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THE SYMBOL GROUNDING PROBLEM 
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There has been much discussion recently about the scope and limits of purely symbolic models of the mind and abotlt the 
proper role of connectionism in cognitive modeling. This paper describes the "symbol grounding problem": How can the 
semantic interpretation of a formal symbol system be made intrinsic to the system, rather than just parasitic on the meanings 
in our heads? How can the meanings of the meaningless symbol tokens, manipulated solely on the basis of their (arbitrary) 
shapes, be grounded in anything but other meaningless symbols? The problem is analogous to trying to learn Chinese from a 
Chinese/Chinese dictionary alone. A candidate solution is sketched: Symbolic representations must be grounded bottom-up 
in nonsymbolic representations of two kinds: (1) iconic representations, which are analogs of the proximal sensory projections 
of distal objects and events, and (2) categorical representations, which are learned and innate feature detectors that pick out the 
invariant features of object and event categories from their sensory projections. Elementary symbols are the names of these 
object and event categories, assigned on the basis of their (nonsymbolic) categorical representations. Higher-order (3) symbolic 
representations, grounded in these elementary symbols, consist of symbol strings describing category membership relations 
(e.g. "An X is a Y that is Z "). 

Connectionism is one natural candidate for the mechanism that learns the invariant features underlying categorical 
representations, thereby connecting names to the proximal projections of the distal objects they stand for. In this way 
connectionism can be seen as a complementary component in a hybrid nonsymbolic/symbolic model of the mind, rather than 
a rival to purely symbolic modeling. Such a hybrid model would not have an autonomous symbolic "module," however; the 
symbolic functions would emerge as an intrinsically "dedicated" symbol system as a consequence of the bottom-up grounding 
of categories' names in their sensory representations. Symbol manipulation would be governed not just by the arbitrary shapes 
of the symbol tokens, but by the nonarbitrary shapes of the icons and category invariants in which they are grounded. 

1. Modeling the mind 

1.1. From behaviorism to cognitivism 

For many years the only empirical approach in 
psychology was behaviorism, its only explanatory 
tools input / input  and input /output  associations 
(in the case of classical conditioning [42]) and the 
reward/punishment history that "shaped" behav- 
ior (in the case of operant conditioning [1]). In a 
reaction against the subjectivity of armchair intro- 
spectionism, behaviorism had declared that it was 
just as illicit to theorize about what went on in the 
head of the organism to generate its behavior as to 
theorize about what went on in its mind. Only 
observables were to be the subject matter of psy- 

chology; and, apparently, these were expected to 
explain themselves. 

Psychology became more like an empirical sci- 
ence when, with the gradual advent of cognitivism 
[17, 25, 29], it became acceptable to make infer- 
ences about the unobservable processes underlying 
behavior. Unfortunately, cognitivism let mental- 
ism in again by the back door too, for the hypo- 
thetical internal processes came embellished with 
subjective interpretations. In fact, semantic inter- 
pretability (meaningfulness), as we shall see, was 
one of the defining features of the most prominent 
contender vying to become the theoretical vocabu- 
lary of cognitivism, the "language of thought" [6], 
which became the prevailing view in cognitive 
theory for several decades in the form of the 
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"symbolic" model of the mind: The mind is a 
symbol system and cognition is symbol manipula- 
tion. The possibility of generating complex behav- 
ior through symbol manipulation was empirically 
demonstrated by successes in the field of artificial 
intelligence (AI). 

1.2. Symbol systems 

What is a symbol system? From Newell [28], 
Pylyshyn [33], Fodor [6] and the classical work by 
von Neumann, Turing, Grdel,  Church, etc. (see 
ref. [18]) on the foundations of computation, we 
can reconstruct the following definition: 

A symbol system is: 
(1) a set of arbitrary physical tokens (scratches 

on paper, holes on a tape, events in a digital 
computer, etc.) that are 

(2) manipulated on the basis of explicit rules 
that are 

(3) likewise physical tokens and strings of to- 
kens. The rule-governed symbol-token manipula- 
tion is based 

(4) purely on the shape of the symbol tokens 
(not their "meaning"),  i.e. it is purely syntactic, 
and consists of 

(5) rulefully combining and recombining symbol 
tokens. There are 

(6) primitive atomic symbol tokens and 
(7) composite symbol-token strings. The entire 

system and all its p a r t s - t h e  atomic tokens, the 
composite tokens, the syntactic manipulations 
(both actual and possible) and the ru les -  are all 

(8) semantically interpretable: The syntax can be 
systematically assigned a meaning (e.g. as standing 
for objects, as describing states of affairs). 

According to proponents of the symbolic model 
of mind such as Fodor [7] and Pylyshyn [32, 33], 
symbol strings of this sort capture what mental 
phenomena such as thoughts and beliefs are. Sym- 
bolists emphasize that the symbolic level (for them, 
the mental level) is a natural functional level of its 
own, with ruleful regularities that are independent 
of their specific physical realizations. For symbol- 
ists, this implementation independence is the criti- 

cal difference between cognitive phenomena and 
ordinary physical phenomena and their respective 
explanations. This concept of an autonomous 
symbolic level also conforms to general founda- 
tional principles in the theory of computation and 
applies to all the work being done in symbolic AI, 
the field of research that has so far been the most 
successful in generating (hence explaining) intelli- 
gent behavior. 

All eight of the properties listed above seem to 
be critical to this definition of symbolic ~.1. Many 
phenomena have some of the properties, but that 
does not entail that they are symbolic in this 
explicit, technical sense. It is not enough, for 
example, for a phenomenon to be interpretable as 
rule-governed, for just about anything can be in- 
terpreted as rule-governed. A thermostat may be 
interpreted as following the rule: Turn on the 
furnace if the temperature goes below 70°F and 
turn it off if it goes above 70°F, yet nowhere in 
the thermostat is that rule explicitly represented. 
Wittgenstein [45] emphasized the difference be- 
tween explicit and implicit rules: It is not the 
same thing to "follow" a rule (explicitly) and 
merely to behave " in  accordance with" a rule 
(implicitly) g2. The critical difference is in the com- 
positness (7) and systematicity (8) criteria. The 
explicitly represented symbolic rule is part of a 
formal system, it is decomposable (unless primi- 
tive), its application and manipulation is purely 
formal (syntactic, shape dependent), and the en- 
tire system must be semantically interpretable, 

#1Paul Kube (personal communication) has suggested that 
(2) and (3) may be too strong, excluding some kinds of Turing 
machine and perhaps even leading to an infinite regress on 
levels of explicitness and systematicity. 

