likely to be use-
ful, since resolutions involving two clauses from SA are essentially combining general
axioms. Thus one would like to only perform resolutions involving clauses in SF or
clauses derived from them. This can be achieved by the set of support strategy, if the
set SF is properly chosen.

The set of support strategy restricts all resolutions to involve a clause in the set
of support or a clause derived from it. To guarantee completeness, the set of support
must be chosen to include the set of clauses C of S such that I 2|= C for some inter-
pretation I . Sets A of axioms typically have standard models I , so that I |= A. Since
translation to clause form is satisfiability preserving, I ′ |= SA as well, where I ′ is
obtained from I by a suitable interpretation of Skolem functions. If the set of support
is chosen as the clauses not satisfied by I ′, then this set of support will be a subset of
the set SF above and inferences are restricted to those that are relevant to the particular
theorem. Of course, it is not necessary to test if I |= C for clauses C; if one knows
that A is satisfiable, one can choose SF as the set of support.

The semantic resolution strategy is like the set-of-support resolution, but requires
that when two clauses C1 and C2 resolve, at least one of them must not be satisfied by
a specified interpretation I . Some interpretations permit the test I |= C to be carried
out; this is possible, for example, if I has a finite domain. Using such a semantic
definition of the set of support strategy further restricts the set of possible resolutions
over the set of support strategy while retaining completeness.

36 1. Knowledge Representation and Classical Logic

Other refinements of resolution include ordered resolution, which orders the liter-
als of a clause, and requires that the subsets of resolution include a maximal literal
in their respective clauses. Unit resolution requires all resolutions to be unit resolu-
tions, and is not complete. Input resolution requires all resolutions to involve a clause
from S, and this is not complete, either. Unit resulting (UR) resolution is like unit
resolution, but has larger inference steps. This is also not complete, but works well
surprisingly often. Locking resolution attaches indices to literals, and uses these to
order the literals in a clause and decide which literals have to belong to the subsets
of resolution. Ancestry-filter form resolution imposes a kind of linear format on res-
olution proofs. These strategies are both complete. Semantic resolution is compatible
with some ordering refinements, that is, the two strategies together are still complete.

It is interesting that resolution is complete for logical consequences, in the follow-
ing sense: If S is a set of clauses, and C is a clause such that S |= C, that is, C is a
logical consequence of S, then there is a clause D derivable by resolution such that D
subsumes C.

Another resolution refinement that is useful sometimes is splitting. If C is a clause
and C ≡ C1 ∪ C2, where C1 and C2 have no common variables, then S ∪ {C} is
unsatisfiable iff S ∪ {C1} is unsatisfiable and S ∪ {C2} is unsatisfiable. The effect
of this is to reduce the problem of testing unsatisfiability of S ∪ {C} to two simpler
problems. A typical example of such a clause C is a ground clause with two or more
literals.

There is a special class of clauses called Horn clauses for which specialized the-
orem proving strategies are complete. A Horn clause is a clause that has at most one
positive literal. Such clauses have found tremendous application in logic programming
languages. If S is a set of Horn clauses, then unit resolution is complete, as is input
resolution.

Other strategies

There are a number of other strategies which apply to sets S of clauses, but do not
use resolution. One of the most notable is model elimination [162], which constructs
chains of literals and has some similarities to the DPLL procedure. Model elimination
also specifies the order in which literals of a clause will “resolve away”. There are
also a number of connection methods [28, 158], which operate by constructing links
between complementary literals in different clauses, and creating structures containing
more than one clause linked together. In addition, there are a number of instance-based
strategies, which create a set T of ground instances of S and test T for unsatisfiabil-
ity using a DPLL-like procedure. Such instance-based methods can be much more
efficient than resolution on certain kinds of clause sets, namely, those that are highly
non-Horn but do not involve deep term structure.

Furthermore, there are a number of strategies that do not use clause form at all.
These include the semantic tableau methods, which work backwards from a formula
and construct a tree of possibilities; Andrews’ matings method, which is suitable for
higher order logic and has obtained some impressive proofs automatically; natural
deduction methods; and sequent style systems. Tableau systems have found substantial
application in automated deduction, and many of these are even adapted to formulas
in clause form; for a survey see [106].

V. Lifschitz, L. Morgenstern, D. Plaisted 37

Evaluating strategies

In general, we feel that qualities that need to be considered when evaluating a strategy
are not only completeness but also propositional efficiency, goal-sensitivity and use
of semantics. By propositional efficiency is meant the degree to which the efficiency
of the method on propositional problems compares with DPLL; most strategies do
poorly in this respect. By goal-sensitivity is meant the degree to which the method
permits one to concentrate on inferences related to the particular clauses coming from
the negation of the theorem (the set SF discussed above). When there are many, many
input clauses, goal sensitivity is crucial. By use of semantics is meant whether the
method can take advantage of natural semantics that may be provided with the prob-
lem statement in its search for a proof. An early prover that did use semantics in this
way was the geometry prover of Gelernter et al. [94]. Note that model elimination and
set of support strategies are goal-sensitive but apparently not propositionally efficient.
Semantic resolution is goal-sensitive and can use natural semantics, but is not propo-
sitionally efficient, either. Some instance-based strategies are goal-sensitive and use
natural semantics and are propositionally efficient, but may have to resort to exhaus-
tive enumeration of ground terms instead of unification in order to instantiate clauses.
A further issue is to what extent various methods permit the incorporation of efficient
equality techniques, which varies a lot from method to method. Therefore there are
some interesting problems involved in combining as many of these desirable features
as possible. And for strategies involving extensive human interaction, the criteria for
evaluation are considerably different.

1.3.3 Equality

When proving theorems involving equations, one obtains many irrelevant terms. For
example, if one has the equations x + 0 = x and x ∗ 1 = x, and addition and multi-
plication are commutative and associative, then one obtains many terms identical to x,
such as 1 ∗ x ∗ 1 ∗ 1 + 0. For products of two or three variables or constants, the
situation becomes much worse. It is imperative to find a way to get rid of all of these
equivalent terms. For this purpose, specialized methods have been developed to handle
equality.

As examples of mathematical structures where such equations arise, for groups and
monoids the group operation is associative with an identity, and for abelian groups
the group operation is associative and commutative. Rings and fields also have an
associative and commutative addition operator with an identity and another multipli-
cation operator that is typically associative. For Boolean algebras, the multiplication
operation is also idempotent. For example, set union and intersection are associative,
commutative, and idempotent. Lattices have similar properties. Such equations and
structures typically arise when axiomatizing integers, reals, complex numbers, matri-
ces, and other mathematical objects.

The most straightforward method of handling equality is to use a general first-order
resolution theorem prover together with the equality axioms, which are the following
(assuming free variables are implicitly universally quantified):

38 1. Knowledge Representation and Classical Logic

x = x,
x = y → y = x,
x = y ∧ y = z → x = z,
x1 = y1 ∧ x2 = y2 ∧ · · · ∧ xn = yn → f (x1 . . . xn) = f (y1 . . . yn)

for all function symbols f,
x1 = y1 ∧ x2 = y2 ∧ · · · ∧ xn = yn ∧ P(x1 . . . xn) → P(y1 . . . yn)

for all predicate symbols P

Let Eq refer to this set of equality axioms. The approach of using Eq explicitly
leads to many inefficiencies, as noted above, although in some cases it works reason-
ably well.

Another approach to equality is the modification method of Brand [40, 19]. In this
approach, a set S of clauses is transformed into another set S′ with the following prop-
erty: S ∪ Eq is unsatisfiable iff S′ ∪ {x = x} is unsatisfiable. Thus this transformation
avoids the need for the equality axioms, except for {x = x}. This approach often works
a little better than using Eq explicitly.

Contexts

In order to discuss other inference rules for equality, some terminology is needed.
A context is a term with occurrences of # in it. For example, f (#, g(a,#)) is a con-
text. A # by itself is also a context. One can also have literals and clauses with # in
them, and they are also called contexts. If n is an integer, then an n-context is a term
with n occurrences of #. If t is an n-context and m ! n, then t[t1, . . . , tm] represents
t with the leftmost m occurrences of # replaced by the terms t1, . . . , tm, respectively.
Thus, for example, f (#, b,#) is a 2-context, and f (#, b,#)[g(c)] is f (g(c), b,#).
Also, f (#, b,#)[g(c)][a] is f (g(c), b, a). In general, if r is an n-context and m ! n
and the terms si are 0-contexts, then r[s1, . . . , sn] ≡ r[s1][s2] . . . [sn]. However,
f (#, b,#)[g(#)] is f (g(#), b,#), so f (#, b,#)[g(#)][a] is f (g(a), b,#). In gen-
eral, if r is a k-context for k " 1 and s is an n-context for n " 1, then r[s][t] ≡ r[s[t]],
by a simple argument (both replace the leftmost # in r[s] by t).

Termination orderings on terms

It is necessary to discuss partial orderings on terms in order to explain inference rules
for equality. Partial orderings give a precise definition of the complexity of a term, so
that s > t means that the term s is more complex than t in some sense, and replacing s
by t makes a clause simpler. A partial ordering > is well-founded if there are no infinite
sequences xi of elements such that xi > xi+1 for all i " 0. A termination ordering
on terms is a partial ordering > which is well founded and satisfies the full invariance
property, that is, if s > t and Θ is a substitution then sΘ > tΘ , and also satisfies the
replacement property, that is, s > t implies r[s] > r[t] for all 1-contexts r .

Note that if s > t and > is a termination ordering, then all variables in t appear
also in s. For example, if f (x) > g(x, y), then by full invariance f (x) > g(x, f (x)),
and by replacement g(x, f (x)) > g(x, g(x, f (x))), etc., giving an infinite descending
sequence of terms.

The concept of a multiset is often useful to show termination. Informally, a multiset
is a set in which an element can occur more than once. Formally, a multiset S is

V. Lifschitz, L. Morgenstern, D. Plaisted 39

a function from some underlying domain D to the non-negative integers. It is said to
be finite if {x: S(x) > 0} is finite. One writes x ∈ S if S(x) > 0. S(x) is called
the multiplicity of x in S; this represents the number of times x appears in S. If S
and T are multisets then S ∪ T is defined by (S ∪ T)(x) = S(x) + T (x) for all x.
A partial ordering > on D can be extended to a partial ordering 8 on multisets in the
following way: One writes S 8 T if there is some multiset V such that S = S′ ∪ V
and T = T ′ ∪ V and S′ is nonempty and for all t in T ′ there is an s in S′ such that
s > t . This relation can be computed reasonably fast by deleting common elements
from S and T as long as possible, then testing if the specified relation between S′
and T ′ holds. The idea is that a multiset becomes smaller if an element is replaced
by any number of smaller elements. Thus {3, 4, 4} 8 {2, 2, 2, 2, 1, 4, 4} since 3 has
been replaced by 2, 2, 2, 2, 1. This operation can be repeated any number of times,
still yielding a smaller multiset; in fact, the relation 8 can be defined in this way as
the smallest transitive relation having this property [75]. One can show that if > is
well founded, so is 8. For a comparison with other definitions of multiset ordering,
see [131].

We now give some examples of termination orderings. The simplest kind of ter-
mination orderings are those that are based on size. Recall that ‖s‖ is the symbol size
(number of symbol occurrences) of a term s. One can then define > so that s > t if for
all Θ making sΘ and tΘ ground terms, ‖sΘ‖ > ‖tΘ‖. For example, f (x, y) > g(y)
in this ordering, but it is not true that h(x, a, b) > f (x, x) because x could be replaced
by a large term. This termination ordering is computable; s > t iff ‖s‖ > ‖t‖ and no
variable occurs more times in t than s.

More powerful techniques are needed to get some more interesting termination
orderings. One of the most remarkable results in this area is a theorem of Dershowitz
[75] about simplification orderings, that gives a general technique for showing that
an ordering is a termination ordering. Before his theorem, each ordering had to be
shown well founded separately, and this was often difficult. This theorem makes use
of simplification orderings.

Definition 1.3.5. A partial ordering > on terms is a simplification ordering if it satis-
fies the replacement property, that is, for 1-contexts r , s > t implies r[s] > r[t], and
has the subterm property, that is, s > t if t is a proper subterm of s. Also, if there are
function symbols f with variable arity, it is required that f (. . . s . . .) > f (.) for
all such f .

Theorem 1.3.6. All simplification orderings are well founded.

Proof. Based on Kruskal’s tree theorem [148], which says that in any infinite sequence
t1, t2, t3, . . . of terms, there are natural numbers i and j with i < j such that ti is
embedded in tj in a certain sense. It turns out that if ti is embedded in tj then tj " ti
for any simplification ordering >. #

The recursive path ordering is one of the simplest simplification orderings. This
ordering is defined in terms of a precedence ordering on function symbols, which is a
partial ordering on the function symbols. One writes f < g to indicate that f is less
than g in the precedence relation on function symbols. The recursive path ordering will

40 1. Knowledge Representation and Classical Logic

be presented as a complete set of inference rules that may be used to construct proofs
of s > t . That is, if s > t then there is a proof of this in the system. Also, by using
the inference rules backwards in a goal-directed manner, it is possible to construct a
reasonably efficient decision procedure for statements of the form s > t . Recall that
if > is an ordering, then 8 is the extension of this ordering to multisets. The ordering
we present is somewhat weaker than that usually given in the literature.

f = g {s1 . . . sm} 8 {t1 . . . tn}
f (s1 . . . sm) > g(t1 . . . tn)

si " t

f (s1 . . . sm) > t

true
s " s

f > g f (s1 . . . sm) > ti all i

f (s1 . . . sm) > g(t1 . . . tn)

For example, suppose ∗ > +. Then one can show that x ∗ (y + z) > x ∗ y + x ∗ z as
follows:

true
y " y

y + z > y

{x, y + z} 8 {x, y}
x ∗ (y + z) > x ∗ y

true
y " y

y + z > z

{x, y + z} 8 {x, z}
x ∗ (y + z) > x ∗ z ∗ > +

x ∗ (y + z) > x ∗ y + x ∗ z

For some purposes, it is necessary to modify this ordering so that subterms are
considered lexicographically. In general, if > is an ordering, then the lexicographic
extension >lex of > to tuples is defined as follows:

s1 > t1

(s1 . . . sm) >lex (t1 . . . tn)

s1 = t1 (s2 . . . sm) >lex (t2 . . . tn)

(s1 . . . sm) >lex (t1 . . . tn)

true
(s1 . . . sm) >lex ()

One can show that if > is well founded, then so is its extension >lex to bounded length
tuples. This lexicographic treatment of subterms is the idea of the lexicographic path
ordering of Kamin and Levy [136]. This ordering is defined by the following inference
rules:

f = g (s1 . . . sm) >lex (t1 . . . tn) f (s1 . . . sm) > tj , all j " 2
f (s1 . . . sm) > g(t1 . . . tn)

si " t

f (s1 . . . sm) > t

V. Lifschitz, L. Morgenstern, D. Plaisted 41

true
s " s

f > g f (s1 . . . sm) > ti all i

f (s1 . . . sm) > g(t1 . . . tn)

In the first inference rule, it is not necessary to test f (s1 . . . sm) > t1 since
(s1 . . . sm) >lex (t1 . . . tn) implies s1 " t1 hence f (s1 . . . sm) > t1. One can show
that this ordering is a simplification ordering for systems having fixed arity function
symbols. This ordering has the useful property that f (f (x, y), z) >lex f (x, f (y, z));
informally, the reason for this is that the terms have the same size, but the first subterm
f (x, y) of f (f (x, y), z) is always larger than the first subterm x of f (x, f (y, z)).

The first orderings that could be classified as recursive path orderings were those
of Plaisted [208, 207]. A large number of other similar orderings have been developed
since the ones mentioned above, for example the dependency pair method [7] and its
recent automatic versions [120, 98].

Paramodulation

Above, we saw that the equality axioms Eq can be used to prove theorems involving
equality, and that Brand’s modification method is another approach that avoids the
need for the equality axioms. A better approach in most cases is to use the paramodu-
lation rule [228, 193] defined as follows:

C[t], r = s ∨ D, r and t are unifiable, t is not a variable, Unify(r, t) =)

C) [s)] ∨ D)

Here C[t] is a clause containing a subterm t , C is a context, and t is a non-variable
term. Also, C) [s)] is the clause (C[t])) with s) replacing the specified occurrence
of t) . Also, r = s ∨ D is another clause having a literal r = s whose predicate
is equality and remaining literals D, which can be empty. To understand this rule,
consider that r) = s) is an instance of r = s, and r) and t) are identical. If D) is
false, then r) = s) must be true, so it is possible to replace r) in (C[t])) by s) if
D) is false. Thus C) [s)] ∨ D) is inferred. It is assumed as usual that variables in
C[t] or in r = s ∨ D are renamed if necessary to insure that these clauses have no
common variables before performing paramodulation. The clause C[t] is said to be
paramodulated into. It is also possible to paramodulate in the other direction, that is,
the equation r = s can be used in either direction.

For example, the clause P(g(a)) ∨ Q(b) is a paramodulant of P(f (x)) and
(f (a) = g(a)) ∨ Q(b). Brand [40] showed that if Eq is the set of equality axioms
given above and S is a set of clauses, then S ∪ Eq is unsatisfiable iff there is a proof of
the empty clause from S ∪ {x = x} using resolution and paramodulation as inference
rules. Thus, paramodulation allows us to dispense with all the equality axioms except
x = x.

Some more recent proofs of the completeness of resolution and paramodulation
[125] show the completeness of restricted versions of paramodulation which consid-
erably reduce the search space. In particular, it is possible to restrict this rule so that
it is not performed if s) > r) , where > is a termination ordering fixed in advance.
So if one has an equation r = s, and r > s, then this equation can only be used to
replace instances of r by instances of s. If s > r , then this equation can only be used

42 1. Knowledge Representation and Classical Logic

in the reverse direction. The effect of this is to constrain paramodulation so that “big”
terms are replaced by “smaller” ones, considerably improving its efficiency. It would
be a disaster to allow paramodulation to replace x by x ∗1, for example. Another com-
plete refinement of ordered paramodulation is that paramodulation only needs to be
done into the “large” side of an equation. If the subterm t of C[t] occurs in an equa-
tion u = v or v = u of C[t], and u > v, where > is the termination ordering being
used, then the paramodulation need not be done if the specified occurrence of t is in v.
Some early versions of paramodulation required the use of the functionally reflexive
axioms of the form f (x1, . . . , xn) = f (x1, . . . , xn), but this is now known not to be
necessary. When D is empty, paramodulation is similar to “narrowing”, which has
been much studied in the context of logic programming and term rewriting. Recently,
a more refined approach to the completeness proof of resolution and paramodulation
has been found [16, 17] which permits greater control over the equality strategy. This
approach also permits one to devise resolution strategies that have a greater control
over the order in which literals are resolved away.

Demodulation

Similar to paramodulation is the rewriting or “demodulation” rule, which is essentially
a method of simplification.

C[t], r = s, r) ≡ t, r) > s)

C[s)] .

Here C[t] is a clause (so C is a 1-context) containing a non-variable term t , r = s
is a unit clause, and > is the termination ordering that is fixed in advance. It is assumed
that variables are renamed so that C[t] and r = s have no common variables before
this rule is applied. The clause C[s)] is called a demodulant of C[t] and r = s.
Similarly, C[s)] is a demodulant of C[t] and s = r , if r) > s) . Thus an equation can
be used in either direction, if the ordering condition is satisfied.

