
D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59
Ann. Rev. CompUi. Sci. 1988.3: 23-58
Copyright © 1988 by Annual Reviews Inc. All rights reserved

FUNDAMENTALS OF

EXPERT SYSTEMS

BlFuce G. Buchanan

Knowledge Systems Laboratory, Stanford University, Stanford,
California 94305

Reid G. Smith

Schlumberger Palo Alto Research, 3340 Hillview Avenue, Palo Alto,
California 94304

1 INTRODUCTION

Expert systems are among the most exciting computer applications to
emerge in the last decade. They allow a computer program to use expertise
to assist in a variety of problems, such as diagnosing equipment failures
and designing new equipment. Utilizing the results of artificial intelligence
(AI) work on problem solving, they have become a commercially successful
demonstration of the power of AI techniques. Correspondingly, by testing
current AI methods in applied contexts, expert systems provide important
feedback to the science about the strengths and limitations of those
methods. In this review, we present the fundamental considerations in
constructing an expert system, assess the state of the art, and indicate
directions for future research. Our discussion focuses on the computer
science issues, as opposed to issues of management or application.

1.1 Characterization and Desiderata

Expert systems are distinguished from conventional programs in several
important respects. While none of the characteristics listed below is missing
entirely from other well-designed software, all of them together describe
a distinct class of programs. Note that few expert systems exhibit all of
the following five desiderata to the same degree.

An expert system is a computer program that (a) reasons with domain-

23
8756-7016/88/ 1 1 1 5-0023$02.00

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59
24 BUCHANAN & SMITH

specific knowledge that is symbolic as well as mathematical; (b) uses
domain-specific methods that are heuristic (plausible) as well as algo
rithmic (certain); (c) performs as well as specialists in its problem area; (d)
makes understandable both what it knows and the reasons for its answers;
and (e) retains flexibility.

An expert system that meets these conditions is the Dipmeter Advisor
System (Smith & Young 1984; Smith 1984). Its task is to help petroleum
engineers determine the "map" of geological strata through which an oil
well is being drilled-e.g. the depth and the dip, or "tilt", of individual
layers of sandstone, shale, and other rocks. It meets our desiderata in the
following respects: (a) The knowledge utilized is partly mathematical (e.g.
trigonometry) but largely nonnumeric geological knowledge (e.g. about
how sand is deposited around river beds). (b) Its reasoning is based on
heuristics that well-logging experts use to interpet data from bore holes.
(c) It aids specialists, providing interpretations better than those of novices.
(d) It uses a variety of graphical and textual displays to make its knowledge
understandable and to justify its interpretations. And (e) it is flexible
enough to be modified and extended frequently, without rewriting the
programs that interpret the knowledge. Figure I shows what the Dipmeter
Advisor System's computer screen looks like as an illustration of what a
user of an expert system might see.

Characteristics (a) and (b), above-symbolic reasoning and heuristic
methods-define expert systems as artificial intelligence programs. Expert
systems became an identifiable part of AI in the late 1960s and early 1970s
with the realization that application of AI to science, engineering, and
medicine could both assist those disciplines and challenge AI. The DEND
RAL (Lindsay et al 1980) and MACSYMA (Moses 1971) programs sug
gested that high performance in a subject area such as organic chemistry
was more readily achieved by giving a program substantial subject-specific
knowledge than by giving it the general axioms of the subject area plus a
powerful, but general, deductive apparatus. The DENDRAL program
represented many specific facts about organic chemistry in a variety of
ways and used those facts in rather simple inferences. It represented the
masses and valences of atoms as values of attributes; it represented classes
of unstable chemical compounds as partial graph structures in a table; and
it represented certain major patterns of molecular fragmentation in a mass
spectrometer as predictive rules. From this work emerged the first principle
of expert system building, as enunciated by Feigenbaum (Feigenbaum et
al 197 1): "In the knowledge lies the power". The concept of a knowledge
base has consequentially become central in expert systems. In contrast,
most other AI work of the concerned reasoning by such general methods
as theorem proving. Researchers sought to give programs power by means

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

, 2
2

O
ct

 2
02

4
04

:2
7:

59

type: GRO\llTH-f AUL T
TOP: 9182.0
BOTTOM : 92B2. 0

EXPERT SYSTEMS 25

Creator: (NORMAL-fAULT-P.ULESET-0239 . NfR3A)
Modifier! «NORMAL-FAULT -RUlESET -0239

.
NFR9A)

(NORMAL-FAUL T -RULESET -0239 NF�3A»
STRIKE: ·SSE-NIW (150 deg)"
OIRECTlON-TO-OOWNTHROWN-BlOGK: "ENE (60 deg)"
MIN-fAULT-GUT: 216.0
IllUSTRA liON:

Normal Faull NORMAl�FAUlT-0240 �'.'\'.'.""."."'l.' .. ' .. ' .
.
.

J

.,
.
-..... :.:
.

..

.
:.j

'"-;

.

. .

... . . "." ..

. .

rollover

NFR9A
Source:
J. A. Gllrea.th
Author:

h<1S been asserted by the ru1e NfR3A
with TOP '"' 8950.0
w 1 th BOTTOM = 9262.0

mat.ch arlahles loIere :
: UNCONFORMITV = UNCONfORMITY-0241
; NORMAL-FAUL T = NORMAl-FAUlT-024D
:RED = RED-PATTERN-0197
:�ISSING-SECTION • MISSING-SECTION-0191

has been mod,fied by the rule NfR9A

P. Pruchnik & R. Smith, a.ltered by 0, Hammock 10-25-84

<'n a region where the primary type of
distortion Is rollover, If there is a. norma.l
fault with a red pattern greater than 200 ft. in
length Usociated with it then the f au!t is

probably a growth tault; the fa.ult cuts the well
somewhere below the bottom of the rt:d pattern,

the strike of the fault is perplndicular to the
azimuth of the pAttern, the direction to the
downthrown block is opposite the a.zimuth of the
p&.ttern & the lengt.h of the pa.Uef"n gives a.
rough number for the minimum cut of the fault.)

Normal Faull

�
rollover

Figure 1 Screen from Dipmeter Advisor System: This screen shows the input data and a partial
explanation for a conclusion drawn by the system, The left-hand column shows natural
gamma radiation against depth, To its right is shown dip against depth, Individual dip
estimates (called "tadpoles") show the magnitude of the dip as horizontal position, and the
azimuth as a small direction line, High-quality estimates have solid circles, low-quality
estimates are hollow, A dip pattern, found by the system, is shown as crosshatching over the
relevant tadpoles, To the right are three windows describing the fact that the system has
inferred the existence of a Growth Fault, a specialized type of Normal Fault. One window
describes the attributes of the fault, another shows a portion of the reasoning trace, and a
third describes the rule that made the inference,

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

26 BUCHANAN & SMITH

of general planning heuristics, exhibited, for example, in problem areas
where knowledge about the objects of the domain was almost irrelevant.
A favorite problem area was the so-called "Blocks World" of children's
blocks on a table. General knowledge about stability and support, plus
general knowledge about planning and constraint satisfaction, allowed
programs to reason, say, about the sequence of operations needed to stack
blocks in a specified order.

Desideratum c separates high-performance programs from others. By
specifying human specialists as a standard of comparison, this condition
also suggests using the knowledge of specialists to achieve high perform
ance. Predefining the scope of problem solving to a narrow "slice" through
a domain (like the slice mastered by most human specialists) has become
a pragmatic principle of design. As discussed below, bounding the scope
of the problem in advance avoids many of the challenges of building a
generally intelligent robot that would behave appropriately in a wide range
of situations.

Desiderata d (a system's explaining its reasoning) and e (the provision
of flexibility) are less frequently cited and less frequently achieved than a

c. They may be seen as means of achieving high performance but are
included here to highlight their importance in designing and implementing
any expert system.

Understandability and flexibility are important both while expert sys
tems are being designed and when they are used. During design and
implementation, not all the requisite knowledge is in hand, because not
even specialists can say precisely what a program needs to know. Thus
expert systems are constructed incrementally. Important to under
standability is the use of the same tenninology that specialists and prac
titioners use. Understanding the static knowledge base allows one to decide
what knowledge needs to be added to improve perfonnance. Under
standing the dynamics of the reasoning is also important in deciding what
to change. Flexibility is thus needed to allow the changes to be made easily.
Explanations help designers as well as end-users understand the reasons
for a program's conclusions. This capability is especially important when
end-users accept legal, moral, or financial responsibility for actions taken
on the program's recommendations.

1.2 Examples

Many expert systems are in routine use (see Rauch-Hindin 1 986; Buchanan
1 986; Walker & Miller 1986; and Harmon & King 1985 for lists of exam
ples). Some of the best known, such as XCON and the Dipmeter Advisor
System, have been used commercially for many years (produced by Digital
Equipment and Schlumberger, respectively). The programs shown in Table

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

EXPERT SYSTEMS 27

were chosen because they illustrate a variety of problem types and
contexts of use. There are roughly two classes of problems addressed in
these several systems: (I) problems of interpreting data to analyze a situ
ation, and (II) problems of constructing a solution within specified con
straints. Within each category are listed several different examples under
general task names that are descriptive but not necessarily distinct.

1.3 Historical Note

Early work in AI (1950s-1960s) focused on (a) psychological modeling,
and (b) search techniques. Expert systems synthesize some of that work,
but shift the focus to representing and using knowledge of specific task
areas. Early work used game playing and reasoning about children's blocks
as simple task domains in which to test methods of reasoning. Work on
expert systems emphasizes problems of commercial or scientific impor
tance, as defined by persons outside of AI. Newell calls MYCIN "the
original expert system" (Foreword to Buchanan & Shortliffe 1984) because
it crystallized the design considerations and emphasized the application.
Expert systems continue to build on-and contribute to-AI research
by testing the strengths of existing methods and helping to define their
limitations (Buchanan 1988). In the 1970s expert-systems work developed
the use of production systems, based on the early work in psychological
modeling. In the 1980s fundamental work on knowledge representation
has evolved into useful object-oriented substrates (Stefik & Bobrow 1986).

Hardware developments in the last decade have made a significant
difference in the commercialization of expert systems. Stand-alone work
stations provide special hardware for AI programming languages, high
resolution interactive graphics, and large address spaces in small boxes at
affordable prices (Wah 1987). These have simplified development, since it
is no longer necessary to depend on large, time-shared central mainframes
for development and debugging. They also provide an acceptable answer
to questions of portability for field personnel. Development of expert
systems-and the languages and environments (called "shells") for build
ing them-in standard languages such as Common Lisp and,C have
essentially eliminated the last barriers to portability.

