
1 Intelligent AgentsMichael Wooldridge1.1 IntroductionComputers are not very good at knowing what to do: every action a computerperforms must be explicitly anticipated, planned for, and coded by a programmer. Ifa computer program ever encounters a situation that its designer did not anticipate,then the result is not usually pretty | a system crash at best, multiple loss of lifeat worst. This mundane fact is at the heart of our relationship with computers. Itis so self-evident to the computer literate that it is rarely mentioned. And yet itcomes as a complete surprise to those encountering computers for the �rst time.For the most part, we are happy to accept computers as obedient, literal,unimaginative servants. For many applications (such as payroll processing), it isentirely acceptable. However, for an increasingly large number of applications, werequire systems that can decide for themselves what they need to do in orderto satisfy their design objectives. Such computer systems are known as agents.Agents that must operate robustly in rapidly changing, unpredictable, or openenvironments, where there is a signi�cant possibility that actions can fail are knownas intelligent agents, or sometimes autonomous agents. Here are examples of recentapplication areas for intelligent agents:When a space probe makes its long
ight from Earth to the outer planets, aground crew is usually required to continually track its progress, and decide howto deal with unexpected eventualities. This is costly and, if decisions are requiredquickly, it is simply not practicable. For these reasons, organisations like nasaare seriously investigating the possibility of making probes more autonomous |giving them richer decision making capability and responsibilities.Searching the Internet for the answer to a speci�c query can be a long and tediousprocess. So, why not allow a computer program | an agent | do searches forus? The agent would typically be given a query that would require synthesisingpieces of information from various di�erent Internet information sources. Failurewould occur when a particular resource was unavailable, (perhaps due to networkfailure), or where results could not be obtained.This chapter is about intelligent agents. Speci�cally, it aims to give you a thorough

2 Intelligent Agentsintroduction to the main issues associated with the design and implementation ofintelligent agents. After reading it, I hope that you will understand:why agents are perceived to be an important new way of conceptualising andimplementing certain types of software application;what intelligent agents are (and are not), and how agents relate to other softwareparadigms | in particular, expert systems and object-oriented programming;the main approaches that have been advocated for designing and implementingintelligent agents, the issues surrounding these approaches, their relative merits,and the challenges that face the agent implementor;the characteristics of the main programming languages available for buildingagents today.The chapter is structured as follows. First, in section 1.2, I describe what I meanby the term agent. In section 1.3, I present some abstract architectures for agents.That is, I discuss some general models and properties of agents without regardto how such agents might be implemented. In section 1.4, I discuss concretearchitectures for agents. The various major design routes that one can follow inimplementing an agent system are outlined in this section. In particular, logic-based architectures, reactive architectures, belief-desire-intention architectures, and�nally, layered architectures for intelligent agents are described. Finally, section 1.5introduces some prototypical programming languages for agent systems.Comments on notationThis chapter makes use of simple mathematical notation in order to make ideasprecise. The formalism used that of discrete maths: a basic grounding in sets and�rst-order logic should be quite su�cient to make sense of the various de�nitionspresented. In addition: if S is an arbitrary set, then }(S) is the powerset of S, andS� is the set of sequences of elements of S; the symbol : is used for logical negation(so :p is read \not p"); ^ is used for conjunction (so p ^ q is read \p and q"); _ isused for disjunction (so p _ q is read \p or q"); and �nally,) is used for materialimplication (so p) q is read \p implies q").1.2 What are Agents?An obvious way to open this chapter would be by presenting a de�nition of the termagent. After all, this is a book about multi-agent systems | surely we must all agreeon what an agent is? Surprisingly, there is no such agreement: there is no universallyaccepted de�nition of the term agent, and indeed there is a good deal of ongoingdebate and controversy on this very subject. Essentially, while there is a generalconsensus that autonomy is central to the notion of agency, there is little agreementbeyond this. Part of the di�culty is that various attributes associated with agency

1.2 What are Agents? 3
ENVIRONMENT

AGENT

action
output

sensor
inputFigure 1.1 An agent in its environment. The agent takes sensory input fromthe environment, and produces as output actions that a�ect it. The interaction isusually an ongoing, non-terminating one.are of di�ering importance for di�erent domains. Thus, for some applications, theability of agents to learn from their experiences is of paramount importance; forother applications, learning is not only unimportant, it is undesirable.Nevertheless, some sort of de�nition is important | otherwise, there is a dangerthat the term will lose all meaning (cf. \user friendly"). The de�nition presentedhere is adapted from [71]: An agent is a computer system that is situated in someenvironment, and that is capable of autonomous action in this environment in orderto meet its design objectives.There are several points to note about this de�nition. First, the de�nition refers to\agents" and not \intelligent agents". The distinction is deliberate: it is discussedin more detail below. Second, the de�nition does not say anything about whattype of environment an agent occupies. Again, this is deliberate: agents can occupymany di�erent types of environment, as we shall see below. Third, we have notde�ned autonomy. Like agency itself, autonomy is a somewhat tricky concept totie down precisely, but I mean it in the sense that agents are able to act withoutthe intervention of humans or other systems: they have control both over their owninternal state, and over their behaviour. In section 1.2.3, we will contrast agents withthe objects of object-oriented programming, and we will elaborate this point there.In particular, we will see how agents embody a much stronger sense of autonomythan do objects.Figure 1.1 gives an abstract, top-level view of an agent. In this diagram, we cansee the action output generated by the agent in order to a�ect its environment. Inmost domains of reasonable complexity, an agent will not have complete control overits environment. It will have at best partial control, in that it can in
uence it. Fromthe point of view of the agent, this means that the same action performed twice inapparently identical circumstances might appear to have entirely di�erent e�ects,and in particular, it may fail to have the desired e�ect. Thus agents in all but the

4 Intelligent Agentsmost trivial of environments must be prepared for the possibility of failure. We cansum this situation up formally by saying that environments are non-deterministic.Normally, an agent will have a repertoire of actions available to it. This set ofpossible actions represents the agents e�ectoric capability : its ability to modify itsenvironments. Note that not all actions can be performed in all situations. Forexample, an action \lift table" is only applicable in situations where the weightof the table is su�ciently small that the agent can lift it. Similarly, the action\purchase a Ferrari" will fail if insu�cient funds area available to do so. Actionstherefore have pre-conditions associated with them, which de�ne the possiblesituations in which they can be applied.The key problem facing an agent is that of deciding which of its actions it shouldperform in order to best satisfy its design objectives. Agent architectures, of whichwe shall see several examples later in this article, are really software architectures fordecision making systems that are embedded in an environment. The complexity ofthe decision-making process can be a�ected by a number of di�erent environmentalproperties. Russell and Norvig suggest the following classi�cation of environmentproperties [59, p46]:Accessible vs inaccessible.An accessible environment is one in which the agent can obtain complete, ac-curate, up-to-date information about the environment's state. Most moderatelycomplex environments (including, for example, the everyday physical world andthe Internet) are inaccessible. The more accessible an environment is, the simplerit is to build agents to operate in it.Deterministic vs non-deterministic.As we have already mentioned, a deterministic environment is one in which anyaction has a single guaranteed e�ect | there is no uncertainty about the statethat will result from performing an action. The physical world can to all intentsand purposes be regarded as non-deterministic. Non-deterministic environmentspresent greater problems for the agent designer.Episodic vs non-episodic.In an episodic environment, the performance of an agent is dependent on anumber of discrete episodes, with no link between the performance of an agentin di�erent scenarios. An example of an episodic environment would be a mailsorting system [60]. Episodic environments are simpler from the agent developer'sperspective because the agent can decide what action to perform based only onthe current episode | it need not reason about the interactions between thisand future episodes.Static vs dynamic.A static environment is one that can be assumed to remain unchanged exceptby the performance of actions by the agent. A dynamic environment is one thathas other processes operating on it, and which hence changes in ways beyondthe agent's control. The physical world is a highly dynamic environment.

1.2 What are Agents? 5Discrete vs continuous.An environment is discrete if there are a �xed, �nite number of actions andpercepts in it. Russell and Norvig give a chess game as an example of a discreteenvironment, and taxi driving as an example of a continuous one.As Russell and Norvig observe [59, p46], if an environment is su�ciently complex,then the fact that it is actually deterministic is not much help: to all intents andpurposes, it may as well be non-deterministic. The most complex general classof environments are those that are inaccessible, non-deterministic, non-episodic,dynamic, and continuous.1.2.1 Examples of AgentsAt this point, it is worth pausing to consider some examples of agents (though not,as yet, intelligent agents):Any control system can be viewed as an agent. A simple (and overused) exampleof such a system is a thermostat. Thermostats have a sensor for detecting roomtemperature. This sensor is directly embedded within the environment (i.e., theroom), and it produces as output one of two signals: one that indicates that thetemperature is too low, another which indicates that the temperature is OK. Theactions available to the thermostat are \heating on" or \heating o�". The action\heating on" will generally have the e�ect of raising the room temperature, butthis cannot be a guaranteed e�ect | if the door to the room is open, for example,switching on the heater may have no e�ect. The (extremely simple) decisionmaking component of the thermostat implements (usually in electro-mechanicalhardware) the following rules:too cold �! heating ontemperature OK �! heating o�More complex environment control systems, of course, have considerably richerdecision structures. Examples include autonomous space probes,
y-by-wireaircraft, nuclear reactor control systems, and so on.Most software daemons, (such as background processes in the unix operatingsystem), which monitor a software environment and perform actions to modifyit, can be viewed as agents. An example is the X Windows program xbiff. Thisutility continually monitors a user's incoming email, and indicates via a guiicon whether or not they have unread messages. Whereas our thermostat agentin the previous example inhabited a physical environment | the physical world| the xbiff program inhabits a software environment. It obtains informationabout this environment by carrying out software functions (by executing systemprograms such as ls, for example), and the actions it performs are softwareactions (changing an icon on the screen, or executing a program). The decisionmaking component is just as simple as our thermostat example.

6 Intelligent AgentsTo summarise, agents are simply computer systems that are capable of autonomousaction in some environment in order to meet their design objectives. An agent willtypically sense its environment (by physical sensors in the case of agents situatedin part of the real world, or by software sensors in the case of software agents),and will have available a repertoire of actions that can be executed to modify theenvironment, which may appear to respond non-deterministically to the executionof these actions.1.2.2 Intelligent AgentsWe are not used to thinking of thermostats or unix daemons as agents, and certainlynot as intelligent agents. So, when do we consider an agent to be intelligent? Thequestion, like the question what is intelligence? itself, is not an easy one to answer.But for me, an intelligent agent is one that is capable of
exible autonomous actionin order to meet its design objectives, where by
exible, I mean three things [71]:reactivity : intelligent agents are able to perceive their environment, and respondin a timely fashion to changes that occur in it in order to satisfy their designobjectives;pro-activeness: intelligent agents are able to exhibit goal-directed behaviour bytaking the initiative in order to satisfy their design objectives;social ability : intelligent agents are capable of interacting with other agents (andpossibly humans) in order to satisfy their design objectives.These properties are more demanding than they might at �rst appear. To see why,let us consider them in turn. First, consider pro-activeness: goal directed behaviour.It is not hard to build a system that exhibits goal directed behaviour | we do itevery time we write a procedure in pascal, a function in c, or a method in java.When we write such a procedure, we describe it in terms of the assumptions onwhich it relies (formally, its pre-condition) and the e�ect it has if the assumptionsare valid (its post-condition). The e�ects of the procedure are its goal : what theauthor of the software intends the procedure to achieve. If the pre-condition holdswhen the procedure is invoked, then we expect that the procedure will executecorrectly : that it will terminate, and that upon termination, the post-condition willbe true, i.e., the goal will be achieved. This is goal directed behaviour: the procedureis simply a plan or recipe for achieving the goal. This programming model is �nefor many environments. For example, its works well when we consider functionalsystems | those that simply take some input x, and produce as output some somefunction f(x) of this input. Compilers are a classic example of functional systems.But for non-functional systems, this simple model of goal directed programmingis not acceptable, as it makes some important limiting assumptions. In particular, itassumes that the environment does not change while the procedure is executing. Ifthe environment does change, and in particular, if the assumptions (pre-condition)underlying the procedure become false while the procedure is executing, then the

1.2 What are Agents? 7behaviour of the procedure may not be de�ned | often, it will simply crash. Also,it is assumed that the goal, that is, the reason for executing the procedure, remainsvalid at least until the procedure terminates. If the goal does not remain valid, thenthere is simply no reason to continue executing the procedure.In many environments, neither of these assumptions are valid. In particular, indomains that are too complex for an agent to observe completely, that are multi-agent (i.e., they are populated with more than one agent that can change theenvironment), or where there is uncertainty in the environment, these assumptionsare not reasonable. In such environments, blindly executing a procedure withoutregard to whether the assumptions underpinning the procedure are valid is a poorstrategy. In such dynamic environments, an agent must be reactive, in just the waythat we described above. That is, it must be responsive to events that occur in itsenvironment, where these events a�ect either the agent's goals or the assumptionswhich underpin the procedures that the agent is executing in order to achieve itsgoals.As we have seen, building purely goal directed systems is not hard. As we shallsee later in this chapter, building purely reactive systems | ones that continuallyrespond to their environment | is also not di�cult. However, what turns out to behard is building a system that achieves an e�ective balance between goal-directedand reactive behaviour. We want agents that will attempt to achieve their goalssystematically, perhaps by making use of complex procedure-like patterns of action.But we don't want our agents to continue blindly executing these procedures in anattempt to achieve a goal either when it is clear that the procedure will not work,or when the goal is for some reason no longer valid. In such circumstances, we wantour agent to be able to react to the new situation, in time for the reaction to be ofsome use. However, we do not want our agent to be continually reacting, and hencenever focussing on a goal long enough to actually achieve it.On re
ection, it should come as little surprise that achieving a good balancebetween goal directed and reactive behaviour is hard. After all, it is comparativelyrare to �nd humans that do this very well. How many of us have had a manager whostayed blindly focussed on some project long after the relevance of the project waspassed, or it was clear that the project plan was doomed to failure? Similarly, howmany have encountered managers who seem unable to stay focussed at all, who
itfrom one project to another without ever managing to pursue a goal long enoughto achieve anything? This problem | of e�ectively integrating goal-directed andreactive behaviour | is one of the key problems facing the agent designer. As weshall see, a great many proposals have been made for how to build agents that cando this | but the problem is essentially still open.Finally, let us say something about social ability, the �nal component of
exibleautonomous action as de�ned here. In one sense, social ability is trivial: everyday, millions of computers across the world routinely exchange information withboth humans and other computers. But the ability to exchange bit streams is notreally social ability. Consider that in the human world, comparatively few of ourmeaningful goals can be achieved without the cooperation of other people, who