As an example, given the equation x ∗ 1 = x and assuming x ∗ 1 > x and given a
clause C[f (a)∗1] having a subterm of the form f (a)∗1, this clause can be simplified
to C[f (a)], replacing the occurrence of f (a) ∗ 1 in C by f (a).

To justify the demodulation rule, the instance r) = s) of the equation r = s can
be inferred because free variables are implicitly universally quantified. This makes it
possible to replace r) in C by s) , and vice versa. But r) is t , so t can be replaced
by s) .

Not only is the demodulant C[s)] inferred, but the original clause C[t] is typically
deleted. Thus, in contrast to resolution and paramodulation, demodulation replaces
clauses by simpler clauses. This can be a considerable aid in reducing the number
of generated clauses. This also makes mechanical theorem proving closer to human
reasoning.

The reason for specifying that s) is simpler than r) is not only the intuitive desire
to simplify clauses, but also to ensure that demodulation terminates. For example,
there is no termination ordering in which x ∗y > y ∗x, since then the clause a ∗b = c
could demodulate using the equation x ∗ y = y ∗ x to b ∗ a = c and then to a ∗ b = c
and so on indefinitely. Such an ordering > could not be a termination ordering, since it

V. Lifschitz, L. Morgenstern, D. Plaisted 43

violates the well-foundedness condition. However, for many termination orderings >,
x ∗ 1 > x, and thus the clauses P(x ∗ 1) and x ∗ 1 = x have P(x) as a demodulant if
some such ordering is being used.

Resolution with ordered paramodulation and demodulation is still complete if
paramodulation and demodulation are done with respect to the same simplification
ordering during the proof process [125]. Demodulation is essential in practice, for
without it one can generate expressions like x ∗ 1 ∗ 1 ∗ 1 that clutter up the search
space. Some complete refinements of paramodulation also restrict which literals can
be paramodulated into, which must be the “largest” literals in the clause in a sense.
Such refinements are typically used with resolution refinements that also restrict sub-
sets of resolution to contain “large” literals in a clause. Another recent development is
basic paramodulation, which restricts the positions in a term into which paramodula-
tion can be done [18, 194]; this refinement was used in McCune’s proof of the Robbins
problem [176].

1.3.4 Term Rewriting Systems

A beautiful theory of term-rewriting systems has been developed to handle proofs in-
volving equational systems; these are theorems of the form E |= e where E is a
collection of equations and e is an equation. For such systems, term-rewriting tech-
niques often lead to very efficient proofs. The Robbins problem was of this form, for
example.

An equational system is a set of equations. Often one is interested in knowing if
an equation follows logically from the given set. For example, given the equations
x + y = y + x, (x + y) + z = x + (y + z), and −(−(x + y) + −(x + −y)) = x,
one might want to know if the equation −(−x + y) + −(−x + −y) = x is a logical
consequence. As another example, one might want to know whether x ∗ y = y ∗ x in
a group in which x2 = e for all x. Such systems are of interest in theorem proving,
programming languages, and other areas. Common data structures like lists and stacks
can often be described by such sets of equations. In addition, a functional program
is essentially a set of equations, typically with higher order functions, and the execu-
tion of a program is then a kind of equational reasoning. In fact, some programming
languages based on term rewriting have been implemented, and can execute several
tens of millions of rewrites per second [72]. Another language based on rewriting is
MAUDE [119]. Rewriting techniques have also been used to detect flaws in security
protocols and prove properties of such protocols [129]. Systems for mechanising such
proofs on a computer are becoming more and more powerful. The Waldmeister sys-
tem [92] is particularly effective for proofs involving equations and rewriting. The
area of rewriting was largely originated by the work of Knuth and Bendix [144]. For a
discussion of term-rewriting techniques, see [76, 11, 77, 199, 256].

Syntax of equational systems

A term u is said to be a subterm of t if u is t or if t is f (t1, . . . , tn) and u is a subterm of
ti for some i. An equation is an expression of the form s = t where s and t are terms.
An equational system is a set of equations. We will generally consider only unsorted
equational systems, for simplicity The letter E will be used to refer to equational
systems.

44 1. Knowledge Representation and Classical Logic

We give a set of inference rules for deriving consequences of equations.

t = u

t) = u)

t = u

u = t

t = u

f (. . . t . . .) = f (. . . u . . .)

t = u u = v

t = v

true
t = t

The following result is due to Birkhoff [30]:

Theorem 1.3.7. If E is a set of equations then E |= r = s iff r = s is derivable from
E using these rules.

This result can be stated in an equivalent way. Namely, E |= r = s iff there is a
finite sequence u1, u2, . . . , un of terms such that r is u1 and s is un and for all i, ui+1
is obtained from ui by replacing a subterm t of ui by a term u, where the equation
t = u or the equation u = t is an instance of an equation in E.

This gives a method for deriving logical consequences of sets of equations. How-
ever, it is inefficient. Therefore it is of interest to find restrictions of these inference
rules that are still capable of deriving all equational consequences of an equational
system. This is the motivation for the theory of term-rewriting systems.

Term rewriting

The idea of a term rewriting system is to orient an equation r = s into a rule r → s in-
dicating that instances of r may be replaced by instances of s but not vice versa. Often
this is done in such a way as to replace terms by simpler terms, where the definition of
what is simple may be fairly subtle. However, as a first approximation, smaller terms
are typically simpler. The equation x + 0 = x then would typically be oriented into
the rule x + 0 → x. This reduces the generation of terms like ((x + 0) + 0) + 0 which
can appear in proofs if no such directionality is applied. The study of term rewriting
systems is concerned with how to orient rules and what conditions guarantee that the
resulting systems have the same computational power as the equational systems they
came from.

Terminology

In this section, variables r, s, t, u refer to terms and → is a relation over terms. Thus
the discussion is at a higher level than earlier.

A term-rewriting system R is a set of rules of the form r → s, where r and s are
terms. It is common to require that any variable that appears in s must also appear
in r . It is also common to require that r is not a variable. The rewrite relation →R is

V. Lifschitz, L. Morgenstern, D. Plaisted 45

defined by the following inference rules:

r → s ρ a substitution
rρ → sρ

r → s

f (. . . r . . .) → f (. . . s . . .)

true
r →∗ r
r → s

r →∗ s

r →∗ s s →∗ t

r →∗ t
r → s

r ↔ s
s → r

r ↔ s

true
r ↔∗ r
r ↔ s

r ↔∗ s

r ↔∗ s s ↔∗ t

r ↔∗ t

The notation 9r indicates derivability using these rules. The r subscript refers to
“rewriting” (not to the term r). A set R of rules may be thought of as a set of log-
ical axioms. Writing s → t is in R, indicates that s → t is such an axiom. Writing
R 9r s → t indicates that s → t may refer to a rewrite relation not included in R.
Often s →R t is used as an abbreviation for R 9r s → t , and sometimes the sub-
script R is dropped. Similarly, →∗

R is defined in terms of derivability from R. Note
that the relation →∗

R is the reflexive transitive closure of →R . Thus r →∗
R s if there

is a sequence r1, r2, . . . , rn such that r1 is r , rn is s, and ri →R ri+1 for all i. Such
a sequence is called a rewrite sequence from r to s, or a derivation from r to s. Note
that r →∗

R r for all r and R. A term r is reducible if there is a term s such that r → s,
otherwise r is irreducible. If r →∗

R s and s is irreducible then s is called a normal
form of r .

For example, given the system R = {x + 0 → x, 0 +x → x}, the term 0 + (y + 0)
rewrites in two ways; 0 + (y + 0) → 0 + y and 0 + (y + 0) → y + 0. Applying
rewriting again, one obtains 0 + (y + 0) →∗ y. In this case, y is a normal form of
0 + (y + 0), since y cannot be further rewritten. Computationally, rewriting a term s
proceeds by finding a subterm t of s, called a redex, such that t is an instance of the
left-hand side of some rule in R, and replacing t by the corresponding instance of the
right-hand side of the rule. For example, 0 + (y + 0) is an instance of the left-hand
side 0 + x of the rule 0 + x → x. The corresponding instance of the right-hand side x
of this rule is y + 0, so 0 + (y + 0) is replaced by y + 0. This approach assumes that
all variables on the right-hand side appear also on the left-hand side.

46 1. Knowledge Representation and Classical Logic

We now relate rewriting to equational theories. From the above rules, r ↔ s if
r → s or s → r , and ↔∗ is the reflexive transitive closure of ↔. Thus r ↔∗ s if
there is a sequence r1, r2, . . . , rn such that r1 is r , rn is s, and ri ↔ ri+1 for all i.
Suppose R is a term rewriting system {r1 → s1, . . . , rn → sn}. Define R= to be
the associated equational system {r1 = s1, . . . , rn = sn}. Also, t =R u is defined as
R= |= t = u, that is, the equation t = u is a logical consequence of the associated
equational system. The relation =R is thus the smallest congruence relation generated
by R, in algebraic terms. The relation =R is defined semantically, and the relation →∗
is defined syntactically. It is useful to find relationships between these two concepts in
order to be able to compute properties of =R and to find complete restrictions of the
inference rules of Birkhoff’s theorem. Note that by Birkhoff’s theorem, R= |= t = u
iff t ↔∗

R u. This is already a connection between the two concepts. However, the fact
that rewriting can go in both directions in the derivation for t ↔∗

R u is a disadvantage.
What we will show is that if R has certain properties, some of them decidable, then
t =R u iff any normal form of t is the same as any normal form of u. This permits us
to decide if t =R u by rewriting t and u to any normal form and checking if these are
identical.

1.3.5 Confluence and Termination Properties

We now present some properties of term rewriting systems R. Equivalently, these can
be thought of as properties of the rewrite relation →R . For terms s and t , s ↓ t means
that there is a term u such that s →∗ u and t →∗ u. Also, s ↑ t means that there is a
term r such that r →∗ s and r →∗ t . R is said to be confluent if for all terms s and t ,
s ↑ t implies s ↓ t . The meaning of this is that any two rewrite sequences from a given
term, can always be “brought together”. Sometimes one is also interested in ground
confluence. R is said to be ground confluent if for all ground terms r , if r →∗ s and
r →∗ t then s ↓ t . Most research in term rewriting systems concentrates on confluent
systems.

A term rewriting system R (alternatively, a rewrite relation →) has the Church–
Rosser property if for all terms s and t , s ↔∗ t iff s ↓ t .

Theorem 1.3.8. (See [192].) A term rewriting system R has the Church–Rosser prop-
erty iff R is confluent.

Since s ↔∗ t iff s =R t , this theorem connects the equational theory of R with
rewriting. In order to decide if s =R t for confluent R it is only necessary to see if s
and t rewrite to a common term.

Two term rewriting systems are said to be equivalent if their associated equational
theories are equivalent (have the same logical consequences).

Definition 1.3.9. A term rewriting system is terminating (strongly normalizing) if it
has no infinite rewrite sequences. Informally, this means that the rewriting process,
applied to a term, will eventually stop, no matter how the rewrite rules are applied.

One desires all rewrite sequences to stop in order to guarantee that no matter how
the rewriting is done, it will eventually terminate. An example of a terminating system

V. Lifschitz, L. Morgenstern, D. Plaisted 47

is {g(x) → f (x), f (x) → x}. The first rule changes g’s to f ’s and so can only be
applied as many times as there are g’s. The second rule reduces the size and so it can
only be applied as many times as the size of a term. An example of a nonterminating
system is {x → f (x)}. It can be difficult to determine if a system is terminating. The
intuitive idea is that a system terminates if each rule makes a term simpler in some
sense. However, the definition of simplicity is not always related to size. It can be that
a term becomes simpler even if it becomes larger. In fact, it is not even partially decid-
able whether a term rewriting system is terminating [128]. Termination orderings are
often used to prove that term rewriting systems are terminating. Recall the definition
of termination ordering from Section 1.3.3.

Theorem 1.3.10. Suppose R is a term rewriting system and > is a termination order-
ing and for all rules r → s in R, r > s. Then R is terminating.

This result can be extended to quasi-orderings, which are relations that are reflex-
ive and transitive, but the above result should be enough to give an idea of the proof
methods used. Many termination orderings are known; some will be discussed in Sec-
tion 1.3.5. The orderings of interest are computable orderings, that is, it is decidable
whether r > s given terms r and s.

Note that if R is terminating, it is always possible to find a normal form of a term
by any rewrite sequence continued long enough. However there can be more than one
normal form. If R is terminating and confluent, there is exactly one normal form for
every term. This gives a decision procedure for the equational theory, since for terms
r and s, r =R s iff r ↔∗

R s (by Birkhoff’s theorem) iff r ↓ s (by confluence) iff r
and s have the same normal form (by termination). This gives us a directed form of
theorem proving in such an equational theory. A term rewriting system which is both
terminating and confluent is called canonical. Some authors use the term convergent
for such systems [76]. Many such systems are known. Systems that are not terminating
may still be globally finite, which means that for every term s there are finitely many
terms t such that s →∗ t . For a discussion of global finiteness, see [105].

We have indicated how termination is shown; more will be presented in Sec-
tion 1.3.5. However, we have not shown how to prove confluence. As stated, this looks
like a difficult property. However, it turns out that if R is terminating, confluence is
decidable, from Newman’s lemma [192], given below. If R is not terminating, there
are some methods that can still be used to prove confluence. This is interesting, even
though in that case one does not get a decision procedure by rewriting to normal form,
since it allows some flexibility in the rewriting procedure.

Definition 1.3.11. A term rewriting system is locally confluent (weakly confluent) if
for all terms r , s, and t , if r → s and r → t then s ↓ t .

Theorem 1.3.12 (Newman’s lemma). If R is locally confluent and terminating then R
is confluent.

It turns out that one can test whether R is locally confluent using critical pairs
[144], so that local confluence is decidable for terminating systems. Also, if R is not
locally confluent, it can sometimes be made so by computing critical pairs between

48 1. Knowledge Representation and Classical Logic

rewrite rules in R and using these critical pairs to add new rewrite rules to R until
the process stops. This process is known as completion and was introduced by Knuth
and Bendix [144]. Completion can also be seen as adding equations to a set of rewrite
rules by ordered paramodulation and demodulation, deleting new equations that are
instances of existing ones or that are instances of x = x. These new equations are
then oriented into rewrite rules and the process continues. This process may terminate
with a finite canonical term rewriting system or it may continue forever. It may also
fail by generating an equation that cannot be oriented into a rewrite rule. One can still
use ordered rewriting on such equations so that they function much as a term rewriting
system [61]. When completion does not terminate, and even if it fails, it is still possible
to use a modified version of the completion procedure as a semidecision procedure
for the associated equational theory using the so-called unfailing completion [14, 15]
which in the limit produces a ground confluent term rewriting system. In fact, Huet
proved earlier [126] that if the original completion procedure does not fail, it provides
a semidecision procedure for the associated equational theory.

Termination orderings

We give techniques to show that a term rewriting system is terminating. These all
make use of well founded partial orderings on terms having the property that if s → t
then s > t . If such an ordering exists, then a rewriting system is terminating since
infinite reduction sequences correspond to infinite descending sequences of terms in
the ordering. Recall from Section 1.3.3 that a termination ordering is a well-founded
ordering that has the full invariance and replacement properties.

The termination ordering based on size was discussed in Section 1.3.3. Unfortu-
nately, this ordering is too weak to handle many interesting systems such as those
containing the rule x ∗ (y + z) → x ∗ y + x ∗ z, since the right-hand side is bigger
than the left-hand side and has more occurrences of x. This ordering can be modified
to weigh different symbols differently; the definition of ‖s‖ can be modified to be a
weighted sum of the number of occurrences of the symbols. The ordering of Knuth
and Bendix [144] is more refined and is able to show that systems containing the rule
(x ∗ y) ∗ z → x ∗ (y ∗ z) terminate.

Another class of termination orderings are the polynomial orderings suggested by
Lankford [149, 150]. For these, each function and constant symbol is interpreted as a
polynomial with integer coefficients and terms are ordered by the functions associated
with them.

The recursive path ordering was discussed in Section 1.3.3. In order to handle
the associativity rule (x ∗ y) ∗ z → x ∗ (y ∗ z) it is necessary to modify the order-
ing so that subterms are considered lexicographically. This lexicographic treatment of
subterms is the idea of the lexicographic path ordering of Kamin and Levy [136]. Us-
ing this ordering, one can prove the termination of Ackermann’s function. There are
also many orderings intermediate between the recursive path ordering and the lexico-
graphic path ordering; these are known as orderings with “status”. The idea of status
is that for some function symbols, when f (s1 . . . sm) and f (t1 . . . tn) are compared,
the subterms si and ti are compared using the multiset ordering. For other function
symbols, the subterms are compared using the lexicographic ordering. For other func-
tion symbols, the subterms are compared using the lexicographic ordering in reverse,
that is, from right to left; this is equivalent to reversing the lists and then applying

V. Lifschitz, L. Morgenstern, D. Plaisted 49

the lexicographic ordering. One can show that all such versions of the orderings are
simplification orderings, for function symbols of bounded arity.

There are also many other orderings known that are similar to the above ones, such
as the recursive decomposition ordering [132] and others; for some surveys see [75,
244]. In practice, quasi-orderings are often used to prove termination. A relation is a
quasi-ordering if it is reflexive and transitive. A quasi-ordering is often written as ".
Thus x " x for all x, and if x " y and y " z then x " z. It is possible that x " y
and y " x even if x and y are distinct; then one writes x ≈ y indicating that such
x and y are in some sense “equivalent” in the ordering. One writes x > y if x " y
but not y " x, for a quasi-ordering ". The relation > is called the strict part of the
quasi-ordering ". Note that the strict part of a quasi-ordering is a partial ordering. The
multiset extension of a quasi-ordering is defined in a manner similar to the multiset
extension of a partial ordering [131, 75].

Definition 1.3.13. A quasi-ordering " on terms satisfies the replacement property (is
monotonic) if s " t implies f (. . . s . . .) " f (. . . t . . .). Note that it is possible to have
s > t and f (. . . s . . .) ≈ f (. . . t . . .).

Definition 1.3.14. A quasi-ordering " is a quasi-simplification ordering if f (. . . t
. . .) " t for all terms and if f (. . . t . . .) " f (.) for all terms and all function
symbols f of variable arity, and if the ordering satisfies the replacement property.

Definition 1.3.15. A quasi-ordering " satisfies the full invariance property (see Sec-
tion 1.3.5) if s > t implies sΘ > tΘ for all s, t , Θ .

Theorem 1.3.16. (See Dershowitz [74].) For terms over a finite set of function sym-
bols, all quasi-simplification orderings have strict parts which are well founded.

Proof. Using Kruskal’s tree theorem [148]. #

Theorem 1.3.17. Suppose R is a term rewriting system and " is a quasi-simplification
ordering which satisfies the full invariance property. Suppose that for all rules l → r
in R, l > r . Then R is terminating.

Actually, a version of the recursive path ordering adapted to quasi-orderings is
known as the recursive path ordering in the literature. The idea is that terms that are
identical up to permutation of arguments, are equivalent. There are a number of dif-
ferent orderings like the recursive path ordering.

