
H i s t o r i e s & F u t u r e s

been a strong promoter of logic, but Marvin Minsky has
been a skeptic who experimented with a wide range of al-
ternatives. Roger Schank had no doubts about logic, which
he denounced at every opportunity. He introduced the dis-
tinction between the neats, who used logic for everything,
versus the scruffies like himself, who developed notations
that were specifically designed for the problem at hand.

Even advocates of logic have disagreed among them-
selves about its role, the subset appropriate to any parti-
cular problem, and the trade-offs among ease of use, ex-
pressive power, and computational complexity. The debates
introduced many valuable ideas, but the hype and polemics
have often confused the issues. This article reviews the
controversies and suggests design options that can take
advantage of the strengths of logic while avoiding the fads
and fallacies.

Language and logic
No discussions about logic have been more confused and

confusing than the debates about how logic is related to nat-
ural languages. Historically, logic evolved from language.
Its name comes from the Greek logos, which means word or
reason and includes any language or method of reasoning
used in any of the -ology fields of science and engineering.
Aristotle developed formal logic as a systematized method
for reasoning about the meanings expressed in ordinary lan-
guage. For the next two millennia, formal logic was expressed
in a stylized or controlled subset of a natural language: origi-
nally Greek, then Latin, and later modern languages.

In the 19th and 20th centuries, mathematicians took over
the development of logic in notations that diverged far from
its roots. Yet every operator in logic is a specialization of
some word or phrase in natural language: ! for there exists,
∀ for every, " for and, # for or, $ for if-then, % for not, &
for possibly, and ! for necessarily. The metalevel words

for talking about logic and deduction are the same words
used for the corresponding concepts in natural languages:
truth, falsity, reasoning, assumption, conclusion, and proof.
Although mathematical logic might look very different
from ordinary language, every formula in logic expresses
the same meaning as some natural language sentence. Fur-
thermore, every step of every proof corresponds to an argu-
ment in ordinary language that’s just as correct and cogent
as the formal version.

What makes formal logic hard to use is its rigidity and
its limited set of operators. Natural languages are richer,
more expressive, and much more flexible. That flexibility
permits vagueness, which some logicians consider a seri-
ous flaw, but a precise statement on any topic is impossi-
ble until all the details are determined. Formal logic can
only express the final result of a lengthy process of analy-
sis and design. Natural language, however, can express
every step from the earliest hunch or tentative suggestion
to the finished specification.

In short, there are two equal and opposite fallacies about
logic and language: at one extreme, logic is unnatural and
irrelevant; at the other extreme, natural language is incur-
ably vague. A more balanced view should recognize the
virtues of both: logic is the basis for precise reasoning in
every natural language; but without vagueness in the early
stages of a project, it would be impossible to explore all the
design options.

What is logic?
Unreadability is a common complaint about logic, but

that’s only true of 20th century mathematical logic. In the
middle ages, the usual notation was a controlled natural
language, often supplemented with diagrams. For example,
the Tree of Porphyry (figure 1) displayed Aristotle’s cate-
gories and method of definition by genus and differentiae.
Ramon Lull invented a method of defining categories by
rotating and aligning disks with inscribed attributes. In-
spired by Lull’s system, Gottfried Leibniz used algebra to
define categories by conjunctions of attributes, which he
encoded as prime numbers. In the 19th century, George
Boole used algebra to represent propositions, and Gottlob

Throughout the history of AI, logic has been praised

by its admirers, maligned by its detractors, and dis-

cussed in confusing and misleading terms by almost every-

body. Among the pioneers, John McCarthy has always

Fads and Fallacies about Logic

John F. Sowa, VivoMind Intelligence, Inc.

84 1541-1672/07/$25.00 © 2007 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

Authorized licensed use limited to: Penn State University. Downloaded on October 30,2024 at 02:09:01 UTC from IEEE Xplore. Restrictions apply.

Frege invented a tree notation to represent
the quantifiers and operators of first-order
logic. Charles Peirce represented FOL by
adding quantifiers to Boolean algebra, but he
later invented existential graphs as a logi-
cally equivalent notation.