8 Intelligent Agentscannot be assumed to share our goals | in other words, they are themselvesautonomous, with their own agenda to pursue. To achieve our goals in suchsituations, we must negotiate and cooperate with others. We may be required tounderstand and reason about the goals of others, and to perform actions (such aspaying them money) that we would not otherwise choose to perform, in orderto get them to cooperate with us, and achieve our goals. This type of socialability is much more complex, and much less well understood, than simply theability to exchange binary information. Social ability in general (and topics suchas negotiation and cooperation in particular) are dealt with elsewhere in this book,and will not therefore be considered here. In this chapter, we will be concerned withthe decision making of individual intelligent agents in environments which may bedynamic, unpredictable, and uncertain, but do not contain other agents.1.2.3 Agents and ObjectsObject-oriented programmers often fail to see anything novel or new in the idea ofagents. When one stops to consider the relative properties of agents and objects,this is perhaps not surprising. Objects are de�ned as computational entities thatencapsulate some state, are able to perform actions, or methods on this state, andcommunicate by message passing.While there are obvious similarities, there are also signi�cant di�erences betweenagents and objects. The �rst is in the degree to which agents and objects areautonomous. Recall that the de�ning characteristic of object-oriented programmingis the principle of encapsulation | the idea that objects can have control over theirown internal state. In programming languages like java, we can declare instancevariables (and methods) to be private, meaning they are only accessible fromwithin the object. (We can of course also declare them public, meaning that theycan be accessed from anywhere, and indeed we must do this for methods so thatthey can be used by other objects. But the use of public instance variables isusually considered poor programming style.) In this way, an object can be thoughtof as exhibiting autonomy over its state: it has control over it. But an object doesnot exhibit control over it's behaviour. That is, if a method m is made available forother objects to invoke, then they can do so whenever they wish | once an objecthas made a method public, then it subsequently has no control over whether ornot that method is executed. Of course, an object must make methods available toother objects, or else we would be unable to build a system out of them. This is notnormally an issue, because if we build a system, then we design the objects that goin it, and they can thus be assumed to share a \common goal". But in many typesof multi-agent system, (in particular, those that contain agents built by di�erentorganisations or individuals), no such common goal can be assumed. It cannot befor granted that an agent i will execute an action (method) a just because anotheragent j wants it to | a may not be in the best interests of i. We thus do not thinkof agents as invoking methods upon one-another, but rather as requesting actionsto be performed. If j requests i to perform a, then i may perform the action or it

1.2 What are Agents? 9may not. The locus of control with respect to the decision about whether to executean action is thus di�erent in agent and object systems. In the object-oriented case,the decision lies with the object that invokes the method. In the agent case, thedecision lies with the agent that receives the request. I have heard this distinctionbetween objects and agents nicely summarised in the following slogan: Objects doit for free; agents do it for money.Note that there is nothing to stop us implementing agents using object-orientedtechniques. For example, we can build some kind of decision making about whetherto execute a method into the method itself, and in this way achieve a strongerkind of autonomy for our objects. The point is that autonomy of this kind is not acomponent of the basic object-oriented model.The second important distinction between object and agent systems is withrespect to the notion of
exible (reactive, pro-active, social) autonomous behaviour.The standard object model has nothing whatsoever to say about how to buildsystems that integrate these types of behaviour. Again, one could object that wecan build object-oriented programs that do integrate these types of behaviour.But this argument misses the point, which is that the standard object-orientedprogramming model has nothing to do with these types of behaviour.The third important distinction between the standard object model and ourview of agent systems is that agents are each considered to have their own threadof control | in the standard object model, there is a single thread of control inthe system. Of course, a lot of work has recently been devoted to concurrencyin object-oriented programming. For example, the java language provides built-in constructs for multi-threaded programming. There are also many programminglanguages available (most of them admittedly prototypes) that were speci�callydesigned to allow concurrent object-based programming. But such languages donot capture the idea we have of agents as autonomous entities. Perhaps the closestthat the object-oriented community comes is in the idea of active objects:An active object is one that encompasses its own thread of control [. . .]. Activeobjects are generally autonomous, meaning that they can exhibit some behaviourwithout being operated upon by another object. Passive objects, on the other hand,can only undergo a state change when explicitly acted upon. [5, p91]Thus active objects are essentially agents that do not necessarily have the abilityto exhibit
exible autonomous behaviour.To summarise, the traditional view of an object and our view of an agent haveat least three distinctions:agents embody stronger notion of autonomy than objects, and in particular,they decide for themselves whether or not to perform an action on request fromanother agent;agents are capable of
exible (reactive, pro-active, social) behaviour, and thestandard object model has nothing to say about such types of behaviour;a multi-agent system is inherently multi-threaded, in that each agent is assumed

10 Intelligent Agentsto have at least one thread of control.1.2.4 Agents and Expert SystemsExpert systems were the most important AI technology of the 1980s [31]. An expertsystem is one that is capable of solving problems or giving advice in some knowledge-rich domain [32]. A classic example of an expert system is mycin, which wasintended to assist physicians in the treatment of blood infections in humans.mycinworked by a process of interacting with a user in order to present the system witha number of (symbolically represented) facts, which the system then used to derivesome conclusion. mycin acted very much as a consultant : it did not operate directlyon humans, or indeed any other environment. Thus perhaps the most importantdistinction between agents and expert systems is that expert systems like mycin areinherently disembodied. By this, we mean that they do not interact directly with anyenvironment: they get their information not via sensors, but through a user acting asmiddle man. In the same way, they do not act on any environment, but rather givefeedback or advice to a third party. In addition, we do not generally require expertsystems to be capable of co-operating with other agents. Despite these di�erences,some expert systems, (particularly those that perform real-time control tasks), lookvery much like agents. A good example is the archon system [33].Sources and Further ReadingA view of arti�cial intelligence as the process of agent design is presented in [59],and in particular, Chapter 2 of [59] presents much useful material. The de�nitionof agents presented here is based on [71], which also contains an extensive reviewof agent architectures and programming languages. In addition, [71] contains adetailed survey of agent theories | formalisms for reasoning about intelligent,rational agents, which is outside the scope of this chapter. This question of \whatis an agent" is one that continues to generate some debate; a collection of answersmay be found in [48]. The relationship between agents and objects has not beenwidely discussed in the literature, but see [24]. Other readable introductions to theidea of intelligent agents include [34] and [13].1.3 Abstract Architectures for Intelligent AgentsWe can easily formalise the abstract view of agents presented so far. First, we willassume that the state of the agent's environment can be characterised as a setS = fs1; s2; : : :g of environment states. At any given instant, the environment isassumed to be in one of these states. The e�ectoric capability of an agent is assumedto be represented by a set A = fa1; a2; : : :g of actions. Then abstractly, an agent

1.3 Abstract Architectures for Intelligent Agents 11can be viewed as a functionaction : S� ! Awhich maps sequences of environment states to actions. We will refer to an agentmodelled by a function of this form as a standard agent. The intuition is that anagent decides what action to perform on the basis of its history | its experiencesto date. These experiences are represented as a sequence of environment states |those that the agent has thus far encountered.The (non-deterministic) behaviour of an an environment can be modelled as afunctionenv : S �A! }(S)which takes the current state of the environment s 2 S and an action a 2 A(performed by the agent), and maps them to a set of environment states env(s; a)| those that could result from performing action a in state s. If all the sets in therange of env are all singletons, (i.e., if the result of performing any action in anystate is a set containing a single member), then the environment is deterministic,and its behaviour can be accurately predicted.We can represent the interaction of agent and environment as a history. A historyh is a sequence:h : s0 a0�! s1 a1�! s2 a2�! s3 a3�! � � � au�1�! su au�! � � �where s0 is the initial state of the environment (i.e., its state when the agent startsexecuting), au is the u'th action that the agent chose to perform, and su is the u'thenvironment state (which is one of the possible results of executing action au�1 instate su�1). If action : S� ! A is an agent, env : S �A! }(S) is an environment,and s0 is the initial state of the environment, then the sequenceh : s0 a0�! s1 a1�! s2 a2�! s3 a3�! � � � au�1�! su au�! � � �will represent a possible history of the agent in the environment i� the followingtwo conditions hold:8u 2 IN; au = action((s0; s1; : : : ; su))and8u 2 IN such that u > 0; su 2 env(su�1; au�1):The characteristic behaviour of an agent action : S� ! A in an environmentenv : S � A ! }(S) is the set of all the histories that satisfy these properties. Ifsome property � holds of all these histories, this this property can be regardedas an invariant property of the agent in the environment. For example, if ouragent is a nuclear reactor controller, (i.e., the environment is a nuclear reactor),and in all possible histories of the controller/reactor, the reactor does not blowup, then this can be regarded as a (desirable) invariant property. We will denote

12 Intelligent Agentsby hist(agent; environment) the set of all histories of agent in environment.Two agents ag1 and ag2 are said to be behaviourally equivalent with respectto environment env i� hist(ag1; env) = hist(ag2; env), and simply behaviourallyequivalent i� they are behaviourally equivalent with respect to all environments.In general, we are interested in agents whose interaction with their environmentdoes not end, i.e., they are non-terminating. In such cases, the histories that weconsider will be in�nite.1.3.1 Purely Reactive AgentsCertain types of agents decide what to do without reference to their history. Theybase their decision making entirely on the present, with no reference at all to thepast. We will call such agents purely reactive, since they simply respond directlyto their environment. Formally, the behaviour of a purely reactive agent can berepresented by a functionaction : S ! A:It should be easy to see that for every purely reactive agent, there is an equivalentstandard agent; the reverse, however, is not generally the case.Our thermostat agent is an example of a purely reactive agent. Assume, withoutloss of generality, that the thermostat's environment can be in one of two states| either too cold, or temperature OK. Then the thermostat's action function issimplyaction(s) = (heater o� if s = temperature OKheater on otherwise.1.3.2 PerceptionViewing agents at this abstract level makes for a pleasantly simply analysis.However, it does not help us to construct them, since it gives us no clues abouthow to design the decision function action. For this reason, we will now beginto re�ne our abstract model of agents, by breaking it down into sub-systems inexactly the way that one does in standard software engineering. As we re�ne ourview of agents, we �nd ourselves making design choices that mostly relate to thesubsystems that go to make up an agent | what data and control structures willbe present. An agent architecture is essentially a map of the internals of an agent |its data structures, the operations that may be performed on these data structures,and the control
ow between these data structures. Later in this chapter, we willdiscuss a number of di�erent types of agent architecture, with very di�erent viewson the data structures and algorithms that will be present within an agent. Inthe remainder of this section, however, we will survey some fairly high-level designdecisions. The �rst of these is the separation of an agent's decision function intoperception and action subsystems: see Figure 1.2.