2 FUNDAMENT AL PRINCIPLES

All AI programs, including expert systems, represent and use knowledge.
The conceptual paradigm of problem solving that underlies all of AI is
one of search (i.e. a program, or person, can solve a problem by searching
among alternative solutions). Although immediately clear and simple, this
formulation does not tell us how to search a solution space efficiently and

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

28 BUCHANAN & SMITH

Table 1 Expert systems working in various problem areas"

Class I: Problems of Interpretation

Data Interpretation

Schlumberger [Dipmeter Advisor System] -interpret down-hole data from oil well bore
holes to assist in prospecting (Smith & Young 1984)

St. Vincents Hospital (Sydney)-aid in interpreting diagnostic tests on thyroid function
(Horn et al 1985)

NL Baroid [MUDMAN]-determine causes of problems in drilling oil wells and rec
ommend additives to the drilling fluid that will correct them (Kahn & McDermott 1 986)

Equipment Diagnosis

General Motors [VIBRATION]-determine causes of vibration noises and recommend
repairs (Teknowledge 1987)

Kodak [BLOW MOLDING INJECTION ADVISOR]-diagnose faults and suggest
repairs for plastic injection molding machines (Teknowledge 1987)

AT &T [ACE]-provide troubleshooting and diagnostic reports on telephone cable prob
lems (Miller et al 1984)

General Electric rCA TS]-diagnose problems in diesel-electric locomotives (Sweet 1 985)

Troubleshooting Processes

Hewlett Packard-diagnose causes of problems in photolithography steps of wafer fab
rication (Cline et al 1985)

Elf Aquitaine Oil Company [DRILLING ADVISORj-demonstrate reasoning used to
find the cause of drill bit sticking in oil wells and to correct the problem (used for training)
(Rauch-Hinden 1 986)

Monitoring

IBM [YES/MVS]-monitor and adjust operation of MVS operating system (Rauch
Hindin 1 986)

National Aeronautics and Space Administration [LOX]-monitor data during liquid
oxygen tanking process (Kolcum 1986)

Preventive Maintenance

NCR [ESPm]-monitor computers in the field, analyze error logs, and suggest preventive
maintenance procedures before a computer fails (Teknowledge 1987)

Screening

US Environmental Protection Agency [EDDAS]-determine which requests for infor
mation fall under the exceptions to the Freedom of Information Act (Feinstein & Siems
1985)

Credit Authorization

American Express [AA]-assist in authorizing charges from card members or in deter
mining that a request is suspect or fraudulent (Klahr et al 1 987)

Financial Auditing

Arthur Young [ASQj-assist auditors with planning and developing approaches to field
audits (Hernandez 1 987)

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

Software Consulting

EXPERT SYSTEMS 29

AT&T [REXl-advise persons on which subroutines in large statistical package to use
for their problems and how to use them (Rauch-Hinden 1986)

Equipment Tuning

Lawrence Livermore National Laboratory [TQMSTUNEl-specify parameter settings to
bring a sensitive instrument into alignment (Rauch-Hinden 1986)

Inventory Control

Federal Express [INVENTORY SETUP ADVISORl-heip decide whether or not to
stock spares in inventory of 40,000 parts (Teknowledge 1987)

Class II: Problems of Construction

Configuration

Digital Equipment Corp. [XCON]-translate customers' orders for computer systems
into shipping orders (Rauch-Hindin 1986)

Design

Xerox [PRIDEl-design paper handling systems inside copiers and duplicators (Mittal et
al 1985)

OM Delco Products [MOTOR EXPERTl-generate information necessary to make pro
duction drawings for low-voltage DC motor brushes by interacting with designers
(Rauch-Hinden 1986)

Loading

US Army (AALPSl-design loading plan of cargo and equipment into aircraft of different
types (AALPS 1985)

Planning

Hazeltine [OPOENl-plan and prepare "operations sheets" of assembly instructions for
printed-circuit boards (Rauch-Hindin 1 986)

Hughes Aircraft [HI-CLASS]-set up sequence of hand-assembly steps for printed-circuit
boards (Hi-Class 1985)

Scheduling

Westinghouse [ISIS]-plan manufacturing steps in Turbine Component Plant to avoid
bottlenecks and delays (Fox & Smith 1984)

Babcock & Wilcox-automate generation of weld schedule information (e.g. weld pro
cedure, preheat, postheat, and nondestructive examination requirements) (Rauch-Hin
din 1 986)

Therapy Management

Stanford Medical Center [ONCOCINl-assist in managing multi-step chemotherapy for
cancer patients (Hickam et al 1985)

"Although the problems are quite different, they can be categorized into two major classes. We show
more than one example of each type to illustrate a range of systems and approaches.

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

30 BUCHANAN & SMITH

accurately. The number of possible solutions may be astronomical, as
illustrated in Table 2. Thus exhaustive consideration of alternatives is out
of the question. Most expert systems, however, use heuristics to avoid
exhaustive search, much as experts do. For problem areas in which experts
are acknowledged to be more efficient and accurate than nonspecialists, it
is reasonable to assume that what the experts know can be codified for use
by a program. This is one of the fundamental assumptions of knowledge
engineering, the art of building expert systems by eliciting knowledge from
experts (Hayes-Roth et al 1983).

In this section, we discuss several dimensions of current architectures:
representation of knowledge, reasoning, knowledge acquisition, expla
nation, system-building tools, and validation. In each of these subsections,
we try to elucidate the fundamental principles underlying the architectural
choices. In the discussion we relate each of the classes of choices to
desiderata a-e for expert systems, enumerated in Section 1. Several obser
vations others have made about expert systems are restated in the text.
Each of these observations is valid for today's expert systems and thus
serves to clarify the present state of the art. Underneath each, however, is

, a trade-off that designers of systems have had to work with. Each obser
vation involves a trade-off. Section 3 discusses research aimed at gaining
more of the best of both sides of such trade-offs. We end the section with
three advantages of knowledge-based systems over traditional software.

2.1 Representation

One of the hallmarks of an expert system is the use of specific knowledge
of its domain of application, applied by a relatively simple inference engine.
The phrase "knowledge programming" has been used to denote the
emphasis of the effort of building an expert system. The single most
important representational principle is the principle of declarative knowl-

Table 2 The size of the solution spaces for several expert systems'

MYCIN: combinations of 1-6 organisms from list of 120
organisms (many of which are equivalent)

INTERNIST: combinations of 1-3 diseases from list of 571

Dipmeter Advisor System: combinations o f 650 geological
categories for an arbitrary number of depth intervals
e.g. 500 ten-foot intervals

XCON: arbitrary number of computer system components
selected from 20,000 catalog items 50-150 at a time

> 6x 106

>31x106

> (500)650

> 10200

'The number of possible solutions defined by the vocabulary of each system is reduced to one, or a few,
plausible answers hy exploiting domain-specific heuristics.

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

EXPERT SYSTEMS 3 1

edge enunciated by McCarthy in the formative years of AI (McCarthy
1958); see also Winograd's discussion of this principle (Winograd 1975).
Simply put, this principle states that knowledge must be encoded in an
intelligent program explicitly, in a manner that allows other programs to
reason about it. Arbitrary Fortran or Lisp procedures, for example, cannot
be explained or edited by other programs (although they can be compiled
and executed), while stylized attribute-value pairs, record structures, or
other, more complex, stylized data structures can be.

To a certain extent, a knowledge base is a database. The essential
differences between knowledge bases and databases are flexibility and
complexity of the relations. Current research on AI and databases, some
times called expert database systems (Kerschberg 1986), is reducing these
differences. A knowledge base requires an organizational paradigm plus
data structures for implementation. These two parts together constitute
the representation of knowledge in an AI program.

Elements of knowledge needed for problem solving may be organized
around either the primary objects (or concepts) of a problem area or
around the actions (including inferential relations) among those objects.
For example, in medicine one may think primarily about the evidential
links among manifestations and diseases, and the links among diseases
and therapeutic actions, and secondarily about the concepts so linked. In
this paradigm, one concentrates on the knowledge that allows inferences
to be drawn and actions to be taken-the "how to" knowledge. Alter
natively, one might organize medical knowledge primarily around the
taxonomy of diseases and the taxonomy of their manifestations and sec
ondarily around the inference rules that relate manifestations to diseases.
In this second paradigm, one concentrates on what might be called the
"what is" knowledge. These two conceptual views are known as "action
centered" or "object-centered" paradigms for representing knowledge.
They have counterparts at the implementation level in program organ
ization.

For each type of representation, one may identify the primitive unit and
the primitive action. The primitive unit, in the case of action-centered
representations, is the fact (e.g. the freezing temperature of water is
O°C). Primitive facts are linked in conditional sentences by rules "if . . .
then . . . " statements). Note that these links may reflect causal associations,
based on theory, or empirical associations, based on experience. An
example from the Dipmeter Advisor System, which is an abbreviated causal
description as found in geology texts, is shown in Figure 2.

Conversely, the primitive unit of an object-centered representation is
the object, with a number of attributes (called "slots") and values (e.g. a
spur gear with number-of-teeth = 24, material = cast-steel, and diam-

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

32 BUCHANAN & SMITH

Crevasse-Fan-Rule

if:
(1) There exists an element from Sand-Zones In well 'Well' <s>
(2) There exists an element from Energy-Zones in well 'Well' <e>,

such that there is an intersection of s and e <i1 >, and
such that the Energy of e is Moderate

(3) There exists an element from Texture-Zones in well 'Well* <I>,
such that there is an intersection of i1 and t <i2>, and

then:

such that the Grain-Size of t is (Fine·Sand Medium-Sand), and
such that the Sorting of t is ModeratElly-Weil-Sorted

(1) Create a Crevasse-Fan-Zone from the top of i2 to the bottom of i2 in
well 'Well'

Figure 2 Dipmeter Advisor System rule: One of a set used to perform sedimentary environ
ment analysis. This rule is only attempted after the system has determined that the overall
sedimentary environment is a deltaic plain.

eter = 5 cm). Objects typically also encapsulate procedures (called
"methods"). In addition, they may contain defaults, uncertainty, relations
to other objects (e.g. generalizations, parts), and a variety of other infor
mation. An object can be viewed as a structured collection of facts. Minsky
(1975) popularized the use of objects (then called "frames") for AI. An
example of an object definition from the Dipmeter Advisor System is
shown in Figure 3.

Smalltalk (Goldberg & Robson 1983) was one of the early languages
that showed both the power of objects as programming constructs and
the power of an integrated graphical programming environment. Many
commercial expert-system shells contain an object-oriented component
(Stefik & Bobrow 1986).

The primitive action in action-centered representations is often referred
to as "firing a rule": If the premise conditions of a conditional rule are
true in a situation, then take the actions specified in the consequent part
of the rule. For example, in a medical system, conclude that an organism
may be streptococcus ifits gram stain is positive. This style of programming
began as production systems, made popular by Newell's work in the 1960s
(see Buchanan & ShortIiffe 1984, Ch. 2).