Many logicians limit logic to a narrow
range of mathematical notations, and most
nonlogicians don’t think of their notations
as a kind of logic. Yet almost any declara-
tive notation—graphic or linear—could be
treated as a version of logic. A logic is any
precise notation for expressing statements
that can be judged true or false. A rule of
inference is a truth-preserving transforma-
tion: when applied to a true statement, the
result is guaranteed to be true. To clarify
the notion of “judging,” Alfred Tarski de-
fined a model as a set of entities and a set
of relationships among those entities.
Model theory is a systematic method for
evaluating a statement’s truth in terms of a
model. According to these definitions, a
database, in relational or network format,
is a model, and the method of evaluating
the WHERE clause of an SQL statement is
equivalent to Tarski’s evaluation function.
With a precise specification and an evalua-
tion function, many other notations, inclu-
ding controlled natural languages, could
qualify as a version of logic.

Deriving procedures
from declarations

A procedure can only be used in one way,
but a declarative specification has many pos-
sible uses. Directions from a highway to a
hotel, for example, specify a procedure for
following a single path, but a map is a de-
clarative specification that determines all
possible paths. With a map, a person or com-
puter can derive a procedure by tracing a
path between any two points. In computer
science, grammars are logic-based declara-
tions with many possible uses: analyzing a
sentence, generating a sentence, detecting
errors in a sentence, or suggesting correc-
tions to a sentence.

For over 40 years, AI researchers have
periodically revived debates about proce-
dural or declarative languages. In database
systems, tables and graphs are equivalent
ways of expressing data, but queries about
the data can be represented in two ways: a
path-based procedure for navigating the data
or a declarative statement in a logic-based
language such as SQL. In the 1970s, the de-
bate was settled in favor of SQL, but object-

oriented databases have revived the argu-
ment for a procedural approach:

• Data represented in a tree or graph can
be viewed as a road map.

• Procedural directions are the most effi-
cient way to tell a computer how to get
from one point to another.

• If the programmer specifies the access
path, the computer doesn’t need com-
plex algorithms to derive it.

For some systems, these arguments are
valid. But the following arguments from
the 1970s are just as valid today:

• Tables and graphs specify logically
equivalent access paths.

• Optimizing algorithms can derive more
efficient paths than most programmers.

• A query that takes a few lines to declare
in SQL can expand to several pages of
highly error-prone procedural directions.

For these reasons, the major vendors of
object-oriented databases support SQL as
an alternative to path-based procedures.
When given the choice, most users prefer
SQL, even for databases whose native or-
ganization is a network.

In summary, the choice of procedural or
declarative methods depends on the available
tools. Because current computers execute
procedures, a compiler must translate decla-
rations to procedures. Although declarations

allow different procedures to be generated
for different purposes, good performance re-
quires good optimization algorithms. If no
optimizer is available, programmers may
have to use a procedural language that maps
directly to machine language.

Object language
and metalanguage

Language about language, or metalan-
guage, is ubiquitous. As an example, the
psycholinguist John Limber1 recorded the
following sentence by Laura, a 34-month-
old child:

When I was a little girl, I could go, “Geek
geek,” like that; but now I can go, “This is a
chair.”

This sentence involves metalanguage about
the quotations. But logically, the modal aux-
iliaries “can” and “could” are metalevel
comments about the containing clauses. In
effect, Laura’s sentence includes two levels
of metalanguage about the quotations.

In adult speech, metalanguage is so com-
mon that it’s often unrecognized. The modal
verbs are a special case of metalevel expres-
sions that include adverbs such as “possibly”
and clauses such as “I doubt that” or “The
odds are against it.” Like modality, theories
of probability, certainty, or fuzziness can be
represented by first-order statements about
first-order statements.

Some people argue that metalevel repre-
sentations are complex or inefficient. But for

MARCH/APRIL 2007 www.computer.org/intelligent 85

Supreme genus:

Differentiae:

Differentiae:

Differentiae:

Differentiae:

Subordinate genera:

Subordinate genera:

Proximate genera:

Species:

Individuals:

Body

LivingThing

Human

Animal

Substance

material

animate

sensitive

rational

immaterial

inanimate

insensitive

irrational

Socrates Plato Aristotle etc.

Spirit

Mineral

Plant

Beast

Figure 1. The Tree of Porphyry displays Aristotle’s method of defining categories.