Some decidability results about termination are known. In general, it is undecid-
able whether a system R is terminating [128]; however, for ground systems, that is,
systems in which left and right-hand sides of rules are ground terms, termination is
decidable [128]. For non-ground systems, termination of even one rule systems has
been shown to be undecidable [63]. However, automatic tools have been developed
that are very effective at either proving a system to be terminating or showing that it is
not terminating, or finding an orientation of a set of equations that is terminating [120,
82, 145, 98]. In fact, one such system [145] from [91] was able to find an automatic

50 1. Knowledge Representation and Classical Logic

proof of termination of a system for which the termination proof was the main result
of a couple of published papers.

A number of relationships between termination orderings and large ordinals have
been found; this is only natural since any well-founded ordering corresponds to some
ordinal. It is interesting that the recursive path ordering and other orderings provide
intuitive and useful descriptions of large ordinals. For a discussion of this, see [75] and
[73].

There has also been some work on modular properties of termination; for example,
if one knows that R1 and R2 terminate, what can be said about the termination of
R1 ∪ R2 under certain conditions? For a few examples of works along this line, see
[258, 259, 182].

1.3.6 Equational Rewriting

There are two motivations for equational rewriting. The first is that some rules are
nonterminating and cannot be used with a conventional term rewriting system. One
example is the commutative axiom x + y = y + x which is nonterminating no mat-
ter how it is oriented into a rewrite rule. The second reason is that if an operator like
+ is associative and commutative then there are many equivalent ways to represent
terms like a + b + c + d . This imposes a burden in storage and time on a theorem
prover or term rewriting system. Equational rewriting permits us to treat some ax-
ioms, like x + y = y + x, in a special way, avoiding problems with termination. It
also permits us to avoid explicitly representing many equivalent forms of a term. The
cost is a more complicated rewriting relation, more difficult termination proofs, and
a more complicated completion procedure. Indeed, significant developments are still
occurring in these areas, to attempt to deal with the problems involved. In equational
rewriting, some equations are converted into rewrite rules R and others are treated as
equations E. Typically, rules that terminate are placed in R and rules for which termi-
nation is difficult are placed in E, especially if E unification algorithms are known.

The general idea is to consider E-equivalence classes of terms instead of single
terms. The E-equivalence classes consist of terms that are provably equal under E. For
example, if E includes associative and commutative axioms for +, then the terms (a+
b)+c, a+ (b+c), c+ (b+a), etc., will all be in the same E-equivalence class. Recall
that s =E t if E |= s = t , that is, t can be obtained from s by replacing subterms
using E. Note that =E is an equivalence relation. Usually some representation of the
whole equivalence class is used; thus it is not necessary to store all the different terms
in the class. This is a considerable savings in storage and time for term rewriting and
theorem proving systems.

It is necessary to define a rewriting relation on E-equivalence classes of terms. If s
is a term, let [s]E be its E-equivalence class, that is, the set of terms E-equivalent to s.
The simplest approach is to say that [s]E → [t]E if s → t . Retracting this back to
individual terms, one writes u →R/E v if there are terms s and t such that u =E s and
v =E t and s →R t . This system R/E is called a class rewriting system. However,
R/E rewriting turns out to be difficult to compute, since it requires searching through
all terms E-equivalent to u. A computationally simpler idea is to say that u → v if
u has a subterm s such that s =E s′ and s′ →R t and v is u with s replaced by t . In
this case one writes that u →R,E v. This system R,E is called the extended rewrite

V. Lifschitz, L. Morgenstern, D. Plaisted 51

system for R modulo E. Note that rules with E-equivalent left-hand sides need not be
kept. The R,E rewrite relation only requires using the equational theory on the chosen
redex s instead of the whole term, to match s with the left-hand side of some rule. Such
E-matching is often (but not always, see [116]) easy enough computationally to make
R,E rewriting much more efficient than R/E rewriting. Unfortunately, →R/E has
better logical properties for deciding R ∪ E equivalence. So the theory of equational
rewriting is largely concerned with finding connections between these two rewriting
relations.

Consider the systems R/E and R,E where R is {a ∗b → d} and E consists of the
associative and commutative axioms for ∗. Suppose s is (a ∗ c) ∗ b and t is c ∗ d . Then
s →R/E t since s is E-equivalent to c ∗ (a ∗ b). However, it is not true that s →R,E t
since there is no subterm of s that is E-equivalent to a ∗ b. Suppose s is (b ∗ a) ∗ c.
Then s →R,E d ∗ c since b ∗ a is E-equivalent to a ∗ b.

Note that if E equivalence classes are nontrivial then it is impossible for class
rewriting to be confluent in the traditional sense (since any term E-equivalent to a
normal form will also be a normal form of a term). So it is necessary to modify the def-
inition to allow E-equivalent normal forms. We want to capture the property that class
rewriting is confluent when considered as a rewrite relation on equivalence classes.
More precisely, R/E is (class) confluent if for any term t , if t →∗

R/E u and t →∗
R/E v

then there are E-equivalent terms u′ and v′ such that u →∗
R/E u′ and v →∗

R/E v′.
This implies that R/E is confluent and hence Church–Rosser, considered as a rewrite
relation on E-equivalence classes. If R/E is class confluent and terminating then a
term may have more than one normal form, but all of them will be E-equivalent. Fur-
thermore, if R/E is class confluent and terminating, then any R= ∪E equivalent terms
can be reduced to E equivalent terms by rewriting. Then an E-equivalence procedure
can be used to decide R= ∪E equivalence, if there is one. Note that E-equivalent rules
need not both be kept, for this method.

R is said to be Church–Rosser modulo E if any two R= ∪ E-equivalent terms can
be R,E rewritten to E-equivalent terms. This is not the same as saying that R/E is
Church–Rosser, considered as a rewrite system on E-equivalence classes; in fact, it is
a stronger property. Note that R,E rewriting is a subset of R/E rewriting, so if R/E
is terminating, so is R,E. If R/E is terminating and R is Church–Rosser modulo
E then R,E rewriting is also terminating and R= ∪ E-equality is decidable if E-
equality is. Also, the computationally simpler R,E rewriting can be used to decide
the equational theory. But Church–Rosser modulo E is not a local property; in fact
it is undecidable in general. Therefore one desires decidable sufficient conditions for
it. This is the contribution of Jouannaud and Kirchner [130], using confluence and
“coherence”. The idea of coherence is that there should be some similarity in the way
all elements of an E-equivalence class rewrite. Their conditions involve critical pairs
between rules and equations and E-unification procedures.

Another approach is to add new rules to R to obtain a logically equivalent sys-
tem R′/E; that is, R= ∪ E and R′ = ∪ E have the same logical consequences (i.e.,
they are equivalent), but R′, E rewriting is the same as R/E rewriting. Therefore it
is possible to use the computationally simpler R′, E rewriting to decide the equality
theory of R/E. This is done for associative–commutative operators by Peterson and
Stickel [205]. In this case, confluence can be decided by methods simpler than those
of Jouannaud and Kirchner. Termination for equational rewriting systems is tricky to

52 1. Knowledge Representation and Classical Logic

decide; this will be discussed later. Another topic is completion for equational rewrit-
ing, adding rules to convert an equational rewriting system into a logically equivalent
equational rewriting system with desired confluence properties. This is discussed by
Peterson and Stickel [205] and also by Jouannaud and Kirchner [130]; for earlier work
along this line see [151, 152].

AC rewriting

We now consider the special case of rewriting relative to the associative and com-
mutative axioms E = {f (x, y) = f (y, x), f (f (x, y), z) = f (x, f (y, z))} for a
function symbol f . Special efficient methods exist for this case. One idea is to mod-
ify the term structure so that R,E rewriting can be used rather than R/E rewriting.
This is done by flattening, that is a term f (s1, f (s2, . . . , f (sn−1, sn) . . .)), where none
of the si have f as a top-level function symbol, is represented as f (s1, s2, . . . , sn).
Here f is a vary-adic symbol, which can take a variable number of arguments. Simi-
larly, f (f (s1, s2), s3) is represented as f (s1, s2, s3). This represents all terms that are
equivalent up to the associative equation f (f (x, y), z) = f (x, f (y, z)) by the same
term. Also, terms that are equivalent up to permutation of arguments of f are also
considered as identical. This means that each E-equivalence class is represented by a
single term. This also means that all members of a given E-equivalence class have the
same term structure, making R,E rewriting seem more of a possibility. Note however
that the subterm structure has been changed; f (s1, s2) is a subterm of f (f (s1, s2), s3)
but there is no corresponding subterm of f (s1, s2, s3). This means that R,E rewriting
does not simulate R/E rewriting on the original system. For example, consider the
systems R/E and R,E where R is {a ∗ b → d} and E consists of the associative and
commutative axioms for ∗. Suppose s is (a ∗ b) ∗ c and t is d ∗ c. Then s →R/E t ; in
fact, s →R,E t . However, if one flattens the terms, then s becomes ∗(a, b, c) and s no
longer rewrites to t since the subterm a ∗ b has disappeared.

To overcome this, one adds extensions to rewrite rules to simulate their effect on
flattened terms. The extension of the rule {a ∗ b → d} is {∗(x, a, b) → ∗(x, d)},
where x is a new variable. With this extended rule, ∗(a, b, c) rewrites to d ∗ c. The
general idea, then, is to flatten terms, and extend R by adding extensions of rewrite
rules to it. Then, extended rewriting on flattened terms using the extended R is equiv-
alent to class rewriting on the original R. Formally, suppose s and t are terms and
s′ and t ′ are their flattened forms. Suppose R is a term rewriting system and R′ is
R with the extensions added. Suppose E is associativity and commutativity. Then
s →R/E t iff s′ →R′,E t ′. The extended R is obtained by adding, for each rule of
the form f (r1, r2, . . . , rn) → s where f is associative and commutative, an extended
rule of the form f (x, r1, r2, . . . , rn) → f (x, s), where x is a new variable. The origi-
nal rule is also retained. This idea does not always work on other equational theories,
however. Note that some kind of associative–commutative matching is needed for ex-
tended rewriting. This can be fairly expensive, since there are so many permutations to
consider, but it is fairly straightforward to implement. Completion relative to associa-
tivity and commutativity can be done with the flattened representation; a method for
this is given in [205]. This method requires associative–commutative unification (see
Section 1.3.6).

V. Lifschitz, L. Morgenstern, D. Plaisted 53

Other sets of equations

The general topic of completion for other equational theories was addressed by Jouan-
naud and Kirchner in [130]. Earlier work along these lines was done by Lankford, as
mentioned above. Such completion procedures may use E-unification. Also, they may
distinguish rules with linear left-hand sides from other rules. (A term is linear if no
variable appears more than once.)

AC termination orderings

We now consider termination orderings for special equational theories E. The problem
is that E-equivalent terms are identified when doing equational rewriting, so that all E-
equivalent terms have to be considered the same by the ordering. Equational rewriting
causes considerable problems for the recursive path ordering and similar orderings.
For example, consider the associative–commutative equations E. One can represent
E-equivalence classes by flattened terms, as mentioned above. However, applying the
recursive path ordering to such terms violates monotonicity. Suppose ∗ > + and ∗ is
associative–commutative. Then x∗(y+z) > x∗y+x∗z. By monotonicity, one should
have u∗x ∗(y +z) > u∗(x ∗y +x ∗z). In fact, this fails; the term on the right is larger
in the recursive path ordering. A number of attempts have been made to overcome
this. The first was the associative path ordering of Dershowitz, Hsiang, Josephson,
and Plaisted [78], developed by the last author. This ordering applied to transformed
terms, in which big operators like ∗ were pushed inside small operators like +. The
ordering was not originally extended to non-ground terms, but it seems that it would
be fairly simple to do so using the fact that a variable is smaller than any term properly
containing it. A simpler approach to extending this ordering to non-ground terms was
given later by Plaisted [209], and then further developed in Bachmair and Plaisted [12],
but this requires certain conditions on the precedence. This work was generalized by
Bachmair and Dershowitz [13] using the idea of “commutation” between two term
rewriting systems. Later, Kapur [139] devised a fully general associative termination
ordering that applies to non-ground terms, but may be hard to compute. Work in this
area has continued since that time [146]. Another issue is the incorporation of status
in such orderings, such as left-to-right, right-to-left, or multiset, for various function
symbols. E-termination orderings for other equational theories may be even more
complicated than for associativity and commutativity.

Congruence closure

Suppose one wants to determine whether E |= s = t where E is a set (conjunction)
of ground equations and s and t are ground terms. For example, one may want to de-
cide whether {f 5(c) = c, f 3(c) = c} |= f (c) = c. This is a case in which rewriting
techniques apply but another method is more efficient. The method is called congru-
ence closure [191]; for some efficient implementations and data structures see [81].
The idea of congruence closure is essentially to use equality axioms, but restricted to
terms that appear in E, including its subterms. For the above problem, the following
is a derivation of f (c) = c, identifying equations u = v and v = u:

1. f 5(c) = c (given).

2. f 3(c) = c (given).

54 1. Knowledge Representation and Classical Logic

3. f 4(c) = f (c) (2, using equality replacement).

4. f 5(c) = f 2(c) (3, using equality replacement).

5. f 2(c) = c (1, 4, transitivity).

6. f 3(c) = f (c) (5, using equality replacement).

7. f (c) = c (2, 6, transitivity).

One can show that this approach is complete.

E-unification algorithms

When the set of axioms in a theorem to be proved includes a set E of equations, it is
often better to use specialized methods than general theorem proving techniques. For
example, if the binary infix operator ∗ is associative and commutative, many equivalent
terms x ∗ (y ∗ z), y ∗ (x ∗ z), y ∗ (z ∗ x), etc. may be generated. These cannot be
eliminated by rewriting since none is simpler than the others. Even the idea of using
unorderable equations as rewrite rules when the applied instance is orderable, will not
help. One approach to this problem is to incorporate a general E-unification algorithm
into the theorem prover. Plotkin [214] first discussed this general concept and showed
its completeness in the context of theorem proving. With E unification built into a
prover, only one representative of each E-equivalence class need be kept, significantly
reducing the number of formulas retained. E-unification is also known as semantic
unification, which may be a misnomer since no semantics (interpretation) is really
involved. The general idea is that if E is a set of equations, an E-unifier of two terms
s and t is a substitution Θ such that E |= sΘ = tΘ , and a most general E-unifier
is an E-unifier that is as general as possible in a certain technical sense relative to
the theory E. Many unification algorithms for various sets of equations have been
developed [239, 9]. For some theories, there may be at most one most general E-
unifier, and for others, there may be more than one, or even infinitely many, most
general E-unifiers.

An important special case, already mentioned above in the context of term-
rewriting, is associative–commutative (AC) unification. In this case, if two terms are
E-unifiable, then there are at most finitely many most general E-unifiers, and there
are algorithms to find them that are usually efficient in practice. The well-known algo-
rithm of [251] essentially involves solving Diophantine equations and finding a basis
for the set of solutions and finding combinations of basis vectors in which all vari-
ables are present. This can sometimes be very time consuming; the time to perform
AC-unification can be double exponential in the sizes of the terms being unified [137].
Domenjoud [80] showed that the two terms x + x + x + x and y1 + y2 + y3 + y4
have more than 34 billion different AC unifiers. Perhaps AC unification algorithm is
artificially adding complexity to theorem proving, or perhaps the problem of theorem
proving in the presence of AC axioms is really hard, and the difficulty of the AC uni-
fication simply reveals that. There may be ways of reducing the work involved in AC
unification. For example, one might consider resource bounded AC unification, that
is, finding all unifiers within some size bound. This might reduce the number of uni-
fiers in cases where many of them are very large. Another idea is to consider “optional

V. Lifschitz, L. Morgenstern, D. Plaisted 55

variables”, that is, variables that may or may not be present. If x is not present in the
product x ∗ y then this product is equivalent to y. This is essentially equivalent to
introducing a new identity operator, and greatly reduces the number of AC unifiers.
This approach has been studied by Domenjoud [79]. This permits one to represent
a large number of solutions compactly, but requires one to keep track of optionality
conditions.

Rule-based unification

Unification can be viewed as equation solving, and therefore is part of theorem proving
or possibly logic programming. This approach to unification permits conceptual sim-
plicity and also is convenient for theoretical investigations. For example, unifying two
literals P(s1, s2, . . . , sn) and P(t1, t2, . . . , tn) can be viewed as solving the set of equa-
tions {s1 = t1, s2 = t2, . . . , sn = tn}. Unification can be expressed as a collection of
rules operating on such sets of equations to either obtain a most general unifier or de-
tect non-unifiability. For example, one rule replaces an equation f (u1, u2, . . . , un) =
f (v1, v2, . . . , vn) by the set of equations {u1 = v1, u2 = v2, . . . , un = vn}. Another
rule detects non-unifiability if there is an equation of the form f (. . .) = g(. . .) for dis-
tinct f and g. Another rule detects non-unifiability if there is an equation of the form
x = t where t is a term properly containing x. With a few more such rules, one can ob-
tain a simple unification algorithm that will terminate with a set of equations represent-
ing a most general unifier. For example, the set of equations {x = f (a), y = g(f (a))}
would represent the substitution {x ← f (a), y ← g(f (a))}. This approach has also
been extended to E-unification for various equational theories E. For a survey of this
approach, see [133].

1.3.7 Other Logics

Up to now, we have considered theorem proving in general first-order logic. However,
there are many more specialized logics for which more efficient methods exist. Such
logics fix the domain of the interpretation, such as to the reals or integers, and also the
interpretations of some of the symbols, such as “+” and “∗”. Examples of theories con-
sidered include Presburger arithmetic, the first-order theory of natural numbers with
addition [200], Euclidean and non-Euclidean geometry [272, 55], inequalities involv-
ing real polynomials (for which Tarski first gave a decision procedure) [52], ground
equalities and inequalities, for which congruence closure [191] is an efficient decision
procedure, modal logic, temporal logic, and many more specialized logics. Theorem
proving for ground formulas of first-order logic is also known as satisfiability mod-
ulo theories (SMT) in the literature. Description logics [8], discussed in Chapter 3 of
this Handbook, are sublanguages of first-order logic, with extensions, that often have
efficient decision procedures and have applications to the semantic web. Specialized
logics are often built into provers or logic programming systems using constraints
[33]. The idea of using constraints in theorem proving has been around for some time
[143]. Another specialized area is that of computing polynomial ideals, for which
efficient methods have been developed [44]. An approach to combining decision pro-
cedures was given in [190] and there has been continued interest in the combination
of decision procedures since that time.

http://dx.doi.org/10.1016/S1574-6526(07)03003-9

56 1. Knowledge Representation and Classical Logic

Higher-order logic

In addition to the logics mentioned above, there are more general logics to consider,
including higher-order logics. Such logics permit quantification over functions and
predicates, as well as variables. The HOL prover [101] uses higher-order logic and
permits users to give considerable guidance in the search for a proof. Andrews’ TPS
prover is more automatic, and has obtained some impressive proofs fully automati-
cally, including Cantor’s theorem that the powerset of a set has more elements than
the set. The TPS prover was greatly aided by a breadth-first method of instantiating
matings described in [31]. In general, higher-order logic often permits a more nat-
ural formulation of a theorem than first-order logic, and shorter proofs, in addition
to being more expressive. But of course the price is that the theorem prover is more
complicated; in particular, higher-order unification is considerably more complex than
first-order unification.