#2Similar considerations apply to Chomsky's [2] concept of 
"psychological reality" (i.e. whether Chomskian rules are really 
physically represented in the brain or whether they merely 
"fit" our performance regularities, without being what actually 
governs them). Another version of the distinction concerns 
explicitly represented rules versus hard-wired physical con- 
straints [,10]. In each case, an explicit representation consisting 
of elements that can be recombined in systematic ways would 
be symbolic whereas an implicit physical constraint would not, 
although both would be semantically "interpretable" as a 
"rule" if construed in isolation rather than as part of a system. 
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not just the chunk in question. An isolated ("mod- 
ular") chunk cannot be symbolic; being symbolic 
is a systematic property. 

So the mere fact that a behavior is "interpreta- 
ble" as ruleful does not mean that it is really 
governed by a symbolic rule #3. Semantic inter- 
pretability must be coupled with explicit represen- 
tation (2), syntactic manipulability (4), and 
systematicity (8) in order to be symbolic. None of 
these criteria is arbitrary, and, as far as I can tell, 
if you weaken them, you lose the grip on what 
looks like a natural category and you sever the 
links with the formal theory of computation, leav- 
ing a sense of "symbolic" that is merely unexpli- 
cated metaphor (and probably differs from speaker 
to speaker). Hence it is only this formal sense of 
"symbolic" and "symbol system" that will be 
considered in this discussion of the grounding of 
symbol systems. 

1.3. Connectionist systems 

An early rival to the symbolic model of mind 
appeared [36], was overcome by symbolic AI [27] 
and has recently re-appeared in a stronger form 
that is currently vying with AI to be the general 
theory of cognition and behavior [23, 39]. Vari- 
ously described as "neural networks", "parallel 
distributed processing" and "connectionism", this 
approach has a multiple agenda, which includes 
providing a theory of brain function. Now, much 
can be said for and against studying behavioral 
and brain function independently, but in this pa- 
per it will be assumed that, first and foremost, a 
cognitive theory must stand on its own merits, 
which depend on how well it explains our observ- 
able behavioral capacity. Whether or not it does 
so in a sufficiently brainlike way is another matter, 
and a downstream one, in the course of theory 
development. Very little is known of the brain's 
structure and its "lower" (vegetative) functions so 

~*3Analogously, the mere fact that a behavior is interpretable 
as purposeful or conscious or meaningful does not mean that it 
really is purposeful or conscious. (For arguments to the con- 
trary, see ref. [5].) 

far; and the nature of "higher" brain function is 
itself a theoretical matter. To "constrain" a cogni- 
tive theory to account for behavior in a brainlike 
way is hence premature in two respects: (1) It is 
far from clear yet what "brainlike" means, and (2) 
we are far from having accounted for a lifesize 
chunk of behavior yet, even without added con- 
straints. Moreover, the formal principles underly- 
ing connectionism seem to be based on the 
associative and statistical structure of the causal 
interactions in certain dynamical systems; a neural 
network is merely one possible implementation of 
such a dynamical system #4. 

Connectionism will accordingly only be consid- 
ered here as a cognitive theory. As such, it has 
lately challenged the symbolic approach to model- 
ing the mind. According to connectionism, cogni- 
tion is not symbol manipulation but dynamic 
patterns of activity in a multilayered network of 
nodes or units with weighted positive and negative 
interconnections. The patterns change according 
to internal network constraints governing how the 
activations and connection strengths are adjusted 
on the basis of new inputs (e.g. the generalized 
"delta rule", or "backpropagation" [23]). The re- 
sult is a system that learns, recognizes patterns, 
solves problems, and can even exhibit motor skills. 

1.4. Scope and limits of symbols and nets 

It is far from clear what the actual capabilities 
and limitations of either symbolic AI or connec- 
tionism are. The former seems better at formal 
and language-like tasks, the latter at sensory, mo- 
tor and learning tasks, but there is considerable 
overlap and neither has gone much beyond the 
stage of " toy"  tasks toward lifesize behavioral 
capacity. Moreover, there has been some disagree- 

#4It is not even clear yet that a "neural network" needs to 
be implemented as a net (i.e. a parallel system of intercon- 
nected units) in order to do what it can do; if symbolic 
simulations of nets have the same functional capacity as real 
nets, then a connectionist model is just a special kind of 
symbolic model, and connectionism is just a special family of 
symbolic algorithms. 
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ment as to whether or not connectionism itself is 
symbolic. We will adopt the position here that it is 
not, because connectionist networks fail to meet 
several of the criteria for being symbol systems, as 
Fodor  and Pylyshyn [10] have argued recently. In 
particular, although, like everything else, their be- 
havior and internal states can be given isolated 
semantic interpretations, nets fail to meet the 
compositeness (7) and systematicity (8) criteria 
listed earlier: The patterns of interconnections do 
not decompose, combine and recombine according 
to a formal syntax that can be given a systematic 
semantic interpretation #5. Instead, nets seem to do 
what they do non-symbolically. According to 
Fodor  and Pylyshyn, this is a severe limitation, 
because many of our behavioral capacities appear 
to be symbolic, and hence the most natural hy- 
pothesis about the underlying cognitive processes 
that generate them would be that they too must be 
symbolic. Our linguistic capacities are the primary 
examples here, but many of the other skills we 
h a v e -  logical reasoning, mathematics, chess play- 
ing, perhaps even our higher-level perceptual and 
motor  skil ls-  also seem to be symbolic. In any 
case, when we interpret our sentences, mathemati- 
cal formulas, and chess moves (and perhaps some 
of our perceptual judgments and motor strategies) 
as having a systematic meaning or content, we 
know at first hand that this is literally true, and 
not just a figure of speech. Connectionism hence 
seems to be at a disadvantage in attempting to 
model these cognitive capacities. 