Observation: The domain models are not "deep" models (Davis 1987). Expert systems
rely more on special-case formulations of relations than on "first principles". Although
a set of general principles such as Maxwell's equations governs the behavior of a large
class of devices, designers of expert systems prefer to codify special cases, exceptions,
and empirical associations, as well as some causal associations, in order to put the

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

Normal Fault

Object: Normal-Fault
Synonyms:
Generalizations: Fault
Groups:
Type: Class
Edited: 13-Dec-87 14:26:25 PST By: Schoen
Pic'ure[Bilmap): llii ;::*�:t;/:�:��tl�:i

EXPERT SYSTEMS 33

Hanging-Wall-Block{Downthrown-Block} [Object]:
Upper-Distortio n-Reg ion[Object]:
Breccia-Region{ Crushed-Zone} [Object]:
Fault-Plane[Object] :
Lower-Distortion-Region[Object] :
Foot-Wall-Block{Upthrown-Block} [Object]:
Time-Of-Faulting[Geologic-Age] :
Strike[Azimuth] :
Slip[Floatingpointnumber]:
Fault-Angle{Hade} [Dipmagnitude]:
Direction-To-Downth rown-Block[Azimuth]:
Throw[Distance] :
Draw[Lisp]: Drawfault

Instantiate[Lisp]: Instantiatefault
Detect[Rule]: (Rule-Nfr1 Rule-Nfr3 Rule-Nfr4 Rule-Nfr5 Rule-Nfr7)
Specialize[Rule]: (Rule-Nfr6 Rule-Nfr9 Rule-Nfr11 Rule-Nfr12)

Figure 3 Dipmeter Advisor System object: Encapsulates information about normal or ten
sional geologic faults. Individual attribute (slot) names are shown in boldface (e.g. Hanging
Wall-Block). Where used, synonyms for attribute names are enclosed in braces (e.g. {Down
thrown-Block}). The "type" of each attribute value is shown in square brackets (e.g. the value
of the Strike slot is expected to be a datum of type [Azimuth]).

general principles in forms that can be applied more quickly and more precisely. As a
result, they are unable to fall back on a better theory in some situations.

A related observation: Expert systems are "brittle" (Davis 1987, Lenat et al 1986).
Without knowledge of first principles, current expert systems may fail precipitously on
a new case that is at the boundary of the system's competence. The performance of
humans is more robust: As we reach the extent of what we know about a problem area,
we often can give appropriate answers that are approximately correct, although not
very precise-and we know the difference. The standard solution today is to codify

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

34 BUCHANAN & SMITH

rules that screen out cases that are outside the intended scope in order to further ensure
that the system is being used in an appropriate way.

Given that rule-oriented programming often involves making deduc
tions, it has been argued that various forms of logic are well-suited for use
in expert systems. Simple systems have used propositional logic, more
complex systems have used first-order predicate logic, and there is ongoing
research in use of higher-order logics to express relations among beliefs,
temporal relations, necessity, and uncertain information (both the uncer
tainty with which data must be regarded in many real systems and uncer
tainty about the strength of heuristic rules, which reflects a lack of detailed
understanding of a domain).

Observation: The reasoning is not formal (Nilsson 1982). Many designers of expert
systems are uncomfortable with mathematical logic as a representation language because
it lacks expressive power. Numerous extensions must be made to express some of the
concepts that are frequently used in applications: uncertainty, strategy knowledge, and
temporal relations. Some logicians are uncomfortable with reasoning that is not theorem
proving and with knowledge bases that are not axiomatic systems that allow proofs of
consistency and completeness. The search for new logical formalisms that are more

powerful than predicate calculus reflects the tension between simple, well-understood
formalisms and expressive power.

In object-centered representations, the primitive action is called "sending
a message": If an action needs to be taken (e.g. a value of an attribute is
needed), send a request to the object that can take the action (e.g. compute,
or conclude, the value). For example, in a geology system, send the
Analyze-Sedimentary-Environment message to an instance of the Borehole
Interval object. The effect is to perform an arbitrary action, which could
include drawing inferences; in our example, the action performed is to
draw conclusions about the geological "story" of sedimentation at a spe
cific depth interval penetrated by the oil rig's drill. This style of object
oriented programming was defined by Hewitt (Hewitt 1977).

In terms of data structures, objects are much like record structures.
Each object has a number affixed fields. Unlike record structures, however,
new fields can be added to objects during a computation. Objects divide
into two types: instances and classes. Instances are individuals in a domain
(e.g. a specific depth interval from 1200 to 1225 feet in a specific borehole).
Classes represent sets of individuals (e.g. any depth interval). They define
the characteristics of the individuals that are their instances. Classes are
usually organized into hierarchies according to different relations. The
most common relations are the specialization, subclass, or "is-a" relation
(e.g. a reverse geological fault is a kind of geological fault) and the "part
of" relation (e.g. a fault plane is part of a geological fault). Object-oriented

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

EXPERT SYSTEMS 35

systems allow arbitrary relations to be encoded, but often provide efficient
support for one or two specific relations.

In order to support the characteristics of expert systems listed in the
Introduction, representation mechanisms must have sufficient expressive
power to state, clearly and succinctly, both "what is" knowledge and "how
to" knowledge. [This is sometimes called the "epistemological adequacy"
of a representation (McCarthy & Hayes 1969)] . Expressive power has
both design-time and run-time implications. One of the key problems for
designers of expert systems is management of complexity. Impoverished
representation mechanisms force designers to encode information in
obscure ways, which eventually leads to difficulty in extending and explain
ing the behavior of expert systems. Representation mechanisms that permit
efficient compilation and structuring of knowledge reduce run-time
requirements of both time and memory.

As an example, an object-oriented language allows some information
to be stated once, in an abstract class, and accessed (by inheritance) in a
large number of subclasses. A representational mechanism that does not
allow this forces designers to confront the complexity of stating essentially
the same information many times. This may lead to inconsistency and
difficulty in updating the information. It also has an obvious memory cost.
At run time, each of the separate encodings of the information may have
to be considered individually, resulting in an obvious performance penalty.
An example of a taxonomic hierarchy is shown in Figure 4.

Action-centered and object-centered paradigms are in fact two ends of
a spectrum of representational possibilities. The two emphasize different
aspects of modeling. Contemporary AI programs often use heterogeneous
representational paradigms (e.g. coupling the simplicity of rules with the
expressive power of objects).

Extensible representation schemes facilitate the incremental devel
opment of expert systems, which is necessary when there is no complete
specification of either the problem or the knowledge required to solve it.
When new concepts, attributes, and relations are added incrementally, a
designer must not be forced to recode substantial portions of the knowl
edge already encoded.

Observation: Knowledge bases are not reusable (Lenat et al 1986). Since the cost of
building a knowledge base is substantial, it is desirable to amortize it over several related
expert systems, with unique extensions to cover unique circumstances. For example,
many medical systems use facts about anatomy and physiology, yet often each encodes
those facts specifically for use in a unique way. The challenge is to develop knowledge
representations that can be used efficiently, independent of the specific context of use.

Experience has shown that declarative, modular representations are
useful for expert systems. Some information is more difficult to encode in

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

36 BUCHANAN & SMITH

Graph of Progeny for Tectonic-Feature in Geology

Tectonlc-Featur

�ntiCline

old yncline

ome

{is(:onformity

ngular-Unconformity
nconformit

araconform Ity

onconformlty

�ate-FaUlt---late-FaU lt-1

�ormal-FaUIt ormal-Fault-1

aul rowth-Fault�rowth-Fault-1

everse-Fault-Thrust-Fault

trike/Slip-Fault

Figure 4 Dipmeter Advisor System Tectonic Feature hierarchy: Subclasses of each object
are shown in boldface, to its right, connected to it by lines. Individual instances are shown
in lightface.

the action-centered paradigm, other information more difficult in the
object-centered paradigm. For example, sequencing of actions is difficult
to encode in an action-centered paradigm. The same is true of information
that is essentially static, such as causal or structural descriptions. On
the other hand, object-centered representations have no built-in inference
mechanism beyond inheritance (although they support them, and many
commercial shells have an integrated rule-oriented component). In
addition, in some domains, subclasses are "soft" and it may be inap
propriate to wire in hard distinctions between classes (e.g. in geology,
classification of rocks according to lithology-sandstone, shale, car
bonate-is not firm because the end-members are mixed to varying
degrees). Consequently, there is no single answer to the question "Which
representation method is best?" Contemporary expert systems use a variety
of methods but attempt to integrate them into a uniform framework. As
systems become more complex, it will be more and more difficult to
maintain a uniform view.

2_2 Reasoning

Inference methods are required to make appropriate and efficient use of
the items in a knowledge base to achieve some purpose, such as diagnosing

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

EXPERT SYSTEMS 37

a disease. Logically speaking, the two rules of inference most used in
prob1em solving are modus ponens ("If A implies B and you know A, then
infer B") and modus tollens ("If A implies B and you know not-B, then
infer not-A"). The former is sometimes called the "chain rule" because
inferences can be chained together in a sequence of deductions:

Therefore, D

In addition to these two simple rules, rules of quantification are sometimes
used-e.g. "If all As are Bs and x is an A, then x is a B". With a few
simple rules of inference such as these driving the problem solving, a
knowledge base full of many special facts and relations about the problem
area can provide the expertise on which high performance is based.

Observation: Expert systems make little use of common sense reasoning (McCarthy
1983). Designers of current expert systems resolve this by (a) assuming that users can
exercise some common sense, and (b) specifying common facts explicitly when needed.
The INTERNIST system, for example, contains about 100,000 commonsense medical
facts such as "males do not get pregnant" and "aspirin obscures the results of thyroid
tests" (R. Miller, personal communication). The challenge is to construct a "com
monsense reasoning component" that is general enough to avoid errors that "any fool"
would avoid and specific enough to reason reliably and efficiently.

Some expert systems (e.g. those written in Prolog) use a theorem prover
to determine the truth or falsity of propositions and to bind variables so
as to make propositions true. Others use their own interpreters in order
to incorporate more than a theorem prover provides-most importantly,
capabilities for controlling the order of inferences, strategic reasoning, and
reasoning under uncertainty. Most fielded rule-based expert systems have
used specialized rule interpreters, not based directly on logic. To some
extent this reflects timing-efficient Prolog interpreters and compilers have
only recently become available (Clocksin & Mellish 1981). However, it
also reflects a need for more flexible styles of inference (in addition to a
theorem prover's depth-first backtracking) and control over the strategies
guiding the order of inferences.

2.2.1 CONTROLLING THE ORDER OF INFERENCES AND QUESTIONS From a
logical point of view, the order in which new facts are derived is irrelevant,
if all logical consequences of the initial facts are to be considered. For
pragmatic reasons, expert systems often need to be selective about which

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

38 BUCHANAN & SMITH

facts to consider and which consequences to pursue. Space and time are
often limited, for example, and it may also be important to develop a line
of reasoning that a user can follow. Thus, expert systems are organized
around three different reasoning paradigms: forward, backward, and
opportunistic reasoning.