Mathematical induction

Without going to a full higher-order logic, one can still obtain a considerable increase
in power by adding mathematical induction to a first-order prover. The mathematical
induction schema is the following one:

∀y[[∀x((x < y) → P(x))] → P(y)]
∀yP (y)

.

Here < is a well-founded ordering. Specializing this to the usual ordering on the inte-
gers, one obtains the following Peano induction schema:

P(0),∀x(P (x) → P(x + 1))

∀xP (x)
.

With such inference rules, one can, for example, prove that addition and multiplication
are associative and commutative, given their straightforward definitions. Both of these
induction schemas are second-order, because the predicate P is implicitly universally
quantified. The problem in using these schemas in an automatic theorem prover is
in instantiating P . Once this is done, the induction schema can often be proved by
first-order techniques. One way to adapt a first-order prover to perform mathematical
induction, then, is simply to permit a human to instantiate P . The problem of instanti-
ating P is similar to the problem of finding loop invariants for program verification.

By instantiating P is meant replacing P(y) in the above formula by A[y] for some
first-order formula A containing the variable y. Equivalently, this means instantiating
P to the function ,z.A[z]. When this is done, the first schema above becomes

∀y[[∀x((x < y) → A[x])] → A[y]]
∀yA[y] .

Note that the hypothesis and conclusion are now first-order formulas. This instantiated
induction schema can then be given to a first-order prover. One way to do this is to
have the prover prove the formula ∀y[[∀x((x < y) → A[x])] → A[y]], and then
conclude ∀yA[y]. Another approach is to add the first-order formula {∀y[[∀x((x < y)
→ A[x])] → A[y]]} → {∀yA[y]} to the set of axioms. Both approaches are fa-
cilitated by using a structure-preserving translation of these formulas to clause form,

V. Lifschitz, L. Morgenstern, D. Plaisted 57

in which the formula A[y] is defined to be equivalent to P(y) for a new predicate
symbol P .

A number of semi-automatic techniques for finding such a formula A and choosing
the ordering < have been developed. One of them is the following: To prove that for
all finite ground terms t , A[t], first prove A[c] for all constant symbols c, and then
for each function symbol f of arity n prove that A[t1] ∧ A[t2] ∧ · · · ∧ A[tn] →
A[f (t1, t2, . . . , tn)]. This is known as structural induction and is often reasonably
effective.

A common case when an induction proof may be necessary is when the prover
is not able to prove the formula ∀xA[x], but the formulas A[t] are separately prov-
able for all ground terms t . Analogously, it may not be possible to prove that
∀x(natural_number(x) → A[x]), but one may be able to prove A[0], A[1], A[2], . . .
individually. In such a case, it is reasonable to try to prove ∀xA[x] by induction, in-
stantiating P(x) in the above schema to A[x]. However, this still does not specify
which ordering < to use. For this, it can be useful to detect how long it takes to prove
the A[t] individually. For example, if the time to prove A[n] for natural number n is
proportional to n, then one may want to try the usual (size) ordering on natural num-
bers. If A[n] is easy to prove for all even n but for odd n, the time is proportional to n,
then one may try to prove the even case directly without induction and the odd case
by induction, using the usual ordering on natural numbers.

The Boyer–Moore prover NqTHM [38, 36] has mathematical induction techniques
built in, and many difficult proofs have been done on it, generally with substantial hu-
man guidance. For example, correctness of AMD Athlon’s elementary floating point
operations, and parts of IBM Power 5 and other processors have been proved on it.
ACL2 [142, 141] is a software system built on Common Lisp related to NqTHM that
is intended to be an industrial strength version of NqTHM, mainly for the purpose of
software and hardware verification. Boyer, Kaufmann, and Moore won the ACM Soft-
ware System Award in 2005 for these provers. A number of other provers also have
automatic or semi-automatic induction proof techniques. Rippling [47] is a technique
originally developed for mathematical induction but which also has applications to
summing series and general equational reasoning. The ground reducibility property is
also often used for induction proofs, and has applications to showing the complete-
ness of algebraic specifications [134]. A term is ground reducible by a term rewriting
system R if all its ground instances are reducible by R. This property was first shown
decidable in [210], with another proof soon after in [138]. It was shown to be exponen-
tial time complete by Comon and Jacquemard [60]. However, closely related versions
of this problem are undecidable. Recently Kapur and Subramaniam [140] described a
class of inductive theorems for which validity is decidable, and this work was extended
by Giesl and Kapur [97]. Bundy has written an excellent survey of inductive theorem
proving [46] and the same handbook also has a survey of the so-called inductionless
induction technique, which is based on completion of term-rewriting systems [59]; see
also [127].

Set theory

Since most of mathematics can be expressed in terms of set theory, it is logical to
develop theorem proving methods that apply directly to theorems expressed in set the-
ory. Second-order provers do this implicitly. First-order provers can be used for set

58 1. Knowledge Representation and Classical Logic

theory as well; Zermelo–Fraenkel set theory consists of an infinite set of first-order
axioms, and so one again has the problem of instantiating the axiom schemas so that
a first-order prover can be used. There is another version of set theory known as von
Neumann–Bernays–Gödel set theory [37] which is already expressed in first-order
logic. Quite a bit of work has been done on this version of set theory as applied to
automated deduction problems. Unfortunately, this version of set theory is somewhat
cumbersome for a human or for a machine. Still, some mathematicians have an interest
in this approach. There are also a number of systems in which humans can construct
proofs in set theory, such as Mizar [260] and others [26, 219]. In fact, there is an en-
tire project (the QED project) devoted to computer-aided translation of mathematical
proofs into completely formalized proofs [218].

It is interesting to note in this respect that many set theory proofs that are simple for
a human are very hard for resolution and other clause-based theorem provers. This in-
cludes theorems about the associativity of union and intersection, for example. In this
area, it seems worthwhile to incorporate more of the simple definitional replacement
approach used by humans into clause-based theorem provers.

As an example of the problem, suppose that it is desired to prove that ∀x((x =x) =
x) from the axioms of set theory. A human would typically prove this by noting that
(x = x) = x is equivalent to ((x = x) ⊆ x) ∧ (x ⊆ (x = x)), then observe that
A ⊆ B is equivalent to ∀y((y ∈ A) → (y ∈ B)), and finally observe that y ∈ (x = x)
is equivalent to (y ∈ x) ∧ (y ∈ x). After applying all of these equivalences to the
original theorem, a human would observe that the result is a tautology, thus proving
the theorem.

But for a resolution theorem prover, the situation is not so simple. The axioms
needed for this proof are

(x = y) ↔ [(x ⊆ y) ∧ (y ⊆ x)],
(x ⊆ y) ↔ ∀z((z ∈ x) → (z ∈ y)),

(z ∈ (x = y)) ↔ [(z ∈ x) ∧ (z ∈ y)].
When these are all translated into clause form and Skolemized, the intuition of replac-
ing a formula by its definition gets lost in a mass of Skolem functions, and a resolution
prover has a much harder time. This particular example may be easy enough for a res-
olution prover to obtain, but other examples that are easy for a human quickly become
very difficult for a resolution theorem prover using the standard approach.

The problem is more general than set theory, and has to do with how definitions are
treated by resolution theorem provers. One possible method to deal with this problem
is to use “replacement rules” as described in [154]. This gives a considerable improve-
ment in efficiency on many problems of this kind. Andrews’ matings prover has a
method of selectively instantiating definitions [32] that also helps on such problems in
a higher-order context. The U-rules of OSHL also help significantly [184].

1.4 Applications of Automated Theorem Provers

Among theorem proving applications, we can distinguish between those applications
that are truly automated, and those requiring some level of human intervention; be-

V. Lifschitz, L. Morgenstern, D. Plaisted 59

tween KR and non-KR applications; and between applications using classical first-
order theorem provers and those that do not. In the latter category fall applications
using theorem proving systems that do not support equality, or allow only restricted
languages such as Horn clause logic, or supply inferential procedures beyond those of
classical theorem proving.

These distinctions are not independent. In general, applications requiring human
intervention have been only slightly used for KR; moreover, KR applications are more
likely to use a restricted language, or to use special-purpose inferential procedures.

It should be noted that any theorem proving system that can solve the math prob-
lems that form a substantial part of the TPTP (Thousands of Problems for Theorem
Provers) testbed [255] must be a classical first-order theorem prover that supports
equality.

1.4.1 Applications Involving Human Intervention
Because theorem proving is in general intractable, the majority of applications of au-
tomated theorem provers require direction from human users in order to work. The
intervention required can be extensive, e.g., the user may be required to supply lem-
mas to the proofs on which the automated theorem prover is working [84]. In the worst
case, a user may be required to supply every step of a proof to an automated theorem
prover; in this case, the automated theorem prover is functioning simply as a proof
checker.

The need for human intervention has often limited the applicability of automated
theorem provers to applications where reasoning can be done offline; that is, where the
reasoner is not used as part of a real-time application. Even given this restriction, auto-
mated theorem provers have proved very valuable in a number of domains, including
software development and verification of software and hardware.

Software development

An example of an application to software development is the Amphion system, which
was developed by Stickel et al. [250] and uses the SNARK theorem prover [249].
It has been used by NASA to compose programs out of a library of FORTRAN-77
subroutines. The user of Amphion, who does not have to have any familiarity with
either theorem proving or the library subroutines, gives a graphical specification; this
specification is translated into a theorem of first-order logic; and SNARK provides a
constructive proof of this theorem. This constructive proof is then translated into the
application program in FORTRAN-77.

The NORA/HAMMR system [86] similarly determines what software compo-
nents can be reused during program development. Each software component is as-
sociated with a contract written in a formal language which captures the essentials
of the component’s behavior. The system determines whether candidate components
have compatible contracts and are thus potentially reusable; the proof of compatibility
is carried out using an automated theorem prover, though with a fair amount of hu-
man guidance. Automated theorem provers used for NORA/HAMMR include Setheo
[158], Spass [268, 269], and PROTEIN [24], a theorem prover based on Mark Stickel’s
PTTP [246, 248].

In the area of algorithm design and program analysis and optimization, KIDS
(Kestrel Interactive Development System) [241] is a program derivation system that

60 1. Knowledge Representation and Classical Logic

uses automated theorem proving technology to facilitate the derivation of programs
from high-level program specifications. The program specification is viewed as a goal,
and rules of transformational development are viewed as axioms of the system. The
system, guided by the user, searches to find the appropriate transformational rules, the
application of which leads to the final program. Both Amphion and KIDS require rel-
atively little intervention from the user once the initial specification is made; KIDS,
for example, requires active interaction only for the algorithm design tactic.

Hardware and software verification

Formal verification of both hardware and software has been a particularly fruitful
application of automated theorem provers. The need for verification of program cor-
rectness had been noted as far back as the early 1960s by McCarthy [172], who
suggested approaching the problem by stating a theorem that a program had certain
properties—and in particular, computed certain functions—and then using an auto-
mated theorem prover to prove this theorem. Verification of cryptographic protocols
is another important subfield of this area.

The field of hardware verification can be traced back to the design of the first
hardware description languages, e.g., ISP [27], and became active in the 1970s and
1980s, with the advent of VLSI design. (See, e.g, [22].) It gained further prominence
after the discovery in 1994 [108] of the Pentium FDIV bug, a bug in the floating point
unit of Pentium processors. It was caused by missing lookup table entries and led to
incorrect results for some floating point division operators. The error was widespread,
well-publicized, and costly to Intel, Pentium’s manufacturer, since it was obliged to
offer to replace all affected Pentium processors.

General-purpose automated theorem provers that have been commonly used for
hardware and/or software verification include the following:

• The Boyer–Moore theorem provers NqTHM and ACL2 [36, 142] were inspired
by McCarthy’s first papers on the topic of verifying program correctness. As
mentioned in the previous section, these award-winning theorem provers have
been used for many verification applications.

• The Isabelle theorem prover [203, 197] can handle higher-order logics and tem-
poral logics. Isabelle is thus especially well-suited for cases where program
specifications are written in temporal or dynamic logic (as is frequently the
case). It has also been used for verification of cryptographic protocols [242],
which are frequently written in higher order and/or epistemic logics [49].

• OTTER has been used for a system that analyzes and detects attacks on security
APIs (application programming interfaces) [273].

Special-purpose verification systems which build verification techniques on top of
a theorem prover include the following:

• The PVS system [201] has been used by NASA’s SPIDER (Scalable Proces-
sor-Independent Design for Enhanced Reliability) to verify SPIDER protocols
[206].

• The KIV (Karlsruhe Interactive Verifier) has been used for a range of software
verification applications, including validation of knowledge-based systems [84].

V. Lifschitz, L. Morgenstern, D. Plaisted 61

The underlying approach is similar to that of the KIDS and Amphion projects in
that first, the user is required to enter a specification; second, the user is entering
a specification of a modularized system, and the interactions between the mod-
ules; and third, the user works with the system to construct a proof of validity.
More interaction between the user and the theorem prover seems to be required
in this case, perhaps due to the increased complexity of the problem. KIV of-
fers a number of techniques to reduce the burden on the user, including reuse of
proofs and the generation of counterexamples.

1.4.2 Non-Interactive KR Applications of Automated Theorem Provers

McCarthy argued [171] for an AI system consisting of a set of axioms and an auto-
mated theorem prover to reason with those axioms. The first implementation of this
vision came in the late 1960s with Cordell Green’s question-answering system QA3
and planning system [103, 104]. Given a set of facts and a question, Green’s question-
answering system worked by resolving the (negated) question against the set of facts.
Green’s planning system used resolution theorem proving on a set of axioms represent-
ing facts about the world in order to make simple inferences about moving blocks in a
simple blocks-world domain. In the late 1960s and early 1970s, SRI’s Shakey project
[195] attempted to use the planning system STRIPS [85] for robot motion planning;
automated theorem proving was used to determine applicability of operators and dif-
ferences between states [232]. The difficulties posed by the intractability of theorem
proving became evident. (Shakey also faced other problems, including dealing with
noisy sensors and incomplete knowledge. Moreover, the Shakey project does not actu-
ally count as a non-interactive application of automated theorem proving, since people
could obviously change Shakey’s environment while it acted. Nonetheless, projects
like these underscored the importance of dealing effectively with theorem proving’s
essential intractability.)

In fact, there are today many fewer non-interactive than interactive applications of
theorem proving, due to its computational complexity. Moreover, non-interactive ap-
plications will generally use carefully crafted heuristics that are tailored and fine-tuned
to a particular domain or application. Without such heuristics, the theorem-proving
program would not be able to handle the huge number of clauses generated. Finally,
as mentioned above, non-interactive applications often use ATPs that are not general
theorem provers with complete proof procedures. This is because completeness and
generality often come at the price of efficiency.

Some of the most successful non-interactive ATP applications are based on two
theorem provers developed by Mark Stickel at SRI, PTTP [246, 248] and SNARK
[249]. PTTP attempts to retain as much as possible the efficiency of Prolog (see Sec-
tion 1.4.4 below) while it remedies the ways in which Prolog fails as a general-purpose
theorem prover, namely, its unsound unification algorithm, its incomplete search strat-
egy, and its incomplete inference system. PTTP was used in SRI’s TACITUS system
[121, 124], a message understanding system for reports on equipment failure, naval op-
erations, and terrorist activities. PTTP was used specifically to furnish minimal-cost
abductive explanations. It is frequently necessary to perform abduction—that is, to
posit a likely explanation—when processing text. For example, to understand the sen-
tence “The Boston office called”, one must understand that the construct of metonymy

62 1. Knowledge Representation and Classical Logic

(the use of a single characteristic to identify an entity of which it is an attribute) is
being used, and that what is meant is a person in the office called. Thus, to understand
the sentence we must posit an explanation of a person being in the office and making
that call.

There are usually many possible explanations that can be posited for any particular
phenomenon; thus, the problem arises of choosing the simplest non-trivial explanation.
(One would not, for example, wish to posit an explanation consistent with an office
actually being able to make a call.) TACITUS considers explanations of the form P(a),
where ∀xP (x) → Q(x) and Q(a) are in the theory, and chooses the explanation that
has minimal cost [247]. Every conjunct in the logical form of a sentence is given an
assumability cost; this cost is passed back to antecedents in the Horn clause. Because
of the way costs are propagated, the cost may be partly dependent on the length of the
proofs of the literals in the explanation.

PTTP was also used in a central component of Stanford’s Logic-Based Subsump-
tion Architecture for robot control [1], which was used to program a Nomad-200
robot to travel to different rooms in a multi-story building. The system employed a
multi-layered architecture; in each layer, PTTP was used to prove theorems from the
given axioms. Goals were transmitted to layers below or to robot manipulators.

PTTP is fully automated; the user has no control over the search for solutions.
In particular, each rule is used in its original form and in its contrapositive. In cer-
tain situations, such as stating principles about substituting equals, reasoning with a
contrapositive form can lead to considerable inefficiency.

Stickel’s successor theorem prover to PTTP, SNARK [249], gives users this con-
trol. It is more closely patterned after Otter; difficult theorems that are intractable for
PTTP can be handled by SNARK. It was used as the reasoning component for SRI’s
participation in DARPA’s High-Performance Knowledge Bases (HPKB) Project [58],
which focused on constructing large knowledge bases in the domain of crisis man-
agement; and developing question-answering systems for querying these knowledge
bases. SNARK was used primarily in SRI’s question-answering portion of that system.
SNARK, in contrast to what would have been possible with PTTP, allowed users to
fine tune the question-answering system for HPKB, by crafting an ordering of pred-
icates and clauses on which resolution would be performed. This ordering could be
modified as the knowledge base was altered. Such strategies were necessary to get
SNARK to work effectively given the large size of the HPKB knowledge base.

For its use in the HPKB project, SNARK had to be extended to handle temporal
reasoning.

SNARK has also been used for consistency checking of semantic web ontologies
[20].

Other general-purpose theorem provers have also been used for natural language
applications, though on a smaller scale and for less mature applications. Otter has
been used in PENG (Processable English) [236], a controlled natural language used for
writing precise specifications. Specifications in PENG can be translated into first-order
logic; Otter is then used to draw conclusions. As discussed in detail in Chapter 20,
Bos and Markert [35] have used Vampire (as well as the Paradox model finder) to
determine whether a hypothesis is entailed by some text.

The Cyc artificial intelligence project [157, 156, 169] is another widespread ap-
plication of non-interactive automated theorem proving. The ultimate goal of Cyc is

http://dx.doi.org/10.1016/S1574-6526(07)03020-9

V. Lifschitz, L. Morgenstern, D. Plaisted 63

the development of a comprehensive, encyclopedic knowledge base of commonsense
facts, along with inference mechanisms for reasoning with that knowledge. Cyc con-
tains an ontology giving taxonomic information about commonsense concepts, as well
as assertions about the concepts.

Cyc’s underlying language, CycL, allows expression of various constructs that go
beyond first-order logic. Examples include:

• The concept of contexts [50]: one can state that something is true in a particular
context as opposed to absolutely. (E.g., the statement that vampires are afraid of
garlic is true in a mythological context, though not in real life.)

• Higher-order concepts. (E.g., one can state that if a relation is reflexive, sym-
metric, and transitive, it is an equivalence relation.)