Yet it is not clear whether connectionism should 
for this reason aspire to be symbolic, for the 
symbolic approach turns out to suffer from a 

*~SThere is some misunderstanding of this point because it is 
often conflated with a mere implementational issue: Connec- 
tionist networks can be simulated using symbol systems, and 
symbol systems can be implemented using a connectionist 
architecture, bu t  that is independent of the question of what 
each can do qua symbol system or connectionist network, 
respectively. By way of analogy, silicon can be used to build a 
computer,  and a computer  can simulate the properties of 
silicon, but  the functional properties of silicon are not those of 
computat ion,  and the functional properties of computat ion are 
not  those of silicon. 

severe handicap, one that may be responsible for 
the limited extent of its success to date (especially 
in modeling human-scale capacities) as well as the 
uninteresting and ad hoc nature of the symbolic 
"knowledge" it attributes to the "mind"  of the 
symbol system. The handicap has been noticed in 
various forms since the advent of computing; I 
have dubbed a recent manifestation of it the 
"symbol grounding problem" [14]. 

2. The symbol grounding problem 

2.1. The Chinese room 

Before defining the symbol grounding problem I 
will give two examples of it. The first comes from 
Searle's [37] celebrated "Chinese room argument", 
in which the symbol grounding problem is re- 
ferred to as the problem of intrinsic meaning (or 
"intentionality"): Searle challenges the core as- 
sumption of symbolic AI that a symbol system 
capable of generating behavior indistinguishable 
from that of a person must have a mind. More 
specifically, according to the symbolic theory of 
mind, if a computer could pass the Turing test [43] 
in Chinese-  i.e. if it could respond to all Chinese 
symbol strings it receives as input with Chinese 
symbol strings that are indistinguishable from the 
replies a real Chinese speaker would make (even if 
we keep testing for a lifetime) - then the computer 
would understand the meaning of Chinese sym- 
bols in the same sense that I understand the 
meaning of English symbols. 

Searle's simple demonstration that this cannot 
be so consists of imagining himself doing every- 
thing the computer d o e s -  receiving the Chinese 
input symbols, manipulating them purely on the 
basis of their shape (in accordance with (1) to (8) 
above), and finally returning the Chinese output 
symbols. It is evident that Searle (who knows no 
Chinese) would not be understanding Chinese un- 
der those condi t ions -hence  neither could the 
computer. The symbols and the symbol manipula- 
tion, being all based on shape rather than mean- 
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Fig. 1. Chinese dictionary entry. For translation, see footnote 17. 

ing, are systematically interpretable as having 
mean ing- tha t ,  after all, is what it is to be a 
symbol system, according to our definition. But 
the interpretation will not be intrinsic to the sym- 
bol system itself: It will be parasitic on the fact 
that the symbols have meaning for us, in exactly 
the same way that the meanings of the symbols in 
a book are not intrinsic, but derive from the 
meanings in our heads. Hence, if the meanings of 
symbols in a symbol system are extrinsic, rather 
than intrinsic like the meanings in our heads, then 
they are not a viable model for the meanings in 
our heads: Cognition cannot be just symbol ma- 
nipulation. 

2.2. The Chinese/Chinese dictionary-go-round 

My own example of the symbol grounding 
problem has two versions, one difficult, and one, I 
think, impossible. The difficult version is: Suppose 
you had to learn Chinese as a second language 
and the only source of information you had was a 
Chinese/Chinese dictionary. The trip through the 
dictionary would amount to a merry-go-round, 
passing endlessly from one meaningless symbol or 
symbol-string (the definiens) to another (the 
definiendum), never coming to a halt on what 
anything meant #6. (See fig. 1.) 

#6Symbolic AI abounds with symptoms of the symbol 
grounding problem. One well-known (though misdiagnosed) 
manifestation of it is the so-called "frame" problem [22, 24, 26, 
34]: It is a frustrating but familiar experience in writing 
"knowledge-based" programs that a system apparently behav- 
ing perfectly intelligently for a while can be foiled by an 
unexpected case that demonstrates its utter stupidity: A 
"scene-understanding" program will blithely describe the go- 
ings-on in a visual scene and answer questions demonstrating 
its comprehension (who did what, where, why?) and then 
suddenly reveal that it does not "know" that hanging up the 
phone and leaving the room does not make the phone disap- 

The only reason cryptologists of ancient lan- 
guages and secret codes seem to be able to suc- 
cessfully accomphsh something very like this is 
that their efforts are grounded in a first language 
and in real world experience and knowledge #7. 
The second variant of the dictionary-go-round, 
however, goes far beyond the conceivable re- 
sources of cryptology: Suppose you had to learn 
Chinese as a first language and the only source of 
information you had was a Chinese/Chinese dict- 

pear, or something like that. (It is important to note that these 
are not the kinds of lapses and gaps in knowledge that people 
are prone to; rather, they are such howlers as to cast serious 
doubt on whether the system has anything like "knowledge" at 
all.) The "frame" problem has been optimistically defined as 
the problem of formally specifying ("framing") what varies 
and what stays constant in a particular "knowledge domain," 
but in reality it is the problem of second-guessing all the 
contingencies the programmer has not anticipated in symboliz- 
ing the knowledge he is attempting to symbolize. These contin- 
gencies are probably unbounded, for practical purposes, 
because purely symbolic "knowledge" is ungrounded. Merely 
adding on more symbolic contingencies is like taking a few 
more turns in the Chinese/Chinese dictionary-go-round. There 
is in reality no ground in sight: merely enough "intelligent" 
symbol manipulation to lull the programmer into losing sight 
of the fact that its meaningfulness is just parasitic on the 
meanings he is projecting onto it from the grounded meanings 
in his own head. (I have called this effect the "hermeneutic hall 
of mirrors" [16]; it is the reverse side of the symbol grounding 
problem.) Yet parasitism it is, as the next "frame problem" 
lurking around the comer is ready to confirm. (A similar form 
of over-interpretation has occurred in the ape "language" 
experiments [41]. Perhaps both apes and computers should be 
trained using Chinese code, to immunize their experimenters 
and programmers against spurious over-interpretations. But 
since the actual behavioral tasks in both domains are still so 
trivial, there is probably no way to prevent their being de- 
crypted. In fact, there seems to be an irresistible tendency to 
overinterpret toy task performance itself, preemptively extrap- 
olating and "scaling it up" conceptually to lifesize without any 
justification in practice.) 