Forward reasoning from data to conclusions is used when the cost or
inconvenience of gathering data is low and there are relatively few hypoth
eses to explore. A forward-chaining system starts with a collection of facts
and draws allowable conclusions, adding those to the collection and cycling
through the rules. The stopping conditions vary from stopping with the
first plausible hypothesis to stopping only when no more new conclusions
can be drawn. The XCON computer configuration system is a classic
example of a forward-chaining system.

Expert systems may be faced with inconsistent or time-varying data. As
a result, the reasoning employed is often nonmonotonic-i.e. conclusions
may be altered or withdrawn as problem solving proceeds. This, too,
necessitates a departure from a traditional logical view (Bobrow 1980).

Matching the premise clauses of all rules in a knowledge base against
each new situation can be prohibitively expensive when there are many
rules and many new situations created by inferring new facts. Rules often
contain variables that can be bound in many different wa·ys, thus creating
additional ways that their premises can match a situation. Rule interpreters
commonly provide mechanisms for the compilation of rules and rule
matching procedures (Brownston et al 1985). In addition, all but the
simplest rule-based systems organize and index rules in groups in order to
control the expense of matching and invocation. Rule groups (called "rule
sets", "tasks", or "control blocks") are also used to control the expert
system's focus of attention in order to make interactions with users more
comprehensible. For example, in a medical system, it helps users under
stand the reasoning if data requests are clustered by grouping rules that
(a) perform disease diagnosis, (b) focus on the patient's history or on the
laboratory tests, and (c) recommend therapy. (This also facilitates the
acquisition of knowledge and the maintenance of knowledge bases.)

Backward reasoning is goal-directed and does not require all relevant
data to be available at the time inferences are begun. It is more appropriate
when a user supplies many of the data, and when the user cares about the
order in which data are requested. MYCIN is a classic example. A back
ward-chaining system starts with a hypothesis (goal) to establish and asks,
in effect, "What facts (premise clauses of rules) would need to be true in
order to know that the hypothesis is true?" Some of these facts may be
known because they were given as initial data, others may be known after
asking the user about them, and still others may be known only after

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

EXPERT SYSTEMS 39

starting with them as new subgoals, and chaining backward. The stopping
conditions vary from stopping with the first hypothesis found true (or
"true enough") to stopping only after all possibly relevant hypotheses have
been explored.

Opportunistic reasoning combines some elements of both data-directed
(forward) and goal-directed (backward) reasoning. It is useful when the
number of possible inferences is very large, no single line of reasoning is
likely to succeed, and the reasoning system must be responsive to new
data's becoming known. As new data are observed, or become known,
new inferences can be drawn; and as new conclusions are drawn, new
questions about specific data become relevant. An opportunistic reasoning
system can thus set up expectations that help discriminate a few data
elements from an otherwise confusing mass. The key element of such a
system is an agenda of actions with an associated scheduler that enables
explicit decisions to be made about which actions are to be taken (e.g.
which rules to apply, whether to apply them in a forward- or backward
chaining manner, and which object is to be the focus of attention). Such
decisions, by contrast, are hard-wired into forward- and backward-chain
ing systems. One successful prototype based on this paradigm is the HASP
system (Nii et al 1982). Acoustic data from sensors in the ocean provide
information about the types and locations of vessels. As data are received
over time, hypotheses are revised. With each revision, new ambiguities
arise, which can be resolved by reprocessing old data or looking for new
signals.

2.2.2 USING EXPLICIT STRATEGIES The three major reasoning paradigms
of forward, backward, and opportunistic reasoning are primitive strategies
that may need refinement and coordination in order to reflect a complex
decision strategy such as medical diagnosis. Representing strategic knowl
edge explicitly, an important trend in expert systems, becomes important
whenever strategic issues are subject to change or explanation. MYCIN's
metarules, a solution to this problem in the late 1 970s, represent knowledge
of reasoning strategy as rules (Buchanan & Shortliffe 1984). They differ
from the other "domain knowledge" rules in the system in that they refer
to those rules in some of their premise or conclusion clauses:

IF <medical context) AND there are rules that mention fact A and
that mention fact B,
THEN reason with the rules mentioning A before the others.

Strategies can also be represented as an organization of steps to perform,
in a stylized definition of a procedure (Clancey 1 986; Hickam et aI 1 985).

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59
40 BUCHANAN & SMITH

Explicit representation of strategy knowledge can also improve a systems's
ability to explain its own behavior.

2.2.3 REASONING UNDER UNCERTAINTY Reasoning under uncertainty is
essential in problem areas outside of logic and mathematics, in which
information is incomplete or erroneous. In medicine, for example, there is
rarely complete certainty about having all the data or about the accuracy
of the data. Several methods are used in expert systems to deal with
uncertainty arising from (a) uncertainty of the data, (b) less than certain
associations between data and conclusions, and (c) combinations of these.
The major methods for addressing these issues are listed below.

1. Abstraction-assume that the uncertainty is small and can safely be
ignored. The method is extremely simple and efficient to use. However,
many problems require more precision in estimating uncertainty.

2. Bayes's Theorem-use prior and posterior probabilities to represent
less than certain data and associations; then compute new probabilities
with some variation of Bayes's Theorem (Gorry 1970). This method is
based on a solid formalism, but it requires either frequency data or
subjective estimates for many combinations of events.

3. Fuzzy Logic-represent the uncertainty of propositions such as "John
is tall" with a distribution of values; then reason about combinations
of distributions (Zadeh 1979). This is intuitively appealing because it is
based on ordinary linguistic concepts. It is computationally more com
plex than other mechanisms because it propagates uncertainty through
distributions of values.

4. Criterion Tables-assign categories or weights to clauses in rules based
on their relative importance in drawing conclusions (e.g. major and
minor findings associated with a disease); then allow a conclusion to
be drawn if sufficient numbers of clauses in each category are true
(Kulikowski & Weiss 1982). This is a simple mechanism that is com
putationally very fast. It fails to capture gradations between categories,
however, and thus lacks the expressive power to reason in some complex
problem areas.

5. Certainty Factors (CFs)-assign single numbers to propositions, and
to associations among propositions, representing either probabilities or
a combination of probabilities and utilities; then use MYCIN's formulas
to determine CFs for inferred beliefs (Buchanan & Shortliffe 1 984). This
calculus has been frequently used and has been shown to have a formal
interpretation in probability theory. Since it is based on measures of
increased belief, the effects of adding new relations or changing CFs
may be difficult to predict.

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

EXPERT SYSTEMS 41

A general problem with methods 2-5 i s arriving at a coherent set
of numbers. Typically these are obtained from experts over several itera
tions, with empirical testing, because valid, objective numbers are not
available.

2.2.4 SUMMARY There is no single answer to the question, "Which infer
ence method is best?" Each expert system, or system-building shell, pro
vides a nearly unique set of choices for controlling the inferences, using
strategies and reasoning under uncertainty. Some feature still other issues,
such as methods for backtracking (recovering from local failures), cri
tiquing (making no recommendations unless the user needs them), reason
ing about shapes or positions, and reasoning about temporal dependencies.
Most present-day systems allow no modification of the inference methods
they use. This is a shortcoming that has not received widespread attention,
but that causes system builders to make inappropriate or unhappy choices
because they must work with an inference procedure within a shell in
which someone else made those choices.

2.3 Knowledge Base Development

For the last decade, everyone involved has referred to the process of
putting knowledge into a knowledge base as a "bottleneck" in building
expert systems (Hayes-Roth et aI 1 983). Usually this process involves two
persons (or teams): an expert whose knowledge is to be partially mirrored
in the knowledge base, and a knowledge engineer who interviews the expert
to map his/her knowledge into the program's data structures. The process
is time-consuming and difficult, yet the performance of the resulting expert
system depends on its being done well. This is exacerbated by the fact that
knowledge base design often involves integrating the knowledge of several
experts, because relying on a single expert may cause implicit assumptions
to be overlooked. A survey conducted by SRI International indicates that
the average cost of developing an application (knowledge engineering plus
end-user interface alone) is about $260,000. For small systems, these costs
are about $5000; for large systems, more than $ 1.5 million (Fried 1987).
Note that these estimates do not include the cost of constructing an expert
system shell.

M uch of the process of knowledge engineering is engineering. Yet there
are several different issues of a fundamental nature wrapped up in the
steps of the process.

1 . During the first step, problem assessment, the knowledge engineer
must match characteristics of the proposed problem against characteristics
of known solution methods. Unfortunately there are no good taxonomies

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

42 BUCHANAN & SMITH

of either problems or solution methods and no good criteria for deciding
that there is a match.

2. The second major step is exploratory programming, in which a series
of experimental prototypes are constructed quickly, first as proof-of
concept, then with successively larger fractions of an expert's knowledge,
showing that a part of the problem can be (partially) solved with that
knowledge encoded in a specific environment. Two substantial issues here
are (a) formulating an accurate conceptual framework, including
terminology, to allow knowledge to be added incrementally; and (b)
interacting with-not just passively listening to-the expert efficiently to
elicit what he/she knows about the problem that is relevant for the expert
system.

3. Developing the knowledge base, to increase both the breadth and
depth of the system's competence, is the third major step. This step takes
the most time (several person-years) but is relatively straightforward if
steps I and 2 have been done well. One difficult issue here is anticipating
characteristics of end-users and their context of use. Another is deciding
which new facts and relations are and which are not relevant for the
system's performance and understandability in context. The competing
paradigms for making this decision-and for knowledge engineering gen
erally-may be called "model-directed" and "case-directed" knowledge
base development. In the former, the knowledge base is largely developed
along the lines of a model, or theory, of the problem area. In the latter, it
is largely developed in response to errors exhibited in solving test cases.
Neither is entirely adequate by itself; knowledge engineers must use both.
Whatever combination of development paradigms is used, there is no clear
stopping criterion for development. This presents problems in providing
for continual additions and modifications to a knowledge base-the exten
sibility mentioned above.

4. The last step of the process is software engineering, to ensure that the
system fits into the end-users' environment, is responsive to their needs,
etc. The difficult issues at this step are not unique to expert systems. It is
included as a reminder that a successful application requires more than
developing a knowledge base.

Observation: Expert systems do not learn from experience (Schank 1983). Research on
machine learning is maturing to the point where expert systems will be able to learn
from their mistakes and successes. Learning by induction from a large library of solved
cases is already well enough understood to allow induction systems to learn classification
rules that an expert system then uses (Michie et al 1 984; Michalski et al 1 986). Prototype
systems have been built that emphasize learning in context, sometimes called explan
ation-based learning or apprentice learning, which appears to hold promise for expert
systems (Mitchell et al 1986). The challenge is to design learning mechanisms that are
as accurate as knowledge engineering but are more cost effective.

