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Many A1 researchers have come to be dissatisfied with approaches to their discipline based on formal logic. Various 
alternatives are often suggested, including probability theory. This paper investigates the intimate connection between 
probability theory and various logics. We show that prcbability theory, broadly conceived, may be used as a formal 
semantics for virtually any monotonic logic. Thus, rather than being seen as competing, it is more appropriate to view 
formal logics as very special cases of probability theory, usually special cases that are computationally more tractable 
than the more general theory. Thus, probability theory and logic should be seen as complementary. Viewing probability 
theory in this abstract way may help to shed light on various recalcitrant problems in AI. 
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De nombreux chercheurs dans le domaine de I’intelligence artificielle manifestent une certaine insatisfaction vis-his 
certaines approches basees sur la logique formelle. Diverses solutions sont souvent proposees, y compris la thkorie 
des probabilitb. Cet article analyse la relation intime entre la thtorie des probabilitb et diverses logiques. I1 est dimontre 
que la thkorie des probabilitts, concue de manikre gtnerale, peut etre utilisee comme une skmantique formelle pour 
presque toute iogique monotonique. Au lieu de percevoir les logiques formelles comme Ctant en opposition, il est plus 
approprii de les considirer comme des cas trts speciaux de la thCorie des probabilitks, habituellement plus traitables 
au niveau calcul que la theorie plus genirale. Par conskquent, la theorie des probabilitks et la logique doivent Etre per- 
Cues comme des kltments complementaires. Le fait de considerer la theorie des probabilitis d’une maniire abstraite 
peut contribuer i3 la comprkhension de divers problimes ardus dans le domaine de I’intelligence artificielle. 

Mots elks : probabilitk, skmantique, logique, intelligence artificielle. 
[Traduit par la redaction] 
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1. Introduction 
There is a quite general perception in many quarters that 

research in A1 has reached a plateau. Remarkable results 
are becoming more difficult to achieve, and many long- 
standing problems remain unsolved. In many cases, what 
appeared to be promising avenues have petered out into 
rabbit trails through extremely dense bush. This plateau phe- 
nomenon occurs during the early stages of major shifts in 
any discipline and is not unique to AI. Whenever a plateau 
is reached, it is common practice to search for new tools 
with which to attack recalcitrant problems. For at least the 
past decade, one of the primary tools of A1 research has 
been some form of classical first-order predicate calculus. 
However, severe difficulties have been encountered by 
researchers in A1 in trying to use the tools of classical logic 
to model ordinary knowledge and commonsense inferences. 

Many philosophers would be surprised that A1 researchers 
are surprised by the problems encountered in this line of 
endeavor. Many of the problems which have recently come 
to the attention of the A1 community have been under 
examination by philosophers for many years (tens, hundreds, 
and, for some problems, thousands of years). The philo- 
sophical community has known for many years about the 
inadequacy of first-order predicate calculus for the modeling 
of many epistemological phenomena. The computer simply 
provides a convenient concrete base for testing various 
theories concerning knowledge acquisition and commonsense 
inference; in itself, computer technology does not provide 
any great theoretical insights. And new theoretical insights 
are what is required to  solve the recalcitrant problems. 
Printed in Canada I lmprimc a” Canada 

McDermott (1987) has reviewed some of the difficulties 
in what he calls the “logicist” approach. He ends on a rather 
pessimistic note stating that “we must resign ourselves to 
writing programs, and viewing knowledge representations 
as entities to be manipulated by the programs.” I would 
reiterate that before successful programs can be written, 
theoretical insight must be achieved. We will not solve 
serious problems in A1 by becoming better programmers, 
but rather by becoming better theoreticians. I do not mean 
to  suggest that McDermott himself does not recognize the 
importance of theoretical insights; no doubt he simply meant 
to suggest that the approach of formal logic may not be the 
best way to implement such insights. 

In a theoretical sense, we know that the McDermott 
response cannot be correct. We know that any program on 
any computer of current technological design can be modelled 
by a Turing machine, and the behaviour of any Turing 
machine can be described by a suitably complicated first- 
order theory. So, if it is possible to  write a successful 
program to perform a given task, then there is a first-order 
theory for the task. Now, just as we could patch together 
any finite set of programs with a simple selection menu, so 
we can obtain a single first-order theory corresponding 
to  any finite number of programs. So, if we followed 
McDermott and developed a number of problem-specific 
programs, there would always be a first-order theory for 
the’ collection of programs. These comments should not be 
taken to suggest that classical logic is the only appropriate 
theoretical environment for the solution to problems in AI. 
In fact, in the material below, I will suggest quite the 
contrary. 
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In spite of these theoretical assurances, we should be pre- 
pared to be foiled by the demon of computational complex- 
ity. It may well be that the simplest theory for accomplishing 
a desired task is beyond the time and space bounds of our 
mental machinery. The problem with complexity considera- 
tions is that it is difficult to determine lower complexity 
bounds for interesting problems, and upper bounds can gen- 
erally be established only after the development of a success- 
ful algorithm. So, before we know that we should.give up 
on a certain problem because of complexity considerations, 
we need to have a theoretical solution for that problem! 
Thus, unless a problem can be shown to be undecidable, 
we may unknowingly continue to beat our heads against a 
wall of complexity. Certainly we can agree that the approach 
of attempting to obtain a first-order theory from the 
behaviour of a Turing machine in the manner theoretically 
suggested above is doomed to failure. Indeed, the mathemat- 
ical existence of a first-order theory corresponding to the 
behaviour of an arbitrarily complex Turing machine gives 
very cold comfort at best. In any reasonable case, such a 
theory would be much too complex for humans to discover 
or use. Assuming a standard sheet of paper using standard 
print technology contains 10K or even lOOK bits, it is easy 
to see that such a theory may well require a mass of paper 
greater than that produced so far in the history of our planet. 
So, the practical import of McDermott’s comments are not 
to be lightly dismissed. 

The responses by Woods (1987) and by Cheeseman (1988) 
to McDermott’s pessimism are refreshing because of the 
relatively new approaches that they advocate. My personal 
sympathies are with a probabilistic approach. I very strongly 
feel that in the future, A1 will more and more come to be 
dominated by what may be termed probabilistic considera- 
tions. Thus, in broad outline, I am in sympathy with 
Cheeseman’s approach. However, in many respects I believe 
his characterization is misleading and much too narrowly 
conceived, as was indicated in Morgan (1988). 

This paper is part one of a larger two-part work. I have 
several goals in this part. I would like to demonstrate how 
a formal theory of probability may be used as a metalanguage 
for virtually any (monotonic) logic. Thus probability theory 
may correctly be regarded as a very strong generalization 
of standard logics. Natural languages have evolved to be 
powerful enough to serve as their own metalanguages. How- 
ever, we know that formal languages with such power lead 
to formal inconsistencies. We still do not have a good theory 
of how users of natural languages manage to cope with such 
potential inconsistency. In any case, since probability may 
be used as a metalanguage for any logic, it has much greater 
potential than standard logics for being able to serve as the 
basis for a formal analysis of many natural language locu- 
tions and inferences, including many that appear to be meta- 
linguistic in nature. Classical first-order logic turns out to 
be just a very special case of probability theory, namely the 
case in which the values are restricted to 0 and 1. The special 
case is computationally more tractable than the more general 
theory, but only because it forces us to view the world in a 
very narrow way. In light of these facts, it is a serious mistake 
to regard logic and probability as being in any way antago- 
nistic. I will indicate why the standard numerically based 
theories of probability may be inappropriate for many con- 
texts, and I will also indicate alternatives which may be just 
as useful for many applications in A1 as the classical theory. 

In the next paper, I will use the general probabilistic 
framework to indicate why I believe the current interest in 
so-called nonmonotonic logic is at best misdirected. I will 
show how problems that prompted the nonmonotonic work 
may be handled by standard monotonic logics. The approch 
I advocate illuminates the source of many of the problems 
faced by devotees of “nonmonotonic logic.” 

2. Conditionalizing classical probability theory 
The most important notion in standard logics is the con- 

cept of a proof or derivation from a given set of assump- 
tions; we call this notion “syntactic entailment.” Syntactic 
entailment is usually symbolized as r c E, where r is a set 
of expressions from the formal language and E is a single 
expression; of course, I’ is the set of assumptions and E is 
the conclusion of the derivation. A formal semantic theory 
for a given logic must allow definition of a corresponding 
notion of semantic entailment, which is generally symbolized 
by r IF E. It is important to recognize that both syntactic 
and semantic entailments are conditionals from the metalan- 
guage and not a part of the object language. Since the con- 
ditional of conditional probability theory is also part of the 
metalanguage rather than part of the object language to 
which the probability measure is applied, it does not require 
great insight to  suspect that our probabilistic account of 
semantic entailment will crucially involve conditional prob- 
ability theory. Thus our initial concern is to develop a 
coherent account of conditional probability. 

Komolgoroff (1950) formulated the elementary theory of 
classical probability in the following way: 

KP.1. P is defined on a o-field of sets. 
KP.2. 0 I P(a!). 
KP.3. P ( U )  = 1. 
KP.4. If a fl /3 = 0 then P(a Up) = P(a)  + P(p).  

For our purposes, a a-field may be defined to be a set of 
sets; the a-field must have as elements both the empty set 0 
and the universal set U, and it must be closed under (finite) 
unions, intersections, and complements. A more parsimoni- 
ous definition is possible but of no interest in the present 
discussion. Komolgoroff and a host of others speak of prob- 
ability as being defined over a a-field of sets of events. 
Intuitive examples of events are draws of cards, rolls of dice, 
and deaths of male Caucasians over the age of 40. We may 
think of information about the world as constraining the 
set of events. Thus zero information corresponds to the 
universal set of events, while contradictory information cor- 
responds to the empty set of events. 

Of extreme interest for us will be Komolgoroff‘s defini- 
tion of conditional probability. 

Dejlnitian DKP. 1 
If P(p)  # 0 then P(a,  p)  = P(a! fl p)/P(fi). 
The symbolism P(a!, p )  is read “the probability of a on 

the condition p,” or, more simply, “the probability of a 
given /3.” We will sometimes refer to the position occupied 
by /3 as the “assumption” position and sometimes we will 
refer to it as the “evidence” position. We will refer to the 
position occupied by a! as the conclusion position. We will 
use the phrase “Komolgoroff classical probability theory” 
to refer to KP.1-KP.4 plus the definition of conditional 
probability. It is well known that from these simple prin- 
ciples, a very rich account of probability may be derived. 
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Of particular interest to us will be the following standard 
theorems: 
Theorem TKP. 1 

Theorem TKP.2 

Theorem TKP.3 

Note that we are using a‘ to designate the set-theoretic 
complement of a. 