#~Cryptologists also use statistical information about word 
frequencies, inferences about what an ancient culture or an 
enemy government are likely to be writing about, decryption 
algorithms, etc. 
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ionary#S! This is more like the actual task faced 
by a purely symbolic model of the mind: How can 
you ever get off the symbol/symbol merry-go- 
round? How is symbol meaning to be grounded in 
something other than just more meaningless 
symbols#9? This is the symbol grounding prob- 
lem #10 

2.3. Connecting to the worm 

The standard reply of the symbolist (e.g. Fodor 
[7, 8]) is that the meaning of the symbols comes 
from connecting the symbol system to the world 
"in the right way". But it seems apparent that the 
problem of connecting up with the world in the 
fight way is virtually coextensive with the problem 
of cognition itself. If each definiens in a 
Chinese/Chinese dictionary were somehow con- 
nected to the world in the right way, we would 
hardly need the definienda! Many symbolists be- 
lieve that cognition, being symbol manipulation, is 
an autonomous functional module that need only 
be hooked up to peripheral devices in order to 
"see" the world of objects to which its symbols 

#SThere is of course no need to restrict the symbolic re- 
sources to a dictionary; the task would be just  as impossible if 
one had access to the entire body of Chinese-language litera- 
ture, including all of its computer programs and anything else 
that can be codified in symbols. 

#9Even mathematicians,  whether Platonist or formalist, point 
out that symbol manipulat ion (computation) itself cannot cap- 
ture the notion of the intended interpretation of the symbols 
[31]. The fact that formal symbol systems and their interpreta- 
tions are not the same thing is hence evident independently of 
the Chu rch -Tur ing  thesis [18] or the G0del results [3, 4], which 
have been zealously misapplied to the problem of mind-model- 
ing (e.g. by Lucas [21]) - to which they are largely irrelevant, in 
my view. 

*1°Note that, strictly speaking, symbol grounding is a prob- 
lem only for cognitive modeling, not for AI in general. If 
symbol  systems alone succeed in generating all the intelligent 
machine performance pure AI is interested i n - e . g ,  an auto- 
mated d i c t i o n a r y - t h e n  there is no reason whatsoever to de- 
mand  that their symbols have intrinsic meaning. On the other 
hand,  the fact that our own symbols do have intrinsic meaning 
whereas the computer 's  do not, and the fact that we can do 
things that the computer  so far cannot, may be indications that 
even in AI there are performance gains to be made (especially 
in robotics and machine vision) from endeavouring to ground 
symbol systems. 

refer (or, rather, to which they can be systemati- 
cally interpreted as referring) #n. Unfortunately, 
this radically underestimates the difficulty of pick- 
ing out the objects, events and states of affairs in 
the world that symbols refer to, i.e. it trivializes 
the symbol grounding problem. 

It is one possible candidate for a solution to this 
problem, confronted directly, that will now be 
sketched: What will be proposed is a hybrid non- 
symbolic/symbolic system, a "dedicated" one, in 
which the elementary symbols are grounded in 
two kinds of nonsymbolic representations that 
pick out, from their proximal sensory projections, 
the distal object categories to which the elemen- 
tary symbols refer. Most of the components of 
which the model is made up (analog projections 
and transformations, discretization, invariance de- 
tection, connectionism, symbol manipulation) have 
also been proposed in various configurations by 
others, but they will be put together in a specific 
bottom-up way here that has not, to my knowl- 
edge, been previously suggested, and it is on this 
specific configuration that the potential success of 
the grounding scheme critically depends. 

Table 1 summarizes the relative strengths and 
weaknesses of connectionism and symbolism, the 
two current rival candidates for explaining all 
of cognition single-handedly. Their respective 
strengths will be put to cooperative rather than 
competing use in our hybrid model, thereby also 
remedying some of their respective weaknesses. 
Let us now look more closely at the behavioral 
capacities such a cognitive model must generate. 

3. Human behavioral capacity 

Since the advent bf cognitivism, psychologists 
have continued to gather behavioral data, al- 
though to a large extent the relevant evidence is 
already in: We already know what human beings 

# n T h e  homuncular  viewpoint inherent in this belief is quite 
apparent,  as is the effect of the '" hermeneutic hall of mirrors" 
[16]. 
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Table 1 
Connectionism versus symbol systems. 

Strengths of connectionism 

(1) Nonsymbolicfunction: As long as it does not aspire to be a 
symbol system, a connectionist network has the advantage of 
not being subject to the symbol grounding problem. 

(2) Generality: connectionism applies the same small family 
of algorithms to many problems, whereas symbolism, being a 
methodology rather than an algorithm, relies on endless 
problem-specific symbolic rules. 

(3) "'Neurosimilitude ": Connectionist architecture seems more 
brain-like than a Turing machine or a digital computer. 

(4) Pattern learning: Connectionist networks are especially 
suited to the learning of patterns from data. 

Weaknesses of connectionism 

(1) Non,~vmbolic function: Connectionist networks, because 
they are not symbol systems, do not have the systematic 
semantic properties that many cognitive phenomena appear 
to have. 

(2) Generality: Not every problem amounts to pattern 
learning. Some cognitive tasks may call for problem-specific 
rules, symbol manipulation, and standard computation. 

(3) "Neurosimilitude": Connectionism's brain-likeness may 
be superficial and may (like toy models) camouflage deeper 
performance limitations. 

Strengths of symbol systems 

(1) Symbolic function: Symbols have the computing power of 
Turing machines and the systematic properties of a formal 
syntax that is semantically interpretable. 