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

2.4 Explanation

EXPERT SYSTEMS 43

One of the defining criteria of expert systms is their ability to "explain"
their operation. Early forms of explanation focussed on showing the line
of reasoning, typically a sequence of rule firings, that led to a particular
conclusion. This was normally done in stylized natural language (Buchanan
& Shortliffe 1984, Pt. 6). The user could ask the system questions of the
form "How did you conclude " In a sense it is an extension to the kind
of dialog that was originally shown in the SHRDLU system (Winograd
1972). That system answered questions by actually looking in its environ
ment and on its own goal stack (i .e. agenda of goals and subgoals).

Although natural language interfaces were used almost exclusively in
early expert systems, powerful, low-cost graphics workstations have fueled
a trend towards graphical interfaces [e.g. the STEAMER system, used to
train naval personnel to operate steam power plants onboard ships (Hollan
et al 1984)]. Contemporary systems often provide mixed natural language
and graphical interfaces [e.g. the Drilling Advisor System (Rauch-Hindin
1986)].

Lines of reasoning [e.g. the GUIDON-WATCH System (Richer & Clan
cey 1985)] may be shown as graphs that permit user interaction to explore
alternative possible lines of reasoning. Perhaps this makes clear the fact
that current explanation facilities are much like sophisticated program
debugging facilities and are often used as such. Like all good debugging
systems, they permit the programmer/user to examine system operation in
high-level terms, rather than in terms of the low-level machine instructions
actually executed. There is a trend today towards recording justifications
that underlie the items in the knowledge base (Smith et al 1985). These
can be used to augment explanations. Research is ongoing to enable expert
systems themselves to use this information.

The term "explanation" can also be used to cover examination of the
static knowledge base. Object-oriented representations and sophisticated
graphics facilities enhance the ability of a domain specialist to understand
what has been encoded (Smith et al 1987). As found in the GUIDON
system (Clancey 1986), however, such facilities do not in and of themselves
constitute a tutoring system.

Observation: The expert's conceptual framework may not be the same as the users'
(Winograd & Flores 1986). Knowledge engineers work under the assumption that the
experts they work with know the context of intended use and the intended users'
terminology and point of view. This may result in misuse of a system when a user
attaches different meanings to terms than did the expert who designed the knowledge
base. There are no safeguards built into today's systems to test this assumption. Thus
the challenge is to provide enough ways of explaining what is in the knowledge base to
make its contents clear to all users.

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

44 BUCHANAN & SMITH

A related observation: Expert systems have little self-knowledge (Lenat et aI 1983). While
expert systems can often give explanations of what they know, they do not have a
general "awareness" of what the scope and l imitations of their own knowledge are.
Metalevel knowledge, such as rules of strategy, can offset this shortcoming in special
situations but 'does not constitute a general capability.

One could argue that the user of a conventional Fortran program can
also examine the "knowledge base" of the program. Depending on how
the program is written, this is true to a certain extent. It would typically
be done with a text editor. One thing that sets expert systems apart,
however, is their ability to be queried in the run-time context. Whereas a
conventional program can be examined only statically, an expert system
can be examined dynamically. It is true that a programmer can examine
the stack of a conventional program with a debugger, but such programs
do not maintain an explicit goal stack or line of reasoning. This is not a
statement about implementation language but rather about system design
style.

2.5 System-Building Tools/Shells

When the first commercial expert systems were being developed, the devel
opers were faced with two major problems: (a) eliciting and encoding the
domain knowledge necessary to solve the problem at hand, and (b) building
programming systems with which to encode/apply the knowledge. There
were almost no generally applicable rule interpreters or object-oriented
programming languages. Most of the early "shells" had been constructed
in universities as parts of specific applications. They typically made too
many assumptions about either the domain of application of the problem
solving methods to be used. Furthermore, they were typically only usable
by highly trained specialists. Finally, their run-time, space, and implemen
tation language requirements precluded their use in a wide variety of
environments. Nevertheless, these shells represented generalizations, in
code, of principles learned from experience with prior expert systems.

One of the most practical effects of the recent commercial application
of expert systems is the development of many dozens of robust shells and
tool sets (Bundy 1 986; Gevarter 1987; Harmon 1 987; Richer 1986). These
shells range in capability from those that can support little more than
experimentation with rule-based techniques, to those that can support
efficient development and operation of substantial systems. A few of the
more powerful shells are used to support current research in expert systems.
The shells are implemented in a number of programming languages (e.g.
Lisp, C, Prolog) and run on a variety of hardware, including inexpensive
PCs, workstations and mainframe computers.

Today, users can expect a high-end shell to offer support for a number

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

EXPERT SYSTEMS 45

of programming paradigms. The two most common are rule-oriented
programming and object-oriented programming. Both forward and back
ward chaining are standard, as is support for structuring rules into col
lections (or rule sets) according to task. Rules are typically efficiently
compiled into code in the underlying implementation language. Not all
rule languages are extensible. The OPS5 rule language, for example, allows
new action functions to be defined but does not allow new matching
predicates (Brownston et aI 1 985).

When support for object-oriented programming is provided, it includes
multiple inheritance, message-passing, and active values. A common way
to combine rules and objects is to construct a method that responds to a
message by applying a set of rules, with either forward or backward
chaining. Such a method may also be invoked in response to a change in
an active value. The REACTORS system, for example, uses active values
to respond to changes in the operating conditions of a nuclear power plant
to invoke rules that suggest new responses (Rauch-Hindin 1 986).

Some shells provide support for uncertainty in rules and in facts. The
certainty factor calculus originally developed for the MYCIN system is
widely used. Complete integration of inexact reasoning and objects has
not yet been achieved. It is currently limited to support of uncertainty
for slot values. Support for uncertainty in inter-object relations is less
common.

In the early years of commercial systems, expert systems were designed
as stand-alone tools. As a result they were not well integrated with database
management systems, large numerical packages, or other existing software
and systems. Today's commercial systems are considerably better inte
grated with other uses of computers. It is now common to see support for
mixed-language environments (e.g. with some code in Lisp and some in
C).

Over the past few years, increasing attention has been focused on tools
to support interaction between humans and expert systems. There are two
major reasons for this: (a) in many fielded systems the end-user interface
accounts for a substantial portion of the overall system, and success
depends heavily on the quality of user interaction (Smith 1 984); and (b)
the knowledge-acquisition process is simplified and enhanced when the
expert can readily examine the evolving knowledge base and directly inter
act with the system to refine its understanding of the domain (e.g. Davis
& Lenat 1 982). It has also been found that the tools used to represent
domain knowledge and strategy knowledge (e.g. objects and rules) can be
applied to structuring user interfaces. Extensible systems and tools have
been developed to support interaction requirements for knowledge engin
eers, experts, and end-users (Smith et al 1 987).

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

46 BUCHANAN & SMITH

2.6 Validation

There are many dimensions along which we might wish to judge an expert
system. The three most important of these are computational, psycho
logical "look and feel," and performance. Computational issues include
speed, memory required, extensibility, and portability. Psychological issues
include ease of use, understandability and "naturalness," and online help.
Performance issues-the sine qua non-include the scope of competence,
percentage of false positive and negative solutions (false hits and misses),
and time or money saved. Some involve evaluations of the static knowledge
base (e.g. its scope) while others involve look,ing at the program in use
(e.g. its ease of use or statistics on correctness).

Formal validations of expert systems are rarely published, if done at all.
The formal validation of MYCIN's performance (Buchanan & Shortliffe
1 984, Pt. 1 0) stands out as an exception. In that study, outside evaluators
reviewed therapy recommendations, for several randomly selected
patients, as made by MYCIN and nine persons whose expertise ranged
from acknowledged specialist to medical student. The evaluators (in a
blinded study) judged MYCIN's recommendations to be indistinguishable
from those of the specialists. In practice, expert systems are validated in
the same way as conventional software. Developers demonstrate that a
new system solves a variety of difficult problems before it is turned over
to end-users (O'Keefe et al 1 987). A few of the end-users then try the new
system in context on a large number of cases, often in parallel with the old
method for solving these problems. Any errors that are detected are fixed.
When the end-users and their managers are convinced of the program's
effectiveness, the program is put into routine use, often at a single site
first.

With conventional programs, we often test each branch of each subrou
tine with boundary values of variables, to assure ourselves that the pro
gram's parts behave as specified. In an expert system, each element of
the knowledge base is examinable in the same fashion as a single, small
subroutine. As with subroutines, the places where unforeseen errors occur
are in the interactions among the elements. These have to be uncovered
by empirical tests-running the program on a large, random sample of
problems (within the specified scope) and determining which. cases are
solved correctly and which not. In the absence of a complete logical
analysis that proves the correctness of both the knowledge base and the
inference engine, we must analyze performance empirically. The criteria
for "acceptable" levels of errors of any type, however, must be determined
by weighing costs of errors of each type against the benefits of correct
solutions.

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

EXPERT SYSTEMS 47

2.7 Advantages over Traditional Software

In general, the main issues in building expert systems revolve around
complexity, interpretability, and explicit modular forms of knowledge. In
this section we summarize some of the advantages of using expert systems
instead of writing conventional software.

2 .7 . 1 COMPLEXITY

Complexity of problem Often when one begins designing an expert
system, neither the problem nor the knowledge required to solve it is
precisely specified. Initial descriptions of the problem are oversimplified,
so the complexity becomes known only as early versions of the system
solve simple versions of the problem. Expert systems are said to approach
competence incrementally. A declarative, modular representation of
knowledge, applied in a uniform manner, is the key to managing this kind
of complexity.

Complexity of project management The traditional life-cycle model of
software construction and maintenance presumes that problems are speci
fied. An alternative model, used in constructing expert systems, is explora
tory programming in which problem definition and problem solution are
mutually reinforcing. A key element in exploratory programming is a
powerful, integrated development environment (Sheil 1 984).

Complexity of system Conventional software can in principle be written
by good programmers to solve any problem that an expert system solves.
Frequently a system that is initially constructed in a shell system is rewrit
ten in Fortran, PL l , C, or some other well-known language. Constructing
the system in the first place, however, requires considerably more flexibility
than is provided in a non-interpreted language, unless the designer has
considerably more ability than most, or unless the shell system (itself in C
or some other language) provides an interpreter for elements in its knowl
edge base.