1.3 Abstract Architectures for Intelligent Agents 13
ENVIRONMENT

action

AGENT

see

Figure 1.2 Perception and action subsystems.The idea is that the function see captures the agent's ability to observe itsenvironment, whereas the action function represents the agent's decision makingprocess. The see function might be implemented in hardware in the case of anagent situated in the physical world: for example, it might be a video camera oran infra-red sensor on a mobile robot. For a software agent, the sensors might besystem commands that obtain information about the software environment, such asls, finger, or suchlike. The output of the see function is a percept | a perceptualinput. Let P be a (non-empty) set of percepts. Then see is a functionsee : S ! Pwhich maps environment states to percepts, and action is now a functionaction : P � ! Awhich maps sequences of percepts to actions.These simple de�nitions allow us to explore some interesting properties of agentsand perception. Suppose that we have two environment states, s1 2 S and s2 2 S,such that s1 6= s2, but see(s1) = see(s2). Then two di�erent environment states aremapped to the same percept, and hence the agent would receive the same perceptualinformation from di�erent environment states. As far as the agent is concerned,therefore, s1 and s2 are indistinguishable. To make this example concrete, let usreturn to the thermostat example. Let x represent the statement\the room temperature is OK"and let y represent the statement\John Major is Prime Minister".If these are the only two facts about our environment that we are concerned with,

14 Intelligent Agentsthen the set S of environment states contains exactly four elements:S = ff:x;:yg| {z }s1 ; f:x; yg| {z }s2 ; fx;:yg| {z }s3 ; fx; yg| {z }s4 gThus in state s1, the room temperature is not OK, and John Major is not PrimeMinister; in state s2, the room temperature is not OK, and John Major is PrimeMinister. Now, our thermostat is sensitive only to temperatures in the room. Thisroom temperature is not causally related to whether or not John Major is PrimeMinister. Thus the states where John Major is and is not PrimeMinister are literallyindistinguishable to the thermostat. Formally, the see function for the thermostatwould have two percepts in its range, p1 and p2, indicating that the temperature istoo cold or OK respectively. The see function for the thermostat would behave asfollows:see(s) = (p1 if s = s1 or s = s2p2 if s = s3 or s = s4.Given two environment states s 2 S and s0 2 S, let us write s � s0 ifsee(s) = see(s0). It is not hard to see that � is an equivalence relation overenvironment states, which partitions S into mutually indistinguishable sets ofstates. Intuitively, the coarser these equivalence classes are, the less e�ective isthe agent's perception. If j � j = jSj, (i.e., the number of distinct percepts is equalto the number of di�erent environment states), then the agent can distinguish everystate | the agent has perfect perception in the environment; it is omniscient. Atthe other extreme, if j � j = 1, then the agent's perceptual ability is non-existent |it cannot distinguish between any di�erent states. In this case, as far as the agentis concerned, all environment states are identical.1.3.3 Agents with StateWe have so far been modelling an agent's decision function action as from sequencesof environment states or percepts to actions. This allows us to represent agentswhose decision making is in
uenced by history. However, this is a somewhatunintuitive representation, and we shall now replace it by an equivalent, butsomewhat more natural scheme. The idea is that we now consider agents thatmaintain state | see Figure 1.3.These agents have some internal data structure, which is typically used to recordinformation about the environment state and history. Let I be the set of all internalstates of the agent. An agent's decision making process is then based, at least inpart, on this information. The perception function see for a state-based agent isunchanged, mapping environment states to percepts as before:see : S ! P

1.3 Abstract Architectures for Intelligent Agents 15
actionsee

next state

AGENT

ENVIRONMENTFigure 1.3 Agents that maintain state.The action-selection function action is now de�ned a mappingaction : I ! Afrom internal states to actions. An additional function next is introduced, whichmaps an internal state and percept to an internal state:next : I � P ! IThe behaviour of a state-based agent can be summarised as follows. The agentstarts in some initial internal state i0. It then observes its environment state s,and generates a percept see(s). The internal state of the agent is then updatedvia the next function, becoming set to next(i0; see(s)). The action selected by theagent is then action(next(i0; see(s))). This action is then performed, and the agententers another cycle, perceiving the world via see, updating its state via next, andchoosing an action to perform via action.It is worth observing that state-based agents as de�ned here are in fact no morepowerful than the standard agents we introduced earlier. In fact, they are identicalin their expressive power | every state-based agent can be transformed into astandard agent that is behaviourally equivalent.Sources and Further ReadingThe abstract model of agents presented here is based on that given in [25, Chapter13], and also makes use of some ideas from [61, 60]. The properties of perceptionas discussed in this section lead to knowledge theory, a formal analysis of theinformation implicit within the state of computer processes, which has had aprofound e�ect in theoretical computer science. The de�nitive reference is [14],and an introductory survey is [29].

16 Intelligent Agents1.4 Concrete Architectures for Intelligent AgentsThus far, we have considered agents only in the abstract. So while we have examinedthe properties of agents that do and do not maintain state, we have not stoppedto consider what this state might look like. Similarly, we have modelled an agent'sdecision making as an abstract function action, which somehowmanages to indicatewhich action to perform | but we have not discussed how this function might beimplemented. In this section, we will rectify this omission. We will consider fourclasses of agents:logic based agents | in which decision making is realised through logical deduc-tion;reactive agents | in which decision making is implemented in some form ofdirect mapping from situation to action;belief-desire-intention agents | in which decision making depends upon themanipulation of data structures representing the beliefs, desires, and intentionsof the agent; and �nally,layered architectures | in which decision making is realised via various softwarelayers, each of which is more-or-less explicitly reasoning about the environmentat di�erent levels of abstraction.In each of these cases, we are moving away from the abstract view of agents, andbeginning to make quite speci�c commitments about the internal structure andoperation of agents. In each section, I will try to explain the nature of thesecommitments, the assumptions upon which the architectures depend, and therelative advantages and disadvantages of each.1.4.1 Logic-based ArchitecturesThe \traditional" approach to building arti�cially intelligent systems, (known assymbolic AI) suggests that intelligent behaviour can be generated in a system bygiving that system a symbolic representation of its environment and its desiredbehaviour, and syntactically manipulating this representation. In this section, wefocus on the apotheosis of this tradition, in which these symbolic representations arelogical formulae, and the syntactic manipulation corresponds to logical deduction,or theorem proving.The idea of agents as theorem provers is seductive. Suppose we have some theoryof agency | some theory that explains how an intelligent agent should behave.This theory might explain, for example, how an agent generates goals so as tosatisfy its design objective, how it interleaves goal-directed and reactive behaviourin order to achieve these goals, and so on. Then this theory � can be consideredas a speci�cation for how an agent should behave. The traditional approach toimplementing a system that will satisfy this speci�cation would involve re�ning the

1.4 Concrete Architectures for Intelligent Agents 17speci�cation through a series of progressively more concrete stages, until �nally animplementation was reached. In the view of agents as theorem provers, however, nosuch re�nement takes place. Instead, � is viewed as an executable speci�cation: itis directly executed in order to produce the agent's behaviour.To see how such an idea might work, we shall develop a simple model of logic-based agents, which we shall call deliberate agents. In such agents, the internal stateis assumed to be a database of formulae of classical �rst-order predicate logic. Forexample, the agent's database might contain formulae such as:Open(valve221)Temperature(reactor4726; 321)Pressure(tank776; 28)It is not di�cult to see how formulae such as these can be used to represent theproperties of some environment. The database is the information that the agenthas about its environment. An agent's database plays a somewhat analogous role tothat of belief in humans. Thus a person might have a belief that valve 221 is open| the agent might have the predicate Open(valve221) in its database. Of course,just like humans, agents can be wrong. Thus I might believe that valve 221 is openwhen it is in fact closed; the fact that an agent has Open(valve221) in its databasedoes not mean that valve 221 (or indeed any valve) is open. The agent's sensorsmay be faulty, its reasoning may be faulty, the information may be out of date, orthe interpretation of the formula Open(valve221) intended by the agent's designermay be something entirely di�erent.Let L be the set of sentences of classical �rst-order logic, and let D = }(L) bethe set of L databases, i.e., the set of sets of L-formulae. The internal state of anagent is then an element of D. We write �;�1; : : : for members of D. The internalstate of an agent is then simply a member of the set D. An agent's decision makingprocess is modelled through a set of deduction rules, �. These are simply rules ofinference for the logic. We write � `� � if the formula � can be proved from thedatabase � using only the deduction rules �. An agents perception function seeremains unchanged:see : S ! P:Similarly, our next function has the formnext : D � P ! DIt thus maps a database and a percept to a new database. However, an agent'saction selection function, which has the signatureaction : D ! Ais de�ned in terms of its deduction rules. The pseudo-code de�nition of this functionis as follows.

18 Intelligent Agents1. function action(� : D) : A2. begin3. for each a 2 A do4. if � `� Do(a) then5. return a6. end-if7. end-for8. for each a 2 A do9. if � 6`� :Do(a) then10. return a11. end-if12. end-for13. return null14. end function actionThe idea is that the agent programmer will encode the deduction rules � anddatabase � in such a way that if a formula Do(a) can be derived, where a is aterm that denotes an action, then a is the best action to perform. Thus, in the �rstpart of the function (lines (3){(7)), the agent takes each of its possible actions a inturn, and attempts to prove the form the formula Do(a) from its database (passedas a parameter to the function) using its deduction rules �. If the agent succeedsin proving Do(a), then a is returned as the action to be performed.What happens if the agent fails to prove Do(a), for all actions a 2 A? In this case,it attempts to �nd an action that is consistent with the rules and database, i.e.,one that is not explicitly forbidden. In lines (8){(12), therefore, the agent attemptsto �nd an action a 2 A such that :Do(a) cannot be derived from its databaseusing its deduction rules. If it can �nd such an action, then this is returned as theaction to be performed. If, however, the agent fails to �nd an action that is at leastconsistent, then it returns a special action null (or noop), indicating that no actionhas been selected.In this way, the agent's behaviour is determined by the agent's deduction rules(its \program") and its current database (representing the information the agenthas about its environment).To illustrate these ideas, let us consider a small example (based on the vacuumcleaning world example of [59, p51]). The idea is that we have a small robotic agentthat will clean up a house. The robot is equipped with a sensor that will tell itwhether it is over any dirt, and a vacuum cleaner that can be used to suck up dirt.In addition, the robot always has a de�nite orientation (one of north, south, east,or west). In addition to being able to suck up dirt, the agent can move forward one\step" or turn right 90�. The agent moves around a room, which is divided grid-likeinto a number of equally sized squares (conveniently corresponding to the unit ofmovement of the agent). We will assume that our agent does nothing but clean |it never leaves the room, and further, we will assume in the interests of simplicitythat the room is a 3�3 grid, and the agent always starts in grid square (0; 0) facing

1.4 Concrete Architectures for Intelligent Agents 19
dirt dirt

(0,0) (1,0) (2,0)

(0,1)

(0,2)

(1,1) (2,1)

(2,2)(1,2)Figure 1.4 Vacuum worldnorth.To summarise, our agent can receive a percept dirt (signifying that there is dirtbeneath it), or null (indicating no special information). It can perform any one ofthree possible actions: forward, suck, or turn. The goal is to traverse the roomcontinually searching for and removing dirt. See Figure 1.4 for an illustration of thevacuum world.First, note that we make use of three simple domain predicates in this exercise:In(x; y) agent is at (x; y)Dirt(x; y) there is dirt at (x; y)Facing(d) the agent is facing direction dNow we specify our next function. This function must look at the perceptualinformation obtained from the environment (either dirt or null), and generate anew database which includes this information. But in addition, it must remove oldor irrelevant information, and also, it must try to �gure out the new location andorientation of the agent. We will therefore specify the next function in several parts.First, let us write old(�) to denote the set of \old" information in a database, whichwe want the update function next to remove:old(�) = fP (t1; : : : ; tn) j P 2 fIn;Dirt; Facingg and P (t1; : : : ; tn) 2 �gNext, we require a function new, which gives the set of new predicates to add tothe database. This function has the signaturenew : D � P ! DThe de�nition of this function is not di�cult, but it is rather lengthy, and so wewill leave it as an exercise. (It must generate the predicates In(: : :), describing thenew position of the agent, Facing(: : :) describing the orientation of the agent, andDirt(: : :) if dirt has been detected at the new position.) Given the new and old

20 Intelligent Agentsfunctions, the next function is de�ned as follows:next(�; p) = (� n old(�)) [new(�; p)Now we can move on to the rules that govern our agent's behaviour. The deductionrules have the form�(: : :) �! (: : :)where � and are predicates over some arbitrary list of constants and variables.The idea being that if � matches against the agent's database, then can beconcluded, with any variables in instantiated.The �rst rule deals with the basic cleaning action of the agent: this rule will takepriority over all other possible behaviours of the agent (such as navigation).In(x; y) ^Dirt(x; y) �! Do(suck) (1.1)Hence if the agent is at location (x; y) and it perceives dirt, then the prescribedaction will be to suck up dirt. Otherwise, the basic action of the agent will be totraverse the world. Taking advantage of the simplicity of our environment, we willhardwire the basic navigation algorithm, so that the robot will always move from(0; 0) to (0; 1) to (0; 2) and then to (1; 2), (1; 1) and so on. Once the agent reaches(2; 2), it must head back to (0; 0). The rules dealing with the traversal up to (0; 2)are very simple.In(0; 0) ^ Facing(north) ^ :Dirt(0; 0) �! Do(forward) (1.2)In(0; 1) ^ Facing(north) ^ :Dirt(0; 1) �! Do(forward) (1.3)In(0; 2) ^ Facing(north) ^ :Dirt(0; 2) �! Do(turn) (1.4)In(0; 2) ^ Facing(east) �! Do(forward) (1.5)Notice that in each rule, we must explicitly check whether the antecedent of rule(1.1) �res. This is to ensure that we only ever prescribe one action via the Do(: : :)predicate. Similar rules can easily be generated that will get the agent to (2; 2), andonce at (2; 2) back to (0; 0). It is not di�cult to see that these rules, together withthe next function, will generate the required behaviour of our agent.At this point, it is worth stepping back and examining the pragmatics of thelogic-based approach to building agents. Probably the most important point tomake is that a literal, naive attempt to build agents in this way would be more orless entirely impractical. To see why, suppose we have designed out agent's rule set� such that for any database �, if we can prove Do(a) then a is an optimal action| that is, a is the best action that could be performed when the environment is asdescribed in �. Then imagine we start running our agent. At time t1, the agent hasgenerated some database �1, and begins to apply its rules � in order to �nd whichaction to perform. Some time later, at time t2, it manages to establish �1 `� Do(a)for some a 2 A, and so a is the optimal action that the agent could perform at timet1. But if the environment has changed between t1 and t2, then there is no guarantee