There is a slight problem with conditional probability 
theory (as given by definition DKP. 1) for the case when the 
probability of the conditioning set is 0. What should we take 
P(a,  0) to be when P(p) = O? One standard (but naive) 
answer is just to define the conditional probability to be 1 
in such cases. However, if we adopt this course, then the 
conditional version of KP.4 would fail. This result is unfor- 
tunate, since we want our conditional probability measure 
to be a probability measure. Another standard suggestion 
is to say that the conditional probability is simply undefined 
when the conditioning set has measure 0. This suggestion 
is also somewhat unsatisfactory, since the conditional prob- 
ability functions would not be defined over the entire u-field. 
At best, this result would require severe hedging of many 
important theorems. 

There is another way out of the problem of conditioning 
on sets of measure 0; the technique is essentially due to 
Popper (1965). Although he did not formulate his condi- 
tional probability theory in the way we will here, we will 
nonetheless call the following constraints Popper classical 
conditional probability theory: 

PP. 1. P i s  defined on ordered pairs from a a-field of sets. 
PP.2. 0 I P(a ,  p) 5 1. 
PP.3. P(U, a) = 1. 
PP.4. If a n p = 0 then P ( a  Up, y) = P(a ,  7 )  + 
P P . ~ .  P ( ~  n p, y) = P ( ~ ,  y) x P(P,  a n 

P(a) I 1. 

P ( ~  u p )  = P(,) + PV) - ~ ( a  n PI. 

P(a‘) = 1 - P(a).  

P@, y) unless for all 6, P(6, y) = 1. 

Principles KP. 1 and PP. 1 directly correspond. For simplicity, 
we have incorporated the conditional version of theorem 
TKP.1 into PP.2. Principle PP.3 is just the conditional ver- 
sion of KP.3. Principle PP.5 is just the conditional version 
of the usual definition of conditional probability stated by 
Komolgoroff. (Of course, sets of constraints other than 
PP.l-PP.5 could be used to pick out the same functions. 
Our set was chosen because these constraints parallek nicely 
the Komolgoroff constraints W. 1-KP.4 and the definition 
of conditional probability DKP. 1 .I 

The Popperian innovation is included in the “unless” 
clause of PP.4 and deserves some comment. The intuitive 
idea is that there are some “events” that are so bizarre that 
if asked to assume that they have occurred, I would be 
unable to reject anything. Standard examples of such events 
generally include (but may not be limited to) contradictory 
events like finding a cubical sphere or observing that it is 
both raining and not raining in a given spot at a given time. 
Sets containing such events are said to be “abnormal.” We 
formally adopt the following definition: 
Definition DPP. I 

A set y is said to be P-abnormal on  Popper classical con- 
ditional probability distribution P if and only if for all 

6, P(6 ,y) = 1. A set y is P-normal if and only if it is not 
P-abnormal. 

Except when stating theorems, we will simply use 
“normal” and “abnormal” instead of “P-normal” and 
“P-abnormal.” It is useful to point out that the constant 
function assigning all pairs the value 1 satisfies constraints 
PP. 1-PP.5. This function corresponds to the limiting case 
in which all sets are abnormal. The universal set occupies 
a rather special role with respect to abnormality, as stated 
in the following theorem: 

Theorem TPP. 1 
If the universal set is P-abnormal, then every set is 

P-abnormal. 

Except for the extreme situation in which all sets are 
abnormal, it is not difficult to show that the abnormal sets 
all take probability 0 given the universal set, i.e., they take 
probability 0 on the basis of zero information about the 
world. 

Theorem TPP.2 
For any set a, if a is P-abnormal then P(a ,  U) = 0, pro- 

vided that there is at least one P-normal set. 

The conditional in theorem TPP.2 cannot be replaced by 
a biconditional. That is, there may be events that are initially 
assigned a probability of 0, even though they are not abnor- 
mal. We will look at a simple example below in Sect. 6 .  Very 
briefly, the example concerns a simple coin toss experiment. 
It is not unreasonable to assign a probability of 0 to the state- 
ment that the tossed coin came to rest on edge. However, 
given the statement that the tossed coin has come to rest 
on edge, I would assign probability of 0 to the claim that 
on the same toss the coin had come to rest heads up; hence 
the statement that the tossed coin came to rest on edge is 
not abnormal. 

For our pur.poses, there are a number of additional 
theorems which will be quite important. We will simply list 
them and then say a brief word about each. 

Theorem TPP.3 . 

Theorem TPP.4 

Theorem TPP.5 

~ ( a  u P ,  y) = m a ,  y) + P(P,  7)  - p ( a  n P ,  7). 

P(ac, 0) = 1 - P(a ,  0) provided p is P-normal. 

If p E a then P(a ,  0) = 1. 

Theorem TPP.3 is just the conditionalized version of 
theorem TKP.2 and states the general “sum” rule. Note that 
we cannot simply replace restriction PP.4 by theorem TPP.3, 
as the resulting theory would be substantially weaker. A sim- 
ple counter-example will suffice. Consider the u-field of just 
U and 0. Consider the function P* which assigns the follow- 
ing values: 

P*(0, U) = r, 
P*(0, 0) = 1 
P*(U, U )  = 1 
P(U, 0) = 1 

0 < r c 1 

This function satisfies PP. l ,  PP.2, PP.3, PP.5, and 
theorem TPP.3. However, it does not satisfy condition 
PP.4, since P ( U U 0 ,  U) # P(U,  U) + P(0, U )  although 
P(0, U )  # 1. 

 14678640, 1991, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.1467-8640.1991.tb00385.x by Pennsylvania State U

niversity, W
iley O

nline L
ibrary on [09/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MORGAN 97 

Theorem TPP.4 corresponds to theorem TKP.3; note the 
inclusion of the requirement that the assumption set be nor- 
mal, which results from the change from KP.4 to PP.4. 
Theorem TPP.5 is actually equivalent to principle PP.3, in 
the context of the other principles. Recall that the larger the 
set of events, the fewer the constraints placed on the 
universe; hence if @ E a then the a-constraints are less 
restrictive than the @-constraints and in fact must be included 
in the p-constraints. 

We will now outline a very general technique for the cop- 
struction of functions that satisfy PP. 1-PP.5. This tech- 
nique will prove to be quite useful in our deliberations. In 
order to state the technique, we must first define a key 
concept: 

Definition DPP.2 
An elementary weighting function w on a u-field of sets 

is any function mapping the field into the real numbers 
which satisfies the following: 
(a) ~ ( 0 )  = 0, 
(b) W(CY U p) = ~ ( c Y )  t- w @ )  - W(CU fl p), and 
(c) if OL c p then w(a)  I w(@).  

At this point, it will be good for the reader to try to under- 
stand the intuitions behind the concept of elementary weight- 
ing function. In the first instance it is best to think of the 
a-field as containing sets of universe designs; a universe 
design is just a total specification of one way the universe 
might be. Any statement may be compatible with many 
universe designs or perhaps with only a few. A logically 
absurd proposition would be compatible with no universe 
designs. Initially we may think of the weighting function 
as representing simple cardinality (normal counting). The 
number of universe designs in the empty set is of course 0, 
and hence constraint (a). For constraint (b), note that the 
number of universe designs in the union of two sets will be 
the sum of the numbers in the two sets separately, minus 
the number in the overlap; we must subtract the number in 
the overlap because they will have been counted twice, once 
when we count the number in the first set and once when 
we count the number in the second set. For constraint (c), 
note that the number of elements in a subset is never greater 
than the number in the superset. So the three constraints 
obviously hold if we are talking about counting elements. 
To generalize a bit, we could think of each element as itself 
being a representative of some other class. An element may 
represent only one item, while another may represent 
552 items, and so on. So, we could think of the weighting 
function as counting the items represented. Because we wish 
to be able to handle infinite sets, we do not wish to restrict 
.ourselves to simple counting, so we generalize to the notion 
of elementary weighting functions. 

Carefully note that standard Komolgoroff probability 
functions are elementary weighting functions; however, not 
all elementary weighting functions will be Komolgoroff 
probability functions, since elementary weighting functions 
need not be bounded above by 1. We can use any well- 
ordered sequence of elementary weighting functions to 
define a conditional probability function by the technique 
described in the following theorem. We could give a slightly 
more general theorem concerning other sorts of ordered 
sequences of elementary weighting functions, but there is 

Theorem TPP. 6 
Let [ w l ,  w2, ... 1 be a well-ordered sequence of elemen- 

tary weighting functions, all defined on the same a-field, 
and let the function P be defined as follows: 

P(a, p) = 1 ,  if wi(p) = 0 for all wj 
= wi(a n @)/wi(P), 

for the first wi such that wi@) # 0 

Then P so defined satisfies PP.1-PP.5. 

The reader will appreciate part of the importance of 
theorem TPP.6 by bearing in mind the intuitions concerning 
the weighting functions discussed above and considering a 
“sequence” containing only one weighting function. Now, 
consider a simple situation covered by relative frequency 
considerations, such as rolling a standard die. In the usual 
treatments, we consider only six distinct possibilities, namely 
one for each of the faces of the die uppermost. We may think 
of these possibilities as classes of universe designs. For the 
purposes of our problem, we ignore all other aspects of the 
universe designs except which face of the die lands upper- 
most; that is, we act as though there really are only six 
distinct universe designs. If we believe the die is fair, we 
assign equal weight to all six possibilities; but if the die is 
weighted or shaved, we will assign weights to the six possibil- 
ities to reflect the biases in the die. We assess probability 
(e.g., the probability that the die is showing a 6, given that 
it is showing an even number) along relative frequency lines 
exactly in accord with theorem TPP.6. In fact, all simple 
relative frequency cases may be analyzed in this way. But 
agreement with simple relative frequency is not the only 
important point. As we wiIl show by example a bit later, 
theorem TPP.6 allows us to “paste together” a complex 
conditional probabiIity function from any sequence of 
elementary Komolgoroff probability functions to arrive at 
a more rational function than would be obtained by simply 
assigning 1 whenever the assumption set has initial proba- 
bility 0. 

Historically, probability theory has been regarded as at 
least one part of inductive logic. Further, inductive logic has 
been regarded as the poor second cousin of deductive logic; 
and there have been attempts to use classical deductive logic 
as a foundation for probability theory, the most notabIe 
example being Carnap (1950). However, more recent devel- 
opments have shown that this traditional view may be turned 
on its head, so to speak, and that probability theory may 
be used as a foundation for deductive logic. We will now 
show how our conditional probability theory may be used 
as a formal semantics for almost any deductive logic, 

3. Constraints on the logics 
In our discussion from now on we will assume to be given 

a language 6: consisting of some countable set of expres- 
sions. We will use capital letters A ,  B, and so on to designate 
expressions in our language. We will use capital Greek letters 
r, A, and so on to designate sets of expressions. Unless 
specified explicitly, we will not assume that the language con- 
tains any particular connectives, quantifiers, or other syn- 
tactic structure, since we want our discussion to be as general 
as possible. 