2.7.2 INTERPRETATION One of the facilities commonly used to advantage
in expert systems is evaluation-EVAL to the Lisp programmer. This
facility allows the user (or the system itself) to specify a query or arbitrary
computation to the running system and evaluate it in the run-time context.
It lays open to examination the entire state of the system and its environ
ment, including the knowledge base, the line of reasoning, agenda, etc.
This is the sense in which programs written in interpretive languages like
Lisp are said to themselves constitute data. It is one of the most important
facilities upon which an expert system depends. It allows a system to
reason not only about incoming data but also about past inferences and
even about how it makes inferences. To a certain extent, operating systems

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

48 BUCHANAN & SMITH

also perform this kind of introspection. However, these systems can usually
only be tuned in a number of pre-defined ways, according to a fixed set of
parameters; operating systems typically cannot look at their own
procedures. By contrast, expert systems in principle can do this kind of
detailed introspection, examining their procedures as well as their data.

In order for this capability to be effectively used, it is important that the
knowledge be represented explicitly (declaratively) and uniformly, and
that it be applied in a relatively uniform manner. While it may be possible
in principle to reason about pure Lisp code, in practice it is extremely
difficult-for humans as well as programs.

2.7.3 KNOWLEDGE Specialized knowledge of a problem area is the key to
high performance. And the key insight from AI has been that representing a
program's knowledge declaratively provides considerable advantages over
hard-wiring what a program knows in coded subroutines. There is a
continuum, of course, from parameterized procedures to completely styl
ized, understandable, high-level procedure descriptions; and today's expert
systems have room to improve. As discussed extensively above, the central
knowledge issues in building expert systems are: representation, reasoning,
acquisition, and explanation. Today's expert systems demonstrate the
adequacy of current AI methods in these four areas, for some well-chosen
problems. Shells, or system-building environments, codify many of the
present methods. Yet there remain limitations on what can be easily
represented, used, acquired, or explained.

3 STATE OF THE ART

Several recent books and publications provide extensive overviews and
details about the state of the art. See, for example, Waterman (1 986),
Rauch-Hinden (1 986), Mishkoff (1 985), and Scown (1 985) plus numerous
current journals and newsletters such as Expert Systems, IEEE Expert,
The AI Magazine, Expert System Strategies, and The Applied Artificial
Intelligence Reporter. In this section we encapsulate our own under
standing of the state of the art.

3 .1 Size of System

The numbers of expert systems and persons working on them have grown
to the point where building expert systems has become routine. While their
size and scope are definitely limited, it is difficult to characterize them,
either numerically or symbolically. For example, MYCIN contained about
1 ,000 rules and 20 class names, and XCON contains about 6,000 rules and
1 00 class names. The INTERNIST system contains about 2,600 rules,

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

EXPERT SYSTEMS 49

with another 50,000 links among roughly 600 diseases (objects), and 80
manifestations (slots) per disease (chosen from approximately 4,500 mani
festations in all). Numbers like these are difficult to compare because (a)
there may be substantial differences in the level of conceptual detail covered
in a rule in different shells (e.g. EMYCIN vs OPSS); (b) there is more in a
knowledge base than rules and object names; (c) complex procedures
contain considerable knowledge, even though not represented declar
atively; and (d) a single concept, or a single clause in a rule, may stand for
something very complex (e.g. "state of the patient") or for something quite
straightforward (e.g. "patient's age"). As developers attempt to encode
more information in objects (attempting to make fewer assumptions about
how the knowledge will be used), the number of rules tends to be reduced
in a faster than linear fashion. This occurs because the rules are written to
be applied to members of hierarchically organized classes of objects, and
not just to single individuals.

A few expert system shelJs have small upper limits on the size of the
knowledge base that can be accommodated, mostly for reasons of memory
size of the underlying personal computer. Even systems that today are
counted as modestly large or complex mention only a few thousand objects
(or classes of objects) and relations among them (e.g. rules). These limits
may be due to experts' and knowledge engineers' limitations in keeping
track of larger numbers of items (and their interactions)-and to man
agers' unwillingness to spend more than 1 2-24 months in developing a
system-and not to hardware or software limits. New technology will be
required, however, when we try to build knowledge bases that contain
millions of items. An approximate characterization of the complexity of
present-day knowledge bases is shown in Table 3. Assuming that facts are
represented as object-attribute-value triples (e.g. "the identity of Organ
ism-2 is E. coli"), it makes some sense to ask how many there are. There are
complications, however, because (a) classes may be defined for arbitrarily
many instances and (b) attributes may take on continuous values (e.g. any
real number). So instead of showing the number of facts, Table 3 shows
the number of components of facts. Also, instead of showing only the
number of rules, this table indicates the depth and breadth of inference
networks. It also suggests that knowledge bases are more complex when
they must deal with uncertain facts and relations.

The time it takes to build a system varies greatly depending on the scope
of the problem and the expectations about the end product. A prototype
that is expected to demonstrate feasibility on a smalJ troubleshooting
problem, for example, may be built by a single person in one to ten weeks.
A fully developed system ready for field use on a complex problem, on the
other hand, may take a team of several persons one to three years or more.

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

50 BUCHANAN & SMITH

Table 3 Approximate measures of complexity of expert systems built routinely in the late
1 980s"

Vocabulary

Number of objects
Number of attributes per object
Number of legal values per attribute

Inferential Relations (Rules)

Number of rules
Depth of longest chains

Breadth of inferences

Degrees of uncertainty

1000s of objects or classes of objects
10-250 named attributes
3-100 discrete values, or arbitrarily many

discrete ranges of values of continuous
attributes

100s to 1 ,000s
2-10 steps from primary data to final

conclusion
2-1 0 ways of inferring values of any single

attribute
facts and relations may be expressed with

degrees of uncertainty

" These numbers represent empirical, not theoretical, upper bounds on several key parameters,

One measure of our increased understanding of knowledge programming
is that students are now routinely assigned one-term class projects that
would have been two-year doctoral research projects a decade ago.

3.2 Type of Problem

Several types of problem for which systems can be built were listed above
in two categories: interpretation and construction. We lack a robust tax
onomy of problem types (among the best so far is the one proposed by
Chandrasekaran 1 986), so the individual examples still provide a better
characterization of the types of problem than general descriptions. Most
expert systems described in the open literature address problems of data
interpretation, mostly for purposes of troubleshooting or equipment diag
nosis. They are mainly organized around the method of evidence gathering,
in which evidence is gathered for and against a fixed set of hypotheses (or
solutions), and the answer(s) with the best evidence is selected (Buchanan
& Shortliffe 1 984). This is also known as catalog selection or heuristic
classification (Clancey 1 985). Most of the commercial shells address prob
lems of this type. However, more and more systems are being built for
problems of the second category, and shell systems are emerging to handle
the myriad constraints that shape a design, assembly, configuration, sched
ule, or plan.

Observation: Expert systems do not reason exactly as human experts do-e.g. they have
no intuition (Dreyfus & Dreyfus 1986). So far, the problems that have been most
successfully solved with expert systems have been those in which inferential knowledge

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

EXPERT SYSTEMS 51

i s easily formulated a s rules and the organization o f objects and concepts is easily
formulated as taxonomic (class-subclass-instance) hierarchies and part-whole hier
archies. Reasoning by analogy or by intuition is still too unpredictable (and ill-under
stood) to use in high-performance systems.

3 .3 Some Limitations and Research Topics

Expert systems are designed to solve specific problems in well-cir
cumscribed task domains in which specialists can articulate the knowledge
needed for high performance. Current methods for designing and building
them have limitations, briefly discussed as observations above. These limi
tations intersect somewhat with the research issues shown in Table 4. The
difference between them is one of emphasizing performance (pragmatics)
or issues (theory). In each of these areas some work has been done. To
date, however, proposed methods have not been well integrated with shell
systems, often because proposed methods have not been convincingly
generalized or demonstrated. Table 4 is thus a partial list of doctoral
dissertation topics brought into focus by work on expert systems. General
solutions to any of these problems would constitute valuable contributions
to AI.

The limitations mentioned briefly above, although stated negatively to
indicate the boundaries of what is common practice, also indicate direc
tions in which expert systems research is growing. Some partial solutions
to some of these shortcomings have been elucidated in research lab
oratories and a few are exhibited in commercial systems. We will see more
of these capabilities integrated in fielded systems of the future.

4 CONCLUSIONS AND SUMMARY

4. 1 Design Principles

Out of the experimental work with expert systems over the last five to ten
years, several "architectural principles" of expert systems have emerged.
In 1 982, Davis articulated an early set of principles based on experience
with a few rule-based systems (Davis 1 982; see McDermott 1 983 for
another set of generalizations, and Hayes-Roth et al t 983, Ch. 5, for
practical advice for knowledge engineers). Given additional experience,
we can augment and refine these principles.

4. t . 1 MODULAR, DECLARATIVE EXPRESSIONS OF KNOWLEDGE ARE NECESSARY

I . Represent all knowledge explicitly. This simplifies explanation of system
behavior as well as refinement, both by human designers and by the
system itself. The main feature of an expert system is the suite of specific
knowledge it has about its domain of application. For reasons

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

52 BUCHANAN & SMITH

Table 4 Nineteen research topics in expert systems"

Topics in Representation
Structure & Function-how to represent structural and functional models and their

interdependencies (e.g. the way primitive physical parts, such as integrated circuit
packages and wires, are placed and connected to make up the physical structure of a
device, as opposed to the way the composition of the logical functions implemented by
the primitive parts leads to the behavior embodied by the device). Progress in this area
could lead to more robust diagnostic systems. They will be able to deal with faults whose
diagnosis depends on knowledge of the interplay between the structural and functional
decompositions of a device.

Continuous Space & Time-how to represent (and reason efficiently about) arbitrary
spatial regions and intervals of time. Specialized knowledge of spatial and temporal
reasoning processes is essential for systems that deal with geometry (e.g. mechanical
CAD/CAM systems) and time (e.g. budget planning systems). In a sense this is "domain
knowledge" that is applicable to a variety of domains.

Processes-how to represent explicitly knowledge about processes and procedures. Again,
specialized knowledge is required for expert systems in areas like semiconductor or
chemical manufacturing.

Problem-Solving Methods-how to represent knowledge for solving specific classes of
p1"()blems (e.g. heuristic classification, constraint propagation, top-down refinement,
means-ends analysis). Expert systems shells can be made more powerful by inclusion of
"generic" knowledge in particular areas (as noted above for Continuous Space & Time
or Processes). They can also be made more powerful by inclusion of knowledge of
particular problem-solving methods.

Reusability-how to represent domain knowledge or strategy knowledge so that it can be
used in different applications and extended by different users. The challenge is to encode
knowledge in such a way as to be general enough to apply in a number of contexts, yet
specific enough to provide real power.

Topics in Reasoning

Scale-how to store, access, and reason efficiently with knowledge bases that are orders
of magnitude larger than today's (millions of items instead of thousands). This is
essentially an engineering problem. Progress will involve techniques for reducing storage,
techniques for dealing with knowledge bases that cannot be entirely loaded into virtual
memory, improved knowledge indexing techniques for faster access, and techniques that
allow distributed access and update.