1.4 Concrete Architectures for Intelligent Agents 21that a will still be optimal. It could be far from optimal, particularly if much timehas elapsed between t1 and t2. If t2�t1 is in�nitesimal | that is, if decision makingis e�ectively instantaneous | then we could safely disregard this problem. But infact, we know that reasoning of the kind our logic-based agents use will be anythingbut instantaneous. (If our agent uses classical �rst-order predicate logic to representthe environment, and its rules are sound and complete, then there is no guaranteethat the decision making procedure will even terminate.) An agent is said to enjoythe property of calculative rationality if and only if its decision making apparatuswill suggest an action that was optimal when the decision making process began.Calculative rationality is clearly not acceptable in environments that change fasterthan the agent can make decisions | we shall return to this point later.One might argue that this problem is an artifact of the pure logic-based approachadopted here. There is an element of truth in this. By moving away from strictlylogical representation languages and complete sets of deduction rules, one can buildagents that enjoy respectable performance. But one also loses what is arguablythe greatest advantage that the logical approach brings: a simple, elegant logicalsemantics.There are several other problems associated with the logical approach to agency.First, the see function of an agent, (its perception component), maps its environ-ment to a percept. In the case of a logic-based agent, this percept is likely to besymbolic | typically, a set of formulae in the agent's representation language. Butfor many environments, it is not obvious how the mapping from environment tosymbolic percept might be realised. For example, the problem of transforming animage to a set of declarative statements representing that image has been the objectof study in AI for decades, and is still essentially open. Another problem is thatactually representing properties of dynamic, real-world environments is extremelyhard. As an example, representing and reasoning about temporal information |how a situation changes over time | turns out to be extraordinarily di�cult. Fi-nally, as the simple vacuum world example illustrates, representing even rathersimple procedural knowledge (i.e., knowledge about \what to do") in traditionallogic can be rather unintuitive and cumbersome.To summarise, in logic-based approaches to building agents, decision makingis viewed as deduction. An agent's \program" | that is, its decision makingstrategy | is encoded as a logical theory, and the process of selecting an actionreduces to a problem of proof. Logic-based approaches are elegant, and have a clean(logical) semantics | wherein lies much of their long-lived appeal. But logic-basedapproaches have many disadvantages. In particular, the inherent computationalcomplexity of theorem proving makes it questionable whether agents as theoremprovers can operate e�ectively in time-constrained environments. Decision makingin such agents is predicated on the assumption of calculative rationality | theassumption that the world will not change in any signi�cant way while the agentis deciding what to do, and that an action which is rational when decision makingbegins will be rational when it concludes. The problems associated with representingand reasoning about complex, dynamic, possibly physical environments are also

22 Intelligent Agentsessentially unsolved.Sources and Further ReadingMy presentation of logic based agents is based largely on the discussion of deliberateagents presented in [25, Chapter 13], which represents the logic-centric view of AIand agents very well. The discussion is also partly based on [38]. A number of more-or-less \pure" logical approaches to agent programming have been developed. Well-known examples include the congolog system of Lesp�erance and colleagues [39](which is based on the situation calculus [45]) and the MetateM and ConcurrentMetateM programming languages developed by Fisher and colleagues [3, 21] (inwhich agents are programmed by giving them temporal logic speci�cations of thebehaviour they should exhibit). Concurrent MetateM is discussed as a case studyin section 1.5. Note that these architectures (and the discussion above) assumethat if one adopts a logical approach to agent-building, then this means agentsare essentially theorem provers, employing explicit symbolic reasoning (theoremproving) in order to make decisions. But just because we �nd logic a useful toolfor conceptualising or specifying agents, this does not mean that we must viewdecision-making as logical manipulation. An alternative is to compile the logicalspeci�cation of an agent into a form more amenable to e�cient decision making.The di�erence is rather like the distinction between interpreted and compiledprogramming languages. The best-known example of this work is the situatedautomata paradigm of Leslie Kaelbling and Stanley Rosenschein [58]. An reviewof the role of logic in intelligent agents may be found in [70]. Finally, for a detaileddiscussion of calculative rationality and the way that it has a�ected thinking in AI,see [60].1.4.2 Reactive ArchitecturesThe seemingly intractable problems with symbolic/logical approaches to buildingagents led some researchers to question, and ultimately reject, the assumptionsupon which such approaches are based. These researchers have argued that minorchanges to the symbolic approach, such as weakening the logical representationlanguage, will not be su�cient to build agents that can operate in time-constrainedenvironments: nothing less than a whole new approach is required. In the mid-to-late 1980s, these researchers began to investigate alternatives to the symbolicAI paradigm. It is di�cult to neatly characterise these di�erent approaches, sincetheir advocates are united mainly by a rejection of symbolic AI, rather than by acommon manifesto. However, certain themes do recur:the rejection of symbolic representations, and of decision making based onsyntactic manipulation of such representations;the idea that intelligent, rational behaviour is seen as innately linked to theenvironment an agent occupies | intelligent behaviour is not disembodied, but

1.4 Concrete Architectures for Intelligent Agents 23is a product of the interaction the agent maintains with its environment;the idea that intelligent behaviour emerges from the interaction of varioussimpler behaviours.Alternative approaches to agency are sometime referred to as behavioural (since acommon theme is that of developing and combining individual behaviours), situated(since a common theme is that of agents actually situated in some environment,rather than being disembodied from it), and �nally| the term I will use | reactive(because such systems are often perceived as simply reacting to an environment,without reasoning about it). This section presents a survey of the subsumptionarchitecture, which is arguably the best-known reactive agent architecture. It wasdeveloped by Rodney Brooks | one of the most vocal and in
uential critics of thesymbolic approach to agency to have emerged in recent years.There are two de�ning characteristics of the subsumption architecture. The �rstis that an agent's decision-making is realised through a set of task accomplishingbehaviours; each behaviour may be though of as an individual action function, aswe de�ned above, which continually takes perceptual input and maps it to an actionto perform. Each of these behaviour modules is intended to achieve some particulartask. In Brooks' implementation, the behaviour modules are �nite state machines.An important point to note is that these task accomplishing modules are assumedto include no complex symbolic representations, and are assumed to do no symbolicreasoning at all. In many implementations, these behaviours are implemented asrules of the formsituation �! actionwhich simple map perceptual input directly to actions.The second de�ning characteristic of the subsumption architecture is that manybehaviours can \�re" simultaneously. There must obviously be a mechanism tochoose between the di�erent actions selected by these multiple actions. Brooksproposed arranging the modules into a subsumption hierarchy, with the behavioursarranged into layers. Lower layers in the hierarchy are able to inhibit higher layers:the lower a layer is, the higher is its priority. The idea is that higher layers representmore abstract behaviours. For example, one might desire a behaviour in a mobilerobot for the behaviour \avoid obstacles". It makes sense to give obstacle avoidancea high priority | hence this behaviour will typically be encoded in a low-level layer,which has high priority. To illustrate the subsumption architecture in more detail,we will now present a simple formalmodel of it, and illustrate how it works by meansof a short example. We then discuss its relative advantages and shortcomings, andpoint at other similar reactive architectures.The see function, which represents the agent's perceptual ability, is assumed toremain unchanged. However, in implemented subsumption architecture systems,there is assumed to be quite tight coupling between perception and action | rawsensor input is not processed or transformed much, and there is certainly no attemptto transform images to symbolic representations.

24 Intelligent AgentsThe decision function action is realised through a set of behaviours, togetherwith an inhibition relation holding between these behaviours. A behaviour is a pair(c; a), where c � P is a set of percepts called the condition, and a 2 A is an action.A behaviour (c; a) will �re when the environment is in state s 2 S i� see(s) 2 c.Let Beh = f(c; a) j c � P and a 2 Ag be the set of all such rules.Associated with an agent's set of behaviour rules R � Beh is a binary inhibitionrelation on the set of behaviours: � � R � R. This relation is assumed to be atotal ordering on R (i.e., it is transitive, irre
exive, and antisymmetric). We writeb1 � b2 if (b1; b2) 2�, and read this as \b1 inhibits b2", that is, b1 is lower in thehierarchy than b2, and will hence get priority over b2. The action function is thende�ned as follows:1. function action(p : P) : A2. var fired : }(R)3. var selected : A4. begin5. fired := f(c; a) j (c; a) 2 R and p 2 cg6. for each (c; a) 2 fired do7. if :(9(c0; a0) 2 fired such that (c0; a0) � (c; a)) then8. return a9. end-if10. end-for11. return null12. end function actionThus action selection begins by �rst computing the set fired of all behavioursthat �re (5). Then, each behaviour (c; a) that �res is checked, to determine whetherthere is some other higher priority behaviour that �res. If not, then the action partof the behaviour, a, is returned as the selected action (8). If no behaviour �res, thenthe distinguished action null will be returned, indicating that no action has beenchosen.Given that one of our main concerns with logic-based decision making wasits theoretical complexity, it is worth pausing to examine how well our simplebehaviour-based system performs. The overall time complexity of the subsumptionaction function is no worse than O(n2), where n is the larger of the number ofbehaviours or number of percepts. Thus, even with the naive algorithm above,decision making is tractable. In practice, we can do considerably better than this:the decision making logic can be encoded into hardware, giving constant decisiontime. For modern hardware, this means that an agent can be guaranteed to select anaction within nano-seconds. Perhaps more than anything else, this computationalsimplicity is the strength of the subsumption architecture.To illustrate how the subsumption architecture in more detail, we will show howsubsumption architecture agents were built for the following scenario (this exampleis adapted from [66]):

1.4 Concrete Architectures for Intelligent Agents 25The objective is to explore a distant planet, more concretely, to collect samples ofa particular type of precious rock. The location of the rock samples is not known inadvance, but they are typically clustered in certain spots. A number of autonomousvehicles are available that can drive around the planet collecting samples and laterreenter the a mothership spacecraft to go back to earth. There is no detailed map ofthe planet available, although it is known that the terrain is full of obstacles | hills,valleys, etc. | which prevent the vehicles from exchanging any communication.The problem we are faced with is that of building an agent control architecture foreach vehicle, so that they will cooperate to collect rock samples from the planetsurface as e�ciently as possible. Luc Steels argues that logic-based agents, of thetype we described above, are \entirely unrealistic" for this problem [66]. Instead,he proposes a solution using the subsumption architecture.The solution makes use of two mechanisms introduced by Steels: The �rst is agradient �eld. In order that agents can know in which direction the mothership lies,the mothership generates a radio signal. Now this signal will obviously weaken asdistance to the source increases | to �nd the direction of the mothership, an agentneed therefore only travel \up the gradient" of signal strength. The signal need notcarry any information | it need only exist.The second mechanism enables agents to communicate with one another. Thecharacteristics of the terrain prevent direct communication (such as message pass-ing), so Steels adopted an indirect communication method. The idea is that agentswill carry \radioactive crumbs", which can be dropped, picked up, and detected bypassing robots. Thus if an agent drops some of these crumbs in a particular loca-tion, then later, another agent happening upon this location will be able to detectthem. This simple mechanism enables a quite sophisticated form of cooperation.The behaviour of an individual agent is then built up from a number of be-haviours, as we indicated above. First, we will see how agents can be programmedto individually collect samples. We will then see how agents can be programmed togenerate a cooperative solution.For individual (non-cooperative) agents, the lowest-level behaviour, (and hencethe behaviour with the highest \priority") is obstacle avoidance. This behaviourcan can be represented in the rule:if detect an obstacle then change direction. (1.6)The second behaviour ensures that any samples carried by agents are dropped backat the mother-ship.if carrying samples and at the base then drop samples (1.7)if carrying samples and not at the base then travel up gradient. (1.8)Behaviour (1.8) ensures that agents carrying samples will return to the mother-ship(by heading towards the origin of the gradient �eld). The next behaviour ensures

26 Intelligent Agentsthat agents will collect samples they �nd.if detect a sample then pick sample up. (1.9)The �nal behaviour ensures that an agent with \nothing better to do" will explorerandomly.if true then move randomly. (1.10)The pre-condition of this rule is thus assumed to always �re. These behaviours arearranged into the following hierarchy:(1:6) � (1:7) � (1:8) � (1:9) � (1:10)The subsumption hierarchy for this example ensures that, for example, an agentwill always turn if any obstacles are detected; if the agent is at the mother-shipand is carrying samples, then it will always drop them if it is not in any immediatedanger of crashing, and so on. The \top level" behaviour | a random walk |will only every be carried out if the agent has nothing more urgent to do. It is notdi�cult to see how this simple set of behaviours will solve the problem: agents willsearch for samples (ultimately by searching randomly), and when they �nd them,will return them to the mother-ship.If the samples are distributed across the terrain entirely at random, then equip-ping a large number of robots with these very simple behaviours will work extremelywell. But we know from the problem speci�cation, above, that this is not the case:the samples tend to be located in clusters. In this case, it makes sense to have agentscooperate with one-another in order to �nd the samples. Thus when one agent �ndsa large sample, it would be helpful for it to communicate this to the other agents,so they can help it collect the rocks. Unfortunately, we also know from the problemspeci�cation that direct communication is impossible. Steels developed a simple so-lution to this problem, partly inspired by the foraging behaviour of ants. The idearevolves around an agent creating a \trail" of radioactive crumbs whenever it �ndsa rock sample. The trail will be created when the agent returns the rock samplesto the mother ship. If at some later point, another agent comes across this trail,then it need only follow it down the gradient �eld to locate the source of the rocksamples. Some small re�nements improve the e�ciency of this ingenious schemestill further. First, as an agent follows a trail to the rock sample source, it picksup some of the crumbs it �nds, hence making the trail fainter. Secondly, the trailis only laid by agents returning to the mothership. Hence if an agent follows thetrail out to the source of the nominal rock sample only to �nd that it contains nosamples, it will reduce the trail on the way out, and will not return with samplesto reinforce it. After a few agents have followed the trail to �nd no sample at theend of it, the trail will in fact have been removed.The modi�ed behaviours for this example are as follows. Obstacle avoidance,(1.6), remains unchanged. However, the two rules determining what to do if carrying

1.4 Concrete Architectures for Intelligent Agents 27a sample are modi�ed as follows.if carrying samples and at the base then drop samples (1.11)if carrying samples and not at the basethen drop 2 crumbs and travel up gradient. (1.12)The behaviour (1.12) thus requires an agent to drop crumbs when returning to basewith a sample, thus either reinforcing or creating a trail. The \pick up sample"behaviour, (1.9), remains unchanged. However, an additional behaviour is requiredfor dealing with crumbs.if sense crumbs then pick up 1 crumb and travel down gradient (1.13)Finally, the random movement behaviour, (1.10), remains unchanged. These be-haviour are then arranged into the following subsumption hierarchy.(1:6) � (1:11) � (1:12) � (1:9) � (1:13) � (1:10)Steels shows how this simple adjustment achieves near-optimal performance inmany situations. Moreover, the solution is cheap (the computing power requiredby each agent is minimal) and robust (the loss of a single agent will not a�ect theoverall system signi�cantly).In summary, there are obvious advantages to reactive approaches such as thatBrooks' subsumption architecture: simplicity, economy, computational tractability,robustness against failure, and elegance all make such architectures appealing. Butthere are some fundamental, unsolved problems, not just with the subsumptionarchitecture, but with other purely reactive architectures:If agents do not employ models of their environment, then they must havesu�cient information available in their local environment for them to determinean acceptable action.Since purely reactive agents make decisions based on local information, (i.e.,information about the agents current state), it is di�cult to see how such decisionmaking could take into account non-local information| it must inherently takea \short term" view.It is di�cult to see how purely reactive agents can be designed that learn fromexperience, and improve their performance over time.A major selling point of purely reactive systems is that overall behaviouremerges from the interaction of the component behaviours when the agentis placed in its environment. But the very term \emerges" suggests that therelationship between individual behaviours, environment, and overall behaviouris not understandable. This necessarily makes it very hard to engineer agents toful�ll speci�c tasks. Ultimately, there is no principled methodology for buildingsuch agents: one must use a laborious process of experimentation, trial, and errorto engineer an agent.