In order to  be extremely general, we will assume that our 
logics are formulated in “sequent” style. A logic L for our 

j ‘.anguage consists of a set of axioms and a set of inference no-need to do so in the present context. - 
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rules, which together will be used to define the notion of 
syntactic entailment; we use the standard notation r t-L A 
to mean that there is a derivation of expression A from the 
set of assumptions r using the axioms and inference rules 
of logic L. We will sometimes just write r I- A when the 
logic in question is understood. We assume that our infer- 
ence rules can all be stated in the following general way: 

1R.i. If r, I- A ,  and ... and F, I- A, then I‘ t- A ,  
where r, A,  the I?,, and the A, satisfy conditions 
COND. 

We use COND to stand for any English sentence specifying 
special conditions which must be satisfied. For example, one 
standard version of the rule of universal quantifier introduc- 
tion could be stated as follows: 

IR.EX1. if I’ t- A,  t h e n r  I- (Vx)A, provided there are 
no free occurrences of the variable x in any 
member of I’. 

Of course these rules are stated in the metalanguage. The 
r, and A, may be either metalinguistic constants or vari- 
ables. Metalinguistic variables are presumed to be universally 
quantified (e.g., “for all r and all A”). Note that this infer- 
ence rule form will not in general be suitable for nonmono- 
tonic inferences. (For one example, we may wish to make 
the derivation of A dependent on what things cannot be 
derived from the assumption set, as well as on what things 
can be derived from the assumption set. We will explicitly 
discuss nonmonotonic inferences in the next paper.) We do 
not really have to consider axioms separately, as an axiom 
AX, is just a special case of an inference rule with vacuous 
antecedent: 

I R . A X ~ .  r t- AX, 

There may be other inference rules with vacuous antecedents 
but that do not correspond to axioms, as in the following 
example: 

IR.EX2. r U ( A  1 t- A 

A “sequent” consists of a set designator followed by the 
symbol I- followed by a sentence designator. A derivation 
in a sequent logic consists of a finite ordered list of sequents, 
each one of which may be justified on the basis of previous 
members of the list (if any) and one of the inference rules. 
Of course, a derivation must begin with a rule with vacuous 
antecedent (e.g., an axiom) because there are no previous 
members of the list to use in the justification. 

Instead of thinking of probability theory as applying to 
sets of events, we may instead think of it as a very general 
theory of models (in the logical sense of the term “model”). 
If  we are ultimately to use probability theory as a formal 
semantics, we do not want to require some intervening tradi- 
tional account of models. Standard completeness proofs 
almost always require the consideration of a  maximal^' set 
of expressions at some stage of the argument. Taking our 
cue from this technique, we will adopt the view that our 
probability theory is to be applied to a o-field of sets of 
“maximal” sets of expressions, where “maximal” is defined 
as follows: 

Definition DL. 1 

following are satisfied: 
I’ is maximal wirh respect to A if and only if both of the 

(a) not F I- A, and 
(b) if not r U ( B )  k A,  then B E r. 
F is maximal if and only if there is some expression A with 
respect to which F is maximal. 

To allow the proofs of some important theorems, we must 
place some restrictions on the possible logics under con- 
sideration. We will state the restrictions and then discuss 
each in turn. 

R . l .  If A E r then r I- A. 
R.2. If I‘ I- A then for some finite subset A of r, A I- A. 
R.3. If U ( A )  t- B and F t- A then 
R.4. If r t- A then r U A  I- A .  

I- B. 

Restriction R. 1 simply says that any member of our assump- 
tion set is a theorem of that assumption set. Restriction R.2 
is just the requirement of proof compactness; we do not per- 
mit infinitary rules of inference. Restriction R.3 is sort of 
a cut rule; it allows us to think of proofs as proceeding by 
adding further lines to existing proofs. Restriction R.4 is 
the requirement of monotonicity. We should note that 
(almost) all standard logics satisfy R. 1-R.4. 

Each logic will be determined by its own formation rules, 
axioms, and inference rules. Of course, changes in logic will 
result in changes in the collection of maximal sets. We will 
use L to stand for an arbitrary logic satisfying R.1-R.4. 
Given these four restrictions and the fact that our language 
is denumerable, the following two important theorems about 
L are easily established. 

Theorem TL.1 
If r t- A then for every maximal superset A of I’, 

A E A. 
Theorem TL.2 

If not r I- A then there is a superset A of I’ which is max- 
imal with respect to A. 

Theorem TL.1 follows directly from R.3 and R.4. The 
proof of theorem TL.2 requires R.l and R.2 in addition, 
and directly parallels the standard proof of Lindenbaum’s 
theorem using Zorn’s lemma; see Robinson (1974), for 
example. We need not really be restricted to  denumerable 
languages, as theorem TL.2 can be proved for any well- 
ordered language; see Chang and Keisler (1973). 

Intuitively, a maximal set of expressions says everything 
it is possible to say without being inconsistent (relative to 
the logic L); that is, each maximal set specifies one way the 
universe might be. So we may think of maximal sets as alter- 
native universe designs, where every universe design must 
accord with the principles of logic L. A single expression 
E will correspond to a set (possibly empty) of maximal sets, 
namely all those of which E is a member; this set of maxi- 
mal sets may be regarded as the collection of all universe 
designs in which E would hold. Similarly, a set r of expres- 
sions will pick out a set (possibly empty) of maximal sets 
of expressions, namely the set of maximal supersets of r; 
as before, the set of maximal supersets of I’ may be thought 
of as the collection of designs for universes in which all 
members of r would hold. With these intuitions, it should 
not be surprising that we can construct conditional proba- 
bility functions by assigning weights to the sets of universe 
designs. 

As a technical aside, note that sets of “universe designs” 
do not exactly correspond to possible worlds structures 
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MORGAN 99 

familiar from modal logics. We assume no relations of 
“nearness” of “accessibility” between maximal sets or 
between sets of maximal sets as is done in possible worlds 
semantics. Nonetheless, our probabilistic techniques will 
easily accommodate any of the nonclassical logics for which 
possible worlds semantics can be formulated. But more 
importantly, our probabilistic account will easily serve even 
for those logics for which no possible worlds semantics is 
possible, such as those in Fine (1974) and Thomason (1974). 
For extensions of classical logic, these results will be estab- 
lished by the end of Sect. 5 .  For logics weaker than classical 
logic, these results will be established by the end of Sect. 7. 

4. Probabilistic pseudo-semantics 
Let UM be the set of all maximal sets of the logic. Then 

the set of all subsets of UM, designated by @(UM) is a 
a-field of sets. For an arbitrary set of expressions r, we use 
the notation M ( r )  to stand for the set of all maximal super- 
sets of r. Obviously M(F)  € @( UM).  By theorem TPP.6, 
we know that any sequence of elementary weighting func- 
tions on 6 ( VM) defines a conditional probability function 
satisfying PP.1-PP.5. Our goal is to use such probability 
functions as the basis of a formal semantics for L.  

For a given probability function P defined on the o-field 
@( UM), we may isolate a corresponding probabilistic 
notion of entailment PM as follows: 

PM(E, r) = P(M((El ) ,  M ( r ) )  
The function PM gives the probability of expression E, 
given the assumption set r. It is tempting to think that a 
value of 1 for PM corresponds to Iogical entailment, but 
that would not be correct for monotonic logics. As we will 
show in an example below (Sect. 6) ,  it is possible to have 
PM(E, r) = 1 but, for some A, to have PM(E, r U A) = 0, 
which would not correspond to proof theory. For E to be 
logically certain, given I?, it is not enough that I’ just hap- 
pens to make us certain of E; rather, it must be the case 
that given r, no additional evidence could ever cause us to 
doubt E. Thus we define our probabilistic notion of semantic 
entailment as follows: 

Definition DL.2 
The set of expressions I’ semantically implim expression E 

with respect to the maximal sets of logic L,  symbolically 
I’ IF M ( L )  E, if and only if for every probability function P 
constructed on the basis of a sequence of elementary weight- 
ing functions on @( UM), we have P(M((E)) ,  M(r  UA)) = 1 
for every set of expressions A. 

We earlier made the claim that conditional probability 
theory could be viewed as a general theory of models.. Our 
claim is firmly established by the following two theorems: 

Theorem TLP. 1 (pseudo-soundness) 

Theorem TLP.2 (pseudo-completeness) 

The proof of theorem TLP.1 depends on theorem TL.l in 
the obvious way. The proof of theorem TLP.2 follows the 
standard Henkin argument and depends on theorem TL.2. 
If we suppose that not r I - ~  E, then we must construct a 
probability function so that for some A, P ( M ( ( E ] ) ,  

If r I - ~  E then r IkM(L) E.  

If r IkM(t) E then r I - ~  E. 

- 

M ( r  U A)) # 1. We may take A to be empty. The required 
probability function may then be constructed from a single 
weighting function. We pick some superset of r which is 
maximal with respect to E, as guaranteed by theorem TL.2; 
the required weighting function assigns a weight of 1 (or any 
nonzero value) to all sets containing the chosen maximal 
superset and 0 to all other sets. 

It is important to note that theorems TLP.1 and TLP.2 
hold for any logic that satisfies restrictions R. 1-R.4. The 
differences from one logic to another are buried in the notion 
of “maximal set.” Different logics may have different syn- 
tactic components and hence different expressions; but even 
when two logics have the same expressions, two distinct 
logics will always define different collections of maximal 
sets. And if two logics determine different maximal sets, then 
they will be associated with different collections of proba- 
bility functions, since the probability functions are derived 
from weighting functions over S(VM). In addition to 
semantic entailment, we could use our probability theory 
to define other standard notions from formal semantics. 
Thus classical conditional probability theory may be regarded 
as a very general metalanguage in terms of which the impor- 
tant notions from formal semantics may be elaborated. 

It is also important to realize that theorems TLP.1 and 
TLP.2 are not totally satisfactory from the standpoint of 
formal semantics. The problem is that our definition of 
semantic entailment, definition DL.2, is not autonomous; 
that is, the definition of semantic entailment involves notions 
of proof theory in a crucial way in so far as it depends on 
the notion of maximal sets. For many interesting cases, that 
dependency may be.removed, as we will now demonstrate. 
Our ultimate goal will be to develop a probabilistic account 
of entailment in which our probability functions are defined 
over ordered pairs of the form (E, r), where E is an expres- 
sion of d: and I‘ is a set of expressions of 2; r may be 
thought of as the premise set and E may be thought of as 
the conclusion. 