• Exceptions. (E.g., one can say that except for Taiwan, all Chinese provinces are
part of the People’s Republic of China.)

The Cyc knowledge base is huge. Nevertheless, it has been successfully used in
real-world applications, including HPKB. (Cyc currently has over 3 million assertions;
at the time of its use in HPKB, it had over a million assertions.) Theorem proving in
Cyc is incomplete but efficient, partly due to various special-purpose mechanisms for
reasoning with its higher-order constructs. For example, Cyc’s reasoner includes a
special module for solving disjointWith queries that traverses the taxonomies in the
knowledge base to determine whether two classes have an empty intersection.

Ramachandran et al. [221, 220] compared the performance of Cyc’s reasoner with
standard theorem provers. First, most of ResearchCyc’s knowledge base4 was trans-
lated into first-order logic. The translated sentences were then loaded into various
theorem provers, namely, Vampire, E [235], Spass, and Otter. The installations of
Vampire and Spass available to Ramachandran et al. did not have sufficient mem-
ory to load all assertions, necessitating performing the comparison of Cyc with these
theorem provers on just 10 percent of ResearchCyc’s knowledge base. On sample
queries—e.g., “Babies can’t be doctors”, “If the U.S. bombs Iraq, someone is respon-
sible”, –Cyc proved to be considerably more efficient. For example, for the query
about babies and doctors, Cyc took 0.04 seconds to answer the query, while Vampire
took 847.6 seconds.

Ramachandran and his colleagues conjecture that the disparity in performance
partly reflects the fact that Cyc’s reasoner and the standard theorem provers have been
designed for different sets of problems. General automated theorem provers have been
designed to perform deep inference on small sets of axioms. If one looks at the prob-
lems in the TPTP database, they often have just a few dozen and rarely have more
than a few hundred axioms. Cyc’s reasoner, on the other hand, has been designed to
perform relatively shallow inference on large sets of axioms.

It is also worth noting that the greatest disparity of inference time between Cyc
and the other theorem provers occurred when Cyc was using a special purpose reason-
ing module. In that sense, of course, purists might argue that Cyc is not really doing

4ResearchCyc [169] contains the knowledge base open to the public for research; certain portions of Cyc
itself are not open to the public. The knowledge base of ResearchCyc contains over a million assertions.

64 1. Knowledge Representation and Classical Logic

theorem proving faster than standard ATPs; rather, it is doing something that is func-
tionally equivalent to theorem proving while ATPs are doing theorem proving, and it
is doing that something much faster.

1.4.3 Exploiting Structure

Knowledge bases for real-world applications and commonsense reasoning often ex-
hibit a modular-like structure, containing multiple sets of facts with relatively little
connection to one another. For example, a knowledge base in the banking domain
might contain sets of facts concerning loans, checking accounts, and investment in-
struments; moreover, these sets of facts might have little overlap with one another. In
such a situation, reasoning would primarily take place within a module, rather than
between modules. Reasoning between modules would take place—for example, one
might want to reason about using automated payments from a checking account to
pay off installments on a loan—but would be limited. One would expect that a theo-
rem prover that takes advantage of this modularity would be more efficient: most of
the time, it would be doing searches in reduced spaces, and it would produce fewer
irrelevant resolvents.

A recent trend in automated reasoning focuses on exploiting structure of a knowl-
edge base to improve performance. This section presents a detailed example of such
an approach. Amir and McIlraith [2] have studied the ways in which a knowledge base
can be automatically partitioned into loosely coupled clusters of domain knowledge,
forming a network of subtheories. The subtheories in the network are linked via the
literals they share in common. Inference is carried out within a subtheory; if a literal
is inferred within one subtheory that links to another subtheory, it may be passed from
the first to the second subtheory.

Consider, from [2], the following theory specifying the workings of an espresso
machine, and the preparation of espresso and tea: (Note that while this example is
propositional, the theory is first-order.)

(1) ¬ okpump ∨¬ onpump ∨ water

(2) ¬ manfill ∨ water

(3) ¬ manfill ∨¬ onpump

(4) manfill ∨ onpump

(5) ¬ water ∨¬ okboiler ∨¬ onboiler ∨ steam

(6) water ∨¬ steam

(7) okboiler ∨¬ steam

(8) onboiler ∨¬ steam

(9) ¬ steam ∨¬ cofee ∨ hotdrink

(10) coffee ∨ teabag

(11) ¬ steam ∨¬ teabag ∨ hotdrink

V. Lifschitz, L. Morgenstern, D. Plaisted 65

Intuitively, this theory can be decomposed into three subtheories. The first, A1, con-
taining axioms 1 through 4, regards water in the machine; it specifies the relations
between manually filling the machine with water, having a working pump, and hav-
ing water in the machine. The second, A2, containing axioms 5 through 8, regards
getting steam; it specifies the relations between having water, a working boiler, the
boiler switch turned on, and steam. The third, A3, containing axioms 9 through 11, re-
gards getting a hot drink; it specifies the relation between having steam, having coffee,
having a teabag, and having a hot drink.

In this partitioning, the literal water links A1 and A2; the literal steam links A2
and A3. One can reason with logical partitions using forward message-passing of link-
ing literals. If one asserts okpump, and performs resolution on the clauses of A1, one
obtains water. If one asserts okboiler and onboiler in A2, passes water from A1 to
A2, and performs resolution in A2, one obtains steam. If one passes steam to A3 and
performs resolution in A3, one obtains hotdrink.

In general, the complexity of this sort of reasoning depends on the number of
partitions, the size of the partitions, the interconnectedness of the subtheory graph,
and the number of literals linking subtheories. When partitioning the knowledge base,
one wants to minimize these parameters to the extent possible. (Note that one cannot
simultaneously minimize all parameters; as the number of partitions goes down, the
size of at least some of the partitions goes up.)

McIlraith et al. [165] did some empirical studies on large parts of the Cyc data-
base used for HPKB, comparing the results of the SNARK theorem prover with and
without this partitioning strategy. SNARK plus (automatically-performed) partitioning
performed considerably better than SNARK with no strategy, though it was compa-
rable to SNARK plus set-of-support strategies. When partitioning was paired with
another strategy like set-of-support, it outperformed combinations of strategies with-
out partitioning.

Clustering to improve reasoning performance has also been explored by Hayes et
al. [115]. In a similar spirit, there has been growing interest in modularization of on-
tologies from the Description Logic and Semantic Web communities [267, 223, 102].
Researchers have been investigating how such modularization affects the efficiency
of reasoning (i.e., performing subsumption and classification, and performing consis-
tency checks) over the ontologies.

1.4.4 Prolog

In terms of its use in working applications, the logic programming paradigm [147]
represents an important success in automated theorem proving. Its main advantage
is its efficiency; this makes it suitable for real-world applications. The most popular
language for logic programming is Prolog [41].

What makes Prolog work so efficiently is a combination of the restricted form
of first-order logic used, and the particular resolution and search strategies that are
implemented. In the simplest case, a Prolog program consists of a set of Horn clauses;
that is, either atomic formulas or implications of the form (P1 ∧ P2 ∧ · · ·) → P0,
where the Pi’s are all atomic formulas. This translates into having at most one literal
in the consequence of any implication. The resolution strategy used is linear-input
resolution: that is, for each resolvent, one of the parents is either in the initial database

66 1. Knowledge Representation and Classical Logic

or is an ancestor of the other parent. The search strategy used is backward-chaining;
the reasoner backchains from the query or goal, against the sentences in the logic
program.

The following are also true in the logic programming paradigm: there is a form of
negation that is interpreted as negation-as-failure: that is, not a will be taken to be true
if a cannot be proven; and the result of a logic program can depend on the ordering
of its clauses and subgoals. Prolog implementations provide additional control mech-
anisms, including the cut and fail operators; the result is that few programs in Prolog
are pure realizations of the declarative paradigm. Prolog also has an incomplete mech-
anism for unification, particularly of arithmetic expressions.

Prolog has been widely used in developing expert systems, especially in Europe
and Japan, although languages such as Java and C++ have become more popular.

Examples of successful practical applications of logic programming include the
HAPPS system for model house configuration [83] and the Munich Rent Advisor [90],
which calculates the estimated fair rent for an apartment. (This is a rather complex
operation that can take days to do by hand.) There has been special interest in the
last decade on world-wide web applications of logic programming (see Theory and
Practice of Logic Programming, vol. 1, no. 3).

What are the drawbacks to Prolog? Why is there continued interest in the signifi-
cantly less efficient general theorem provers?

First, the restriction to Horn clause form is rather severe; one may not be able to
express knowledge crucial for one’s application. An implication whose conclusion is
a disjunction is not expressible in Horn clause form. This means, for example, that one
cannot represent a rule like

If you are diagnosed with high-blood pressure, you will either have to reduce
your salt intake or take medication

because that is most naturally represented as an implication with a disjunction in the
consequent.

Second, Prolog’s depth-first-search strategy is incomplete.
Third, because, in most current Prolog implementations, the results of a Prolog

program depend crucially on the ordering of its clauses, and because it is difficult
to predict how the negation-as-failure mechanism will interact with one’s knowledge
base and goal query, it may be difficult to predict a program’s output.

Fourth, since Prolog does not support inference with equality, it cannot be used for
mathematical theorem proving.

There has been interest in the logic programming community in addressing limi-
tations or perceived drawbacks of Prolog. Disjunctive logic programming [6] allows
clauses with a disjunction of literals in the consequent of a rule. Franconi et al. [88]
discusses one application of disjunctive logic programming, the implementation of a
clean-up procedure prior to processing census data.

The fact that logic programs may have unclear or ambiguous semantics has con-
cerned researchers for decades. This has led to the development of answer set pro-
gramming, discussed in detail in Chapter 7, in which logic programs are interpreted
with the stable model semantics. Answer set programming has been used for many
applications, including question answering, computational biology, and system vali-
dation.

http://dx.doi.org/10.1016/S1574-6526(07)03007-6

V. Lifschitz, L. Morgenstern, D. Plaisted 67

1.5 Suitability of Logic for Knowledge Representation

The central tenet of logicist AI5—that knowledge is best represented using formal
logic—has been debated as long as the field of knowledge representation has existed.
Among logicist AI’s strong advocates are John McCarthy [171, 175], Patrick Hayes
[112, 114, 111], and Robert Moore [186]; critics of the logicist approach have included
Yehoshua Bar-Hillel [21], Marvin Minsky [185], Drew McDermott [180], and Rodney
Brooks [42]. (McDermott can be counted in both the logicist and anti-logicist camps,
having advocated for and contributed to logicist AI [178, 181, 179] before losing faith
in the enterprise.)

The crux of the debate is simply this: Logicists believe that first-order logic, along
with its modifications, is a language particularly well suited to capture reasoning, due
to its expressivity, its model-theoretic semantics, and its inferential power. Note [112]
that it is not a particular syntax for which logicists argue; it is the notion of a formal,
declarative semantics and methods of inference that are important. (See [95, 64, 233,
39] for examples of how AI logicism is used.) Anti-logicists have argued that the
program, outside of textbook examples, is undesirable and infeasible. To paraphrase
McDermott [180], You Don’t Want To Do It, and You Can’t Do It Anyway.

This handbook clearly approaches AI from a logicist point of view. It is never-
theless worthwhile examining the debate in detail. For it has not consisted merely
of an ongoing sequence of arguments for and against a particular research approach.
Rather, the arguments of the anti-logicists have proved quite beneficial for the logicist
agenda. The critiques have often been recognized as valid within the logicist com-
munity; researchers have applied themselves to solving the underlying difficulties;
and in the process have frequently founded productive subfields of logicist AI, such
as nonmonotonic reasoning. Examining the debate puts into context the research in
knowledge representation that is discussed in this Handbook.

1.5.1 Anti-logicist Arguments and Responses

In the nearly fifty years since McCarthy’s Advice Taker paper first appeared [171],
the criticisms against the logicist approach have been remarkably stable. Most of the
arguments can be characterized under the following categories:

• Deductive reasoning is not enough.

• Deductive reasoning is too expensive.

• Writing down all the knowledge (the right way) is infeasible.

• Other approaches do it better and/or cheaper.

The argument: Deductive reasoning is not enough

McCarthy’s original logicist proposal called for the formalization of a set of common-
sense facts in first-order logic, along with an automated theorem prover to reason with

5The term logicism generally refers to the school of thought that mathematics can be reduced to logic
[270], logicists to the proponents of logicism. Within the artificial intelligence community, however, a logi-
cist refers to a proponent of logicist AI, as defined in this section [257].

68 1. Knowledge Representation and Classical Logic

those facts. He gave as an example the reasoning task of planning to get to the airport.
McCarthy argued that starting out from facts about first, the location of oneself, one’s
car, and the airport; second, how these locations relate to one another; third, the fea-
sibility of certain actions, such as walking and driving; fourth, the effects that actions
had; and fifth, basic planning constructs, one could deduce that to get to the airport,
one should walk to one’s car and drive the car to the airport. There were, all together,
just 15 axioms in this draft formalization.

Bar-Hillel argued:

It sounds rather incredible that the machine could have arrived at its
conclusion—which, in plain English, is “Walk from your desk to your car!”—
by sound deduction! This conclusion surely could not possibly follow from the
premise in any serious sense. Might it not be occasionally cheaper to call a taxi
and have it take you over to the airport? Couldn’t you decide to cancel your
flight or to do a hundred other things?

The need for nonmonotonic reasoning

In part, Bar-Hillel was alluding to the many exceptions that could exist in any re-
alistically complex situation. Indeed, it soon became apparent to AI researchers that
exceptions exist for even simple situations and facts. The classic example is that of rea-
soning that a bird can fly. Birds typically can fly, although there are exceptions, such
as penguins and birds whose wings are broken. If one wants to formalize a theory of
bird flying, one cannot simply write

(1.17)∀x(Bird(x) → Flies(x))

because that would mean that all birds fly. That would be wrong, because it does not
take penguins and broken-winged birds into account. One could instead write

(1.18)∀x(Bird(x) ∧ ¬Penguin(x) ∧ ¬Brokenwinged(x) → Flies(x))

which says that all birds fly, as long as they are not penguins or broken-winged, or
better yet, from the representational point of view, the following three formulas:

(1.19)∀x(Bird(x) ∧ ¬Ab(x) → Flies(x)),

(1.20)∀x(Penguin(x) → Ab(x)),

(1.21)∀x(Brokenwinged(x) → Ab(x))

which say that birds fly unless they are abnormal, and that penguins and broken-
winged birds are abnormal.

A formula in the style of (1.18) is difficult to write, since one needs to state all
possible exceptions to bird flying in order to have a correct axiom. But even aside
from the representational difficulties, there is a serious inferential problem. If one
only knows that Tweety is a bird, one cannot use axiom (1.18) in a deductive proof.
One needs to know as well that the second and third conjuncts on the left-hand side
of the implication are true: that is, that Tweety is not a penguin and is not broken-
winged. Something stronger than deduction is needed here; something that permits
jumping to the conclusion that Tweety flies from the fact that Tweety is a bird and the

V. Lifschitz, L. Morgenstern, D. Plaisted 69

absence of any knowledge that would contradict this conclusion. This sort of default
reasoning would be nonmonotonic in the set of axioms: adding further information
(e.g., that Tweety is a penguin) could mean that one has to retract conclusions (that is,
that Tweety flies).

The need for nonmonotonic reasoning was noted, as well, by Minsky [185]. At the
time Minsky wrote his critique, early work on nonmonotonicity had already begun.
Several years later, most of the major formal approaches to nonmonotonic reasoning
had already been mapped out [173, 224, 181]. This validated both the logicist AI ap-
proach, since it demonstrated that formal systems could be used for default reasoning,
and the anti-logicists, who had from the first argued that first-order logic was too weak
for many reasoning tasks.

Nonmonotonicity and the anti-logicists

From the time they were first developed, nonmonotonic logics were seen as an essen-
tial logicist tool. It was expected that default reasoning would help deal with many KR
difficulties, such as the frame problem, the problem of efficiently determining which
things remain the same in a changing world. However, it turned out to be surprisingly
difficult to develop nonmonotonic theories that entailed the expected conclusions. To
solve the frame problem, for example, one needs to formalize the principle of in-
ertia—that properties tend to persist over time. However, a naive formalization of
this principle along the lines of [174] leads to the multiple extension problem; a phe-
nomenon in which the theory supports several models, some of which are unintuitive.
Hanks and McDermott [110] demonstrated a particular example of this, the Yale shoot-
ing problem. They wrote up a simple nonmonotonic theory containing some general
facts about actions (that loading a gun causes the gun to be loaded, and that shooting
a loaded gun at someone causes that individual to die), the principle of inertia, and a
particular narrative (that a gun is loaded at one time, and shot at an individual a short
time after). The expected conclusion, that the individual will die, did not hold. Instead,
Hanks and McDermott got multiple extensions: the expected extension, in which the
individual dies; and an unexpected extension, in which the individual survives, but the
gun mysteriously becomes unloaded. The difficulty is that the principle of inertia can
apply either to the gun remaining loaded or the individual remaining alive. Intuitively
we expect the principle to be applied to the gun remaining loaded; however, there was
nothing in Hank’s and McDermott’s theory to enforce that.

The Yale shooting problem was not hard to handle: solutions began appearing
shortly after the problem became known. (See [160, 161, 238] for some early so-
lutions.) Nonetheless, the fact that nonmonotonic logics could lead to unexpected
conclusions for such simple problems was evidence to anti-logicists of the infeasi-
bility of logicist AI. Indeed, it led McDermott to abandon logicist AI. Nonmonotonic
logic was essentially useless, McDermott argued [180], claiming that it required one
to know beforehand what conclusions one wanted to draw from a set of axioms, and
to build that conclusion into the premises.

In contrast, what logicist AI learned from the Yale shooting problem was the
importance of a good underlying representation. The difficulty with Hanks and Mc-
Dermott’s axiomatization was not that it was written in a nonmonotonic logic; it was
that it was devoid of a concept of causation. The Yale shooting problem does not arise
in an axiomatization based on a sound theory of causation [243, 187, 237].

70 1. Knowledge Representation and Classical Logic

From today’s perspective, the Yale shooting scenario is rather trivial. Over the last
ten years, research related to the frame problem has concentrated on more elaborate
kinds of action domains—those that include actions with indirect effects, nondeter-
ministic actions, and interacting concurrently executed actions. Efficient implementa-
tions of such advanced forms of nonmonotonic reasoning have been used in serious
industrial applications, such as the design of a decision support system for the Space
Shuttle [198].

The current state of research on nonmonotonic reasoning and the frame problem is
described in Chapters 6, 7, and 16–20 of this Handbook.

The need for abduction and induction

Anti-logicists have pointed out that not all commonsense reasoning is deductive. Two
important examples of non-deductive reasoning are abduction, explaining the cause
of a phenomenon, and induction, reasoning from specific instances of a class to the
entire class. Abduction, in particular, is important for both expert and commonsense
reasoning. Diagnosis is a form of abduction; understanding natural language requires
abduction as well [122].

Some philosophers of science [215, 117, 118] have suggested that abduction can
be grounded in deduction. The idea is to hypothesize or guess an explanation for a
particular phenomenon, and then try to justify this guess using deduction. A well-
known example of this approach is known as the deductive-nomological hypothesis.