Interactions-how to reason effectively about multiple, interacting problems (e.g. faults
in a device whose effects reinforce or mask each other or that otherwise provide test
results different from the union of results for individual faults).

Integration-how to exploit the special-purpose reasoning methods in existing software
packages (e.g. spreadsheets) with knowledge-based reasoning.

Distributed Knowledge-how to pass information (data, problems, and solutions) and
coordinate activity in a network of distributed problem solvers (machine and human)
reliably and efficiently. Progress in this area will lead to effective support for "virtual
team" design and engineering.

Parallel Problem Solving-how to solve parts of a problem simultaneously on different
computers and synthesize a solution.

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

, 2
2

O
ct

 2
02

4
04

:2
7:

59

EXPERT SYSTEMS 53

First Principles-how to represent and use theoretical laws of prediction for other purposes
(such as design or failure diagnosis), and how to effectively combine this type of
reasoning with the use of simple associations. Progress will lead to systems that combine
the robustness of first-principle and causal reasoning with the efficiency of associational
reasoning.

Constraint-Based Reasoning-how to efficiently represent and reason with dependencies
among problem parameters. Progress is expected in languages for expressing constraints,
and in techniques for reasoning based on constraint propagation, explicit solution of
possibly nonlinear equations, and optimization. Ways of representing the degree to
which constraints must be satisfied and control strategies able to selectively relax con
straints are required. New techniques are also required to permit effective man-machine
interaction for constraint-based reasoning systems.

Analogical Reasoning-how to find "reasonable" pairs of problems or knowledge bases
that make useful analogies, and how to use all and only "relevant" mappings out of the
thousands of possible mappings.

Topics in Knowledge Acquisition

Intelligent Editors and Debugging Tools-how to assist in designing and building an expert
system for a specialized task without already possessing knowledge about that task area.

Learning-how to learn new knowledge from present experience, or from libraries of past
problems; how to learn from data that may be erroneous. A central issue will be learning
in the context of routine use, with feedback from users, as in the apprentice learning
model.

Consistency-how to find inconsistencies in a knowledge base, especially when it contains
items with degrees of uncertainty; and how to suggest ways of making groups of items
consistent.

Multiple Sources of Knowledge-how to combine the contributions of many different
specialists into a coherent knowledge base, especially when their knowledge is seemingly
contradictory or is framed in incompatible vocabularies.

Topics in Explanation

Customized Explanations-how to tailor an explanation for an individual use and context
without pre-specifying answers for each different class of situations. Important com
ponents of progress in this area will be methods for representing and reasoning about
human users, their goals, and the purposes for which they desire explanations. This
includes providing intelligent summaries of a knowledge base or a line of reasoning that
takes into account the background and assumptions of the person requesting the
summary. It also includes explaining a process as well as explaining the contents of the
knowledge base.

Topics in Shells

Knowledge Compilation-how to compile rules and objects efficiently while preserving
explanation capabilities.

" Each topic represents an open problem whose solution will enhance both the understanding of artificial
intelligence and the performance of expert systems.

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

S4 BUCHANAN & SMITH

of extensibility and flexibility, it is important to separate the
abstract concepts and relations of the target domain from inferences
that can be made in the domain-i.e. "what is known" from "how to
use it."

2. Keep elements of the knowledge base as independent and modular as
possible. When updating rules or links among objects, the fewer the
interactions with other parts of the knowledge base the easier the iso
lation and repair of problems. Although complete independence of rules
or objects is impossible (without complex, lengthy descriptions of the
context of relevance), partitioning the knowledge base into small, nearly
independent modules facilitates maintenance. Common partitionings
include: (a) domain-specific knowledge (e.g. a model of structural
geology, which could be used in a variety of applications), (b) task
specific knowledge (e.g. the knowledge of how to use the model of
structural geology, together with a model of the data sensed by a
dipmeter tool, to interpret the data in terms of geological structures),
(c) knowledge about interaction with developers and users, (d) problem
solving knowledge (e.g. strategies like top-down refinement and least
commitment constraint propagation), and (e) other domain-inde
pendent knowledge (e.g. commonsense facts, mathematics, etc).

3. Separate the knowledge base from the programs that interpret it.
Historically this has been phrased as "separate the k nowledge base and
the inference engine" (Davis 1 982).

4. Consider interaction with users as an integrated component. It is impor
tant to avoid dealing with user interaction issues in an "add on" manner,
after the expert system has been designed. High-quality user-interaction
frameworks are often essential to end-user utility. They are also impor
tant to easing the knowledge-acquisition bottleneck.

S. A void assumptions about context of use. Extending a k nowledge base
is made difficult when assumptions about how the individual packets of
knowledge will be used are implicitly encoded. For example, important
premise conditions of a rule may be omitted because the system devel
oper knows the context in which that rule will be applied (as noted
earlier with the sample rule from the Dipmeter Advisor System). This
is also important if domain-specific knowledge bases are to be reused
for a variety of applications.

4. 1 .2 UNIFORMITY, SIMPLICITY, EFFICIENCY, AND EXPRESSIVE POWER ARE

INTERDEPENDENT

1 . Use as uniform a representation as possible, although specialized rep
resentations are often worth the cost of translating among represen-

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

EXPERT SYSTEMS 55

tations, because they may improve run-time performance and simplify
knowledge acquisition.

2. Keep the inference engine simple. A program's ability to reason about
its actions depends on its ability to reason about the way it makes
inferences, and complex inference procedures make this task more
difficult. But this may cause problems in expressing knowledge in
"appropriate" ways and in run-time efficiency.

3. There is a logical equivalence among representational choices, but an
object-centered paradigm offers the most flexibility, and thus the most
expreSSIve power.

4. Be sure the reasoning is based on sound, conceptually simple strategic
knowledge. A knowledge base is more than a bag of facts and relations;
it is used for a purpose with a reasoning strategy in mind. The clearer
that strategy is, the more coherent the knowledge base will be. However,
this may reduce run-time performance.

4. 1 .3 REDUNDANCY IS DESIRABLE

I . Exploit redundancy. One advantage of a modular representation of the
domain knowledge is that it allows the system to explore multiple lines
of reasoning. By contrast, a conventional program typically has a single
procedure with a fixed sequence of steps for achieving a goal. Reasoning
with uncertain or missing data, or with knowledge that is uncertain or
incomplete, requires building redundancy into the reasoning to allow
correct conclusions to be drawn in spite of these deficiencies.

4.2 Summary

Expert systems use AI methods for representing and using experts' knowl
edge about specific problem areas. They have been successfully used in
many decision-making contexts in which (a) experts can articulate much
of what they know (e.g. in training manuals), (b) experts reason quali
tatively (e.g. based on what they have learned from experience) to augment
the formulas in textbooks, and (c) the amount of knowledge required to
solve problems is circumscribed and relatively small.

While there remain many open research problems of great interest and
importance, expert systems-and the shell systems that are generalizations
of them-encapsulate solutions to many problems associated with the
representation, use, acquisition, and explanation of knowledge. The engin
eering solutions used in today's expert systems are not without limits, but
they are well-enough understood and robust enough to support com
mercial applications. Moreover, each application provides .more exper
imental data about the strengths of current AI methods.

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

56 BUCHANAN & SMITH

ACKNOWLEDGMENTS

This work was supported in part by DARPA (Contract N00039-86-C-
0033), NIH (Grant RR-00785), NASA (Contract NCC 2-220-S\) , and by
Schlumberger.

Eric Schoen and David Hammock assisted in generating the Dipmeter
Advisor System figures. Discussions with Robert Young helped in for
mulating architectural principles of expert systems.

Literature Cited

AALPS. 1 985. SRI: AI and the Military.
Ani{. In tell. Rep. 2(1) : 6-7

Bobrow, D. G., ed. 1 980. Artificial Intel
ligence. Special Issue on Non-Monotonic
Logic, 1 3 : 1-1-2. New York: North-HoI
land

Brownston, L., Farrel, R., Kant, E., Mar
tin, N. 1 985. Programming Expert Sys
tems in OPS5. Reading, Mass: Addison
Wesley

Buchanan, B. G. 1 986. Expert systems:
working systems and the research litera
ture. Expert Syst. 3(1) : 32-5 1

Buchanan, B. G. Artificial intelligence as an
experimental science. In Aspects of Arti

ficial Intelligence, J. H . Fetzer, ed. Amster
dam: D. Reidel

Buchanan, B. G., Shortlilfe, E. H. 1 984.
Rule-Based Expert Systems: the M YCIN
Experiments of the Stanford Heuristic Pro
gramming Project. Reading, Mass: Addis
on-Wesley

Bundy, A., ed. 1 986. Catalogue of Artificial
Intelligence Tools. New York: Springer
Verlag, 2nd ed.

Chandrasekaran, B. 1 986. Generic tasks in
knowledge-based reasoning: high-level
building blocks for expert system design.
IEEE Expert 3: 23-30

Clancey, W. J. 1 985. Heuristic classification.
Arti{. Intell. 27: 289-350

Clancey, W. J. 1 986. From GUIDON to
NEOMYCIN and HERACLES in twenty
short lessons: ONR final report 1 979-
1985. A I Mag. 7(3): 40-60, 1 87

Cline, T., Fong, W., Rosenberg, S. (1 985).
An expert advisor for photolithography.
Tech. Rep., Hewlet-Packard, 1 50 1 Page
Mill Rd., Palo Alto, CA 94304

Clocksin, W. F., Mellish, C. S. 1 98 1 . Pro
gramming in Prolog. New York: Springer
Verlag

Davis, R. 1 982. Expert systems: where are
we? and where do we go from here? AI
Mag. 3(2): 1-22

Davis, R. 1 987. Robustness and trans-

parency in intelligent systems. In Human
Factors in Automated and Robotic Space
Systems, pp. 2 1 1-33. Washington, DC:
Committee on Human Factors, Natl. Res.
Council

Davis, R., Lenat, D. B. 1 982. Knowledge
Based Systems in Artificial Intelligence.
New York: McGraw-Hill

Dreyfus, H . , Dreyfus S. 1 986. Why e!<pert
systems do not exhibit expertise. IEEE
Expert 1 (2): 86-90

Feigenbaum, E. A., Buchanan, B. G., Leder-.
berg, J. 1 97 1 . On generality and problem
solving: a case study using the DEND
RAL program. In Machine Intelligence 6,
ed. B. Meltzer, D. Michie, pp. 1 65-90.
New York: American Elsevier

Feinstein, J. L., Siems, F. 1 985. EDAAS: An
expert system at the US Environmental
Protection Agency for avoiding disclosure
of confidential business information.
Expert Syst. 2(2): 72-85

Fox, M. S., Smith, S. F. 1984. ISIS-A
knowledge-based system for factory
scheduling. Expert Syst. 1 (1) : 25-49.

Fried, L. 1 987. The dangers of dabbling in
expert systems. Computerworld 2 1 : 6 If.