(2) Generalitv: All computable functions (including all cogni- 
tive functions) are equivalent to a computational state in a 
Turing machine. 

(3) Practical successes: Symbol systems' ability to generate 
intelligent behavior is demonstrated by the successes of 
Artificial Intelligence. 

Weaknesses of symbol systems 

(1) Symbolic function: Symbol systems are subject to the 
symbol grounding problem. 

(2) Generality: Turing power is too general. The solutions to 
AI's many toy problems do not give rise to common 
principles of cognition but to a vast variety of ad hoc 
symbolic strategies. 

are able to do. They  can (1) discriminate, (2) 
manipulate .12, (3) identify and (4) describe the 
objects, events  and states of  affairs in the world 
they live in, and they can also (5) produce descrip- 
tions and (6) respond to descriptions of those ob- 
jects, events and  states of  affairs. Cogni t ive theory ' s  
bu rden  is now to explain how h u m a n  beings (or 
any  other  devices) do all this .13. 

3.1. Discrimination and identification 

Let us first look more  closely at d iscr iminat ion 
and identification. T o  be able to discriminate is to 
be able to judge  whether  two inputs  are the same 
or different, and, if different, how different they 
are. Discr iminat ion  is a relative judgment ,  based  
on our  capaci ty  to tell things apar t  and discern 
their degree of similarity. To  be able to identify is 
to be able to assign a unique (usually arbi t rary)  
response - a " n a m e "  - to a class of  inputs,  t reat ing 
them all as equivalent  or  invar iant  in some re- 
spect. Identif icat ion is an absolute  judgment ,  based  
on our  capaci ty  to tell whether  or  not  a given 
input  is a m e m b e r  of  a par t icular  category. 

Consider  the symbol  "ho r se" .  We are able, in 
viewing different horses (or the same horse in 
different positions,  or at different t imes) to tell 

*~lZAlthough they are no doubt as important as perceptual 
skills, motor skills will not be explicitly considered here. It is 
assumed that the relevant features of the sensory story (e.g. 
iconicity) will generalize to the motor story (e.g. in motor 
analogs [20]). In addition, large parts of the motor story may 
not be cognitive, drawing instead upon innate motor patterns 
and sensorimotor feedback. Gibson's [11] concept of "affor- 
d a n c e s " - t h e  invariant stimulus features that are detected by 
the motor possibilities they " a f f o r d ' - i s  relevant here too, 
though Gibson underestimates the processing problems in- 
volved in finding such invariants [44]. In any case, motor and 
sensory-motor grounding will no doubt be as important as the 
sensory grounding that is being focused on here. 

*~x3If a candidate model were to exhibit all these behavioral 
capacities, both linguistic (5)-(6) and robotic (i.e. sensorimo- 
tor) (1)-(3), it would pass the "total Turing test" [15]. The 
standard Turing test [43] calls for linguistic performance capac- 
ity only: symbols in and symbols out. This makes it equivocal 
about the status, scope and limits of pure symbol manipula- 
tion, and hence subject to the symbol grounding problem. A 
model that could pass the total Turing test, however, would be 
grounded in the world. 
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them apart and to judge which of them are more 
alike, and even how alike they are. This is discrim- 
ination. In addition, in viewing a horse, we can 
reliably call it a horse, rather than, say, a mule or 
a donkey (or a giraffe, or a stone). This is identifi- 
cation. What sort of internal representation would 
be needed in order to generate these two kinds of 
performance? 

3.2. Iconic and categorical representations 

According to the model being proposed here, 
our ability to discriminate inputs depends on our 
forming iconic representations of them [14]. These 
are internal analog transforms of the projections 
of distal objects on our sensory surfaces [38]. In 
the case of horses (and vision), they would be 
analogs of the many shapes that horses cast on 
our retinas #14. Same/different judgments would 
be based on the sameness or difference of these 
iconic representations, and similarity judgments 
would be based on their degree of congruity. No 
homunculus is involved here; simply a process of 
superimposing icons and registering their degree 
of disparity. Nor  are there memory problems, 
since the inputs are either simultaneously present 
or available in rapid enough succession to draw 
upon their persisting sensory icons. 

So we need horse icons to discriminate horses, 
but what about identifying them? Discrimination 
is independent of identification. I could be dis- 
criminating things without knowing what they 
were. Will the icon allow me to identify horses? 
Although there are theorists who believe it would 
([30]), I have tried to show why it could not [12, 
14]. In a world where there were bold, easily 
detected natural discontinuities between all the 
categories we would ever have to (or choose to) 

#X4There are m a n y  problems having to do with 
f igure /ground discrimination, smoothing, size constancy, shape 
constancy, stereopsis, etc., that make the problem of discrimi- 
nat ion much more compficated than what is described here, 
but  these do not  change the basic fact that iconic representa- 
tions are a natural  candidate substrate for our capacity to 
discriminate. 

sort and iden t i fy -  a world in which the members 
of one category could not be confused with the 
members of any another ca tegory-  icons might be 
sufficient for identification. But in our underdeter- 
mined world, with its infinity of confusable poten- 
tial categories, icons are useless for identification 
because there are too many of them and because 
they blend continuously #15 into one another, mak- 
ing it an independent problem to identify which of 
them are icons of members of the category and 
which are not! Icons of sensory projections are too 
unselective. For identification, icons must be selec- 
tively reduced to those invariant features of the 
sensory projection that will reliably distinguish a 
member of a category from any nonmembers with 
which it could be confused. Let us call the output 
of this category-specific feature detector the cate- 
gorical representation. In some cases these repre- 
sentations may be innate, but since evolution could 
hardly anticipate all of the categories we may ever 
need or choose to identify, most of these features 
must be learned from experience. In particular, 
our categorical representation of a horse is proba- 
bly a learned one. (I will defer till section 4 the 
problem of how the invariant features underlying 
identification might be learned.) 