28 Intelligent AgentsWhile e�ective agents can be generated with small numbers of behaviours(typically less that ten layers), it is much harder to build agents that containmany layers. The dynamics of the interactions between the di�erent behavioursbecome too complex to understand.Various solutions to these problems have been proposed. One of the most popularof these is the idea of evolving agents to perform certain tasks. This area of workhas largely broken away from the mainstream AI tradition in which work on, forexample, logic-based agents is carried out, and is documented primarily in thearti�cial life (alife) literature.Sources and Further ReadingBrooks original paper on the subsumption architecture | the one that started allthe fuss | was published as [8]. The description and discussion here is partly basedon [15]. This original paper seems to be somewhat less radical than many of hislater ones, which include [9, 11, 10]. The version of the subsumption architectureused in this chapter is actually a simpli�cation of that presented by Brooks. Thesubsumption architecture is probably the best-known reactive architecture around| but there are many others. The collection of papers edited by Pattie Maes [41]contains papers that describe many of these, as does the collection by Agre andRosenschein [2]. Other approaches include:the agent network architecture developed by Pattie Maes [40, 42, 43];Nilsson's teleo reactive programs [49];Rosenchein and Kaelbling's situated automata approach, which is particularlyinteresting in that it shows how agents can be speci�ed in an abstract, logi-cal framework, and compiled into equivalent, but computationally very simplemachines [57, 36, 35, 58];Agre and Chapman's pengi system [1];Schoppers' universal plans | which are essentially decision trees that can beused to e�ciently determine an appropriate action in any situation [62];Firby's reactive action packages [19].Kaelbling [34] gives a good discussion of the issues associated with developingresource-bounded rational agents, and proposes an agent architecture somewhatsimilar to that developed by Brooks.1.4.3 Belief-Desire-Intention ArchitecturesIn this section, we shall discuss belief-desire-intention (bdi) architectures. Thesearchitectures have their roots in the philosophical tradition of understanding prac-tical reasoning | the process of deciding, moment by moment, which action toperform in the furtherance of our goals.

1.4 Concrete Architectures for Intelligent Agents 29Practical reasoning involves two important processes: deciding what goals wewant to achieve, and how we are going to achieve these goals. The former process isknown as deliberation, the latter asmeans-ends reasoning. To gain an understandingof the bdi model, it is worth considering a simple example of practical reasoning.When you leave university with a �rst degree, you are faced with a decision tomake | about what to do with your life. The decision process typically begins bytrying to understand what the options available to you are. For example, if yougain a good �rst degree, then one option is that of becoming an academic. (If youfail to obtain a good degree, this option is not available to you.) Another option isentering industry. After generating this set of alternatives, you must choose betweenthem, and commit to some. These chosen options become intentions, which thendetermine the agent's actions. Intentions then feed back into the agent's futurepractical reasoning. For example, if I decide I want to be an academic, then Ishould commit to this objective, and devote time and e�ort to bringing it about.Intentions play a crucial role in the practical reasoning process. Perhaps the mostobvious property of intentions is that they tend to lead to action. If I truly havean intention to become an academic, then you would expect me to act on thatintention | to try to achieve it. For example, you might expect me to apply tovarious PhD programs.You would expect to to make a reasonable attempt to achievethe intention. By this, I mean that you would expect me to carry our some courseof action that I believed would best satisfy the intention. Moreover, if a course ofaction fails to achieve the intention, then you would expect me to try again | youwould not expect me to simply give up. For example, if my �rst application fora PhD programme is rejected, then you might expect me to apply to alternativeuniversities.In addition, once I have adopted an intention, then the very fact of having thisintention will constrain my future practical reasoning. For example, while I holdsome particular intention, I will not entertain options that are inconsistent withthat intention. Intending to become an academic, for example, would preclude theoption of partying every night: the two are mutually exclusive.Next, intentions persist. If I adopt an intention to become an academic, then Ishould persist with this intention and attempt to achieve it. For if I immediatelydrop my intentions without devoting resources to achieving them, then I will neverachieve anything. However, I should not persist with my intention for too long | ifit becomes clear to me that I will never become an academic, then it is only rationalto drop my intention to do so. Similarly, if the reason for having an intention goesaway, then it is rational of me to drop the intention. For example, if I adopted theintention to become an academic because I believed it would be an easy life, butthen discover that I would be expected to actually teach, then the justi�cation forthe intention is no longer present, and I should drop the intention.Finally, intentions are closely related to my beliefs about the future. For example,if I intend to become an academic, then I should believe that I will indeed becomean academic. For if I truly believe that I will never be an academic, it would benon-sensical of me to have an intention to become one. Thus if I intend to become

30 Intelligent Agentsan academic, I should at least believe that there is a good chance I will indeedbecome one.From this discussion, we can see that intentions play a number of important rolesin practical reasoning:Intentions drive means-ends reasoning.If I have formed an intention to become an academic, then I will attempt toachieve the intention, which involves, amongst other things, deciding how toachieve it, for example, by applying for a PhD programme. Moreover, if oneparticular course of action fails to achieve an intention, then I will typicallyattempt others. Thus if I fail to gain a PhD place at one university, I might tryanother university.Intentions constrain future deliberation.If I intend to become an academic, then I will not entertain options that areinconsistent with this intention. For example, a rational agent would not considerbeing rich as an option while simultaneously intending to be an academic. (Whilethe two are not actually mutually exclusive, the probability of simultaneouslyachieving both is in�nitesimal.)Intentions persist.I will not usually give up on my intentions without good reason | they willpersist, typically until either I believe I have successfully achieved them, I believeI cannot achieve them, or else because the purpose for the intention is no longerpresent.Intentions in
uence beliefs upon which future practical reasoning is based.If I adopt the intention to become an academic, then I can plan for the future onthe assumption that I will be an academic. For if I intend to be an academic whilesimultaneously believing that I will never be one, then I am being irrational.A key problem in the design of practical reasoning agents is that of of achievinga good balance between these di�erent concerns. Speci�cally, it seems clear thatan agent should at times drop some intentions (because it comes to believe thateither they will never be achieved, they are achieved, or else because the reason forhaving the intention is no longer present). It follows that, from time to time, it isworth an agent stopping to reconsider its intentions. But reconsideration has a cost| in terms of both time and computational resources. But this presents us with adilemma:an agent that does not stop to reconsider su�ciently often will continue attempt-ing to achieve its intentions even after it is clear that they cannot be achieved,or that there is no longer any reason for achieving them;an agent that constantly reconsiders its attentions may spend insu�cient timeactually working to achieve them, and hence runs the risk of never actuallyachieving them.This dilemma is essentially the problem of balancing pro-active (goal directed) and

1.4 Concrete Architectures for Intelligent Agents 31reactive (event driven) behaviour, that we introduced in section 1.2.2.There is clearly a tradeo� to be struck between the degree of commitment andreconsideration at work here. The nature of this tradeo� was examined by DavidKinny and Michael George�, in a number of experiments carried out with a bdiagent framework called dMARS [37]. They investigate how bold agents (those thatnever stop to reconsider) and cautious agents (those that are constantly stoppingto reconsider) perform in a variety of di�erent environments. The most importantparameter in these experiments was the rate of world change,
. The key results ofKinny and George� were as follows.If
 is low, (i.e., the environment does not change quickly), then bold agents dowell compared to cautious ones, because cautious ones waste time reconsideringtheir commitments while bold agents are busy working towards | and achieving| their goals.If
 is high, (i.e., the environment changes frequently), then cautious agents tendto outperform bold agents, because they are able to recognise when intentionsare doomed, and also to take advantage of serendipitous situations and newopportunities.The lesson is that di�erent types of environment require di�erent types of decisionstrategies. In static, unchanging environment, purely pro-active, goal directedbehaviour is adequate. But in more dynamic environments, the ability to reactto changes by modi�fying intentions becomes more important.The process of practical reasoning in a bdi agent is summarised in Figure 1.5.As this Figure illustrates, there are seven main components to a bdi agent:a set of current beliefs, representing information the agent has about its currentenvironment;a belief revision function, (brf), which takes a perceptual input and the agent'scurrent beliefs, and on the basis of these, determines a new set of beliefs;an option generation function, (options), which determines the options availableto the agent (its desires), on the basis of its current beliefs about its environmentand its current intentions;a set of current options, representing possible courses of actions available to theagent;a �lter function (filter), which represents the agents deliberation process, andwhich determines the agent's intentions on the basis of its current beliefs, desires,and intentions;a set of current intentions, representing the agent's current focus | those statesof a�airs that it has committed to trying to bring about;an action selection function (execute), which determines an action to performon the basis of current intentions.It is straightforward to formally de�ne these components. First, let Bel be the set

32 Intelligent Agents

output
action

action

intentions

desires

options
generate

beliefs

brf

sensor

filter

input

Figure 1.5 Schematic diagram of a generic belief-desire-intention architecture.of all possible beliefs, Des be the set of all possible desires, and Int be the set ofall possible intentions. For the purposes of this chapter, the content of these setsis not important. (Often, beliefs, desires, and intentions are represented as logicalformulae, perhaps of �rst-order logic.) Whatever the content of these sets, its isworth noting that they should have some notion of consistency de�ned upon them,so that one can answer the question of, for example, whether having an intentionto achieve x is consistent with the belief that y. Representing beliefs, desires, andintentions as logical formulae permits us to cast such questions as questions asquestions of determining whether logical formulae are consistent | a well knownand well-understood problem. The state of a bdi agent at any given moment is,unsurprisingly, a triple (B;D; I), where B � Bel, D � Des, and I � Int.An agent's belief revision function is a mappingbrf : }(Bel) � P ! }(Bel)which on the basis of the current percept and current beliefs determines a new setof beliefs. Belief revision is out of the scope of this chapter (and indeed this book),and so we shall say no more about it here.The option generation function, options, maps a set of beliefs and a set of

1.4 Concrete Architectures for Intelligent Agents 33intentions to a set of desires.options : }(Bel) � }(Int) ! }(Des)This function plays several roles. First, it must be responsible for the agent's means-ends reasoning | the process of deciding how to achieve intentions. Thus, once anagent has formed an intention to x, it must subsequently consider options to achievex. These options will be more concrete | less abstract | than x. As some of theseoptions then become intentions themselves, they will also feedback into option gen-eration, resulting in yet more concrete options being generated. We can thus thinkof a bdi agent's option generation process as one of recursively elaborating a hier-archical plan structure, considering and committing to progressively more speci�cintentions, until �nally it reaches the intentions that correspond to immediatelyexecutable actions.While the main purpose of the options function is thus means-ends reasoning,it must in addition satisfy several other constraints. First, it must be consistent :any options generated must be consistent with both the agent's current beliefs andcurrent intentions. Secondly, it must be opportunistic, in that it should recognisewhen environmental circumstances change advantageously, to o�er the agent newways of achieving intentions, or the possibility of achieving intentions that wereotherwise unachievable.A bdi agent's deliberation process (deciding what to do) is represented in thefilter function,filter : }(Bel) � }(Des) � }(Int)! }(Int)which updates the agent's intentions on the basis of its previously-held intentionsand current beliefs and desires. This function must ful�ll two roles. First, it mustdrop any intentions that are no longer achievable, or for which the expected costof achieving them exceeds the expected gain associated with successfully achievingthem. Second, it should retain intentions that are not achieved, and that are stillexpected to have a positive overall bene�t. Finally, it should adopt new intentions,either to achieve existing intentions, or to exploit new opportunities.Notice that we do not expect this function to introduce intentions from nowhere.Thus filter should satisfy the following constraint:8B 2 }(Bel); 8D 2 }(Des); 8I 2 }(Int); filter(B;D; I) � I [D:In other words, current intentions are either previously held intentions or newlyadopted options.The execute function is assumed to simply return any executable intentions |by which we mean intentions that correspond to directly executable actions:execute : }(Int) ! AThe agent decision function, action of a bdi agent is then a functionaction : P ! A