5. Probabilistic semantics 
In this section, we will assume that our language contains 

at least the syntactic machinery of classical propositional 
logic. In particular, we assume the syntax contains a monadic 
negation operator designated by - , a dyadic conjunction 
operator designated by A, and a dyadic disjunction operator 
designated by V. Further, we assume that our proof theory 
is sufficiently rich to ’assure that these connectives are 
Boolean. To fully explain this assumption, note that we may 
interpret negation as complement, conjunction as meet, and 
disjunction as join; further, we may treat p V -p  as 1 (iden- 
tity with respect to meet), and treat p A -p  as 0 (identity 
with respect to join). We assume that if A = 1 is a theorem 
of Boolean algebra, then r tL A for all r; further, if 
A = B is a theorem of Boolean algebra, then for all r, 
r I - ~  A if and only if I’ I - ~  B. Under these assumptions, 
there is a very tight relationship between the Boolean con- 
nectives and set-theoretic operations on maximal sets, as 
indicated in the following: 

B.l. M(fAj)  U M ( ( B J )  = M ( f A  V B f ) .  
~ . 2 .  ~ ( 1 ~ 1 )  n M ( ( B ~ )  = M(IA A BI).  
~ , 3 .  M(r) n M ( A )  = M(r u A). 

B.5. If r c A then M(A) c M ( r ) .  
B.4. M((A) ) ‘  = M ( (  - A  1). 
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100 COMPUT. INTELL. VOL. 7. 1991 

Using these relationships, we can convert our conditional 
probability theory from a theory that applies to maximal 
sets of expressions to a theory that applies directly to the 
language itself. The following set of contraints defines what 
we will call neo-classical conditional probability theory. 

NPJ. o 5 P ( A ,  r) 1 1 .  
NP.2. If A E I’ then P ( A ,  r) = 1. 

= P ( A ,  r) + P(B,  r) - P ( A  A B, r). 
N P . ~ .  P ( A  A B, r) = P ( A ,  r) x P(B,  r u [ A ) ) .  

NP.3. P ( A  V B, r) 

NP.5. P(  -A, r) = 1 - P ( A ,  I?) provided I’ is P-normal. 
NP.6. P ( A  A B, r) = P(B A A ,  r). 
NP.7. P(C,  I’ U { A  A B ] )  = P ( C ,  r U { A ,  BJ) .  

Our definition of  normal^' is just what would be expected 
in light of our previous discussion. 

Definition DNP. 1 
A set I’ is said to be P-abnormal on neo-classical condi- 

tional probability distribution P if and only if for all expres- 
sions E of language 2, P (  E, r) = 1. A set I’ is P-normal 
i f  and only if it is not P-abnormal. 

A few comments about each of our constraints may prove 
to be illuminating. If we make the assumption that the func- 
tions defined by PP.l-PP.5 are defined over 6(  UM),  then 
each of the constraints NP. 1-NP.7 may be derived from our 
“Popper” constraints PP.l-PP.5 and the relations given 
by B.l-B.5. Of course NP.l corresponds directly to PP.2. 
Constraint NP.2 follows directly from B.5 and theorem 
TPP.5; recall that theorem TPP.5 is equivalent to condition 
PP.3. Given 3.1, NP.3 follows from theorem TPP.3. Given 
B.2 and B.3, NP.4 follows from PP.5. Given B.4, NP.5 fol- 
lows from theorem TPP.4. Given B.2, NP.6 follows from 
PP.1. Finally, NP.7 follows directly from B.2 and B.3. Thus 
neo-classical conditional probability theory does not deviate 
from our Popper classical conditional probability theory. 

Popper’s theory (1965) is strikingly similar to our own. 
However, he formulated his probability theory over pairs 
of expressions from a Boolean language, corresponding to 
functions on C x C, while our theory corresponds to func- 
tions on d: x 6(2). Popper did not begin with the 
Komolgoroff theory KP. 1-KP.4 and then conditionalize it 
as we have in PP.l-PP.5. Nor did Popper show how his 
conditions could be derived from an appropriately condi- 
tionalized form of the Komolgoroff constraints via the con- 
sideration of maximal sets of sentences, as we have done 
here. 

We wish to emphasize at this point that our constraints 
NP.l-NP.7 do not depend on notions from proof theory, 
and hence they are autonomous. Thus they form an accept- 
able basis for a true probabilistic semantics. Given only our 
constraints NP.l-NP.7, we may prove that all of the stan- 
dard Boolean identities in conjunction, disjunction, and 
negation hold for expressions in the conclusion position. In 
addition, the following three important theorems are not 
difficult to prove. 
Theorem TNP. 1 

A U ( A ] )  = P ( C ,  r U A u ( B I )  for all C and all A. 
Theorem TNP.2 

I f P ( A , r U A )  = P ( B , r U A ) f o r a l l A , t h e n P ( C , r U  

If P ( C ,  r U ( A ] )  = P(C,  I’ U IB])  for all C, then 
P ( A ,  r) = P ( B ,  r). 

Theorem TNP.3 
IfP(C, r U AU ( A  I) = P(C,  r U A U ( B ) )  for all Cand 

all A,  then P ( A ,  r U A) = P ( B ,  I’ U A) for all A .  

The first theorem tells us that if given background 
assumptions r there is no additional evidence A that can 
distinguish between A and B, then given the background 
assumptions r, A and B are indistinguishable when used as 
evidence, no matter what additional evidence A we may 
have. In short, statements indistinguishable as conclusions 
are indistinguishable as evidence. Our second theorem tells 
us that if given just the background assumptions F, the 
statements A and B function the same when used as addi- 
tional evidence, then F does not distinguish between A and 
B as conclusions. Our third theorem is the converse of the 
first theorem and is an immediate consequence of our second 
theorem; it says that statements indistinguishable as evidence 
are indistinguishable as conclusions. 

As we will soon show, our conditions NP.1-NP.7 are suf- 
ficient by themselves to exactly characterize classical prop- 
ositional logic. A great many logics are just extensions of 
classical propositional logic. First-order predicate calculus 
with identity and second-order logic may both be regarded 
as extensions of classical propositional logic; other examples 
include standard modal, temporal, and deontic logics. These 
logics are all obtained by enriching the language and adding 
more axioms and (or) inference rules. To extend our prob- 
ability theory to such logics, it is only necessary to add some 
simple restrictions to our basic neo-classical theory. For 
every axiom AX, beyond those required for classical prop- 
ositional logic, we must add the following restriction: 

NP.8. P(AXi, I’) = 1. 

And for every inference rule 1R.i beyond those required for 
classical propositional logic, we must add the following 
restriction: 

U A) = 1 and ... and P(A,, 
r j U  A) = 1, then for ail A, P ( A ,  r U a) = I ,  
where r, A, the ri ,  and the Ai satisfy conditions 
COND. 

For inference rules with vacuous antecedents, the antecedent 
of NP.9 will simply be eliminated. Recall that any logic 
defines the corresponding set UM of maximal sets of 
expressions. It is a simple matter to show that our weighting 
function construction still works for any extended version 
of neo-classical conditional probability theory. 

Theorem TNP. 4 
Let ( tvl, w2, ...) be a well-ordered sequence of elemen- 

tary weighting functions, all defined on CP( UM), and let the 
function P be defined as follows: 

NP.9. If for all A,  P ( A 1 ,  

P ( A ,  F) = 1, if wi(M(I’)) = 0 for all w, 
= w,(M(fA 1) n W ~ W M M r ) ) ,  

for the first wi such that w i ( M ( r ) )  # 0 

Then P so defined satisfies NP.l-NP.9. 

We wish to reiterate that the probability theory appro- 
priate for classical propositional logic is given by constraints 
NP.l-NP.7 alone. For each logic determined by adding 
axioms and (or) inference rules to classical propositional 
logic, we obtain an appropriate probability theory by adding 
versions of NP.8 and NP.9 corresponding to that particular 
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MORGAN 101 

logic. Thus each distinct extension of classical logic will cor- 
respond to a distinct probability theory. Our weighting func- 
tion construction is a quick way of assuring ourselves that 
our probability theory for some specific logic is not trivial 
in the sense of being limited to a certain finite number of 
distinct values. Note that by theorem TNP.4, the number 
of distinct values a probability function may take is limited 
only by the number of distinct maximal sets determined by 
the logic. Thus if the logic is not trivially limited, then the 
corresponding probability functions will not be trivially 
limited. 

For classical propositional logic and each of its extensions, 
it is now possible to give an autonomous probabilistic defini- 
tion of semantic entailment based on the probability theory 
appropriate for the logic. Note that the following definition 
does not depend on the notion of maximal sets. 

Definition DNP.2 
The set of expressions r semantically implies expression E 

with respect to logic L, symbolically I' l-~ E, if and only 
if for every probabiIity function P satisfying NP.l-NP.9 
(NP. 1-NP.7 if the logic is classical propositional logic), 
P ( E ,  r U A) = 1 for every set of expressions A. 

All proof theoretic notions have been eliminated from our 
definition of semantic entailment. For a given logic L ,  con- 
straints NP.8 and NP.9 model the proof theory in a rather 
direct way. However, note that in any particular case, these 
conditions may be stated without any mention of concepts 
from proof theory. Our concern here has been to demon- 
strate the existence of such a theory, and we have not been 
concerned to formulate it in any particularly clever way. It 
should be remembered that there is nothing sacred about 
our specific formulation of the constraints, and there will 
be many equivalent sets of Constraints, in some of which 
there will be no appearance of conditions like NP.8 and 
NP.9. In fact, for many logics (all?) there will be non- 
equivalent sets of constraints, any one of which could serve 
as a basis for a formal semantics. In any case, no matter 
what the logic, the appropriate probability theory as outlined 
here will be truly autonomous in the sense that the probabil- 
ity theory for any particular logic L can be stated without 
mention of any L-proof theoretic notions. Consequently, 
the following soundness and completeness results are of 
much greater interest than theorems TLP.1 and TLP.2. 

Theorem TNP.5 (soundness) 
If I' I -~  E then I' IFr. E. 

Theorem TNP. 6 (completeness) 
If I' IFL E then r I - ~  E. 
These results on soundness and completeness are similar 

to those obtained in Morgan (1982~). However, there the 
probability functions were defined over d: x d: rather than 
over d: x 6(C). It is interesting to note that this simple 
change in the probability functions permits much simpler 
proofs of the desired results. Further, the theory used in 
Morgan (1982~) was not derived from a conditionalized 
Komolgoroff theory, as we have done here. These results 
will be considerably strengthened by the end of Sect. 7 by 
the development of an appropriate theory for logics weaker 
than classical logic. 

There are a number of ways theorem TNP.5 could be 
proved, depending on the specifics of the logic. If the logic 

is purely classical, then an algebraic argument will do. How- 
ever, the simplest and most general technique that works 
for all logics is an inductive argument on derivations. The 
axioms and inference rules for classical propositional logic 
may be easily handled by constraints NP. 1-NP.7; the dexils 
will depend on the specific formulation of the logic. Con- 
straint NP.8 guarantees that all additional axioms take prob- 
ability 1 on any set of assumptions. Constraint NP.2 
guarantees that any member of the set of assumptions takes 
probability 1 given those assumptions even when supple- 
mented by others. Finally, NP.9 may be applied for the 
induction step over the additional inference rules. 