Note that both iconic and categorical represen- 
tations are nonsymbolic. The former are analog 
copies of the sensory projection, preserving its 
"shape" faithfully; the latter are icons that have 
been selectively filtered to preserve only some of 
the features of the shape of the sensory projection: 
those that reliably distinguish members from non- 
members of a category. But both representations 
are still sensory and nonsymbolic. There is no 

#15Elsewhere [13, 14] I have tried to show how the phe- 
nomenon  of "categorical .perception" could generate internal 
discontinuities where there is external continuity. There is 
evidence that our perceptual system is able to segment a 
continuum, such as the color spectrum, into relatively discrete, 
bounded regions or categories. Physical differences of equal 
magnitude are more discriminable across the boundaries be- 
tween these categories than within them. This boundary effect, 
both innate and learned, may play an important  role in the 
representation of the elementary perceptual categories out of 
which the higher-order ones are built. 
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problem about  their connection to the objects they 
pick out: It  is a purely causal connection, based 
on the relation between distal objects, proximal 
sensory projections and the acquired internal 
changes that result from a history of behavioral 
interactions with them. Nor  is there any problem 
of semantic interpretation, or of whether the se- 
mantic interpretation is justified. Iconic represen- 
tations no more "mean"  the objects of which they 
are the projections than the image in a camera 
does. Both icons and camera images can of course 
be interpreted as meaning or standing for some- 
thing, but the interpretation would clearly be 
derivative rather than intrinsic #16. 

category membership relations. For  example: 

(1) Suppose the name "horse"  is grounded by 
iconic and categorical representations, learned 
from experience, that reliably discriminate and 
identify horses on the basis of their sensory pro- 
jections. 

(2) Suppose "str ipes" is similarly grounded. 

Now consider that the following category can be 
constituted out of these elementary categories by a 
symbolic description of category membership 
alone: 

3.3. Symbofic representations 

Nor  can categorical representations yet be inter- 
preted as "meaning"  anything. It is true that they 
pick out the class of objects they "name" ,  but the 
names do not have all the systematic properties of 
symbols and symbol systems described earlier. 
They are just  an inert taxonomy. For systematicity 
it must be possible to combine and recombine 
them rulefully into propositions that can be se- 
mantically interpreted. "Horse"  is so far just an 
arbitrary response that is reliably made in the 
presence of a certain category of objects. There is 
no justification for interpreting it holophrastically 
as meaning "This  is a [member of the category] 
horse" when produced in the presence of a horse, 
because the other expected systematic properties 
of " th i s"  and " a "  and the all-important " i s"  of 
predication are not exhibited by mere passive tax- 
onomizing. What  would be required to generate 
these other systematic properties? Merely that the 
grounded names in the category taxonomy be 
strung together into propositions about further 

#16On the other hand, the resemblance on which discrimina- 
tion performance is based - the degree of isomorphism between 
the icon and the sensory projection, and between the sensory 
projection and the distal object-seems to be intrinsic, rather 
than just a matter of interpretation. The resemblance can be 
objectively characterized as the degree of invertibility of the 
physical transformation from object to icon [14]. 

(3) " Z e b r a "  = " h o r s e "  & "stripes ''#17 

What  is the representation of zebra? It  is just the 
symbol string "horse  & stripes". But because 
"horse"  and "str ipes" are grounded in their re- 
spective iconic and categorical representations, 
"zebra"  inherits the grounding, through its 
grounded symbolic representation. In principle, 
someone who had never seen a zebra (but had 
seen and learned to identify horses and stripes) 
could identify a zebra on first acquaintance armed 
with this symbolic representation alone (plus the 
nonsymbolic - iconic and categorical - representa- 
tions of horses and stripes that ground it). 

Once one has the grounded set of elementary 
symbols provided by a taxonomy of names (and 
the iconic and categorical representations that give 
content to the names and allow them to pick out 
the objects they identify), the rest of the symbol 
strings of a natural language can be generated by 
symbol composit ion alone #18, and they will all 
inherit the intrinsic grounding of the elementary 

#17Fig. 1 is actually the Chinese dictionary entry for "zebra", 
which is "striped horse". Note that the character for "zebra" 
actually happens to be the character for "horse" plus the 
character for "striped." Although Chinese characters are iconic 
in structure, they function just like arbitrary alphabetic lexi- 
grams at the level of syntax and semantics. 

#lSSome standard logical connectives and quantifiers are 
needed too, such as not, and, all, etc. (though even some of 
these may be learned as higher-order categories). 
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set #19. Hence, the ability to discriminate and cate- 
gorize (and its underlying nonsymbolic representa- 
tions) have led naturally to the ability to describe 
and to produce and respond to descriptions 
through symbolic representations. 

4. A complementary role for conneetionism 

The symbol grounding scheme just described 
has one prominent gap: No mechanism has been 
suggested to explain how the all-important cate- 
gorical representations could be formed: How does 
the hybrid system find the invariant features of the 
sensory projection that make it possible to catego- 
rize and identify objects correctly*2°? 

Connectionism, with its general pattern learning 
capability, seems to be one natural candidate 
(though there may well be others): Icons, paired 
with feedback indicating their names, could be 
processed by a connectionist network that learns 
to identify icons correctly from the sample of 
confusable alternatives it has encountered by dy- 
namically adjusting the weights of the features 
and feature combinations that are reliably associ- 
ated with the names in a way that (provisionally) 
resolves the confusion, thereby reducing the icons 

*lgNote  that it is not being claimed that "horse",  "stripes",  
etc. are actually elementary symbols, with direct sensory 
grounding; the claim is only that some set of symbols must  be 
directly grounded. Most  sensory category representations are 
no doubt  hybrid sensory/symbolic;  and their features can 
change by bootstrapping: "Horse"  can always be revised, both 
sensorily and symbolically, even if it was previously elemen- 
tary. Kripke [19] gives a good example of how "gold" might be 
baptized on the shiny yellow metal in question, used for trade, 
decoration and discourse, and then we might discover "fool 's  
gold", which would make all the sensory features we had used 
until then inadequate, forcing us to find new ones. He points 
out that it is even possible in principle for "gold" to have been 
inadvertently baptized on "fool 's gold"! Of interest here are 
not the ontological aspects of this possibility, but  the epistemic 
ones: We could bootstrap successfully to real gold even if every 
prior case had been fool's gold. "Gold"  would still be the right 
word for what we had been trying to pick out (i.e. what we had 
" h a d  in mind") all along, and its original provisional features 
would still have provided a close enough approximation to 
ground it, even if later information were to pull the ground out 
from under  it, so to speak. 

to the invariant (confusion-resolving) features of 
the category to which they are assigned. In effect, 
the "connection" between the names and the ob- 
jects that give rise to their sensory projections and 
their icons would be provided by connectionist 
networks. 