34 Intelligent Agentsand is de�ned by the following pseudo-code.1. function action(p : P) : A2. begin3. B := brf(B; p)4. D := options(D; I)5. I := filter(B;D; I)6. return execute(I)7. end function actionNote that representing an agent's intentions as a set (i.e., as an unstructuredcollection) is generally too simplistic in practice. A simple alternative is to associatewith a priority with each intention, indicating its relative importance. Anothernatural idea is to represent intentions as a stack. An intention is pushed on tothe stack when it is adopted, and popped when it is either achieved or else notachievable. More abstract intentions will tend to be at the bottom of the stack,with more concrete intentions towards the top.To summarise, bdi architectures are practical reasoning architectures, in whichthe process of deciding what to do resembles the kind of practical reasoning thatwe appear to use in our everyday lives. The basic components of a bdi architectureare data structures representing the beliefs, desires, and intentions of the agent,and functions that represent its deliberation (deciding what intentions to have| i.e., deciding what to do) and means-ends reasoning (deciding how to do it).Intentions play a central role in the bdi model: they provide stability for decisionmaking, and act to focus the agent's practical reasoning. A major issue in bdiarchitectures is the problem of striking a balance between being committed to andovercommitted to one's intentions: the deliberation process must be �nely tuned toits environment, ensuring that in more dynamic, highly unpredictable domains, itreconsiders its intentions relatively frequently | in more static environments, lessfrequent reconsideration is necessary.The bdi model is attractive for several reasons. First, it is intuitive | we allrecognise the processes of deciding what to do and then how to do it, and weall have an informal understanding of the notions of belief, desire, and intention.Second, it gives us a clear functional decomposition, which indicates what sorts ofsubsystems might be required to build an agent. But the main di�culty, as ever, isknowing how to e�ciently implement these functions.Sources and Further ReadingBelief-desire-intention architectures originated in the work of the Rational Agencyproject at Stanford Research Institute in the mid 1980s. The origins of the modellie in the theory of human practical reasoning developed by the philosopher MichaelBratman [6], which focusses particularly on the role of intentions in practical

1.4 Concrete Architectures for Intelligent Agents 35reasoning. The conceptual framework of the BDI model is described in [7], whichalso describes a speci�c BDI agent architecture called irma. The description ofthe bdi model given here (and in particular Figure 1.5) is adapted from [7]. Oneof the interesting aspects of the bdi model is that it has been used in one ofthe most successful agent architectures to date. The Procedural Resoning System(prs), originally developed by Michael George� and Amy Lansky [26], has beenused to build some of the most exacting agent applications to date, including faultdiagnosis for the reaction control system of the space shuttle, and an air tra�cmanagement system at Sydney airport in Australia | overviews of these systemsare described in [27]. In the prs, an agent is equipped with a library of plans whichare used to perform means-ends reasoning. Deliberation is achieved by the use ofmeta-level plans, which are able to modify an agent's intention structure at run-time, in order to change the focus of the agent's practical reasoning. Beliefs in theprs are represented as prolog-like facts | essentially, as atoms of �rst-order logic.The bdi model is also interesting because a great deal of e�ort has been devotedto formalising it. In particular, Anand Rao and Michael George� have developed arange of bdi logics, which they use to axiomatise properties of bdi-based practicalreasoning agents [52, 56, 53, 54, 55, 51]. These models have been extended by othersto deal with, for example, communication between agents [28].1.4.4 Layered ArchitecturesGiven the requirement that an agent be capable of reactive and pro-active be-haviour, an obvious decomposition involves creating separate subsystems to dealwith these di�erent types of behaviours. This idea leads naturally to a class ofarchitectures in which the various subsystems are arranged into a hierarchy of in-teracting layers. In this section, we will consider some general aspects of layeredarchitectures, and then go on to consider two examples of such architectures: in-terrap and touringmachines.Typically, there will be at least two layers, to deal with reactive and pro-active behaviours respectively. In principle, there is no reason why there shouldnot be many more layers. However many layers there are, a useful typology forsuch architectures is by the information and control
ows within them. Broadlyspeaking, we can identify two types of control
ow within layered architectures (seeFigure 1.6):Horizontal layering.In horizontally layered architectures (Figure 1.6(a)), the software layers are eachdirectly connected to the sensory input and action output. In e�ect, each layeritself acts like an agent, producing suggestions as to what action to perform.Vertical layering.In vertically layered architectures (Figure 1.6(b) and 1.6(c)), sensory input andaction output are each dealt with by at most one layer each.The great advantage of horizontally layered architectures is their conceptual sim-

36 Intelligent Agents
action
output

perceptual
input

(b) Vertical layering
(One pass control)

(a) Horizontal layering

perceptual
input

action
output

perceptual
input

action
output

(Two pass control)

Layer 1

Layer 2

Layer n

Layer 1

Layer 2

Layer n

Layer 1

Layer 2

Layer n

...

(c) Vertical layeringFigure 1.6 Information and control
ows in three types of layered agent architec-ture (Source: [47, p263]).plicity: if we need an agent to exhibit n di�erent types of behaviour, then we im-plement n di�erent layers. However, because the layers are each in e�ect competingwith one-another to generate action suggestions, there is a danger that the overallbehaviour of the agent will not be coherent. In order to ensure that horizontally lay-ered architectures are consistent, they generally include a mediator function, whichmakes decisions about which layer has \control" of the agent at any given time.The need for such central control is problematic: it means that the designer mustpotentially consider all possible interactions between layers. If there are n layers inthe architecture, and each layer is capable of suggesting m possible actions, thenthis means there are mn such interactions to be considered. This is clearly di�cultfrom a design point of view in any but the most simple system. The introductionof a central control system also introduces a bottleneck into the agent's decisionmaking.These problems are partly alleviated in a vertically layered architecture. We cansubdivide vertically layered architectures into one pass architectures (Figure 1.6(b))and two pass architectures (Figure 1.6(c)). In one-pass architectures, control
owssequentially through each layer, until the �nal layer generates action output. In two-pass architectures, information
ows up the architecture (the �rst pass) and controlthen
ows back down. There are some interesting similarities between the idea oftwo-pass vertically layered architectures and the way that organisations work, withinformation
owing up to the highest levels of the organisation, and commandsthen
owing down. In both one pass and two pass vertically layered architectures,the complexity of interactions between layers is reduced: since there are n � 1interfaces between n layers, then if each layer is capable of suggesting m actions,there are at most m2(n � 1) interactions to be considered between layers. This isclearly much simpler than the horizontally layered case. However, this simplicity

1.4 Concrete Architectures for Intelligent Agents 37
Perception subsystem

Modelling layer

Planning Layer

Reactive layer

Control subsystem

Action subsystem

input

action
output

sensor

Figure 1.7 TouringMachines: a horizontally layered agent architecturecomes at the cost of some
exibility: in order for a vertically layered architecture tomake a decision, control must pass between each di�erent layer. This is not faulttolerant: failures in any one layer are likely to have serious consequences for agentperformance.In the remainder of this section, we will consider two examples of layeredarchitectures: Innes Ferguson's touringmachines, and J�org M�uller's interrap.The former is an example of a horizontally layered architecture; the latter is a (twopass) vertically layered architecture.TouringMachinesThe touringmachines architecture is illustrated in Figure 1.7. As this Figureshows, TouringMachines consists of three activity producing layers. That is,each layer continually produces \suggestions" for what actions the agent shouldperform. The reactive layer provides a more-or-less immediate response to changesthat occur in the environment. It is implemented as a set of situation-action rules,like the behaviours in Brooks' subsumption architecture (section 1.4.2). These rulesmap sensor input directly to e�ector output. The original demonstration scenariofor touringmachines was that of autonomous vehicles driving between locationsthrough streets populated by other similar agents. In this scenario, reactive rulestypically deal with functions like obstacle avoidance. For example, here is anexample of a reactive rule for avoiding the kerb (from [16, p59]):rule-1: kerb-avoidanceif is-in-front(Kerb, Observer) andspeed(Observer) > 0 and

38 Intelligent Agentsseparation(Kerb, Observer) < KerbThreshHoldthenchange-orientation(KerbAvoidanceAngle)Here change-orientation(...) is the action suggested if the rule �res. The rulescan only make references to the agent's current state | they cannot do any explicitreasoning about the world, and on the right hand side of rules are actions, notpredicates. Thus if this rule �red, it would not result in any central environmentmodel being updated, but would just result in an action being suggested by thereactive layer.The touringmachines planning layer achieves the agent's pro-active behaviour.Speci�cally, the planning layer is responsible for the \day-to-day" running of theagent | under normal circumstances, the planning layer will be responsible fordeciding what the agent does. However, the planning layer does not do \�rst-principles" planning. That is, it does not attempt to generate plans from scratch.Rather, the planning layer employs a library of plan \skeletons" called schemas.These skeletons are in essenence hierarchically structured plans, which the tour-ingmachines planning layer elaborates at run time in order to decide what to do.So, in order to achieve a goal, the planning layer attempts to �nd a schema inits library which matches that goal. This schema will contain sub-goals, which theplanning layer elaborates by attempting to �nd other schemas in its plan librarythat match these sub-goals.The modeling layer represents the various entities in the world (including theagent itself, as well as other agents). The modeling layer thus predicts con
ictsbetween agents, and generates new goals to be achieved in order to resolve thesecon
icts. These new goals are then posted down to the planning layer, which makesuse of its plan library in order to determine how to satisfy them.The three control layers are embedded within a control subsystem, which ise�ectively responsible for deciding which of the layers should have control over theagent. This control subsystem is implemented as a set of control rules. Control rulescan either suppress sensor information between the control rules and the controllayers, or else censor action outputs from the control layers. here is an examplecensor rule [18, p207]:censor-rule-1:if entity(obstacle-6) in perception-bufferthenremove-sensory-record(layer-R, entity(obstacle-6))This rule prevents the reactive layer from ever knowing about whether obstacle-6has been perceived. The intuition is that although the reactive layer will in generalbe the most appropriate layer for dealing with obstacle avoidance, there are certainobstacles for which other layers are more appropriate. This rule ensures that thereactive layer never comes to know about these obstacles.

1.4 Concrete Architectures for Intelligent Agents 39
world interface

cooperation layer

plan layer

behaviour layer

social knowledge

planning knowledge

world model

perceptual input action outputFigure 1.8 interrap { a vertically layered two-pass agent architecture.InteRRaPinterrap is an example of a vertically layered two-pass agent architecture | seeFigure 1.8.As Figure 1.8 shows, interrap contains three control layers, as in touringma-chines. Moreover, the purpose of each interrap layer appears to be rather similarto the purpose of each corresponding touringmachines layer. Thus the lowest (be-haviour based) layer deals with reactive behaviour; the middle (local planning) layerdeals with everyday planning to achieve the agent's goals, and the uppermost (coop-erative planning) layer deals with social interactions. Each layer has associated withit a knowledge base, i.e., a representation of the world appropriate for that layer.These di�erent knowledge bases represent the agent and its environment at di�erentlevels of abstraction. Thus the highest level knowledge base represents the plans andactions of other agents in the environment; the middle-level knowledge base repre-sents the plans and actions of the agent itself; and the lowest level knowledge baserepresents \raw" information about the environment. The explicit introduction ofthese knowledge bases distinguishes touringmachines from interrap.The way the di�erent layers in interrap conspire to produce behaviour is alsoquite di�erent from touringmachines. The main di�erence is in the way the layersinterract with the environment. In touringmachines, each layer was directlycoupled to perceptual input and action output. This necessitated the introductionof a supervisory control framework, to deal with con
icts or problems betweenlayers. In interrap, layers interact with each other to achieve the same end. Thetwo main types of interaction between layers are bottom-up activation and top-down execution. Bottom-up activation occurs when a lower layer passes control toa higher layer because it is not competent to deal with the current situation. Top-down execution occurs when a higher layer makes use of the facilities provided by

40 Intelligent Agentsa lower layer to achieve one of its goals. The basic
ow of control in interrapbegins when perceptual input arrives at the lowest layer in the achitecture. If thereactive layer can deal with this input, then it will do so; otherwise, bottom-upactivation will occur, and control will be passed to the local planning layer. Ifthe local planning layer can handle the situation, then it will do so, typically bymaking use of top-down execution. Otherwise, it will use bottom-up activation topass control to the highest layer. In this way, control in interrap will
ow fromthe lowest layer to higher layers of the architecture, and then back down again.The internals of each layer are not important for the purposes of this article.However, it is worth noting that each layer implements two general functions. The�rst of these is a situation recognition and goal activation function. This functionacts rather like the options function in a BDI architecture (see section 1.4.3). Itmaps a knowledge base (one of the three layers) and current goals to a new setof goals. The second function is responsible for planning and scheduling | it isresponsible for selecting which plans to execute, based on the current plans, goals,and knowledge base of that layer.Layered architectures are currently the most popular general class of agentarchitecture available. Layering represents a natural decomposition of functionality:it is easy to see how reactive, pro-active, social behaviour can be generated by thereactive, pro-active, and social layers in an architecture. The main problem withlayered architectures is that while they are arguably a pragmatic solution, theylack the conceptual and semantic clarity of unlayered approaches. In particular,while logic-based approaches have a clear logical semantics, it is di�cult to see howsuch a semantics could be devised for a layered architecture. Another issue is thatof interactions between layers. If each layer is an independent activity producingprocess (as in touringmachines), then it is necessary to consider all possible waysthat the layers can interact with one another. This problem is partly alleviated intwo-pass vertically layered architecture such as interrap.Sources and Further ReadingThe introductory discussion of layered architectures given here draws heavilyupon [47, pp262{264]. The best reference to touringmachines is [16]; moreaccessible references include [17, 18]. The de�nitive reference to interrap is [46],although [20] is also a useful reference. Other examples of layered architecturesinclude the subsumption architecture [8] (see also section 1.4.2), and the 3Tarchitecture [4].1.5 Agent Programming LanguagesAs agent technology becomes more established, we might expect to see a varietyof software tools become available for the design and construction of agent-based