Gevarter, W. B. 1 987. The nature and evalu
ation of commercial expert system build
ing tools. Computer 20(5): 24--4 1

Goldberg, A., Robson, D. 983 . Smalltalk-
80: The language and its Implementation.
Menlo Park: Addison-Wesley

Gorry, G. A. 1 970. Modelling the diagnostic
process. J. Med. Educ. 45: 293-302

Harmon, P. 1 987. Currently available expert
systems-building tools. Expert Syst. Strat.
3(6): 1 1- 18

Harmon, P. , King, D. 1 985. Expert Systems:
Artificial Intelligence in Business. New
York: John Wiley

Hayes-Roth, F., Waterman, D. A., Lenat,
D. B. , eds. 1 983. Building Expert Systems.
Reading, Mass: Addison-Wesley

Heckerman, D. E. 1 986. Probabilistic
interpretations for MYCIN's certainty

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

factors. In Uncertainty in Artificial Intel
ligence. NY: North Holland

Hernandez, R. 1 987. Big eight firm audits
with Mac. Appl. Artif. Intell. Rep. 4(7): 9

Hewitt, C. 1977. Viewing control structures
as patterns of passing messages. Artif.
Intel!. 8: 323�64

Hi-Class. 1 985. AI brings smarts to PC
board assembly. Electronics 58: 1 7�1 8

Hickam, D . H., Shortliffe, E . H., Bischoff,
M. B., Scott, A. c., Jacobs, C. D. 1985.
The treatment advice of a computer-based
cancer chemotherapy protocol advisor.
Ann. Intern. Med. 1 03 : 928-36

Hollan, J. D., Hutchins, E. L., Weitzman, L.
1984. STEAMER: an interactive inspect
able simulation-based training system. AI
Mag. 5(2): 1 5-27

Horn, K. A., Compton, P., Lazarus, L.,
Quinlan, J. R. 1 985. An expert computer
system for the interpretation of thyroid
assays in a clinical laboratory. Aust. Com
put. l. 1 7(1) : 7�1 1

Kahn, G., McDermott, J. 1 986. The Mud
system. IEEE Expert 1 (1): 23�32

Kerschberg, L., ed. 1986. Expert Database
Systems: Proceedings oj the First Inter
national Workshop. Menlo Park: Benja
min Cummings

Klahr, P., et a1. 1 987. The authorizer's assist
ant: a large financial expert system appli
cation. In Proceedings oj the Third Aus
tralian Conference on Applications of
Expert Systems, pp. 1 1-32. Sydney: New
South Wales Inst. Techno1.

Kolcum, E. H. 1 986. NASA demonstrates
use of Al with expert monitoring system.
Aviation Week & Space Technol., March,
pp. 79�85

Kulikowski, c., Weiss, S. 1 982. Rep
resentation of expert knowledge for con
sultation: The CASNET and EXPERT
projects. In Artificial Intelligence in Medi
cine, ed. P. Szolovits, pp 2 1-55. Boulder,
Colo: Westview Press

Lenat, D. B., Prakash, M., Shepherd, M .
1 986. CYe: Using common sense knowl
edge to overcome brittleness and knowl
edge acquisition bottlenecks. Al Mag.
5(4): 65-85

Lenat, D. 8., Davis, R., Doyle, J., Geneser
eth, M. , Goldstein, 1., Schrobe, H. 1983.
Reasoning about reasoning. In Building
Expert Systems, ed. F. Hayes-Roth, D. A.
Waterman, D. B. Lenat. Reading, Mass:
Addison-Wesley

Lindsay, R. K., Buchanan, B. G., Feigen
baum, E. A., Lederberg, J. 1 980. Appli
cations of Artificial Intelligence Jor Organic
Chemistry: The DENDRAL Project. New
York: McGraw-Hili

McCarthy, J. 1958. Programs with common
sense. In Proc. Symp. Mechanisation of

EXPERT SYSTEMS 57
Thought Processes, pp. 77-84, Nat. Phys.
Lab. [Reprinted 1 968 in Semantic Infor
mation Processing, ed. M . L. Minsky, pp.
403-9. Cambridge, Mass: MIT Press

McCarthy, J. 1983. Some expert systems
need common sense. Ann. NY Acad. Sci.
426: 129�37. (Invited presentation for the
NY Acad. Sci. Sci. Week Symp. Computer
Culture, April 5-8)

McCarthy, J . , Hayes, P. 1 969. Some philo
sophical problems from the standpoint of
artificial intelligence. In Machine Intel
ligence 4, ed. B. Meltzer, D. Michie, pp.
463-502. Edinburgh: Edinburgh Univ.
Press

McDermott, J. 1 983. Extracting knowledge
from expert systems. In IJCAI-83, I: 1 00-
7. Karlsruhe, West Germany: HCAI

Michalski, R. S., Mozetic, I., Hong, J.,
Lavrac, N. 1 986. The multi-purpose
incremental learning system AQI5 and its
testing application to three me(.lical
domains. In Proc. AAAI-86, pp. 1 04 1-45.
Philadelphia, Penn: AAAI

Michie, D., Muggleton, 5., Riese, c.,
Zubrick, S. 1984. RULEMASTER: a
second-generation knowledge-engineer
ing facility. In The First Conference
on Artificial Intelligence Applications, pp.
591 -97. Silver Spring, Md: IEEE, IEEE
Computer Society Press

Miller, F. D., Copp, D. H., Vesonder, G. T.,
Zielinski, J. E. 1985. The ace experiment:
initial evaluation of an expert system for
preventive maintenance. In Artif. Intell.
Maintenance: Proc. loint Servo Workshop,
ed. J. Richardson, pp. 421-27. Park Ridge,
NJ: Noyes

Minsky, M. 1 975. A framework for repre
senting knowledge. In The Psychology oj
Computer Vision, ed. Patrick H. Winston,
pp 2 1 1-77. New York: McGraw-HilI

Mishkoff, H. C. 1 985. Understanding Arti
ficial Intelligence. Dallas, Tex: Texas
Instruments Information Publishing
Center 75265

Mitchell, J . M. , Carbonell, J. G., Michalski,
R. S., eds. 1 986. Machine Learning: A
Guide to Current Research. Boston:
Kluwer Academic Publications

Mittal, 5., Dym, C. L., Morjaria, M. 1 985.
PRIDE: an expert system for the design of
paper handling systems. In Applications of
Knowledge-Based Systems to Engineering
Analysis and Design, ed. C. L. Dym. NY:
ASME Press

Moses, J. 1 97 1 . Symbolic integration: the
stormy decade. Commun. A CM 8: 548--60

Nii, H . P., Feigenbaum, E. A., Anton, 1. 1 . ,
Rockmore, A. 1. 1 982. Signal-to-symbol
transformation: HASP/SlAP case study.
AI Mag. 3(2): 23�35

Nilsson, N. J. 1 982. Symbolic Computation:

D
ow

nl
oa

de
d

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

 P
en

ns
yl

va
ni

a
St

at
e

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:

13
2.

17
4.

25
4.

15
9

O
n:

 T
ue

,
22

 O
ct

 2
02

4
04

:2
7:

59

58 BUCHANAN & SMITH

Principles of Artificial Intelligence. Berlin:
Springer-Verlag

O'Keefe, R. M. , Balei, 0., Smith, E. P. 1 987.
Validating expert system performance.
IEEE Expert 2(4): 8 1-89

Rauch-Hindin, W. B. 1986. Artificial Intel
ligence In Business, Science, and Industry:
Volume I-Fundamentals; Volume l/
Applications. Englewood Cliffs, New Jer
sey: Prentice-Hall

Richer, M. H. , Clancey, W. J. 1 985. Guidon
watch: a graphic interface for viewing a
knowledge-based system. IEEE Comput.
Graph. Appl. 5(1 1) : 5 1-64

Richer, M. H . 1 986. Evaluating the existing
tools for developing knowledge-based sys
tems. Expert Syst. 3(3): 1 66-83

Schank, R. C 1983. The current state of AI:
one man's opinion. A l Mag. 4(1): 3-8

Scown, S. J. 1 985. The Artificial Intelligence
Experience. Maynard Mass: Digital
Equipment Corp. 1 83 pp.

Sheil, B. A. 1 984. Power tools for pro
grammers. In Interactive Programming
Environments, ed. D. R. Barstow, H . E.
Shrobe, E. Sandewall, New York:
McGraw-Hill, p. 19-30

Smith, R. G. On the development of com
mercial expert systems. Al Mag. 5(3): 6 1-
73

Smith, R. G. , Young, R. L. 1 984. The design
of the dipmeter advisor system. Proc.
A CM Annu. Con! A CM, New York,
October pp. 1 5-23

Smith, R. G., Winston, H. A., Mitchell, T.
M. , Buchanan, B. G. Representation and
use of explicit justifications for knowledge
base refinement. In Proceedings of
/JCA185, pp. 673-80. Los Altos, Calif:

Morgan Kaufmann
Smith, R. G., Barth, P. S. , Young, R. L.

1 987. A substrate for object-oriented
interface design. In Research Directions
in O�iect-Oriented Programming, ed. B.
Shriver, P. Wegner, pp. 253-3 1 5. Cam
bridge, Mass: MIT Press

Stefik, M. J. , Bobrow, D. G. 1986. Object
oriented programming: themes and vari
ations. A l Mag. 6(4): 40-62

Sweet, L. 1 985. Research in progress at Gen
eral Electric. Al Mag. 6(3): 220-27

Teknowledge. 1 987. TEKSolutions: Cus
tomer Success Stories. Teknowledge, 1 850
Embarcadero Road, Palo Alto, Calif.,
94303

Wah, B. W., ed. 1987� IEEE Computer (Spec.
Iss. Comput. Al Appl.) 20(1)

Walker, T. C, Miller, R. K. 1 986. Expert
Systems 1986. Madison, Ga: SEAl Tech.
Pub!.

Waterman, D. A. 1 986. A Guide to Expert
Systems. Reading, Mass: Addison-Wesley

Winograd, T. 1972. Understanding Natural
Language. New York: Academic

Winograd, T. 1975. Frame representations
and the procedural/declarative contro
versy. In Representation and Under
standing: Studies in Cognitive Science, ed.
D. G. Bobrow, A. Collins, pp. 1 85-2 1 0.
New York: Academic

Winograd, T., Flores, F. F. 1986. Under
standing Computers and Cognition. Nor
wood, NJ: Ablex

Zadeh, L. A. 1 979. A theory of approximate
reasoning. In Machine Intelligence 9, ed.
J. E. Hayes, D. Michie, L. l. Mikulich, pp.
149-95. Chichester: Ellis Horwood Ltd.

	Annual Reviews Online
	Search Annual Reviews
	Annual Review of Computer Science Online
	Most Downloaded Computer Science Reviews
	Most Cited Computer Science Reviews