The proof of theorem TNP.6 is not substantially different 
from that for theorem TLP.2, which we sketched above. 
We follow the Henkin pattern and assume that not 
r I-, E; we must then construct a function satisfying 
NP.l-NP.9 such that for some set A, it is not the case that 
P(E, r U A) = 1. We simply select an arbitrary superset 
of I' which is maximal with respect to E. We assign a weight 
of 1 to  any set containing the chosen maximal set and 0 to 
all other sets. The probability function determined by this 
weighting function will assign E the value 0 given I' U 0. 

It is important to emphasize once again that, following 
our procedure, we can begin with any logic satisfying the 
minimal conditions R. 1-R.4 and obtain a probability theory 
which serves as a formal semantics for that logic. Perhaps 
two simple examples will be instructive. 

For the first example, let us consider classical first-order 
logic. Briefly, let us assume that our language contains pred- 
icate and function symbols of arbitrary adicity, as well as 
individual constants and variables; we will use the notation 
(Vx) for the universal quantifier with respect to the individual 
variable x. We assume standard definitions for well-formed 
formulas, for individual terms, and for free and bound 
occurrences of variables. The material conditional A 3 B 
is defined as -(A A - B). We use the notation A f / x  to mean 
the formula obtained by replacing every free occurrence of 
x in A by term t, providing x is free for t in A .  If we begin 
with some standard axiomatic account of classical proposi- 
tional logic, we obtain classical first-order logic by adding 
the following additional inference rule and two axioms: 

QR. 
QAX1. (Vx)A 3 A t / x  for all terms t free for x in A .  
QAX2. (Vx)(A 3 B )  3 ( A  3 (Vx)B) providing.4 has 

See Mendelson (1964) for details. Following the procedure 
outlined above, we need to add the following constraints 

NP.QR. If P ( A ,  r U A) = 1 for all A, then P((Vx)A, 
I' U A) = ' 1  for all A.  

NP.QAX1. P((Vx)A 3 A f / x ,  r) = 1 for all terms t 
free for x in A .  

NP.QAX2. P((Vx)(A 3 B )  3 ( A  3 (Vx)B, r) = 1 if 
A has no free occurrence of x.  

Theorems TNP.5 and TNP.6 guarantee that the probability 
theory obtained from NP.l-NP.7, NP.QR, NP.QAX1 and 
NP.QAX2 exactly captures classical first-order predicate 
calculus. Note that we do not require the usual notions of 
first-order model theory, such as a domain of objects and 
interpretation functions mapping variables and terms into 
the domain. There will of course be many alternative sets 

If r I- A then r I- (Vx)A. 

no free occurrence of x. 

to  NP.1-NP.7: 
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L 1 

FIG. 1. Latke of distinct propositions. 

of constraints that yield the same result. For example, con- 
sider the following two constraints: 

NP.Ql. P((Vx)A,  r) I P(Ar/x, r) for all terms t free 
for x in A .  

NP.Q2. If P ( A ,  r) I P ( B ,  r) for all r and x does not 
occur free in A ,  then P ( A ,  r) 5 P((Vx)B,  I?) 
for all r. 

It can be shown by essentially the same proofs as given in 
Morgan (1984) that the probability theory given by con- 
straints NP.1-NP.7 plus NP.Ql and NP.Q2 also exactly 
captures classical first-order predicate calculus. 

For our second example, let us consider the simple prop- 
ositional modal logic T. We will use the symbol 0 for the 
monadic necessity operator. One standard formulation for 
T is to add the following rule of necessitation and two 
axioms to a standard axiomatization of classical proposi- 
tional logic: 

T.NEC. If i- A then i- CA.  
T.AX1. O ( A  2 B )  3 (OA 3 O B ) .  
T.AX2. O A  3 A. 

Using the techniques of this section, the required additions 
to NP.1-NP.7 are the following: 

NP.TNEC. If P ( A ,  A) = 1 for all A, then P ( O A ,  A) = 

NP.TAX1. P ( O ( A  3 B )  3 ( O A  3 OB), r) = 1. 
NP.TAX2. P ( O A  3 A ,  r) = 1. 

1 for all A. 

As before, theorems TNP.5 and TNP.6 guarantee that the 
probability theory obtained from NP.l-NP.7, NP.NEC, 
NP.TAX1, and NP.TAX2 exactly captures the propositional 
modal logic T. Note that we do not require any arcane 
notions like possible worlds or accessibility relations between 
possible worlds. And as usual, there will be many alternative 
formulations of the theory which will accomplish the same 
task. See Morgan (19826) for constraints that are more 
intuitively appealing and psychologically better motivated. 

It is interesting to note that we could have added even 
more constraints and still been able to obtain both sound- 
ness and completeness. For example, from the completeness 
proof, it should be obvious that we could have restricted 
the functions to be 0-1 valued. It is perhaps surprising to 
note that no matter what the logic, we never require more 
than 0-1 valued functions to invalidate a non-theorem. In 
this sense, the probability theory is incredibly rich; for most 

TABLE 1. Negations of 
distinct propositions 

P -P 

t f 
T v E  H 
H v T  E 
H V E  T 

H T v E  
E H V T  
T H v E  
f t 

any logic, there will be non-equivalent sets of constraints 
that provide a theoretically adequate semantics. So, in any 
practical case, it may be possible to strengthen the set of 
constraints in order to make them more tractable from a 
computational point of view, and yet still retain soundness 
and completeness. 

Thus we have shown that rather than thinking of proba- 
bility theory as being in some sense opposed to standard 
logics, it would be more correct to think of probability 
theory as incorporating standard logics as special cases. And 
since probability theory is so much richer than standard 
logics, it will be possible to  explicate many more aspects of 
natural language and commonsense inference than can be 
handled with the more limited resources of any single stan- 
dard logic. 

6. A simple weighting function example 
It might be useful at this point to give a concrete prac- 

tical example of the construction of a probability distribu- 
tion using weighting functions. To keep the example simple,. 
we will consider only a classical propositional logic. Suppose 
I am considering a single flip of a coin, one side of which 
is heads and the other side of which is tails; if pressed, I may 
admit the logical possibility that the coin could come to rest 
on its edge, although I believe this to be apructical impossi- 
bility. Consider the language with sentence lettersf, T, H, 
E, and t. Intuitively, we may think off as some universal 
falsehood and t as some universal truth. The other sentence 
letters stand for English sentences as follows: 

H The coin will come to  rest showing heads. 
T: The coin will come to rest showing tails. 
E: The coin will come to  rest on its edge. 

The lattice of logically distinct propositions is given in Fig. 1 , 
while Table 1 specifies the negations of the distinct 
propositions. 

Of course, disjunctions are least upper bounds and con- 
junctions are greatest lower bounds on the lattice diagram. 
The following are the only three maximal sets of expressions: 

(i) ( t , H V E , H v T , H )  
(ii) ( t ,  H V E,  T v  E, El 
(iii) ( t ,  H V T, T V E,  T J  

Since we have only a finite number of maximal sets, a sim- 
ple way of creating elementary weighting functions is to 
assign each maximal set a weight and then take the weight 
of a set of maximal sets to be the sum of the weights of the 
members. We will adopt this technique to construct two 
elementary weighting functions as follows: 
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MORGAN 103 

TABLE 2. Probability values, P ( A ,  r) 
r 

~~ ~~ 

A t T V E  H V T  H V E  H E T f 

t 
T v E  
H V T  
H V E  

H 
E 
T 
f 

1 
n / (  m + n )  

1 
m / ( m + n )  
m / (  m + n )  

0 
n / (  m + n ) 

0 

1 1 
n/( m + n) 0 

1 1 
m / ( m + n )  1 
m / ( m + n )  1 

0 0 
n / (  m + n) 0 

0 0 

1 1 1 1  
0 1 1 1  
1 0 1 1  
1 1 0 1  
1 0 0 1  
0 1 0 1  
0 0 1 1  
0 0 0 1  

Maximal set w ,  w2 

(0 m O  
( i i )  0 1  
(iii) n o  

If I believe that heads and tails are equally likely, then 
I should choose m = n. On the other hand, if I believe the 
coin to  be biased, then I may choose m and n to reflect my 
beliefs about the degree of bias. These weights give rise to 
the probability distribution given in Table 2. Note that since 
we are dealing with only finite sets of propositions, each set 
will be logically equivalent to its conjunction and hence to 
one of the propositions on the lattice given above. Hence 
we may represent sets of propositions for the assumption 
position by single expressions across the table. The single 
propositions on the left of the table represent the conclusion 
position. 

As long as the assumption set is equivalent to neither E 
nor f, I use elementary weighting function wI to calculate 
the probability. If the assumption set is equivalent to E, then 
I must use w2 to calculate the probability, since w, assigns 
the assumption set the value 0. Finally, if the assumption 
set is equivalent to f, then I just set all probabilities to 1, 
since all my weighting functions assign a value of 0 to the 
assumption set. 

From the table it is easy to see that the only abnormal 
assumption sets would be those equivalent to f; examples 
of such sets are (f) and [H, E ) .  Note that although E is 
assigned probability 0 on tautological evidence, evidence sets 
equivalent to E are not abnormal. I may well believe that 
it is practically impossible for the coin to come to  rest on 
its edge, and yet I can still rationally entertain the assump- 
tion that it has done so. For.example, on the assumption 
that the coin has come to rest on its edge, I should reject 
the proposal that it has come to rest with either heads or 
tails uppermost. This simple example is just one of many 
in which our normal response is to  assign probability 0 to 
a statement that is not, technically speaking, inconsistent. 
Just because we are virtually certain some statement A can 
never occur (and are willing to wager accordingly), it does 
not follow that we cannot rationally entertain the possibility 
of the occurrence of A and reason appropriately from the 
hypothetical assumption that A has occurred. 

Finally, as promised earlier, the table provides a simple 
example in which P ( A ,  r) = 1, but P ( A ,  I‘ U A) = 0. 
Note that P ( H  v T, t )  = 1 but P ( H  V T, E )  = 0. That is, 

at the start of the coin toss experiment, it may be the case 
that I am absolutely certain that the coin will come to rest 
with either heads or tails uppermost. However, if (by some 
wild miracle) the coin were to come to rest on edge, I would 
say there is no chance at all that either heads or tails would 
be uppermost. Thus P ( A ,  r) = 1 is not sufficient for assert- 
ing that I‘ logically entails A .  

7. Core confirmation theory and weak logics 
Our success with logics formulated as extensions of 

classical propositional logic naturally leads us to examine 
logics weaker than classical logic. Standard examples include 
intuitionistic logic and quantum logic. To incorporate all 
such logics, we have developed a minimal “core” probabil- 
ity for any language. Since our core theory is considerably 
weaker than classical probability, some may object to the 
use of the term “probability.” Consequently, we will refer 
to  the theory as a system of confirmation functions. 