McDermott [180] has argued against such attempts, pointing out what has been
noted by philosophers of science [234]: the approach is overly simplistic, can justify
trivial explanations, and can support multiple explanations without offering a way of
choosing among candidates. But he was tilting at a straw man. In fact, the small part
of logicist AI that has focused on abduction has been considerably more sophisticated
in its approach. As discussed in the previous section, Hobbs, Stickel, and others have
used theorem proving technology to support abductive reasoning [247, 122], but they
do it by carefully examining the structure of the generated proofs, and the particular
context in which the explanandum occurs. There is a deliberate and considered ap-
proach toward choosing among multiple explanations and toward filtering out trivial
explanations.

There is also growing interest in inductive logic programming [189]. This field
uses machine learning techniques to construct a logic program that entails all the pos-
itive and none of the negative examples of a given set of examples.

The argument: Deductive reasoning is too expensive

The decisive question [is] how a machine, even assuming it will have some-
how countless millions of facts stored in its memory, will be able to pick out
those facts which will serve as premises for its deduction.

Yehoshua Bar-Hillel [21]

When McCarthy first presented his Advice Taker paper and Bar-Hillel made the
above remark, automated theorem proving technology was in its infancy: resolution
theorem proving was still several years away from being invented. But even with
relatively advanced theorem proving techniques, Bar-Hillel’s point remains. General

V. Lifschitz, L. Morgenstern, D. Plaisted 71

automated theorem proving programs frequently cannot handle theories with several
hundred axioms, let alone several million.

This point has in fact shaped much of the AI logicist research agenda. The research
has progressed along several fronts. There has been a large effort to make general theo-
rem proving more efficient (this is discussed at length in Section 1.3); special-purpose
reasoning techniques have been developed, e.g., by the description logic community
[11] as well as by Cyc (see Section 1.4.2) to determine subsumption and disjointness
of classes; and logic programming techniques (for both Prolog (see Section 1.4.4) and
answer set programming (see Chapter 7)) have been developed so that relatively ef-
ficient inferences can be carried out under certain restricted assumptions. The HPKB
project and Cyc demonstrate that at least in some circumstances, inference is practical
even with massively large knowledge bases.

The argument: Writing down all the knowledge (the right way) is infeasible

Just constructing a knowledge base is a major intellectual research problem
. . . The problem of finding suitable axioms—the problem of “stating the facts”
in terms of always-correct, logical, assumptions—is very much harder than is
generally believed.

Marvin Minsky [185].

The problem is in fact much greater than Minsky realized, although it has taken
AI logicists a while to realize the severity of the underlying issues. At the time that
Minsky wrote his paper, his critique on this point was not universally appreciated by
proponents of AI logicism. The sense one gets from reading the papers of Pat Hayes
[113, 114, 111],6 for example, is one of confidence and optimism. Hayes decried the
paucity of existing domain formalizations, but at the time seemed to believe that cre-
ating the formalizations could be done as long as enough people actually sat down
to write the axioms. He proposed, for the subfield of naive physics, that a committee
be formed, that the body of commonsense knowledge about the physical world be di-
vided into clusters, with clusters assigned to different committee members, who would
occasionally meet in order to integrate their theories.

But there never was a concerted effort to formalize naive physics. Although there
have been some attempts to formalize knowledge of various domains (see, e.g., [123],
and the proceedings of the various symposia on Logical Formalizations of Common-
sense Knowledge), most research in knowledge representation remains at the meta-
level. The result, as Davis [65] has pointed out, is that at this point constructing a
theory that can reason correctly about simple tasks like staking plants in a garden is
beyond our capability.

What makes it so difficult to write down the necessary knowledge? It is not, cer-
tainly, merely the writing down of millions of facts. The Cyc knowledge base, as
discussed in Section 1.4, has over 3 million assertions. But that knowledge base is still
missing the necessary information to reason about staking plants in a garden, cracking
eggs into a bowl, or many other challenge problems in commonsense reasoning and
knowledge representation [183]. Size alone will not solve the problem. That is why
attempts to use various web-based technologies to gather vast amounts of knowledge
[170] are irrelevant to this critique of the logicist approach.

6Although [111] was published in the 1980s, a preliminary version was first written in the late 1970s.

http://dx.doi.org/10.1016/S1574-6526(07)03007-6

72 1. Knowledge Representation and Classical Logic

Rather, formalizing domains in logic is difficult for at least the following reasons:

• First, it is difficult to become aware of all our implicit knowledge; that is, to
make this knowledge explicit, even in English or any other natural language.
The careful examination of many domains or non-trivial commonsense reason-
ing problems makes this point clear. For example, reasoning about how and
whether to organize the giving of a surprise birthday present [188] involves rea-
soning about the factors that cause a person to be surprised, how surprises can
be foiled, joint planning, cooperation, and the importance of correct timing. The
knowledge involved is complex and needs to be carefully teased out of the mass
of social protocols that unknowingly govern our behavior.

• Second, as Davis [65] has pointed out, there is some knowledge that is diffi-
cult to express in any language. Davis gives the example of reasoning about a
screw. Although it is easy to see that a small bump in the surface will affect the
functionality of a screw much more than a small pit in the surface, it is hard to
express the knowledge needed to make this inference.

• Third, there are some technical difficulties that prevent formalization of cer-
tain types of knowledge. For example, there is still no comprehensive theory of
how agents infer and reason about other agents’ ignorance (although [109] is
an excellent start in this direction); this makes it difficult to axiomatize realistic
theories of multi-agent planning, which depend crucially on inferring what other
agents do and do not know, and how they make up for their ignorance.

• Fourth, the construction of an ontology for a domain is a necessary but difficult
prerequisite to axiomatization. Deciding what basic constructs are necessary and
how to organize them is a tricky enterprise, which often must be reworked when
one starts to write down axioms and finds that it is awkward to formalize the
necessary knowledge.

• Fifth, it is hard to integrate existing axiomatizations. Davis gives as an ex-
ample his axiomatizations of string, and of cutting. There are various tech-
nical difficulties—mainly, assumptions that have been built into each domain
axiomatization—that prevent a straightforward integration of the two axiomati-
zations into a single theory that could support simple inferences about cutting
string. The problem of integration, in simpler form, will also be familiar to any-
one who has ever tried to integrate ontologies. Concepts do not always line up
neatly; how one alters these concepts in order to allow subsumption is a chal-
lenging task.

There have nonetheless been many successes in writing down knowledge correctly.
The best known are the theories of causation and temporal reasoning that were devel-
oped in part to deal with the frame and Yale shooting problems. Other successful
axiomatizations, including theories of knowledge and belief, multiple agency, spatial
reasoning, and physical reasoning, are well illustrated in the domain theories in this
Handbook.

V. Lifschitz, L. Morgenstern, D. Plaisted 73

The argument: Other approaches do it better and/or cheaper

Anyone familiar with AI must realize that the study of knowledge representa-
tion—at least as it applies to the “commonsense” knowledge required for read-
ing typical text such as newspapers—is not going anywhere fast. This subfield
of AI has become notorious for the production of countless non-monotonic log-
ics and almost as many logics of knowledge and belief, and none of the work
shows any obvious application to actual knowledge-representation problems.

Eugene Charniak [54]

During the last fifteen years, statistical learning techniques have become increas-
ingly popular within AI, particularly for applications such as natural language process-
ing for which classic knowledge representation techniques had once been considered
essential. For decades, for example, it had been assumed that much background do-
main knowledge would be needed in order to correctly parse sentences. For instance,
a sentence like John saw the girl with the toothbrush has two parses, one in which
the prepositional phrase with the toothbrush modifies the phrase John saw, and one in
which it modifies the noun phrase the girl. Background knowledge, however, elimi-
nates the first parse, since people do not see with toothbrushes. (In contrast, both parses
are plausible for the sentence John saw the girl with the telescope.) The difficulty with
KR-based approaches is that it requires a great deal of knowledge to properly process
even small corpora of sentences.

Statistical learning techniques offers a different paradigm for many issues that arise
in processing language. One useful concept is that of collocation [166], in which a
program learns about commonly occurring collocated words and phrases, and subse-
quently uses this knowledge in order to parse. This is particularly useful for parsing
and disambiguating phonemes for voice recognition applications. A statistical learn-
ing program might learn, for example, that weapons of mass destruction are words
that are collocated with a high frequency. If this knowledge is then fed into a voice
recognition program, it could be used to disambiguate between the words math and
mass. The words in the phrase Weapons of math destruction are collocated with a low
frequency, so that interpretation becomes less likely.

Programs using statistical learning techniques have become popular in text-
retrieval applications; in particular, they are used in systems that have performed
well in recent TREC competitions [262–266]. Statistical-learning systems stand out
because they are often cheaper to build. There is no need to painstakingly build tailor-
made knowledge bases for the purposes of understanding a small corpora of texts.

Nevertheless, it is unlikely that statistical-learning systems will ever obviate the
need for logicist AI in these applications. Statistical techniques can go only so far.
They are especially useful in domains in which language is highly restricted (e.g.,
newspaper texts, the example cited by Charniak), and for applications in which deep
understanding is not required. But for many true AI applications, such as story under-
standing and deep question-answering applications, deep understanding is essential.

It is no coincidence that the rising popularity of statistical techniques has co-
incided with the rise of the text-retrieval competitions (TREC) as opposed to the
message-understanding competitions (MUC). It is also worth noting that the success-
ful participants in HPKB relied heavily on classical logicist KR techniques [58].

74 1. Knowledge Representation and Classical Logic

In general, this pattern appears in other applications. Statistical learning techniques
do well with low cost on relatively easy problems. However, hard problems remain
resistant to these techniques. For these problems, logicist-KR-based techniques appear
to work best.

This may likely mean that the most successful applications in the future will make
use of both approaches. As with the other critiques discussed above, the logicist re-
search agenda is once again being set and influenced by non-logicist approaches;
ultimately, this can only serve to strengthen the applicability of the logicist approach
and the success of logicist-based applications.

Acknowledgements

The comments of Eyal Amir, Peter Andrews, Peter Baumgartner, Ernie Davis, Esra
Erdem, Joohyung Lee, Christopher Lynch, Bill McCune, Sheila McIlraith, J. Moore,
Maria Paola Bonacina, J. Hsiang, H. Kirchner, M. Rusinowitch, and Geoff Sutcliffe
contributed to the material in this chapter. The first author was partially supported by
the National Science Foundation under Grant IIS-0412907.

Bibliography

[1] E. Amir and P. Maynard-Reid. Logic-based subsumption architecture. Artificial
Intelligence, 153(1–2):167–237, 2004.

[2] E. Amir and S. McIlraith. Partition-based logical reasoning for first-order and
propositional theories. Artificial Intelligence, 162(1–2):49–88, 2005.

[3] P.B. Andrews. Theorem proving via general matings. Journal of the ACM,
28:193–214, 1981.

[4] P.B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi. TPS:
A theorem proving system for classical type theory. Journal of Automated Rea-
soning, 16:321–353, 1996.

[5] P.B. Andrews and C.E. Brown. TPS: A hybrid automatic-interactive system for
developing proofs. Journal of Applied Logic, 4:367–395, 2006.

[6] C. Aravindan, J. Dix, and I. Niemelä. Dislop: A research project on disjunctive
logic programming. AI Commun., 10(3–4):151–165, 1997.

[7] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236(1–2):133–178, 2000.

[8] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider.
The Description Logic Handbook: Theory, Implementation, Applications. Cam-
bridge University Press, Cambridge, UK, 2003.

[9] F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov,
editors. Handbook of Automated Reasoning, vol. I, pages 445–532. Elsevier Sci-
ence, 2001 (Chapter 8).

[10] F. Baader, editor. CADE-19, 19th International Conference on Automated De-
duction, Miami Beach, FL, USA, July 28–August 2, 2003. Lecture Notes in
Computer Science, vol. 2741. Springer, 2003.

[11] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, Cambridge, England, 1998.

V. Lifschitz, L. Morgenstern, D. Plaisted 75

[12] L. Bachmair and D. Plaisted. Termination orderings for associative–
commutative rewriting systems. J. Symbolic Computation, 1:329–349, 1985.

[13] L. Bachmair and N. Dershowitz. Commutation, transformation, and termination.
In J.H. Siekmann, editor. Proceedings of the Eighth International Conference on
Automated Deduction, pages 5–20, 1986.

[14] L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equational proofs. In
Proceedings of the Symposium on Logic in Computer Science, pages 346–357,
1986.

[15] L. Bachmair, N. Dershowitz, and D. Plaisted. Completion without failure. In H.
Aït-Kaci and M. Nivat, editors. Resolution of Equations in Algebraic Structures
2: Rewriting Techniques, pages 1–30. Academic Press, New York, 1989.

[16] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with
selection and simplification. J. Logic Comput., 4(3):217–247, 1994.

[17] L. Bachmair and H. Ganzinger. Resolution theorem proving. In Robinson and
Voronkov [231], pages 19–99.

[18] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation.
Information and Computation, 121(2):172–192, September 1995.

[19] L. Bachmair, H. Ganzinger, and A. Voronkov. Elimination of equality via
transformation with ordering constraints. Lecture Notes in Computer Science,
1421:175–190, 1998.

[20] K. Baclawski, M.M. Kokar, R.J. Waldinger, and P.A. Kogut. Consistency check-
ing of semantic web ontologies. In I. Horrocks and J.A. Hendler, editors.
International Semantic Web Conference, Lecture Notes in Computer Science,
vol. 2342, pages 454–459. Springer, 2002.

[21] Y. Bar-Hillel, J. McCarthy, and O. Selfridge. Discussion of the paper: Pro-
grams with common sense. In V. Lifschitz, editor. Formalizing Common Sense,
pages 17–20. Intellect, 1998.

[22] H.G. Barrow. Verify: A program for proving correctness of digital hardware
designs. Artificial Intelligence, 24(1–3):437–491, 1984.

[23] P. Baumgartner. FDPLL—A first-order Davis–Putnam–Logemann–Loveland
procedure. In D. McAllester, editor. CADE-17—The 17th International Con-
ference on Automated Deduction, vol. 1831, pages 200–219. Springer, 2000.

[24] P. Baumgartner and U. Furbach. PROTEIN: A PROver with a theory extension
INterface. In Proceedings of the Conference on Automated Deduction, 1994.

[25] P. Baumgartner and C. Tinelli. The model evolution calculus. In F. Baader, ed-
itor. CADE-19: The 19th International Conference on Automated Deduction,
Lecture Notes in Artificial Intelligence, vol. 2741, pages 350–364. Springer,
2003.

[26] J.G.F. Belinfante. Computer proofs in Gödel’s class theory with equational defi-
nitions for composite and cross. Journal of Automated Reasoning, 22:311–339,
1999.

[27] C.G. Bell and A. Newell. Computer Structures: Readings and Examples.
McGraw-Hill, 1971.

[28] W. Bibel. Automated Theorem Proving. 2nd edition. Vieweg, Braunschweig/
Wiesbaden, 1987.

[29] J.-P. Billon. The disconnection method. In P. Miglioli, U. Moscato, D. Mundici,
and M. Ornaghi, editors. Proceedings of TABLEAUX-96, Lecture Notes in Arti-
ficial Intelligence, vol. 1071, pages 110–126. Springer, 1996.

76 1. Knowledge Representation and Classical Logic

[30] G. Birkhoff. On the structure of abstract algebras. Proc. Cambridge Philos. Soc.,
31:433–454, 1935.

[31] M. Bishop. A breadth-first strategy for mating search. In H. Ganzinger, editor.
CADE-16: Proceedings of the 16th International Conference on Automated De-
duction Trento, Italy, 1999, Lecture Notes in Artificial Intelligence, vol. 1632,
pages 359–373. Springer-Verlag, 1999.

[32] M. Bishop and P.B. Andrews. Selectively instantiating definitions. In Proceed-
ings of the 15th International Conference on Automated Deduction, pages 365–
380, 1998.

[33] A. Bockmayr and V. Weispfenning. Solving numerical constraints. In A. Robin-
son and A. Voronkov, editors. Handbook of Automated Reasoning, vol. 1,
pages 751–842. Elsevier, Amsterdam, The Netherlands, January 2001 (Chap-
ter 12).

[34] M.P. Bonacina. On the reconstruction of proofs in distributed theorem proving:
a modified clause-diffusion method. J. Symbolic Comput., 21(4):507–522, 1996.

[35] J. Bos and K. Markert. Recognising textual entailment with logical inference. In
HLT/EMNLP. The Association for Computational Linguistics, 2005.

[36] R. Boyer, M. Kaufmann, and J. Moore. The Boyer–Moore theorem prover and
its interactive enhancement. Computers and Mathematics with Applications,
29(2):27–62, 1995.

[37] R. Boyer, E. Lusk, W. McCune, R. Overbeek, M. Stickel, and L. Wos. Set theory
in first-order logic: Clauses for Gödel’s axioms. Journal of Automated Reason-
ing, 2:287–327, 1986.

[38] R. Boyer and J. Moore. A Computational Logic. Academic Press, New York,
1979.

[39] R.J. Brachman and H.J. Levesque. Knowledge Representation and Reasoning.
Morgan Kaufmann, 2004.

[40] D. Brand. Proving theorems with the modification method. SIAM J. Comput.,
4:412–430, 1975.

[41] I. Bratko. Prolog Programming for Artificial Intelligence. 3rd edition. Addison-
Wesley, 2000.

[42] R.A. Brooks. Intelligence without representation. Artificial Intelligence, 47(1–
3):139–159, 1991.

[43] R. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24(3):293–318, September 1992.

[44] B. Buchberger. Gröbner bases: An algorithmic method in polynomial ideal the-
ory. In N.K. Bose, editor. Multidimensional Systems Theory, pages 184–232.
Reidel, 1985.

[45] A. Bundy. The Computer Modelling of Mathematical Reasoning. Academic
Press, New York, 1983.

[46] A. Bundy. The automation of proof by mathematical induction. In A. Robinson
and A. Voronkov, editors. Handbook of Automated Reasoning, vol. I, pages 845–
911. Elsevier Science, 2001 (Chapter 13).

[47] A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-Level Guidance
for Mathematical Reasoning. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 56. Cambridge University Press, 2005.

V. Lifschitz, L. Morgenstern, D. Plaisted 77

[48] J. Burch, E. Clarke, K. McMillan, D. Dill, and J. Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, June 1992.

[49] M. Burrows, M. Abadi, and R.M. Needham. Authentication: A practical study
in belief and action. In M.Y. Vardi, editor. TARK, pages 325–342. Morgan Kauf-
mann, 1988.

[50] S. Buvac. Resolving lexical ambiguity using a formal theory of context. In K.
van Deemter and S. Peters, editors. Semantic Ambiguity and Underspecification.
Center for the Study of Language and Information, Stanford, 1996.

[51] R. Caferra, A. Leitsch, and N. Peltier. Automated Model Building. Kluwer Aca-
demic Publishers, 2004.

[52] B.F. Caviness and J.R. Johnson, editors. Quantifier Elimination and Cylindrical
Algebraic Decomposition. Springer-Verlag, New York, 1998.

[53] C. Chang and R. Lee. Symbolic Logic and Mechanical Theorem Proving. Aca-
demic Press, New York, 1973.