Authorized licensed use limited to: Penn State University. Downloaded on October 30,2024 at 02:09:01 UTC from IEEE Xplore. Restrictions apply.

many applications, metalanguage can signif-
icantly reduce the complexity, as in the fol-
lowing controlled English sentences and
their translations to an algebraic notation:

“Every dog is an animal”
' (∀x)(dog(x) $ animal(x))

“Dog is a subtype of Animal”
' Dog < Animal

The first sentence is translated to predicate
logic, but the second is a metalevel state-
ment about types. Statements with the rela-
tion < between two constants define a type
hierarchy, which could be encoded in bit
strings or products of primes. Subsequent
reasoning with a typed or sorted logic can
replace a chain of inferences with a divide
instruction or a bit-string comparison.

These examples illustrate an important use
of metalanguage: stratifying the knowledge
representation in levels that can be processed
independently by simpler algorithms. Since
antiquity, logicians have considered the type
hierarchy a privileged level with greater en-
trenchment than ordinary assertions. They
invented special techniques for reasoning
about it, such as Aristotle’s syllogisms, Por-
phyry’s tree, or modern description logics.
The greater entrenchment gives type state-
ments a modal effect of being necessarily
true.

As another example of entrenchment,
database constraints are obligatory with
respect to ordinary assertions called up-
dates. Three levels—a type hierarchy, data-
base constraints, and updates—can support
multimodal reasoning with a mixture of
modes that are necessary or obligatory for
different reasons.2

Expressive power and
computational complexity

Computational complexity is a property of
an algorithm, and the complexity of a pro-
gram depends on the complexity of the algo-
rithm it embodies. Statements in logic have
no inherent complexity apart from the algo-
rithms that process them for various pur-
poses. Algorithms for proving statements in
first-order logic, for example, might take an
exponential amount of time or even loop for-
ever. Yet the worst cases rarely occur, and
theorem provers can be efficient on the FOL
statements people actually use. In 1910,
when Whitehead and Russell wrote the Prin-
cipia Mathematica, theories of computa-

tional complexity were unknown. Yet in
1960, a program by Hao Wang proved all
378 of their theorems in propositional and
first-order logic in just 7 minutes.3 That was
an average of 1.1 seconds per theorem on an
IBM 704, a vacuum-tube machine with an
83-kilohertz CPU and 144 Kbytes of storage.

For database queries and constraints, SQL
supports full FOL, but a database system can
evaluate most queries in linear or logarithmic
time, and even the worst-case examples take
no more than polynomial time. That perfor-
mance enables SQL algorithms to process
terabytes or petabytes of data and makes
FOL, as expressed in SQL, the most widely
used version of logic in the world. For exam-
ple, consider the query:

Find John Doe’s department, manager,
and salary.

With an index on the employee field, a
relational database could find the answer in
time proportional to (log N), where N is the
number of employees. The following query
would take (N log N) time:

Find all employees who earn more than
their managers.

This query would take N steps to find the
manager and salary of each employee. Find-
ing the salary of each employee’s manager
introduces the (log N) factor.

Even complex queries can be evaluated
efficiently if they process a subset of the da-
tabase. Suppose that the complex condition
in the following query takes time propor-
tional to the cube of the number of entries:

For all employees in department C99,
find [complex condition].

If a company has 10,000 employees, N3

would be a trillion. But if department C99 has
only 20 employees, then 203 is only 8,000.

Although computational complexity is
important, complexity is a property of al-
gorithms and only indirectly a property of
problems. The language used to state a prob-
lem has no effect on complexity. Reducing
the expressive power of the language cannot
solve any problems faster; it only makes
some problems impossible to state.

Using logic in practical systems
The hardest knowledge representation

task is to analyze knowledge about a domain
and state it precisely in any language. Since
the 1970s, knowledge engineers and systems
analysts have been eliciting knowledge from
domain experts and encoding it in compu-
table forms. Unfortunately, database-design
tools have been disjoint from expert-system
tools; they use different notations that require
different skills and often different specialists.
If all the tools were based on a common,
readable notation for logic, the number of
specialists required and the amount of train-
ing they need could be reduced. Further-
more, the domain experts would be able to
read the knowledge representation, detect
errors, and even correct them.

Before the 20th century, people used
readable notations for logic: controlled nat-
ural languages supplemented with type hi-
erarchies and related diagrams. Although
full natural language with all its richness,
flexibility, and vagueness is still a major re-
search area, the technology for supporting
controlled NLs has been available since the
1970s. Two major obstacles have prevented
such languages from becoming commer-
cially successful:

• The supporting tools have been isolated
from the mainstream of commercial soft-
ware development.