Since we want our core confirmation theory to serve as 
the basis of a formal semantics for any logic on any lan- 
guage, the core theory can make no assumptions about the 
syntactic apparatus available in the language. The only thing 
that can be-assumed is that the language d: consists of a 
(possibly infinite) set of well-formed expressions. Our con- 
firmation functions may be thought of as specifying the 
degree of rational belief in one expression when given some 
set of expressions as evidence. Thus as before, we will 
assume the functions (here designated by c )  are defined on 
d: x 6(C). The following simple constraints serve as our 
core confirmation theory: 

c.1. o 5 C ( A ,  r) I 1. 
C.2. If A E r then c ( A ,  r) = 1. 
c.3. C ( A ,  r) x C ( B ,  r u ( A  1) 

= C ( B ,  r) x C ( A ,  r u 1131). 
Standard versions of these three constraints hold for vir- 

tually all accounts of conditional probability theory. In par- 
ticular, note that C.l-C.3 may be derived directly from 
NP.1-NP.7. Thus adopting C.l-C.3 amounts to a relaxation 
of constraints and simply permits more functions to be 
included. Constraint C.l merely sets out the range of the 
functions, corresponding directly to NP. 1. Constraint C.2 
simply says that if your set of assumptions includes A ,  then 
in light of those assumptions, the degree of confirmation 
of A must be maximal; it corresponds directly to NP.2. 

Constraint C.3 requires a bit more discussion. It follows 
directly from NP.4 and NP.6, above. Since our language 
is completely arbitrary, we cannot be sure that there is a con- 
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104 COMPUT. INTELL. VOL. 7 ,  1991 

FIG. 2. Relative frequency example. 

nective in the language corresponding to conjunction. How- 
ever, by combining NP.4 and NP.6, we obtain an essential 
condition that makes no mention of any connective. Note 
that we use unions rather than intersections in stating con- 
straint C.3, as is appropriate when talking about sets of 
expressions from the language rather than sets of events or 
sets of “universe descriptions.” The semantic impact of C.3 
is to require that our confirmation functions accord with 
elementary relative frequency considerations. For a diagram- 
matic representation, see Fig. 2. The box is presumed to con- 
tain all of the universe designs which are compatible with 
the statements in r; in this example, for simplicity we assume 
there are only a finite number of universe designs. We 
assume the circle with A inside it contains all of the F 
universe designs that are compatible with A; and similarly, 
we assume the circle with B inside it contains all of the 
I’ universe designs that are compatible with B. Let j be the 
number of r universe designs that are compatible with 
neither A nor B. Let k be the number of r universe designs 
compatible with A but not with B. Let n be t t e  number of 
r universe designs compatible with B but not with A. And 
let rn be the number of r universe designs compatible with 
both A and B. Then we may take the confirmation function 
c(E,  A) as the relative frequency of E designs among the 
A designs. Accordingly, we obtain the following values: 

c(A,  r) = (k + m ) / ( j  + k + m + n) 
c ( B ,  I’ U ( A ) )  = m / ( k  + m) 
product = m / ( j  + k + m + n )  
c(B,  r) = ( m  + n ) / ( j  + k + m + n )  
c ( A ,  r U (BI )  = m / ( m  + n) 
product = m / ( j  + k + m + n) 

Standard concrete examples abound including all the well- 
known games of chance involving dice and cards. In short, 
C.3 embodies the requirement that our confirmation func- 
tions must accord with elementary relative frequency 
considerations. 

Although C.l-C.3 are quite simple, they have several 
important consequences worth mentioning at this point. 
First, note that these constraints are sufficient to ensure that 
statements indistinguishable by any conceivable evidence are 
indistinguishable in their role QS evidence statements. 
Theorem TC.1 

If c ( A ,  I’) = c(B,  r), for all r, then for all Statements D, 

The proof of this result is not difficult, but since it cannot 
be found elsewhere, we will sketch it here. Those not inter- 

C ( D ,  r u [ A ) )  = c (D,  r U IBI), for all r. 

ested in the details should skip to the next paragraph. 
Assume the hypothesis of the theorem: 

(TC1.l) c(A, r) = c ( B ,  r), for all r 
Let r’ be a completely arbitrary set. Then (TCI. 1) and C.2 
guarantee all of the following: 

(TC1.2) c ( A ,  I” U I B ) )  = 1 

(TC1.3) c (B ,  r‘  U [A])  = 1 

( ~ ~ 1 . 4 )  C ( A ,  r’ u [ B ,  01) = 

( ~ ~ 1 . 5 )  C ( B ,  rf  u ( A ,  DJ) = 

Using (TCl.2) and (TC1.3), we 

1 

1 

have 

( ~ ~ 1 . 6 )  C ( A ,  rf  u ( ~ 1 )  x C ( D ,  r‘ u [ A ,  B I )  
= C ( B ,  r’  u ( A ] )  x C ( D ,  r’  u [ A ,  B ) )  

Applying constraint C.3 to both sides of (TC1.6) yields 

( ~ ~ 1 . 7 )  C ( D ,  r’ u [ B J )  x C(A,  r f  u [ B ,  DJ) 
= C ( D ,  r’ u ( A ] )  x C ( B ,  r’  u [ A ,  D]) 

Then using (TC1.4) on the left and (TCl.5) on the right of 
(TC1.7), we have 

( ~ ~ 1 . 8 )  C ( D ,  r‘ u (BI) = C(D,  r‘ u [ A ) )  

But I” was arbitrary, so the proof of the theorem is 
complete. 

Note that theorem TC. 1 has nothing whatever to do with 
any logic that might be defined on our language. It is solely 
concerned with the way in which evidence is assessed. The 
theorem is also independent of any internal syntactic struc- 
ture present in the language. The result holds independently 
of any connectives or sentence forming operators. 

The reader may feel that by not specifying any sentence 
forming operators, our core confirmation theory is too weak 
to  be of any interest. It may therefore be surprising to note 
the bounds which our three simple constraints impose on 
functions for some of the standard sentential connectives. 
Let us first consider a general conjunctive operator, here 
designated by A. We usually think of conjunction as a binary 
operator, but we can instead define it to apply to arbitrarily 
long finite sequences of formulas in the obvious way, thereby 
avoiding the need to state associativity principles. Because 
of general familiarity with the binary operator, I will write 
A l  A ... A A,, instead of A(A,, ..., A,,). An operator is 
deemed to be conjunctive just in case it is idempotent, is 
permutative, and satisfies a greatest lower bound principle. 
For definiteness, we list these properties in terms of proof 
theory. 

CON. 1. Idempotency: 

r U [ A A  ... A A ]  F A a n d r U ( A 1  F A A  ... AA. 

CON.2. Permutativity: 

r u [ A ,  A ... A ... A A _.. AA,J 
F A ,  A ... A k A  ... A A i A  ... AAn. 

CON.3. Greatest lower bound principle: 

(a) U ( A ,  A ... A A,,] t- Ai for all i ,  1 I i i n. 
(b) If r U IB]  I- Ai for all i ,  1 s i I n, then r U ( B )  

t- A1 A ... A A,. 
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MORGAN 10s 

To see how these principles (and others to be discussed 
below) transform into our core confirmation theory, we will 
need the following two theorems. As with theorem TC.1, 
the proofs depend only on constraints C.l-C.3. 

Theorem TC.2 

only if c(A, r) = c(B, r) for all r. 
Theorem TC.3 

c(A, r U ( B ) )  = 1 for all r if and only if c (B ,  I’) I 
c(A,  r) for all I?. 

We may now ask about the possible functions which could 
serve to define a conjunctive operator in our core confirma- 
tion theory. To this end, we offer the following definition 
of a “product” function: 

Definition DC. I 

c(A ,  I’ U ( B l )  = c(B,  r U ( A  1) = 1 for all I‘ if and 

prd((A ), r) = C(A,  r). 
prd((A1, ..., An), r) 

= c(A l ,  r) x prd((A2, ..., A,,), r U [ A , ) ) .  

Using theorems TC.2 and TC.3, it is easy to see that the 
three desiderata of idempotency, permutativity, and greatest 
lower bound principle all hold of the function prd, as the 
following theorem indicates. 

Theorem TC.4 
( i )  prd((A, ..., A), r) = prd((A), r). 
( i i )  prd((AI, ..., Ai, ..., Ak, ..., A,,), r) = prd((Al, 

(iii.a) prd((A1, ..., A,,), r) 5 prd((A,), r) for all i, 1 I 
i I n. 

(iii.b) If  prd((B), r) I prd((A,), I?) for all I’ and for all 
i ,  1 5 i I n ,  then prd((B), r) 5 prd((AI, ..., 

Note that theorem TC.4 does not guarantee that the lan- 
guage d: contains a conjunctive connective, nor does it 
require that d: contains a conjunctive operator. What the 
theorem tells us is that if our syntax does contain a conjunc- 
tive operator, then the function prd is an appropriate seman- 
tic characterization of it. The proof of theorem TC.4 requires 
only the three constraints of our core confirmation theory. 

Many languages also contain a disjunctive operator, here 
designated by V .  As with the conjunctive operator discussed 
above, we will here presume a general disjunctive operator 
applying to arbitrary sequences of formulas rather than a 
simple binary disjunctive operator; as before, by using such 
a general operator, we avoid the need to worry about 
associative principles. An operator is deemed to  be disjunc- 
tive just in case it is idempotent, is permutative, and satisfies 
a least upper bound principle. We can state these charac- 
teristics in terms of proof theory. 

DIS. 1. Idempotency: 

..., A k r  . - . I  A;, a n . 7  A,), r). 

A,,), r). 

r U ( A  v ... v A )  I- A a n d r U ( A )  I- A v ... v A .  

DIS.2. Permutativity: 

r U (A1 V ... V A; V ... V Ak V ... V A,) 
t- AI V ... VAkV ... VAiV  ... VA,. 

DIS.3. Least upper bound principle: 

(a) r U (Ai) I- A I  v ... v A, for all i, 1 I i 5 n.  

(b) If I‘ U ! A i ]  I- B for all i ,  1 s i s n, then 

We may now ask about the possible functions which could 
serve to define a disjunctive operator in our core confirma- 
tion theory. To this end, we offer the following definition 
of a “sum” function: 

Definition DC.2 

r u ( A ,  v ... v A,,] I- B.  

sum(@), r) = c(A, r). 
n 

i =  1 
sum((Al, - . . ,A,,) ,r)  = c (-Ui-’pW(Ak,, ..., Ak),r), 

for 1 I kj s n and k, # ky 
Again using theorems TC.2 and TC.3, it is easy to see that 
the three desiderata of idempotency, permutativity, and least 
upper bound principle all hold of the function sum, as the 
following theorem indicates. 

Theorem TC.5 
(i) sum(@, ..., A),  r) = sum(@), r). 
( i i )  sum((AI, ..., Ai, ..., Ak, ..., A,,), I’) = sum((A1; 

(iii.a) sum(&), r) I sum((AI, ..., A,), r) for all i, 
l s i s n .  