[54] E. Charniak. Statistical Language Learning. MIT Press, 1993.
[55] S.C. Chou and X.S. Gao. Automated reasoning in geometry. In A. Robinson and

A. Voronkov, editors. Handbook of Automated Reasoning, vol. I, pages 707–
749. Elsevier Science, 2001 (Chapter 11).

[56] A. Church. A note on the Entscheidungsproblem. Journal of Symbolic Logic,
1:40–41, 1936. Correction, ibid., 101–102.

[57] K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors. Logic and
Data Bases, pages 293–322. Plenum Press, New York, 1978.

[58] P.R. Cohen, R. Schrag, E.K. Jones, A. Pease, A. Lin, B. Starr, D. Gunning, and
M. Burke. The DARPA high-performance knowledge bases project. AI Maga-
zine, 19(4):25–49, 1998.

[59] H. Comon. Inductionless induction. In A. Robinson and A. Voronkov, editors.
Handbook of Automated Reasoning, vol. I, pages 913–962. Elsevier Science,
2001 (Chapter 14).

[60] H. Comon and F. Jacquemard. Ground reducibility is EXPTIME-complete. In
Proc. 12th IEEE Symp. Logic in Computer Science (LICS’97), Warsaw, Poland,
June–July 1997, pages 26–34. IEEE Comp. Soc. Press, 1997.

[61] H. Comon, P. Narendran, R. Nieuwenhuis, and M. Rusinowitch. Deciding
the confluence of ordered term rewrite systems. ACM Trans. Comput. Logic,
4(1):33–55, 2003.

[62] R.L. Constable, et al. Implementing Mathematics with the NuPrl Proof Devel-
opment System. Prentice-Hall, Englewood Cliffs, NJ, 1986.

[63] M. Dauchet. Simulation of Turing machines by a left-linear rewrite rule. In
Proceedings of the 3rd International Conference on Rewriting Techniques and
Applications, Lecture Notes in Computer Science, vol. 355, pages 109–120.
Springer, 1989.

[64] E. Davis. Representations of Commonsense Knowledge. Morgan Kaufmann,
San Francisco, CA, 1990.

[65] E. Davis. The naive physics perplex. AI Magazine, 19(3):51–79, 1998.
[66] M. Davis. Eliminating the irrelevant from mechanical proofs. In: Proceedings

Symp. of Applied Math. vol. 15, pages 15–30, 1963.

78 1. Knowledge Representation and Classical Logic

[67] M. Davis. The prehistory and early history of automated deduction. In J. Siek-
mann and G. Wrightson, editors. Automation of Reasoning, vol. 1. Springer-
Verlag, Berlin, 1983.

[68] M. Davis. First order logic. In D.M. Gabbay, C.J. Hogger, and J.A. Robinson,
editors. Handbook of Logic in AI and Logic Programming, vol. 1, pages 31–65.
Oxford University Press, 1993.

[69] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, 1962.

[70] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

[71] A. Degtyarev and A. Voronkov. The inverse method. In A. Robinson and A. Vo-
ronkov, editors. Handbook of Automated Reasoning, vol. I, pages 179–272. El-
sevier Science, 2001 (Chapter 4).

[72] E. Deplagne, C. Kirchner, H. Kirchner, and Q.H. Nguyen. Proof search and
proof check for equational and inductive theorems. In Baader [10], pages 297–
316.

[73] N. Dershowitz. On representing ordinals up to (0. Unpublished note, 1980.
[74] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer

Science, 17:279–301, 1982.
[75] N. Dershowitz. Termination of rewriting. Journal of Symbolic Comput., 3:69–

116, 1987.
[76] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor.

Handbook of Theoretical Computer Science. North-Holland, Amsterdam, 1990.
[77] N. Dershowitz and D.A. Plaisted. Rewriting. In A. Robinson and A. Voronkov,

editors. Handbook of Automated Reasoning, vol. I, pages 535–610. Elsevier Sci-
ence, 2001 (Chapter 9).

[78] N. Dershowitz, J. Hsiang, N. Josephson, and D.A. Plaisted. Associative–
commutative rewriting. In Proceedings of the Eighth International Joint Con-
ference on Artificial Intelligence, pages 940–944, August 1983.

[79] E. Domenjoud. AC-unification through order-sorted AC1-unification. In Pro-
ceedings of the 4th International Conference on Rewriting Techniques and Ap-
plications, Lecture Notes in Computer Science, vol. 488. Springer-Verlag, 1991.

[80] E. Domenjoud. Number of minimal unifiers of the equation αx1+· · ·+αxp =AC

βy1 + · · · + βyq . Journal of Automated Reasoning, 8:39–44, 1992.
[81] P.J. Downey, R. Sethi, and R. Tarjan. Variations on the common subexpression

problem. Journal of the ACM, 27(4):758–771, 1980.
[82] J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving

termination of term rewriting. In Furbach and Shankar [91], pages 574–588.
[83] R.S. Engelmore. Knowledge-based systems in Japan, 1993. http://www.wtec.

org/loyola/kb/.
[84] D. Fensel and A. Schönegge. Specifying and verifying knowledge-based sys-

tems with KIV. In J. Vanthienen and F. van Harmelen, editors. EUROVAV ,
pages 107–116. Katholieke Universiteit Leuven, Belgium, 1997.

[85] R. Fikes and N.J. Nilsson. Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3–4):189–208, 1971.

[86] B. Fischer, J. Schumann, and G. Snelting. Deduction-based software compo-
nent retrieval. In W. Bibeland and P.H. Schmitt, editors. Automated Deduction:
A Basis for Applications, vol. 3. Kluwer Academic, 1998.

http://www.wtec.org/loyola/kb/
http://www.wtec.org/loyola/kb/

V. Lifschitz, L. Morgenstern, D. Plaisted 79

[87] M. Fitting. First-Order Logic and Automated Theorem Proving. Springer-
Verlag, New York, 1990.

[88] E. Franconi, A.L. Palma, N. Leone, S. Perri, and F. Scarcello. Census data repair:
a challenging application of disjunctive logic programming. In R. Nieuwenhuis
and A. Voronkov, editors. LPAR, Lecture Notes in Computer Science, vol. 2250,
pages 561–578. Springer, 2001.

[89] G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsch-
prache des reinen Denkens. Halle, 1879. English translation: [261, pp. 1–82].

[90] T.W. Frühwirth and S. Abdennadher. The Munich rent advisor: A success for
logic programming on the Internet. TPLP, 1(3):303–319, 2001.

[91] U. Furbach and N. Shankar, editors. Automated Reasoning, Third International
Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17–20, 2006, Pro-
ceedings. Lecture Notes in Computer Science, vol. 4130. Springer, 2006.

[92] J.-M. Gaillourdet, T. Hillenbrand, B. Löchner, and H. Spies. The new Wald-
meister loop at work. In Baader [10], pages 317–321.

[93] H. Ganzinger and K. Korovin. New directions in instantiation-based theo-
rem proving. In Proc. 18th IEEE Symposium on Logic in Computer Science,
(LICS’03), pages 55–64. IEEE Computer Society Press, 2003.

[94] H. Gelernter, J.R. Hansen, and D.W. Loveland. Empirical explorations of the
geometry theorem proving machine. In E. Feigenbaum and J. Feldman, editors.
Computers and Thought, pages 153–167. McGraw-Hill, New York, 1963.

[95] M. Genesereth and N.J. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann, San Mateo, CA, 1987.

[96] G. Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 1935.

[97] J. Giesl and D. Kapur. Deciding inductive validity of equations. In Baader [10],
pages 17–31.

[98] J. Giesl, P. Schneider-Kamp, and R. Thiemann. Automatic termination proofs in
the dependency pair framework. In Furbach and Shankar [91], pages 281–286.

[99] P.C. Gilmore. A proof method for quantification theory. IBM Journal of Re-
search and Development, 4:28–35, 1960.

[100] K. Gödel. Die Vollständigkeit fer Axiome des logischen Funktionenkalküls.
Monatshefte für Mathematik und Physik, 37:349–360, 1930. English transla-
tion: [261, pp. 582–591].

[101] M.J. Gordon and T.F. Melham, editors. Introduction to HOL: A Theorem-
Proving Environment for Higher-Order Logic. Cambridge University Press,
1993.

[102] B.C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Automatic partitioning of owl
ontologies using-connections. In I. Horrocks, U. Sattler, and F. Wolter, editors.
Description Logics, volume 147 of CEUR Workshop Proceedings, 2005.

[103] C.C. Green. The Applications of Theorem Proving to Question-Answering Sys-
tems. Garland, New York, 1969.

[104] C.C. Green. Application of theorem proving to problem solving. In IJCAI, pages
219–240, 1969.

[105] J.V. Guttag, D. Kapur, and D. Musser. On proving uniform termination and re-
stricted termination of rewriting systems. SIAM J. Comput., 12:189–214, 1983.

80 1. Knowledge Representation and Classical Logic

[106] R. Hähnle. Tableaux and related methods. In A. Robinson and A. Voronkov,
editors. Handbook of Automated Reasoning, vol. I, pages 100–178. Elsevier Sci-
ence, 2001 (Chapter 3).

[107] A. Haken. The intractability of resolution. Theoretical Computer Science,
39:297–308, 1985.

[108] T.R. Halfhill. An error in a lookup table created the infamous bug in Intel’s latest
processor. BYTE, March 1995.

[109] J.Y. Halpern and G. Lakemeyer. Multi-agent only knowing. J. Logic Comput.,
11(1):41–70, 2001.

[110] S. Hanks and D.V. McDermott. Nonmonotonic logic and temporal projection.
Artificial Intelligence, 33(3):379–412, 1987.

[111] P.J. Hayes. Naive physics I: Ontology for liquids. In J. Hobbs and R. Moore,
editors. Formal Theories of the Commonsense World, pages 71–107. Ablex,
Norwood, NJ, 1975.

[112] P.J. Hayes. In defence of logic. In IJCAI, pages 559–565, 1977.
[113] P.J. Hayes. The naive physics manifesto. In D. Michie, editor. Expert Systems in

the Microelectronic Age. Edinburgh University Press, 1979.
[114] P.J. Hayes. The second naive physics manifesto. In J. Hobbs and R. Moore, edi-

tors. Formal Theories of the Commonsense World, pages 1–36. Ablex, Norwood,
NJ, 1985.

[115] P.J. Hayes, T.C. Eskridge, R. Saavedra, T. Reichherzer, M. Mehrotra, and D.
Bobrovnikoff. Collaborative knowledge capture in ontologies. In P. Clark and
G. Schreiber, editors. K-CAP, pages 99–106. ACM, 2005.

[116] S. Heilbrunner and S. Hölldobler. The undecidability of the unification and
matching problem for canonical theories. Acta Informatica, 24:157–171, 1987.

[117] C.G. Hempel. Aspects of Scientific Explanation and Other Essays in the Philos-
ophy of Science. Free Press, 1965.

[118] C.G. Hempel and P. Oppeneheim. Studies in the logic of explanation. In C.G.
Hempel, editor. Aspects of Scientific Explanation and Other Essays in the Phi-
losophy of Science, pages 245–295. Free Press, 1965. Also includes 1964 post-
script. Originally published in Philosophy of Science, 1948.

[119] J. Hendrix, J. Meseguer, and H. Ohsaki. A sufficient completeness checker for
linear order-sorted specifications modulo axioms. In Furbach and Shankar [91],
pages 151–155.

[120] N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In
Baader [10], pages 32–46.

[121] J.R. Hobbs. An overview of the TACITUS project. Computational Linguistics,
12(3), 1986.

[122] J.R. Hobbs, D.E. Appelt, J. Bear, D.J. Israel, M. Kameyama, M.E. Stickel, and
M. Tyson. Fastus: A cascaded finite-state transducer for extracting information
from natural-language text. CoRR, cmp-lg/9705013, 1997. Earlier version avail-
able as SRI Technical Report 519.

[123] J.R. Hobbs and R.C. Moore. Formal Theories of the Commonsense World.
Ablex, 1985.

[124] J.R. Hobbs, M.E. Stickel, D.E. Appelt, and P.A. Martin. Interpretation as abduc-
tion. Artificial Intelligence, 63(1–2):69–142, 1993.

V. Lifschitz, L. Morgenstern, D. Plaisted 81

[125] J. Hsiang and M. Rusinowitch. Proving refutational completeness of theorem-
proving strategies: the transfinite semantic tree method. Journal of the ACM,
38(3):559–587, July 1991.

[126] G. Huet. A complete proof of correctness of the Knuth–Bendix completion al-
gorithm. J. Comput. Systems Sci., 23(1):11–21, 1981.

[127] G. Huet and J.M. Hullot. Proofs by induction in equational theories with con-
structors. Journal of Computer and System Sciences, 25:239–266, 1982.

[128] G. Huet and D. Lankford. On the uniform halting problem for term rewriting
systems. Technical Report Rapport Laboria 283, IRIA, Le Chesnay, France,
1978.

[129] F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling and verifying
security protocols. In Logic Programming and Automated Reasoning, pages
131–160, 2000.

[130] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of
equations. SIAM J. Comput., 15:1155–1194, November 1986.

[131] J.-P. Jouannaud and P. Lescanne. On multiset orderings. Information Processing
Letters, 15:57–63, 1982.

[132] J.-P. Jouannaud, P. Lescanne, and F. Reinig. Recursive decomposition ordering.
In Proceedings of the Second IFIP Workshop on Formal Description of Pro-
gramming Concepts, pages 331–348. North-Holland, 1982.

[133] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-
based survey of unification. In J.-L. Lassez and G. Plotkin, editors. Computa-
tional Logic: Essays in Honor of Alan Robinson. MIT Press, Cambridge, MA,
1991.

[134] J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in theories
without constructors. Inform. and Comput., 82(1):1–33, 1989.

[135] L. Kalmár. Zurückführung des Entscheidungsproblems auf den Fall von
Formeln mit einer einzigen, bindren, Funktionsvariablen. Compositio Mathe-
matica, 4:137–144, 1936.

[136] S. Kamin and J.-J. Levy. Two generalizations of the recursive path ordering.
Unpublished, February 1980.

[137] D. Kapur and P. Narendran. Double-exponential complexity of computing a
complete set of AC-unifiers. In Proceedings 7th IEEE Symposium on Logic in
Computer Science, pages 11–21. Santa Cruz, CA, 1992.

[138] D. Kapur, P. Narendran, and H. Zhang. On sufficient completeness and related
properties of term rewriting systems. Acta Informatica, 24:395–416, 1987.

[139] D. Kapur, G. Sivakumar, and H. Zhang. A new method for proving termination
of AC-rewrite systems. In Proc. of Tenth Conference on Foundations of Software
Technology and Theoretical Computer Science, Lecture Notes in Comput. Sci.,
vol. 472, pages 133–148. Springer-Verlag, December 1990.

[140] D. Kapur and M. Subramaniam. Extending decision procedures with induction
schemes. In D.A. McAllester, editor. CADE-17: Proceedings of the 17th In-
ternational Conference on Automated Deduction, vol. 1831, pages 324–345.
Springer-Verlag, London, UK, 2000.

[141] M. Kaufmann, P. Manolios, and J.S. Moore, editors. Computer-Aided Reason-
ing: ACL2 Case Studies. Kluwer Academic Press, Boston, MA, 2000.

[142] M. Kaufmann, P. Manolios, and J.S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Press, Boston, MA, 2000.

82 1. Knowledge Representation and Classical Logic

[143] C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolic con-
straints. Revue Francaise d’Intelligence Artificielle, 4(3):9–52, 1990.

[144] D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras. In
J. Leech, editor. Computational Problems in Abstract Algebra, pages 263–297.
Pergamon Press, Oxford, 1970.

[145] A. Koprowski and H. Zantema. Automation of recursive path ordering for infi-
nite labelled rewrite systems. In Furbach and Shankar [91], pages 332–346.

[146] K. Korovin and A. Voronkov. An AC-compatible Knuth–Bendix order. In
Baader [10], pages 47–59.

[147] R.A. Kowalski. Logic for Problem Solving. North-Holland, Amsterdam, 1980.
[148] J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.

Transactions of the American Mathematical Society, 95:210–225, 1960.
[149] D. Lankford. Canonical algebraic simplification in computational logic. Techni-

cal Report Memo ATP-25, Automatic Theorem Proving Project. University of
Texas, Austin, TX, 1975.

[150] D. Lankford. On proving term rewriting systems are Noetherian. Technical
Report Memo MTP-3, Mathematics Department, Louisiana Tech., University,
Ruston, LA, 1979.

[151] D. Lankford and A.M. Ballantyne. Decision problems for simple equational
theories with commutative-associative axioms: Complete sets of commutative-
associative reductions. Technical Report Memo ATP-39, Department of Mathe-
matics and Computer Science, University of Texas, Austin, TX, 1977.

[152] D. Lankford, G. Butler, and A. Ballantyne. A progress report on new decision
algorithms for finitely presented abelian groups. In Proceedings of the 7th In-
ternational Conference on Automated Deduction, Lecture Notes in Computer
Science, vol. 170, pages 128–141. Springer, May 1984.

[153] S.-J. Lee and D. Plaisted. Eliminating duplication with the hyper-linking strat-
egy. Journal of Automated Reasoning, 9(1):25–42, 1992.

[154] S.-J. Lee and D. Plaisted. Use of replace rules in theorem proving. Methods of
Logic in Computer Science, 1:217–240, 1994.

[155] A. Leitsch. The Resolution Calculus. Texts in Theoretical Computer Science.
Springer-Verlag, Berlin, 1997.

[156] D.B. Lenat. Cyc: A large-scale investment in knowledge infrastructure. Com-
munications of the ACM, 38(11):32–38, 1995.

[157] D.B. Lenat and R.V. Guha. Building Large Knowledge Based Systems: Rep-
resentation and Inference in the Cyc Project. Addison-Wesley, Reading, MA,
1990.

[158] R. Letz and G. Stenz. Model elimination and connection tableau procedures.
In A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning,
vol. II, pages 2015–2114. Elsevier Science, 2001 (Chapter 28).

[159] V. Lifschitz. What is the inverse method? J. Autom. Reason., 5(1):1–23, 1989.
[160] V. Lifschitz. Pointwise circumscription: Preliminary report. In AAAI, pages

406–410, 1986.
[161] V. Lifschitz. Formal theories of action (preliminary report). In IJCAI, pages

966–972, 1987.
[162] D. Loveland. A simplified format for the model elimination procedure. Journal

of the ACM, 16:349–363, 1969.

V. Lifschitz, L. Morgenstern, D. Plaisted 83

[163] D. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland,
New York, 1978.

[164] D.W. Loveland. Automated deduction: looking ahead. AI Magazine, 20(1):77–
98, Spring 1999.

[165] B. MacCartney, S.A. McIlraith, E. Amir, and T.E. Uribe. Practical partition-
based theorem proving for large knowledge bases. In G. Gottlob and T. Walsh,
editors. IJCAI, pages 89–98. Morgan Kaufmann, 2003.

[166] C. Manning and H. Schutze. Foundations of Statistical Natural Language
Processing. MIT Press, 1999.

[167] A. Martelli and U. Montanari. An efficient unification algorithm. Transactions
on Programming Languages and Systems, 4(2):258–282, April 1982.

[168] S.Ju. Maslov. An inverse method of establishing deducibilities in the classical
predicate calculus. Dokl. Akad. Nauk SSSR, 159:1420–1424, 1964. Reprinted in
SiekmannWrightson83a.