1.5 Agent Programming Languages 41systems; the need for software support tools in this area was identi�ed as long agoas the mid-1980s [23]. In this section, we will discuss two of the better-known agentprogramming languages, focussing in particular on Yoav Shoham's agent0 system.1.5.1 Agent-oriented ProgrammingYoav Shoham has proposed a \new programming paradigm, based on a societalview of computation" which he calls agent-oriented programming. The key ideawhich informs aop is that of directly programming agents in terms of mentalisticnotions (such as belief, desire, and intention) that agent theorists have developedto represent the properties of agents. The motivation behind the proposal isthat humans use such concepts as an abstraction mechanism for representing theproperties of complex systems. In the same way that we use these mentalisticnotions to describe and explain the behaviour of humans, so it might be usefulto use them to program machines.The �rst implementation of the agent-oriented programming paradigm was theagent0 programming language. In this language, an agent is speci�ed in terms of aset of capabilities (things the agent can do), a set of initial beliefs (playing the roleof beliefs in bdi architectures), a set of initial commitments (playing a role similarto that of intentions in bdi architectures), and a set of commitment rules. The keycomponent, which determines how the agent acts, is the commitment rule set. Eachcommitment rule contains a message condition, a mental condition, and an action.In order to determine whether such a rule �res, the message condition is matchedagainst the messages the agent has received; the mental condition is matched againstthe beliefs of the agent. If the rule �res, then the agent becomes committed to theaction. Actions may be private, corresponding to an internally executed subroutine,or communicative, i.e., sending messages. Messages are constrained to be one ofthree types: \requests" or \unrequests" to perform or refrain from actions, and\inform" messages, which pass on information | Shoham indicates that he tookhis inspiration for these message types from speech act theory [63, 12]. Request andunrequest messages typically result in the agent's commitments being modi�ed;inform messages result in a change to the agent's beliefs.Here is an example of an agent0 commitment rule:COMMIT((agent, REQUEST, DO(time, action)), ;;; msg condition(B,[now, Friend agent] ANDCAN(self, action) ANDNOT [time, CMT(self, anyaction)]), ;;; mental conditionself,DO(time, action)

42 Intelligent Agents
beliefs

commitments

abilities

EXECUTE

update

beliefs

update

commitments

initialise messages in

internal actions

messages outFigure 1.9 The
ow of control in agent-0.) This rule may be paraphrased as follows:if I receive a message from agent which requests me to do action at time, and Ibelieve that:agent is currently a friend;I can do the action;at time, I am not committed to doing any other action,then commit to doing action at time.The operation of an agent can be described by the following loop (see Figure 1.9):1. Read all current messages, updating beliefs | and hence commitments |where necessary;2. Execute all commitments for the current cycle where the capability conditionof the associated action is satis�ed;3. Goto (1).

1.5 Agent Programming Languages 43It should be clear how more complex agent behaviours can be designed and builtin agent0. However, it is important to note that this language is essentially aprototype, not intended for building anything like large-scale production systems.However, it does at least give a feel for how such systems might be built.Concurrent MetateMArguably, one drawback with agent0 is that the relationship between the logicand interpreted programming language is only loosely de�ned. The programminglanguage cannot be said to truly execute the associated logic, in the way that ourlogic-based agents did in section 1.4.1. The Concurrent MetateM language de-veloped by Fisher can make a stronger claim in this respect [21]. A ConcurrentMetateM system contains a number of concurrently executing agents, each ofwhich is able to communicate with its peers via asynchronous broadcast messagepassing. Each agent is programmed by giving it a temporal logic speci�cation of thebehaviour that it is intended the agent should exhibit. An agent's speci�cation isexecuted directly to generate its behaviour. Execution of the agent program corre-sponds to iteratively building a logical model for the temporal agent speci�cation.It is possible to prove that the procedure used to execute an agent speci�cation iscorrect, in that if it is possible to satisfy the speci�cation, then the agent will doso [3].The logical semantics of Concurrent MetateM are closely related to the seman-tics of temporal logic itself. This means that, amongst other things, the speci�cationand veri�cation of Concurrent MetateM systems is a realistic proposition [22].An agent program in Concurrent MetateM has the form ViPi) Fi, wherePi is a temporal logic formula referring only to the present or past, and Fi is atemporal logic formula referring to the present or future. The Pi) Fi formulae areknown as rules. The basic idea for executing such a program may be summed upin the following slogan:on the basis of the past do the future.Thus each rule is continually matched against an internal, recorded history, and if amatch is found, then the rule �res. If a rule �res, then any variables in the future timepart are instantiated, and the future time part then becomes a commitment thatthe agent will subsequently attempt to satisfy. Satisfying a commitment typicallymeans making some predicate true within the agent. Here is a simple example of aConcurrent MetateM agent de�nition:rc(ask)[give] :ask(x)) give(x)(:ask(x)Z (give(x) ^:ask(x))) :give(x)give(x) ^ give(y)) (x = y)The agent in this example is a controller for a resource that is in�nitely renewable,

44 Intelligent Agentsbut which may only be possessed by one agent at any given time. The controllermust therefore enforce mutual exclusion over this resource. The �rst line of theprogram de�nes the interface to the agent: its name is rc (for resource controller),and it will accept ask messages and send give messages. The following three linesconstitute the agent program itself. The predicate ask(x) means that agent x hasasked for the resource. The predicate give(x) means that the resource controllerhas given the resource to agent x. The resource controller is assumed to be theonly agent able to `give' the resource. However, many agents may ask for theresource simultaneously. The three rules that de�ne this agent's behaviour maybe summarized as follows:Rule 1: if someone has just asked for the resource, then eventually give them theresource;Rule 2: don't give unless someone has asked since you last gave; andRule 3: if you give to two people, then they must be the same person (i.e., don'tgive to more than one person at a time).Concurrent MetateM is a good illustration of how a quite pure approach to logic-based agent programming can work, even with a quite expressive logic.Sources and Further ReadingThe main references to agent0 are [64, 65]. Michael Fisher's ConcurrentMetateMlanguage is described in [21]; the execution algorithm that underpins it is de-scribed in [3]. Since Shoham's proposal, a number of languages have been pro-posed which claim to be agent-oriented. Examples include Becky Thomas's Plan-ning CommunicatingAgents (placa) language [67, 68],mail [30], and Anand Rao'sagentspeak(l) language [50]. april is a language that is intended to be usedfor building multi-agent systems, although it is not \agent-oriented" in the sensethat Shoham describes [44]. The telescript programming language, developed byGeneral Magic, Inc., was the �rst mobile agent programming language [69]. Thatis, it explicitly supports the idea of agents as processes that have the ability toautonomously move themselves across a computer network and recommence ex-ecuting at a remote site. Since telescript was announced, a number of mobileagent extensions to the java programming language have been developed.1.6 ConclusionsI hope that after reading this chapter, you understand what agents are and whythey are considered to be an important area of research and development. Therequirement for systems that can operate autonomously is very common. Therequirement for systems capable of
exible autonomous action, in the sense that Ihave described in this chapter, is similarly common. This leads me to conclude that

1.7 Exercises 45intelligent agents have the potential to play a signi�cant role in the future of softwareengineering. Intelligent agent research is about the theory, design, construction, andapplication of such systems. This chapter has focussed on the design of intelligentagents. It has presented a high-level, abstract view of intelligent agents, anddescribed the sort of properties that one would expect such an agent to enjoy.It went on to show how this view of an agent could be re�ned into various di�erenttypes of agent architecture | purely logical agents, purely reactive/behaviouralagents, bdi agents, and layered agent architectures.1.7 Exercises 1. [Level 1] Give other examples of agents (not necessarily intelligent) that youknow of. For each, de�ne as precisely as possible:the environment that the agent occupies (physical, software, . . .), the statesthat this environment can be in, and whether the environment is: accessibleor inaccessible; deterministic or non-deterministic; episodic or non-episodic;static or dynamic; discrete or continuous.the action repertoire available to the agent, and any pre-conditions associ-ated with these actions;the goal, or design objectives of the agent | what it is intended to achieve.2. [Level 1] Prove that(a) for every purely reactive agent, these is a behaviourally equivalent stan-dard agent.(b) there exist standard agents that have no behaviourally equivalent purelyreactive agent.3. [Level 1] Prove that state-based agents are equivalent in expressive power tostandard agents, i.e., that for every state-based agent there is a behaviourallyequivalent standard agent and vice versa.4. [Level 2] The following few questions refer to the vacuum world exampledescribed in section 1.4.1.Give the full de�nition (using pseudo-code if desired) of the new function,which de�nes the predicates to add to the agent's database.5. [Level 2] Complete the vacuum world example, by �lling in the missing rules.How intuitive do you think the solution is? How elegant is it? How compact isit?6. [Level 2] Try using your favourite (imperative) programming language to codea solution to the basic vacuumworld example. How do you think it compares tothe logical solution? What does this tell you about trying to encode essentiallyprocedural knowledge (i.e., knowledge about what action to perform) as purelylogical rules?

46 Intelligent Agents7. [Level 2] If you are familiar with prolog, try encoding the vacuum worldexample in this language and running it with randomly placed dirt. Makeuse of the assert and retract meta-level predicates provided by prologto simplify your system (allowing the program itself to achieve much of theoperation of the next function).8. [Level 2] Develop a solution to the vacuum world example using the behaviour-based approach described in section 1.4.2. How does it compare to the logic-based example?9. [Level 2] Try scaling the vacuum world up to a 10�10 grid size. Approximatelyhow many rules would you need to encode this enlarged example, using theapproach presented above? Try to generalise the rules, encoding a more generaldecision making mechanism.10. [Level 3] Suppose that the vacuum world could also contain obstacles, whichthe agent needs to avoid. (Imagine it is equipped with a sensor to detectsuch obstacles.) Try to adapt the example to deal with obstacle detection andavoidance. Again, compare a logic-based solution to one implemented in atraditional (imperative) programming language.11. [Level 3] Suppose the agent's sphere of perception in the vacuum world is en-larged, so that it can see the whole of its world, and see exactly where the dirtlay. In this case, it would be possible to generate an optimal decision-makingalgorithm | one which cleared up the dirt in the smallest time possible. Tryand think of such general algorithms, and try to code them both in �rst-orderlogic and a more traditional programming language. Investigate the e�ective-ness of these algorithms when there is the possibility of noise in the perceptualinput the agent receives, (i.e., there is a non-zero probability that the percep-tual information is wrong), and try to develop decision-making algorithms thatare robust in the presence of such noise. How do such algorithms perform asthe level of perception is reduced?12. [Level 2] Try developing a solution to the Mars explorer example from sec-tion 1.4.2 using the logic-based approach. How does it compare to the reactivesolution?13. [Level 3] In the programming language of your choice, implement the Marsexplorer example using the subsumption architecture. (To do this, you may�nd it useful to implement a simple subsumption architecture \shell" forprogramming di�erent behaviours.) Investigate the performance of the twoapproaches described, and see if you can do better.14. [Level 3] Using the simulator implemented for the preceding question, see whathappens as you increase the number of agents. Eventually, you should see thatovercrowding leads to a sub-optimal solution | agents spend too much timegetting out of each other's way to get any work done. Try to get around thisproblem by allowing agents to pass samples to each other, thus implementingchains. (See the description in [15, p305].)

1.8 References 4715. [Level 4] Read about traditional control theory, and compare the problemsand techniques of control theory to what are trying to accomplish in buildingintelligent agents. How are the techniques and problems of traditional controltheory similar to those of intelligent agent work, and how do they di�er?16. [Level 4] One advantage of the logic-based approach to building agents is thatthe logic-based architecture is generic: �rst-order logic turns out to extremelypowerful and useful for expressing a range of di�erent properties. Thus itturns out to be possible to use the logic-based architecture to encode a rangeof other architectures. For this exercise, you should attempt to use �rst-orderlogic to encode the di�erent architectures (reactive, bdi, layered) described inthis chapter. (You will probably need to read the original references to be ableto do this.) Once completed, you will have a logical theory of the architecture,that will serve both as a formal speci�cation of the architecture, and also asa precise mathematical model of it, amenable to proof. Once you have yourlogically-speci�ed architecture, try to animate it, by mapping your logicaltheory of it into, say the prolog programming language. What compromisesdo you have to make? Does it seem worthwhile trying to directly program thesystem in logic, or would it be simpler to implement your system in a morepragmatic programming language (such as java)?1.8 References 1. P. Agre and D. Chapman. PENGI: An implementation of a theory of activity. InProceedings of the Sixth National Conference on Arti�cial Intelligence (AAAI-87),pages 268{272, Seattle, WA, 1987.2. P. E. Agre and S. J. Rosenschein, editors. Computational Theories of Interactionand Agency. The MIT Press: Cambridge, MA, 1996.3. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. MetateM: Aframework for programming in temporal logic. In REX Workshop on StepwiseRe�nement of Distributed Systems: Models, Formalisms, Correctness (LNCSVolume 430), pages 94{129. Springer-Verlag: Berlin, Germany, June 1989.4. R. P. Bonasso, D. Kortenkamp, D. P. Miller, and M. Slack. Experiences with anarchitecture for intelligent, reactive agents. In M. Wooldridge, J. P. M�uller, andM. Tambe, editors, Intelligent Agents II (LNAI Volume 1037), pages 187{202.Springer-Verlag: Berlin, Germany, 1996.5. G. Booch. Object-Oriented Analysis and Design (second edition). Addison-Wesley:Reading, MA, 1994.6. M. E. Bratman. Intentions, Plans, and Practical Reason. Harvard UniversityPress: Cambridge, MA, 1987.7. M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-boundedpractical reasoning. Computational Intelligence, 4:349{355, 1988.8. R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journalof Robotics and Automation, 2(1):14{23, 1986.