(iii.b) If sum(&), r) 5 sum(@), r) for all r and for 
all i, 1 zs i I n,  then sum((Al, ..., A,), f )  I 

Theorem TC.5 is similar to  theorem TC.4. Theorem TC.5 
does not guarantee that the language d: contains a disjunc- 
tive connective, nor does it require that d: contains a disjunc- 
tive operator. What the theorem tells us is that if our syntax 
does contain a disjunctive operator, then the function sum 
is an appropriate semantic characterization of it. The proof 
of theorem TC.5 requires only the three constraints of our 
core confirmation theory. 

The function prd is just what classical probability theory 
requires for conjunctions; see NP.4 above. And the function 
sum is just what classical probability theory requires for dis- 
junctions; see NP.3 above. Thus, while our core confirma- 
tion theory places no restrictions on the syntax of the lan- 
guage, the three simple constraints of the theory are 
sufficient to guarantee that the classical probability functions 
are suitable for the classical connectives. Thus these theorems 
serve as a partial justification for calling our theory a core 
confirmation theory. 

Of course, even if the proof theory does contain a con- 
junctive or a disjunctive operator, there is no requirement 
that we semantically define the operator using the prd or 
sum functions. We could simply add very weak constraints 
to  the core confirmation theory corresponding to the appro- 
priate axioms and inference rules. However, such a proce- 
dure may not be as desirable simply from a computational 
point of view. The sum and prd functions give us at least 
a partial guide to  computing the probability values. In some 
cases, the sum and prd functions will be the only possible 
choices anyway. Cox (1961) gives a rather neat derivation 
of these functions from rather sparse assumptions, but his 
assumptions do include the presumption that the language 
is Boolean. Nevertheless, once again we wish to emphasize 
that the real importance of theorems TC.4 and TC.5 is that 
they indicate the strength of the apparently simple con- 
straints C.l-C.3. 

..., A ~ ,  ..., A;, ..., A,,), r). 

sum(@), r). 
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We will now turn our attention to  results more directly 
concerned with the presumed logic. We could continue from 
this point with a discussion of general sequent logics, in a 
way parallel to the development given above. However, we 
will vary the presentation a bit in the hope of preventing 
complete boredom. We will now assume that a logic L is 
defined on the language by recursively specifying a set of 
axioms AX, and a set of weak inference rules of the follow- 
ing form: 

W1R.i. If I’ I- A ,  and ... and r t- A,, then r F A ,  
where r, A, and the A,  satisfy conditions 
COND. 

Note that by restricting ourselves to rules of the sort WIR.i, 
we do not have the full generality of rules of the form IR.i, 
since the assumption sets in the antecedent must always be 
the same as the assumption set in the consequent. Instead 
of allowing derivations using sequents, we define derivations 
to be sequences of formulas of language d: in the usual way. 

Definition DC.3 
Formula A is derivable in logic L from the set of formulas 

r (symbolically, I‘ t- A )  if and only if there is a finite 
sequence of formulas E l ,  ..., En, the last one of which is 
the formula A ,  such that for each member E; of the 
sequence: (a) E, is an axiom, or (b) E, is a member of r, 
or (c) E, follows from previous members of the sequence 
by an inference rule. 

As before, we will generally write r I- A without any 
subscript when it is clear which logic is meant. Given defini- 
tion DC.3 and the general form W1R.i of our rules, it is 
an easy matter toprove that all of the restrictions R.l-R.4 
hold, providing the conditions COND in the rules W1R.i 
do not mention the set r. In any case, we will assume that 
R.l-R.4 hold, as before. 

To obtain the confirmation functions appropriate for a 
given logic, we must add the following constraints (corre- 
sponding to NP.8-NP.9 above) to our core theory for each 
axiom and inference rule: 

c.4. C(AX,, r) = 1. 
C.5. If for all A ,  c ( A , ,  r U A )  = 1 and ... and 

c(A,, U A) = 1, then for all A, c(A,  r U A) = 1, 
where r, A,  and the A, satisfy conditions COND. 

For constraints of the form C.5 corresponding to rules with 
vacuous antecedents, the antecedent of the conditional is 
simply eliminated. 

We will say that a function is appropriate for the logic 
in question just in case it satisfies C.l-C.5. Just as with 
classical probability theory, these constraints will in general 
pick out a large class of functions for a given logic. Which 
function should be used for a particular application depends 
on the extra-logical facts of the case (e.g., how the die is 
weighted or how many cards there are in the deck). That 
is, the correct theory of confirmation depends on the logical 
facts, and the correct function satisfying that theory depends 
on the extra-logical facts. 

At this point it is important to note that the characteriza- 
tion of our functions does not in any way depend on proof- 
theoretic notions like “maximal sets.” As was the case in 
our formulation of neo-classical probability theory, some 
of the confirmation constraints we have listed parallel the 

proof theory in a rather direct way. But even these con- 
straints do not use proof-theoretic notions; in general, there 
will be other equivalent sets of constraints that do not$ 
directly parallel the inference rules. In this formulation, we 
are concerned with the mere existence of an agpropriate set 
of constraints, not with their syntactic “cuteness.” 

Thus, no matter what the logic, our core confirmation 
theory can be used to formulate an autonomous formal 
semantic theory which is characteristic of that logic, as we 
will now proceed to show. First, we define a notion of 
semantic implication, parallel to  definition DNP.2 above. 
The soundness theorem follows immediately. 

Definition DC.4 
The set of expressions I’ semantically implies expression 

E with respect to logic L, symbolically r l k ~  E,  if and only 
if for every confirmation function c satisfying C. 1-C.5, 
c(E,  r U A) = 1 for every set of expressions A. 

Theorem TC.6 (soundness) 
If r I - ~  E,  then r IkL E. 
The proof of theorem TC.6 is not quite as trivial as was 

the proof of theorem TNP.5. Assume that I’ k L E .  By 
definition, there is a finite sequence of formulas, say 
E l .  ..., En, the last one of which is A, such that for each 
member E; of the sequence: (a) Ei is an axiom, or (b) Ei is 
a member of r. or (c) Ei follows from previous members 
of the sequence by an inference rule. Our proof is the usual 
induction on the members Ei of the sequence. For case (a) 
we may appeal to C.4. Similarly, for case (b) we may appeal 
to C.2. For case (c), suppose that the inference rule in ques- 
tion allows us to infer B from A l ,  ..., A,. That is, E; is B, 
and each of the Aj is one of the Ek earlier in the sequence 
than Ei. For notational convenience, we will use rj to stand 
for the set [ A , ,  ..., Ail. Let r ’  be an arbitrary set of 
expressions, and let c be an arbitrary confirmation function. 
Then C.5 guarantees the following: 

( ~ ~ 6 . 1 )  C ( E ~ ,  r u r ’  ur,) = 1 

Now, consider A,,,. Since it occurs earlier in the sequence 
than Ei, the induction hypothesis ensures that 

But by definition, (TC6.2) guarantees that 

( ~ ~ 6 . 3 )  c(A,,,, r u r’ u rm.-l) = 1 
Multiplying the two sides of (TC6.1) and (TC6.3) together 
and applying C.3 yields ‘ 

( ~ ~ 6 . 4 )  c(E;,  r u r ‘  u rm- I) 
x c(A,, r u r’ u r m - ,  u IEi)) = 1 

From C.l  and (TC6.4) we immediately have 

( ~ ~ 6 . 5 )  c ( E ~ ,  r u r’  u rm- = 1 

Going through a similar sequence of steps m - 1 more times 
will yield 

(TC6.6) 
Since r’  and c were completely arbitrary, we know from 
(TC6.6) that 

c(& I‘ U I”) = 1 

( ~ ~ 6 . 7 )  r itL E~ 
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Thus I‘ semantically entails every member of the sequence. 
Since A is the last member of the sequence, it follows that 
F semantically implies A .  Thus the proof of soundness is 
finished. Note that every one of the conditions C. 1-C.5 was 
explicitly used in the proof. 

We will now turn our attention to strong completeness. 
Weak completeness can be obtained as a trivial consequence 
by letting r be empty. 

Theorem TC. 7 (completeness) 
If r IFL E then rcL E. 
To establish completeness, we follow the usual tack and 

argue for the contrapositive. Let r* be an arbitrary set of 
expressions and let A* be an arbitrary expression such that 
it is not the case that r* I- A*. We must show that it is 
not the case that r* IF A*. That is, we must find an appro- 
priate function c and a set I“ such that c(A*, r* U I“) # 1. 
It will be sufficient to take I“ = I”; thus we need only find 
an appropriate function c such that c(A*, r*) # 1. We can 
define the desired function (for all expressions A and sets 
of expressions r) as follows: 

(TC7.1) c(A,  r) = 1, 
= 0, otherwise 

By assumption, it is not the case that I‘* I- A*;  so for c 
defined by (TC7.1), we clearly have c(A*,  r*) # 1, as 
desired. Thus we only need to show that (TC7.1) defines 
a function satisfying C.1-C.5. Conditions C.l, C.2, C.4, 
and C.5 trivially can be seen to be satisfied. Only condi- 
tion C.3 requires comment. We must show that 

if and only if I’ I- ‘A 

( ~ ~ 7 . 2 )  C(A,  r) x C ( B ,  r u ( A  I) 
= C ( B ,  r) x C(A,  r u I E J )  

From (TC7.1), we know that each side of equation (TC7.2) 
must be either 0 or 1. Suppose the left side of the equation 
is 1. Then from (TC7.1) we know both of the following: 

(TC7.3) r I- A 

(TC7.4) 
But applying R.3 to (TC7.3) and (TC7.4) yieIds 

(TC7.5) r I- B 
And using (TC7.3) and R.4, we know that 

I‘ U ( A ]  I- B 

( ~ ~ 7 . 6 )  r u ( E )  I- A 

Our definition of the function c in (TC7. I)  allows us to con- 
clude from (TC7.5) and (TC7.6) that the right side of 
(TC7.2) must also be 1, as required. Now, interchanging 
A and B in the above argument shows that if the right side 
of (TC7.2) is 1 then the left side must be 1 as well. Hence 
condition C.3 is satisfied. Thus the completeness result is 
established. 

We wiI1 now consider one more justification for the 
appellation “core confirmation theory.” Our justification 
is the fact that all relative frequency schemes must satisfy 
the constraints of the core theory. In short, we will obtain 
theorems similar to theorem TPP.6, above. The reader new 
to this material may wish to review our discussion of the 
intuitive motivation behind the definition of elementary 
weighting function (definition DPP.2), as well as our discus- 
sion of relative frequency following theorem TPP.6. 