• Most software developers aren’t linguists
or logicians.

The second challenge is easier to address.
The ontologies being developed today are
usually aligned to freely available resources,
such as WordNet, which contains sufficient
linguistic information for processing con-
trolled NLs. But the challenge of integrating
all the tools used in software design and de-
velopment isn’t a technical problem. It’s an
even more daunting problem of fads, trends,
politics, and standards.

86 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

The language used to state a

problem has no effect on

complexity. Reducing the

expressive power of a language

only makes some problems

impossible to state.

Authorized licensed use limited to: Penn State University. Downloaded on October 30,2024 at 02:09:01 UTC from IEEE Xplore. Restrictions apply.

Although controlled NLs are easy to read,
the people who write them need training,
good help facilities, and tools for mapping
the languages to current software. An exam-
ple of such a tool is a knowledge compiler
that extracted a subset of axioms from the
Cyc system to drive a deductive database.4 It
translated Cyc axioms, stated in a superset
of FOL, to constraints for an SQL database
and to Horn-clause rules for an inference en-
gine. Although the knowledge engineers had
used a very expressive dialect of logic, the
compiler translated 84 percent of the axioms
they wrote directly to Horn-clause rules
(4,667 of the 5,532 axioms extracted from
Cyc). It translated the remaining 865 axioms
to SQL constraints that ensured the consis-
tency of all database updates with the axioms.

A solid foundation in logic can make
commercial software easier to use, and it
does not require the people who use it to
have formal training in logic. The fads and
fallacies that block such use are logicians’
disdain for readable notations, nonlogicians’
fear of formal logic, and the lack of any co-
herent policy for integrating the develop-
ment tools.5,6 The logic-based languages of
the Semantic Web are useful, but they’re
not integrated with the SQL language of
relational databases, the design and develop-
ment tools based on the Unified Modeling
Language, or the legacy systems that won’t
disappear for many decades to come. A bet-
ter integration is possible with tools based
on logic at the core, diagrams and controlled
NLs at the human interfaces, and compiler
technology for mapping logic to both new
and legacy software.

References

1. J. Limber, “The Genesis of Complex Sen-
tences,” Cognitive Development and the Ac-
quisition of Language, T. Moore, ed., Aca-
demic Press, 1973, pp. 69–186; http://
pubpages.unh.edu/~jel/JLimber/Genesis_
complex_sentences.pdf.

2. J.F. Sowa, “Laws, Facts, and Contexts: Foun-
dations for Multimodal Reasoning,” Knowl-
edge Contributors, V.F. Hendricks, K.F. Jør-
gensen, and S.A. Pedersen, eds., Kluwer
Academic Publishers, 2003, pp. 145–184.

3. H. Wang, “Toward Mechanical Mathematics,”
IBM J. Research and Development, vol. 4,
Jan. 1960, pp. 2–22; www.research.ibm.com/
journal/rd/041/ibmrd0401B.pdf.

4. B.J. Peterson, W.A. Andersen, and J. Engel,
“Knowledge Bus: Generating Application-
Focused Databases from Large Ontologies,”
Proc. 5th Int’l Workshop Knowledge Repre-
sentation Meets Databases, CEUR-WS.org,
1998; http://sunsite.informatik.rwth-aachen.
de/Publications/CEUR-WS/Vol-10.

5. J.F. Sowa, “Concept Mapping,” slide presen-
tation at Am. Educational Research Assoc.
2006 Ann. Meeting, 2006; www.jfsowa.com/
talks/cmapping.pdf.

6. J.F. Sowa, “Extending Semantic Interopera-
bility to Legacy Systems and an Unpredic-

table Future,” slide presentation at the Col-
laborative Expedition Workshop, 2006; www.
jfsowa.com/talks/extend.pdf.

MARCH/APRIL 2007 www.computer.org/intelligent 87

John F. Sowa is a cofounder of VivoMind
Intelligence, Inc., an AI company that’s de-
veloping software based on some of the ideas
discussed in this article. He retired from IBM
after working for 30 years on R&D projects
in AI and related areas. He has a PhD in com-
puter science from the Vrije Universiteit in
Brussels. He is a fellow of the AAAI. Con-
tact him at sowa@bestweb.net.

Authorized licensed use limited to: Penn State University. Downloaded on October 30,2024 at 02:09:01 UTC from IEEE Xplore. Restrictions apply.