48 Intelligent Agents9. R. A. Brooks. Elephants don't play chess. In P. Maes, editor, DesigningAutonomous Agents, pages 3{15. The MIT Press: Cambridge, MA, 1990.10. R. A. Brooks. Intelligence without reason. In Proceedings of the TwelfthInternational Joint Conference on Arti�cial Intelligence (IJCAI-91), pages 569{595,Sydney, Australia, 1991.11. R. A. Brooks. Intelligence without representation. Arti�cial Intelligence,47:139{159, 1991.12. P. R. Cohen and C. R. Perrault. Elements of a plan based theory of speech acts.Cognitive Science, 3:177{212, 1979.13. Oren Etzioni. Intelligence without robots. AI Magazine, 14(4), December 1993.14. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.The MIT Press: Cambridge, MA, 1995.15. J. Ferber. Reactive distributed arti�cial intelligence. In G. M. P. O'Hare and N. R.Jennings, editors, Foundations of Distributed Arti�cial Intelligence, pages 287{317.John Wiley, 1996.16. I. A. Ferguson. TouringMachines: An Architecture for Dynamic, Rational, MobileAgents. PhD thesis, Clare Hall, University of Cambridge, UK, November 1992.(Also available as Technical Report No. 273, University of Cambridge ComputerLaboratory).17. I. A. Ferguson. Towards an architecture for adaptive, rational, mobile agents. InE. Werner and Y. Demazeau, editors, Decentralized AI 3 | Proceedings of theThird European Workshop on Modelling Autonomous Agents in a Multi-AgentWorld (MAAMAW-91), pages 249{262. Elsevier Science Publishers B.V.:Amsterdam, The Netherlands, 1992.18. I. A. Ferguson. Integrated control and coordinated behaviour: A case for agentmodels. In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents:Theories, Architectures, and Languages (LNAI Volume 890), pages 203{218.Springer-Verlag: Berlin, Germany, January 1995.19. J. A. Firby. An investigation into reactive planning in complex domains. InProceedings of the Tenth International Joint Conference on Arti�cial Intelligence(IJCAI-87), pages 202{206, Milan, Italy, 1987.20. K. Fischer, J. P. M�uller, and M. Pischel. A pragmatic BDI architecture. InM. Wooldridge, J. P. M�uller, and M. Tambe, editors, Intelligent Agents II (LNAIVolume 1037), pages 203{218. Springer-Verlag: Berlin, Germany, 1996.21. M. Fisher. A survey of Concurrent MetateM | the language and its applications.In D. M. Gabbay and H. J. Ohlbach, editors, Temporal Logic | Proceedings of theFirst International Conference (LNAI Volume 827), pages 480{505.Springer-Verlag: Berlin, Germany, July 1994.22. M. Fisher and M. Wooldridge. Specifying and verifying distributed intelligentsystems. In M. Filgueiras and L. Damas, editors, Progress in Arti�cial Intelligence| Sixth Portuguese Conference on Arti�cial Intelligence (LNAI Volume 727),pages 13{28. Springer-Verlag: Berlin, Germany, October 1993.23. L. Gasser, C. Braganza, and N. Hermann. MACE: A
exible testbed for distributedAI research. In M. Huhns, editor, Distributed Arti�cial Intelligence, pages 119{152.Pitman Publishing: London and Morgan Kaufmann: San Mateo, CA, 1987.24. L. Gasser and J. P. Briot. Object-based concurrent programming and DAI. InDistributed Arti�cial Intelligence: Theory and Praxis, pages 81{108. KluwerAcademic Publishers: Boston, MA, 1992.

1.8 References 4925. M. R. Genesereth and N. Nilsson. Logical Foundations of Arti�cial Intelligence.Morgan Kaufmann Publishers: San Mateo, CA, 1987.26. M. P. George� and A. L. Lansky. Reactive reasoning and planning. In Proceedingsof the Sixth National Conference on Arti�cial Intelligence (AAAI-87), pages677{682, Seattle, WA, 1987.27. M. P. George� and A. S. Rao. A pro�le of the Australian AI Institute. IEEEExpert, 11(6):89{92, December 1996.28. A. Haddadi. Communication and Cooperation in Agent Systems (LNAI Volume1056). Springer-Verlag: Berlin, Germany, 1996.29. J. Y. Halpern. Using reasoning about knowledge to analyze distributed systems.Annual Review of Computer Science, 2:37{68, 1987.30. H. Haugeneder, D. Steiner, and F. G. McCabe. IMAGINE: A framework forbuilding multi-agent systems. In S. M. Deen, editor, Proceedings of the 1994International Working Conference on Cooperating Knowledge Based Systems(CKBS-94), pages 31{64, DAKE Centre, University of Keele, UK, 1994.31. F. Hayes-Roth, D. A. Waterman, and D. B. Lenat, editors. Building ExpertSystems. Addison-Wesley: Reading, MA, 1983.32. P. Jackson. Introduction to Expert Systems. Addison-Wesley: Reading, MA, 1986.33. N. R. Jennings, J. Corera, I. Laresgoiti, E. H. Mamdani, F. Perriolat, P. Skarek,and L. Z. Varga. Using ARCHON to develop real-world DAI applications forelectricity transportation management and particle accelerator control. IEEEExpert, dec 1996.34. L. P. Kaelbling. An architecture for intelligent reactive systems. In M. P. George�and A. L. Lansky, editors, Reasoning About Actions & Plans | Proceedings of the1986 Workshop, pages 395{410. Morgan Kaufmann Publishers: San Mateo, CA,1986.35. L. P. Kaelbling. A situated automata approach to the design of embedded agents.SIGART Bulletin, 2(4):85{88, 1991.36. L. P. Kaelbling and S. J. Rosenschein. Action and planning in embedded agents.In P. Maes, editor, Designing Autonomous Agents, pages 35{48. The MIT Press:Cambridge, MA, 1990.37. D. Kinny and M. George�. Commitment and e�ectiveness of situated agents. InProceedings of the Twelfth International Joint Conference on Arti�cial Intelligence(IJCAI-91), pages 82{88, Sydney, Australia, 1991.38. K. Konolige. A Deduction Model of Belief. Pitman Publishing: London andMorgan Kaufmann: San Mateo, CA, 1986.39. Y. L�esperance, H. J. Levesque, F. Lin, D. Marcu, R. Reiter, and R. B. Scherl.Foundations of a logical approach to agent programming. In M. Wooldridge, J. P.M�uller, and M. Tambe, editors, Intelligent Agents II (LNAI Volume 1037), pages331{346. Springer-Verlag: Berlin, Germany, 1996.40. P. Maes. The dynamics of action selection. In Proceedings of the EleventhInternational Joint Conference on Arti�cial Intelligence (IJCAI-89), pages 991{997,Detroit, MI, 1989.41. P. Maes, editor. Designing Autonomous Agents. The MIT Press: Cambridge, MA,1990.42. P. Maes. Situated agents can have goals. In P. Maes, editor, DesigningAutonomous Agents, pages 49{70. The MIT Press: Cambridge, MA, 1990.

50 Intelligent Agents43. P. Maes. The agent network architecture (ANA). SIGART Bulletin, 2(4):115{120,1991.44. F. G. McCabe and K. L. Clark. April | agent process interaction language. InM. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theories,Architectures, and Languages (LNAI Volume 890), pages 324{340. Springer-Verlag:Berlin, Germany, January 1995.45. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint ofarti�cial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4.Edinburgh University Press, 1969.46. J. M�uller. A cooperation model for autonomous agents. In J. P. M�uller,M. Wooldridge, and N. R. Jennings, editors, Intelligent Agents III (LNAI Volume1193), pages 245{260. Springer-Verlag: Berlin, Germany, 1997.47. J. P. M�uller, M. Pischel, and M. Thiel. Modelling reactive behaviour in verticallylayered agent architectures. In M. Wooldridge and N. R. Jennings, editors,Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume 890),pages 261{276. Springer-Verlag: Berlin, Germany, January 1995.48. J. P. M�uller, M. Wooldridge, and N. R. Jennings, editors. Intelligent Agents III(LNAI Volume 1193). Springer-Verlag: Berlin, Germany, 1995.49. N. J. Nilsson. Towards agent programs with circuit semantics. Technical ReportSTAN{CS{92{1412, Computer Science Department, Stanford University, Stanford,CA 94305, January 1992.50. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.In W. Van de Velde and J. W. Perram, editors, Agents Breaking Away: Proceedingsof the Seventh European Workshop on Modelling Autonomous Agents in aMulti-Agent World, (LNAI Volume 1038), pages 42{55. Springer-Verlag: Berlin,Germany, 1996.51. A. S. Rao. Decision procedures for propositional linear-time Belief-Desire-Intentionlogics. In M. Wooldridge, J. P. M�uller, and M. Tambe, editors, Intelligent Agents II(LNAI Volume 1037), pages 33{48. Springer-Verlag: Berlin, Germany, 1996.52. A. S. Rao and M. P. George�. Asymmetry thesis and side-e�ect problems in lineartime and branching time intention logics. In Proceedings of the TwelfthInternational Joint Conference on Arti�cial Intelligence (IJCAI-91), pages 498{504,Sydney, Australia, 1991.53. A. S. Rao and M. P. George�. Modeling rational agents within a BDI-architecture.In R. Fikes and E. Sandewall, editors, Proceedings of Knowledge Representation andReasoning (KR&R-91), pages 473{484. Morgan Kaufmann Publishers: San Mateo,CA, April 1991.54. A. S. Rao and M. P. George�. An abstract architecture for rational agents. InC. Rich, W. Swartout, and B. Nebel, editors, Proceedings of KnowledgeRepresentation and Reasoning (KR&R-92), pages 439{449, 1992.55. A. S. Rao and M. P. George�. A model-theoretic approach to the veri�cation ofsituated reasoning systems. In Proceedings of the Thirteenth International JointConference on Arti�cial Intelligence (IJCAI-93), pages 318{324, Chamb�ery, France,1993.56. A. S. Rao, M. P. George�, and E. A. Sonenberg. Social plans: A preliminaryreport. In E. Werner and Y. Demazeau, editors, Decentralized AI 3 | Proceedingsof the Third European Workshop on Modelling Autonomous Agents in aMulti-Agent World (MAAMAW-91), pages 57{76. Elsevier Science Publishers B.V.:

1.8 References 51Amsterdam, The Netherlands, 1992.57. S. Rosenschein and L. P. Kaelbling. The synthesis of digital machines withprovable epistemic properties. In J. Y. Halpern, editor, Proceedings of the 1986Conference on Theoretical Aspects of Reasoning About Knowledge, pages 83{98.Morgan Kaufmann Publishers: San Mateo, CA, 1986.58. S. J. Rosenschein and L. P. Kaelbling. A situated view of representation andcontrol. In P. E. Agre and S. J. Rosenschein, editors, Computational Theories ofInteraction and Agency, pages 515{540. The MIT Press: Cambridge, MA, 1996.59. S. Russell and P. Norvig. Arti�cial Intelligence: A Modern Approach.Prentice-Hall, 1995.60. S. Russell and D. Subramanian. Provably bounded-optimal agents. Journal of AIResearch, 2:575{609, 1995.61. S. J. Russell and E. Wefald. Do the Right Thing | Studies in Limited Rationality.The MIT Press: Cambridge, MA, 1991.62. M. J. Schoppers. Universal plans for reactive robots in unpredictable environments.In Proceedings of the Tenth International Joint Conference on Arti�cial Intelligence(IJCAI-87), pages 1039{1046, Milan, Italy, 1987.63. J. R. Searle. Speech Acts: An Essay in the Philosophy of Language. CambridgeUniversity Press: Cambridge, England, 1969.64. Y. Shoham. Agent-oriented programming. Technical Report STAN{CS{1335{90,Computer Science Department, Stanford University, Stanford, CA 94305, 1990.65. Y. Shoham. Agent-oriented programming. Arti�cial Intelligence, 60(1):51{92, 1993.66. L. Steels. Cooperation between distributed agents through self organization. InY. Demazeau and J.-P. M�uller, editors, Decentralized AI | Proceedings of the FirstEuropean Workshop on Modelling Autonomous Agents in a Multi-Agent World(MAAMAW-89), pages 175{196. Elsevier Science Publishers B.V.: Amsterdam, TheNetherlands, 1990.67. S. R. Thomas. PLACA, an Agent Oriented Programming Language. PhD thesis,Computer Science Department, Stanford University, Stanford, CA 94305, August1993. (Available as technical report STAN{CS{93{1487).68. S. R. Thomas. The PLACA agent programming language. In M. Wooldridge andN. R. Jennings, editors, Intelligent Agents: Theories, Architectures, and Languages(LNAI Volume 890), pages 355{369. Springer-Verlag: Berlin, Germany, January1995.69. J. E. White. Telescript technology: The foundation for the electronic marketplace.White paper, General Magic, Inc., 2465 Latham Street, Mountain View, CA 94040,1994.70. M. Wooldridge. Agent-based software engineering. IEE Transactions on SoftwareEngineering, 144(1):26{37, February 1997.71. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. TheKnowledge Engineering Review, 10(2):115{152, 1995.