Relative frequency considerations are conveniently phrased 
in terms of the relative frequency of “universe designs.’’ 
A universe design is usually thought of as a maximal set of 
sentences. If no logic is imposed, we may be much more 
liberal; we will allow any set of sentences to be a universe 
design. Thus, if no logic is imposed on the language 2, the 
set UD of universe designs is just an arbitrary subset of 
6(C). We define a mapping ud from sets of expressions 
of 6: into sets of universe designs, as follows: 

ud(r) = (A: A E UD and r c A] 

Intuitively, the universe designs compatible with I‘ are just 
the supersets of r that qualify as universe designs. The fol- 
lowing theorem concerning the core confirmation theory is 
easily proved. 

Theorem TC.8 
Let UD be an arbitrary subset of @(a) for arbitrary lan- 

guage C. Let ud be a function mapping 6( C )  into 6(UD) 
as follows: 

ud(r) = (A: A E UD and r E A)  

Let ( wI,  w2, ...I be a well-ordered sequence of elementary 
weighting functions, all defined on 6 (UD), and let the func- 
tion c be defined as follows: 

c(A,  r) = 1, if w,(ud(r)) = 0 for all wi 
= wi(ud(lA I) n W r ) ) / w i ( W r ) ) ,  

for the first wj such that wi(ud(r)) # 0 

Then c so defined satisfies C.1-C.3. 

From theorem TC.8, we may conclude that any relative 
frequency scheme must satisfy our constraints for core con- 
firmation theory. Carefully note that constraints C.1-C.3 
are common to all logics, and it is for that reason that we 
could allow any set of expressions to serve as a universe 
design. However, as soon as we impose any logical structure, 
it is natural to insist that only maximal sets may count as 
universe designs. (The reader is cautioned to  note that for 
some quite weak logics, maximal sets may very well be incon- 
sistent from the point of view of classical logic; even so, such 
maximal sets will not contain every sentence of the lan- 
guage,) Since conditions R.1-R.4 hold for our logic, we 
know that theorems TL. 1 and TL.2 also hold. Consequently, 
it is easy to prove the following theorem, analogous to 
theorem TNP.4 above. 

Theorem TC.9 
Let L be an arbitrary logic on language 2. Let UD be 

the set of all maximal sets of sentences with respect to L. 
Let ud be a function mapping 6 (d=) into 6 (UD) as follows: 

ud(I’) = (A: A E UD and r E Aj 

Let [ wl, w2 ...I be a well-ordered sequence of elementary 
weighting functions, all defined on 6 (LJD), and let the func- 
tion c be defined as follows: 

c (A ,  r) = 1, if wi(ud(r)) = 0 for all wi 
= wj(ud(A) f l  ud(I’))/wi(ud(I’)), 

for the first wi such that wi(ud(r)) # 0 

Then c so defined satisfies C.1-C.5. 

We have used neither theorem TC.8 nor theorem TC.9 
in establishing our soundness and completeness results. So 
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our formal semantics based on core confirmation theory is 
indeed autonomous, making no surreptitious use of proof 
theory. Consequently, our core confirmation theory may be 
deemed to be a universal semantics. Virtually any logic on 
any language turns out to be just a special case of core con- 
firmation theory. Theorem TC.9 allows us to easily estab- 
lish non-triviality results. Unless the logic imposes an upper 
bound on the number of maximal sets, there will be no upper 
bound on the number of values confirmation functions may 
assign. In short, if the logic is not trivial, then the corre- 
sponding confirmation theory will not be trivial. 

8. Non-numerical accounts of probability theory 
Thus far the accounts of probability we have discussed, 

including the core confirmation theory of the previous sec- 
tion, have all presumed a mapping into the real interval 
[0, 11. Any realistic account of even ideally rational agents 
cannot seriously represent systems of conscious belief in this 
way. Virtually no one consciously assigns precise numerical 
values to their beliefs. And it seems totally unreasonable to 
assume that ideally rational agents could even linearly order 
their beliefs. Computer inference systems which attempt to 
impose such structures are guaranteed to yield results which 
run counter to our intuitions in some cases. 

We should also bear in mind the fact that many animals 
other than humans (and humans are part of the animal king- 
dom, after all) engage in problem solving behavior of a sort 
that very strongly suggests that they have belief systems not 
totally dissimilar to our own; it seems completely absurd to 
suggest that such animals consciously assign numerical 
weights to their beliefs. Since the cognitive capabilities of 
many animals greatly exceed the capabilities of present com- 
puter technology, it would seem that we may not have to 
use all of the determinateness of classical probability theory 
to improve computer inference systems. 

It might be objected that while we are not consciously 
aware of all the details, it may be that unknown to us, as 
it were, our neurophysiology does assign precise numerical 
weights to the items in our belief structure. Several replies 
may be made to this objection. First, in addition to the fact 
that we are not consciously aware of assigning numerical 
weights to all our beliefs, most people have the subjective 
impression that their rational inferences are the result of con- 
scious deliberations of a sort that are frequently verbalized 
when those inferences are challenged. It may be that the vast 
majority of humans are systematically deluded about the 
true nature of rational inference, but a good first working 
hypothesis is that they are not. That is, it may well be that 
any numerical details embedded in our neurophysiology are 
merely accidental features of our particular embodiment and 
not essential components of rational inference. Second, even 
if the belief system of each of us corresponds to some 
numerical weighting of our beliefs, it is certain that the vast 
majority do not share exactly the same set of beliefs to the 
same degree. Yet, there is a tremendous commonality in the 
accepted modes of rational inference which cuts across spe- 
cific belief systems. Not only do we frequently reach com- 
mon conclusions about actual situations, but we also fre- 
quently reach common conclusions about hypothetical cases. 
These observations strongly suggest that it is not the actual 
weights that really matter in rational inference, but at most 
their relative values. So, even if it turns out that neuro- 

physiologically our belief systems do correspond to some 
incredibly precise and detailed numerical weighting, there 
is good reason to believe that a calculus of rational inference 
may be based on less detailed comparative information. 

In short, assigning precise numerical weights to beliefs 
seems to be neither necessary nor sufficient for modelling 
the human inference engine. Standard logics are excellent 
examples of this point. While not adequate for everything, 
standard logics are remarkably good for modelling many 
kinds of inference. On the basis of such logics (even so-called 
multiple-valued logics), we can always class all statements 
into two categories: those that are provable from the 
assumption set and those that are not. Such a classification 
is too crude for most practical purposes, and that is just the 
appeal of multiple-valued logics. For multiple-valued logics, 
even if it is not possible to derive A from r, it may be possi- 
ble to derive something like J, (A) ,  which intuitively says 
that A holds to degree r.  The usual multiple-valued logics 
are truth functional, and it is well known that no truth func- 
tional semantics can accord with the full complexity of 
relative frequency. And if we are going to opt for a seman- 
tics that accords with relative frequency, it is natural to think 
of the probability theory in one of its usual formulations. 
But there is a great range of possibilities open to us between 
the binary classification “provable or not provable’’ and 
the precise specification of the degree to which a sentence 
holds, where that degree must fall on the linear continuum 
of the interval [0, 11. 

There are many accounts of what may loosely be called 
probability or confirmation theory that are not fundamen- 
tally numerical; for examples, see Fine (1973). However, 
most such theories have not been shown to serve as a general 
foundation for logics of the traditional sort. Given the 
limited but very real successes of standard logics in model- 
ling human reasoning, any proposed probabilistic account 
of inference must treat standard logics as special cases before 
it can be regarded as theoretically reasonable. I do not mean 
to suggest that the systems in Fine (1973) could not in prin- 
ciple serve such a foundational role, but rather to indicate 
an open area of research. Another very promising system 
which warrants further attention can be found in Aleliunas 

To my knowledge, there is only one non-numerical system 
of probability that has been treated as a semantic theory. 
The weak conditional comparative theory treated by Morgan 
(1984) has been used as the basis for a semantic account of 
both classical propositional logic and classical first-order 
predicate calculus. No doubt the system could be used as 
the basis for any extension of classical logic by following 
a development similar to that above, but the details have 
not yet been worked out. Further, no real attention has been 
paid to logics weaker than classical propositional logic. 

But all non-numeric probabilistic accounts of inference 
seem to suffer severe problems with machine implementa- 
tion. It seems that we must buy theoretical flexibility at the 
expense of computational tractability. Perhaps the most 
sophisticated practical approach to the problem is due to 
Pearl (1986), who discusses techniques for updating a prob- 
abilistic belief network in light of new evidence in a com- 
putationally reasonable way. Pearl explicitly discusses the 
computational complexity of his procedures as a function 
of the size of the belief network. At first glance, I would 
suggest that strongly algebraic systems of the sort developed 

(1990). 
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by Aleliunas (1990) may be better suited to overcome the 
computational problems than numerically based systems. 

9. Conclusions 
There are various stages in the development of any 

science. At some stages, a proliferation of seemingly inde- 
pendent theories and techniques seems to be the best way 
to proceed. However, as the number of independent 
approaches increases, the pressure for a single, more unified 
theory also increases. There comes a point when significant 
further progress can be made only by trying to view the 
forest instead of the individual trees. Perhaps the time has 
come in the field of A1 to attempt such a unifying view. 
There seems little doubt that classical logic is not an ade- 
quate theoretical underpinning for all of AI. It is my belief 
that probabilistic considerations provide our best hope for 
such a unifying approach. 

It should be clear on the basis of this outline that proba- 
bility theory in its broadest sense encompasses all of the stan- 
dard logics as special cases. Thus probability plays the role 
of a unifying theory, helping us to understand why the more 
specialized logics are adequate for various specialized tasks. 
More importantly, our review should lay to rest any serious 
antagonism between the advocates of various logics and the 
advocates of probability theory; those who use the various 
logics are in fact using probability theory, albeit a very spe- 
cialized form of probability theory. Further, the fact that 
probability can serve as the basis for the characterization 
of the key formal metalogical concepts provides a good 
ground for believing that probability theory may well be ade- 
quate for the analysis of many other linguistic components 
that seem to be metatheoretical in character. Finally, I have 
written this outline from the standpoint of a theoretical logi- 
cian, not that of an applied mathematician. Too often prob- 
ability theory is thought of as simply another computational 
device in the toolbox of the hack mathematician. Such a view 
is extremely shortsighted and narrow minded and is often 
the basis for an unwarranted rejection of probabilistic 
considerations. 

There is a great deal more to probability theory than the 
simple computation of inverse probability values using 
Bayes’ Theorem! For just one example, when we view prob- 
ability theory in this very abstract way, it is easier to isolate 
those assumptions about rational belief structures which 
make a given logic appropriate for certain applications but 
not for others. Further, when faced with inference patterns 
which do not seem to be sanctioned by known systems of 
logic, it then makes sense to ask if there are general con- 
straints on rational belief structures which must hold in order 
to make those inference patterns legitimate. 

I hope that advocates of a probabiIistic approach will see 
that the theory has broader scope than they may have at 

first realized. And I hope that those who.have rejected a 
probabilistic approach will be persuaded to give it another 
look. 
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