This circumscribed complementary role for con- 
nectionism in a hybrid system seems to remedy 
the weaknesses of the two current competitors in 
their respective attempts to model the mind single- 
handedly. In a pure symbolic model the crucial 
connection between the symbols and their refer- 
ents is missing; an autonomous symbol system, 
though amenable to a systematic semantic inter- 
pretation, is ungrounded. In a pure connectionist 
model, names are connected to objects through 
invariant patterns in their sensory projections, 
learned through exposure and feedback, but the 
crucial compositional property is missing; a net- 
work of names, though grounded, is not yet 
amenable to a full systematic semantic interpreta- 

#2°Although it is beyond the scope of this paper to discuss it 
at length, it must  be mentioned that this question has often 
been begged in the past, mainly on the grounds of "vanish ing  
intersections". It has been claimed that one cannot find invari- 
ant features in the sensory projection because they simply do 
not exist: The intersection of all the projections of the mem- 
bers of a category such as "horse" is empty. The British 
empiricists have been criticized for thinking otherwise; for 
example, Wittgenstein's  [45] discussion of "games"  and "family 
resemblances" has been taken to have discredited their view. 
Current  research on human  categorization [35] has been inter- 
preted as confirming that intersections vanish and that hence 
categories are not  represented in terms of invariant features. 
The problem of vanishing intersections (together with 
Chomsky 's  [2] "poverty  of the stimulus argument")  has even 
been cited by thinkers such as Fodor [8, 9] as a justification for 
extreme nativism. The present paper is frankly empiricist. In 
my view, the reason intersections have not been found is that 
no one has yet looked for them properly. Introspection cer- 
tainly is not the way to look. and general pattern learning 
algorithms such as connectionism are relatively new; their 
inductive power remains to be tested. In addition, a careful 
distinction has not been made between pure sensory categories 
(which, I claim, must  have invariants, otherwise we could not 
successfully identify them as we do) and higher-order cate- 
gories that are grounded in sensory categories; these abstract 
representations may be symbolic rather than sensory, and 
hence not based directly on sensory invariants. For further 
discussion of this problem, see ref. [14]. 
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tion. In the hybrid system proposed here, there is 
no longer any autonomous symbolic level at all; 
instead, there is an intrinsically dedicated symbol 
system, its elementary symbols (names) connected 
to nonsymbolic representations that can pick out 
the objects to which they refer, via connectionist 
networks that extract the invariant features of 
their analog sensory projections. 

5. Conclusions 

The expectation has often been voiced that 
" top -down"  (symbolic) approaches to modeling 
cognit ion will somehow meet  " b o t t o m - u p "  
(sensory) approaches somewhere in between. If  
the grounding considerations in this paper  are 
valid, then this expectation is hopelessly modular 
and there is really only one viable route from 
sense to symbols: from the ground up. A free- 
floating symbolic level like the software level of a 
computer  will never be reached by this route (or 
vice v e r s a ) -  nor is it clear why we should even try 
to reach such a level, since it looks as if getting 
there would just amount to uprooting our symbols 
from their intrinsic meanings (thereby merely re- 
ducing ourselves to the functional equivalent of a 
programmable  computer). 

In an intrinsically dedicated symbol system there 
are more constraints on the symbol tokens than 
merely syntactic ones. Symbols are manipulated 
not only on the basis of the arbitrary shape of 
their tokens, but also on the basis of the decidedly 
nonarbi t rary "shape"  of the iconic and categorical 
representations connected to the grounded ele- 
mentary symbols out of which the higher-order 
symbols are composed. Of these two kinds of 
constraints, the iconic/categorical ones are pri- 
mary. I am not aware of any formal analysis of 
such dedicated symbol systems #2t, but this may 

#21Although mathematicians investigate the formal proper- 
ties of uninterpreted symbol systems, all of their motivations 
and intuitions clearly come from the intended interpretations 
of those systems (see ref. [31]). Perhaps these too are grounded 
in the iconic and categorical representations in their heads. 

be because they are unique to cognitive and robotic 
modeling and their properties will depend on the 
specific kinds of robotic (i.e. behavioral) capacities 
they are designed to exhibit. 

It  is appropriate  that the properties of dedicated 
symbol systems should turn out to depend on 
behavioral considerations. The present grounding 
scheme is still in the spirit of behaviorism in that 
the only tests proposed for whether a semantic 
interpretation will bear the semantic weight placed 
on it consist of one formal test (does it meet the 
eight criteria for being a symbol system?) and one 
behavioral test (can it discriminate, identify 
(manipulate) and describe all the objects and states 
of affairs to which its symbols refer?). If  both tests 
are passed, then the semantic interpretation of its 
symbols is "f ixed" by the behavioral capacity of 
the dedicated symbol system, as exercised on the 
objects and states of affairs in the world to which 
its symbols refer; the symbol meanings are accord- 
ingly not just  parasitic on the meanings in the 
head of the interpreter, but intrinsic to the 
dedicated symbol system itself. This is still no 
guarantee that our model has captured subjective 
meaning, of course. But if the system's behavioral 
capacities are lifesize, it is as close as we can ever 
hope to get. 

References 

[1] A.C. Catania and S. Harnad, eds., The Selection of Behav- 
ior. The Operant Behaviorism of B.F. Skinner: Comments 
and Consequences (Cambridge Univ. Press, Cambridge, 
1988). 

[2] N. Chomsky, Rules and representations, Behav. Brain Sei. 
3 (1980) 1-61. 