[169] C. Matuszek, J. Cabral, M.J. Witbrock, and J. DeOliviera. An introduction to the
syntax and content of cyc. In Proceedings of the AAAI 2006 Spring Symposium
on Formalizing and Compiling Background Knowledge and its Applications to
Knowledge Representation and Question Answering, 2006.

[170] C. Matuszek, M.J. Witbrock, R.C. Kahlert, J. Cabral, D. Schneider, P. Shah,
and D.B. Lenat. Searching for common sense: Populating cyc from the web.
In M.M. Veloso and S. Kambhampati, editors. AAAI, pages 1430–1435. AAAI
Press/The MIT Press, 2005.

[171] J. McCarthy. Programs with common sense. In Proceedings of the Teddington
Conference on the Mechanization of Thought Processes, pages 75–91. London,
1959.

[172] J. McCarthy. A basis for a mathematical theory of computation. In Computer
Programming and Formal Systems. North-Holland, 1963.

[173] J. McCarthy. Circumscription: A form of non-monotonic reasoning. Artificial
Intelligence, 13(1–2):23–79, 1980.

[174] J. McCarthy. Applications of circumscription to formalizing common sense
knowledge. Artificial Intelligence, 26(3):89–116, 1986.

[175] J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint
of artificial intelligence. In B. Meltzer and D. Michie, editors. Machine Intelli-
gence 4, pages 463–502. Edinburgh University Press, Edinburgh, 1969.

[176] W.W. McCune. Solution of the Robbins problem. Journal of Automated Rea-
soning, 19(3):263–276, December 1997.

[177] W. McCune and L. Wos. Otter—the CADE-13 competition incarnations. J. Au-
tom. Reason., 18(2):211–220, 1997.

[178] D.V. McDermott. Tarskian semantics, or no notation without denotation!. Cog-
nitive Science, 2(3):277–282, 1978.

[179] D.V. McDermott. A temporal logic for reasoning about processes and plans.
Cognitive Science, 6:101–155, 1982.

[180] D.V. McDermott. A critique of pure reason. Computational Intelligence, 3:151–
160, 1987.

[181] D.V. McDermott and J. Doyle. Non-monotonic logic I. Artificial Intelligence,
13(1–2):41–72, 1980.

[182] A. Middeldorp. Modular properties of term rewriting systems. PhD thesis, Vrije
Universiteit, Amsterdam, 1990.

84 1. Knowledge Representation and Classical Logic

[183] R. Miller and L. Morgenstern. The commonsense problem page, 1997. http://
www-formal.stanford.edu/leora/commonsense.

[184] S. Miller and D.A. Plaisted. Performance of OSHL on problems requiring defi-
nition expansion. In R. Letz, editor. 7th International Workshop on First-Order
Theorem Proving, Koblenz, Germany, September 15–17, 2005.

[185] M. Minsky. A framework for representing knowledge. In P.H. Winston, edi-
tor. The Psychology of Computer Vision. McGraw-Hill, 1975. Also available as
MIT-AI Lab Memo 306.

[186] R.C. Moore. The role of logic in knowledge representation and commonsense
reasoning. In AAAI, pages 428–433, 1982.

[187] L. Morgenstern. The problems with solutions to the frame problem. In K.M.
Ford and Z.W. Pylyshyn, editors. The Robot’s Dilemma Revisited. Ablex, 1996.

[188] L. Morgenstern. A first-order axiomatization of the surprise birthday present
problem: Preliminary report. In Proceedings of the Seventh International Sym-
posium on Logical Formalizations of Commonsense Reasoning, 2005. Also
published as Dresden Technical Report, ISSN 1430-211X.

[189] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and meth-
ods. J. Logic Program., 19/20:629–679, 1994.

[190] G. Nelson and D.C. Oppen. Simplification by cooperating decision procedures.
ACM TOPLAS, 1(2):245–257, 1979.

[191] G. Nelson and D.C. Oppen. Fast decision procedures based on congruence clo-
sure. Journal of the ACM, 27(2):356–364, 1980.

[192] M.H.A. Newman. On theories with a combinatorial definition of ‘equivalence’.
Annals of Mathematics, 43(2):223–243, 1942.

[193] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In A.
Robinson and A. Voronkov, editors. Handbook of Automated Reasoning, vol. I,
pages 371–443. Elsevier Science, 2001 (Chapter 7).

[194] R. Nieuwenhuis and A. Rubio. Theorem proving with ordering and equality
constrained clauses. J. Symbolic Comput., 19(4):321–351, 1995.

[195] N.J. Nilsson. Shakey the robot. Technical Report 323. SRI International, 1984.
[196] T. Nipkow, G. Bauer, and P. Schultz. Flyspeck I: Tame graphs. In Furbach and

Shankar [91], pages 21–35.
[197] T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for

Higher-Order Logic. Springer-Verlag, 2003.
[198] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-Pro-

log decision support system for the Space Shuttle. In Proceedings of Inter-
national Symposium on Practical Aspects of Declarative Languages (PADL),
pages 169–183, 2001.

[199] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, New York, 2002.
[200] D.C. Oppen. Elementary bounds for Presburger Arithmetic. In STOC’73: Pro-

ceedings of the Fifth Annual ACM Symposium on Theory of Computing,
pages 34–37. ACM Press, New York, NY, USA, 1973.

[201] S. Owrie, J.M. Rushby, and N. Shankar. PVS: A prototype verification sys-
tem. In D. Kapur, editor. Proceedings of the Eleventh Conference on Automated
Deduction, Lecture Notes in Artificial Intelligence, vol. 607, pages 748–752.
Springer, June 1992.

[202] M. Paterson and M.N. Wegman. Linear unification. J. Comput. System Sci.,
16(2):158–167, 1978.

http://www-formal.stanford.edu/leora/commonsense
http://www-formal.stanford.edu/leora/commonsense

V. Lifschitz, L. Morgenstern, D. Plaisted 85

[203] L.C. Paulson. Isabelle: A Generic Theorem Prover. Lecture Notes in Comput.
Sci., vol. 828. Springer-Verlag, New York, 1994.

[204] G. Peano. Arithmetices principia, nova methodo exposita. Turin, 1889. English
translation: [261, pp. 83–97].

[205] G.E. Peterson and M.E. Stickel. Complete sets of reductions for some equational
theories. Journal of the ACM, 28(2):233–264, 1981.

[206] L. Pike. Formal verification of time-triggered systems. PhD thesis, Indiana Uni-
versity, 2005.

[207] D. Plaisted. A recursively defined ordering for proving termination of term
rewriting systems. Technical report R-78-943, University of Illinois at Urbana-
Champaign, Urbana, IL, 1978.

[208] D. Plaisted. Well-founded orderings for proving termination of systems of
rewrite rules. Technical report R-78-932, University of Illinois at Urbana-
Champaign, Urbana, IL, 1978.

[209] D. Plaisted. An associative path ordering. In Proceedings of an NSF Workshop
on the Rewrite Rule Laboratory, pages 123–136, April 1984.

[210] D. Plaisted. Semantic confluence tests and completion methods. Information
and Control, 65(2–3):182–215, 1985.

[211] D. Plaisted and S.-J. Lee. Inference by clause matching. In Z. Ras and M. Ze-
mankova, editors. Intelligent Systems: State of the Art and Future Directions,
pages 200–235. Ellis Horwood, West Sussex, 1990.

[212] D. Plaisted and Y. Zhu. The Efficiency of Theorem Proving Strategies: A Com-
parative and Asymptotic Analysis. Vieweg, Wiesbaden, 1997.

[213] D.A. Plaisted and Y. Zhu. Ordered semantic hyperlinking. Journal of Automated
Reasoning, 25(3):167–217, October 2000.

[214] G. Plotkin. Building-in equational theories. In Machine Intelligence, vol. 7,
pages 73–90. Edinburgh University Press, 1972.

[215] K. Popper. The Logic of Scientific Discovery. Hutchinson, London, 1959.
[216] E. Post. Introduction to a general theory of elementary propositions. American

Journal of Mathematics, 43:163–185, 1921. Reproduced in [261, pp. 264–283].
[217] D. Prawitz. An improved proof procedure. Theoria, 26:102–139, 1960.
[218] QED Group. The QED manifesto. In A. Bundy, editor. Proceedings of the

Twelfth International Conference on Automated Deduction, Lecture Notes in Ar-
tificial Intelligence, vol. 814, pages 238–251. Springer-Verlag, New York, 1994.

[219] A. Quaife. Automated deduction in von Neumann–Bernays–Gödel set theory.
Journal of Automated Reasoning, 8:91–147, 1992.

[220] D. Ramachandran, P. Reagan, and K. Goolsbey. First-orderized researchcyc:
Expressivity and efficiency in a common-sense ontology. Working Papers of the
AAAI Workshop on Contexts and Ontologies: Theory, Practice, and Applica-
tions, 2005.

[221] D. Ramachandran, P. Reagan, K. Goolsbey, K. Keefe, and E. Amir. Inference-
friendly translation of researchcyc to first order logic, 2005. Unpublished.

[222] I.V. Ramakrishnan, R. Sekar, and A. Voronkov. Term indexing. In A. Robin-
son and A. Voronkov, editors. Handbook of Automated Reasoning, vol. II,
pages 1853–1964. Elsevier Science, 2001 (Chapter 26).

[223] A.L. Rector. Modularisation of domain ontologies implemented in description
logics and related formalisms including owl. In J.H. Gennari, B.W. Porter, and
Y. Gil, editors. K-CAP, pages 121–128. ACM, 2003.

86 1. Knowledge Representation and Classical Logic

[224] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1–2):81–132,
1980.

[225] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, 2001.

[226] A. Riazanov. Implementing an efficient theorem prover. PhD thesis, The Uni-
versity of Manchester, Manchester, July 2003.

[227] A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE.
AI Communications, 15(2–3):91–110, 2002.

[228] G. Robinson and L. Wos. Paramodulation and theorem-proving in first order the-
ories with equality. In Machine Intelligence, vol. 4, pages 135–150. Edinburgh
University Press, Edinburgh, Scotland, 1969.

[229] J. Robinson. Theorem proving on the computer. Journal of the ACM, 10:163–
174, 1963.

[230] J. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12:23–41, 1965.

[231] J.A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning (in
2 volumes). Elsevier/MIT Press, 2001.

[232] J.F. Rulifson, J.A. Derksen, and R.J. Waldinger. Qa4: A procedural calculus
for intuitive reasoning. Technical Report 73, AI Center, SRI International, 333
Ravenswood Ave., Menlo Park, CA 94025, Nov. 1972.

[233] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 2nd edi-
tion. Prentice-Hall, 2003.

[234] W.C. Salmon. Four Decades of Scientific Explanation. University of Minnesota
Press, 1989.

[235] S. Schulz. E—a brainiac theorem prover. AI Communications, 15(2):111–126,
2002.

[236] R. Schwitter. English as a formal specification language. In DEXA Workshops,
pages 228–232. IEEE Computer Society, 2002.

[237] M. Shanahan. Solving the Frame Problem. MIT Press, Cambridge, MA, 1997.
[238] Y. Shoham. Chronological ignorance: Time, nonmonotonicity, necessity and

causal theories. In AAAI, pages 389–393, 1986.
[239] J. Siekmann. Unification theory. Journal of Symbolic Computation, 7:207–274,

1989.
[240] J. Siekmann, C. Benzmüller, and S. Autexier. Computer supported mathematics

with Omega. Journal of Applied Logic, 4(4):533–559, 2006.
[241] D.R. Smith. KIDS: A knowledge-based software development system. In M.

Lowry and R. McCartney, editors. Automating Software Design, pages 483–
514. MIT Press, 1991.

[242] C. Sprenger, M. Backes, D.A. Basin, B. Pfitzmann, and M. Waidner. Crypto-
graphically sound theorem proving. In CSFW, pages 153–166. IEEE Computer
Society, 2006.

[243] L.A. Stein and L. Morgenstern. Motivated action theory: A formal theory of
causal reasoning. Artificial Intelligence, 71(1):1–42, 1994.

[244] J. Steinbach. Extensions and comparison of simplification orderings. In Pro-
ceedings of the 3rd International Conference on rewriting techniques and appli-
cations, Lecture Notes in Computer Science, vol. 355, pages 434–448. Springer,
1989.

V. Lifschitz, L. Morgenstern, D. Plaisted 87

[245] G. Stenz and R. Letz. DCTP—a disconnection calculus theorem prover. In
R. Gore, A. Leitsch, and T. Nipkow, editors. Proc. of the International Joint
Conference on Automated Reasoning, Lecture Notes in Artificial Intelligence,
vol. 2083, pages 381–385. Springer, 2001.

[246] M.E. Stickel. A Prolog technology theorem prover: Implementation by an ex-
tended Prolog compiler. Journal of Automated Reasoning, 4(4):353–380, 1988.

[247] M.E. Stickel. A Prolog-like inference system for computing minimum-cost ab-
ductive explanation in natural-language interpretation. Annals of Mathematics
and Artificial Intelligence, 4:89–106, 1991.

[248] M.E. Stickel. A Prolog technology theorem prover: A new exposition and im-
plementation in Prolog. Theoretical Computer Science, 104:109–128, 1992.

[249] M.E. Stickel, R.J. Waldinger, and V.K. Chaudhri. A guide to SNARK. Technical
report, SRI International, 2000.

[250] M.E. Stickel, R.J. Waldinger, M.R. Lowry, T. Pressburger, and I. Underwood.
Deductive composition of astronomical software from subroutine libraries. In A.
Bundy, editor. CADE, Lecture Notes in Computer Science, vol. 814, pages 341–
355. Springer, 1994.

[251] M.E. Stickel. A unification algorithm for associative–commutative functions.
J. of the ACM, 28:423–434, 1981.

[252] M.E. Stickel. A Prolog technology theorem prover: Implementation by an ex-
tended Prolog compiler. In Proceedings of the 8th International Conference on
Automated Deduction, pages 573–587, 1986.

[253] G. Sutcliffe. CASC-J3: The 3rd IJCAR ATP system competition. In U. Furbach
and N. Shankar, editors. Proc. of the International Joint Conference on Auto-
mated Reasoning, Lecture Notes in Artificial Intelligence, vol. 4130, pages 572–
573. Springer, 2006.

[254] G. Sutcliffe. The CADE-20 automated theorem proving competition. AI Com-
munications, 19(2):173–181, 2006.

[255] C.B. Suttner and G. Sutcliffe. The TPTP problem library (TPTP v2.0.0). Techni-
cal Report AR-97-01, Institut für Informatik, Technische Universität München,
Germany, 1997.

[256] Terese. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer
Science, vol. 55. Cambridge University Press, 2003.

[257] R. Thomason. Logic and artificial intelligence. In Stanford Encyclopedia of Phi-
losophy. Stanford University, 2003.

[258] Y. Toyama. On the Church–Rosser property for the direct sum of term rewriting
systems. Journal of the ACM, 34(1):128–143, January 1987.

[259] Y. Toyama, J.W. Klop, and H.-P. Barendregt. Termination for the direct sum of
left-linear term rewriting systems. In Proceedings of the 3rd International Con-
ference on Rewriting Techniques and Applications, Lecture Notes in Computer
Science, vol. 355, pages 477–491. Springer, 1989.

[260] A. Trybulec and H. Blair. Computer aided reasoning with Mizar. In R. Parikh,
editor. Logic of Programs, Lecture Notes in Comput. Sci., vol. 193. Springer-
Verlag, New York, 1985.

[261] J. van Heijenoort, editor. From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931. Harvard University Press, 1967.

[262] E.M. Voorhees and L.P. Buckland, editors. The Eleventh Text Retrieval Confer-
ence, 2002.

88 1. Knowledge Representation and Classical Logic

[263] E.M. Voorhees and L.P. Buckland, editors. The Twelfth Text Retrieval Confer-
ence, 2003.

[264] E.M. Voorhees and L.P. Buckland, editors. The Thirteenth Text Retrieval Con-
ference, 2004.

[265] E.M. Voorhees and L.P. Buckland, editors. The Fourteenth Text Retrieval Con-
ference, 2005.

[266] E.M. Voorhees and L.P. Buckland, editors. The Fifteenth Text Retrieval Confer-
ence, 2006.

[267] Y. Wang, P. Haase, and J. Bao. A survey of formalisms for modular ontologies.
In Workshop on Semantic Web for Collaborative Knowledge Acquisition, 2007.

[268] C. Weidenbach. Combining superposition, sorts and splitting. In Robinson and
Voronkov [231], pages 1965–2013.

[269] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobald, and D. Topic.
S pass version 2.0. In A. Voronkov, editor. CADE, Lecture Notes in Computer
Science, vol. 2392, pages 275–279. Springer, 2002.

[270] A.N. Whitehead and B. Russell. Principia Mathematica. University Press, 1957.
Originally published 1910–1913.

[271] L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning: Introduction
and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1984.

[272] W.-T. Wu. On the decision problem and the mechanization of theorem proving
in elementary geometry. Scientia Sinica, 21:159–172, 1978.

[273] P. Youn, B. Adida, M. Bon, J. Clulow, J. Herzog, A. Lin, R.L. Rivest, and
R. Anderson. Robbing the bank with a theorem prover. Technical report 644,
University of Cambridge Computer Laboratory, August 2005.

	Knowledge Representation and Classical Logic
	Knowledge Representation and Classical Logic
	Syntax, Semantics and Natural Deduction
	Propositional Logic
	Syntax and semantics
	Explicit definitions
	Natural deduction in propositional logic
	Meta-level and object-level proofs

	First-Order Logic
	Syntax
	Semantics
	Sorts
	Uniqueness of names
	Domain closure
	Reification
	Explicit definitions in first-order logic
	Natural deduction with quantifiers and equality
	Limitations of first-order logic

	Second-Order Logic
	Syntax and semantics
	Object-level proofs in second-order logic

	Automated Theorem Proving
	Resolution in the Propositional Calculus
	Clause form
	Ground resolution

	First-Order Proof Systems
	Clause form
	Herbrand interpretations
	Unification and resolution
	Refinements of resolution
	Other strategies
	Evaluating strategies

	Equality
	Contexts
	Termination orderings on terms
	Paramodulation
	Demodulation

	Term Rewriting Systems
	Syntax of equational systems
	Term rewriting
	Terminology

	Confluence and Termination Properties
	Termination orderings

	Equational Rewriting
	AC rewriting
	Other sets of equations
	AC termination orderings
	Congruence closure
	E-unification algorithms
	Rule-based unification

	Other Logics
	Higher-order logic
	Mathematical induction
	Set theory

	Applications of Automated Theorem Provers
	Applications Involving Human Intervention
	Software development
	Hardware and software verification

	Non-Interactive KR Applications of Automated Theorem Provers
	Exploiting Structure
	Prolog

	Suitability of Logic for Knowledge Representation
	Anti-logicist Arguments and Responses
	The argument: Deductive reasoning is not enough
	The need for nonmonotonic reasoning
	Nonmonotonicity and the anti-logicists
	The need for abduction and induction
	The argument: Deductive reasoning is too expensive
	The argument: Writing down all the knowledge (the right way) is infeasible
	The argument: Other approaches do it better and/or cheaper

	Acknowledgements
	Bibliography