[3] M. Davis, Computability and Unsolvability (McGraw- 
Hill, New York, 1958). 

[4] M. Davis, The Undecidable (Raven, New York, 1965). 
[5] D.C. Dennett, Intentional systems in cognitive ethology, 

Behav. Brain Sci. 6 (1983) 343-390. 
[6] J.A. Fodor, The Language of Thought (Crowell, New 

York, 1975). 
[7] J.A. Fodor, Methodological solipsism considered as a 

research strategy in cognitive psychology. Behav. Brain 
Sci. 3 (1980) 63-109. 



346 S. Harnad / The symbol grounding problem 

[8] J.A. Fodor, Precis of the modularity of mind, Behav. 
Brain Sci. 8 (1985) 1-42. 

[9] J.A. Fodor, Psychosemantics (MIT/Bradford, Cambridge, 
MA, 1987). 

[10] J.A. Fodor and Z.W. Pylyshyn, Connectionism and cogni- 
tive architecture: A critical appraisal, Cognition 28 (1988) 
3-71. 

[11] J.J. Gibson, An ecological approach to visual perception 
(Houghton Mifflin, Boston, 1979). 

[12] S. Harnad, Metaphor and mental duality, in: Language, 
Mind and Brain, eds. T. Simon and R. Scholes (Erlbaum 
Hillsdale, NJ, 1982). 

[13] S. Harnad, Categorical perception: A critical overview, in: 
Categorical Perception: The Groundwork of Cognition, 
ed. S. Harnad (Cambridge Univ. Press, Cambridge, 1987). 

[14] S. Harnad, Category induction and representation, in: 
Categorical Perception: The Groundwork of Cognition, 
ed. S. Hamad (Cambridge Univ. Press, Cambridge, 1987). 

[15] S. Harnad, Minds, machines and searle, J. Theor. Exp. 
Artificial Intelligence 1 (1989) 5-25. 

[16] S. Harnad, Computational hermeneutics, Social Episte- 
mology, in press. 

[17] J. Haugeland, The nature and plausibility of cognitivism, 
Behav. Brain Sci. 1 (1978) 215-260. 

[18] S.C. Kleene, Formalized Recursive Functionals and For- 
realized Realizability (Am. Math. Soc., Providence, RI, 
1969). 

[19] S.A. Kripke, Naming and Necessity (Harvard Univ. Press, 
Cambridge, MA, 1980). 

[20] A.M. Liberman, On the finding that speech is special, Am. 
Psychologist 37 (1982) 148-167. 

[21] J. Lucas, Minds, machines and G/Sdel, Philosophy 36 
(1961) 112-117. 

[22] J. McCarthy and P. Hayes, Some philosophical problems 
from the standpoint of artificial intelligence, in: Machine 
Intelligence, Vol. 4, eds. B. Meltzer and P. Michie (Edin- 
burgh Univ. Press, Edinburgh, 1969). 

[23] J.L. McClelland, D.E. Rumelhart and the PDP Research 
Group, Parallel Distributed Processing: Explorations in 
the Microstructure of Cognition, Vol. 1 (MfT/Bradford, 
Cambridge, MA, 1986). 

[24] D. McDermott, Artificial intelligence meets natural stu- 
pidity, SIGART Newsletter 57 (1976) 4-9. 

[25] G.A. Miller, The magical number seven, plus or minus 
two: Some limits on our capacity for processing informa- 
tion, Psychological Rev. 63 (1956) 81-97. 

[26] M.'Minsky, A framework for representing knowledge, 
MIT Lab Memo No. 306 (1974). 

[27] M. Minsky and S. Papert, Perceptrons: An Introduction 
to Computational Geometry (MIT Press, Cambridge, MA, 
1969) Reissued in an expanded edition (1988). 

[28] A. Newell, Physical symbol systems, Cognitive Sci. 4 
(1980) 135-183. 

[29] U. Neisser, Cognitive Psychology (Appleton-Century- 
Crofts., New York, 1967). 

[30] A. Paivio, Mental Representation: A Dual Coding Ap- 
proach (Oxford Univ. Press, Oxford, 1986). 

[31] R. Penrose, The Emperor's New Mind (Oxford Univ. 
Press, Oxford, 1989). 

[32] Z.W. Pylyshyn, Computation and cognition: Issues in the 
foundations of cognitive science, Behav. Brain Sci. 3 (1980) 
111-169. 

[33] Z.W. Pylyshyn, Computation and Cognition (MIT/Brad- 
ford, Cambridge, MA, 1984). 

[34] Z.W. Pylyshyn, ed., The Robot's Dilemma: The Frame 
Problem in Artificial Intelligence (Ablex, Norwood, N J, 
1987). 

[35] E. Rosch and B.B. Lloyd, Cognition and Categorization 
(Erlbaum, Hillsdale, NJ, 1978). 

[36] F. Rosenblatt, Principles of Neurodynamics (Spartan, New 
York, 1962). 

[37] J. Searle, Minds, brains and programs, Behav. Brain Sci. 3 
(1980) 417-457. 

[38] R.N. Shepard and L.A. Cooper, Mental Images and Their 
Transformations (MIT Press/Bradford, Cambridge, 1982). 

[39] P. Smolensky, On the proper treatment of connectionism, 
Behav. Brain Sci. 11 (1988) 1-74. 

[40] E.P. Stabler, How are grammars represented? Behav. Brain 
Sci. 6 (1985) 391-421. 

[41] H, Terrace, Nim (Random House, New York, 1979). 
[42] J. Turkkan, Classical conditioning: The new hegemony, 

Behav. and Brain Sci. 12 (1989) 121-179. 
[43] A.M. Turing, Computing machinery and intelligence, in: 

Minds and Machines, ed. A. Anderson (Prentice Hall, 
Engelwood Cliffs, NJ, 1964). 

[44] S. Ullman, Against direct perception, Behav. Brain Sci. 3 
(1980) 373-415. 

[45] L. Wittgenstein, Philosophical Investigations (Macmillan, 
New York, 1953). 


