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1 INTRODUCTION 

Expert systems are among the most exciting computer applications to 
emerge in the last decade. They allow a computer program to use expertise 
to assist in a variety of problems, such as diagnosing equipment failures 
and designing new equipment. Utilizing the results of artificial intelligence 
(AI) work on problem solving, they have become a commercially successful 
demonstration of the power of AI techniques. Correspondingly, by testing 
current AI methods in applied contexts, expert systems provide important 
feedback to the science about the strengths and limitations of those 
methods. In this review, we present the fundamental considerations in 
constructing an expert system, assess the state of the art, and indicate 
directions for future research. Our discussion focuses on the computer 
science issues, as opposed to issues of management or application. 

1.1 Characterization and Desiderata 

Expert systems are distinguished from conventional programs in several 
important respects. While none of the characteristics listed below is missing 
entirely from other well-designed software, all of them together describe 
a distinct class of programs. Note that few expert systems exhibit all of 
the following five desiderata to the same degree. 

An expert system is a computer program that (a) reasons with domain-
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24 BUCHANAN & SMITH 

specific knowledge that is symbolic as well as mathematical; (b) uses 
domain-specific methods that are heuristic (plausible) as well as algo­
rithmic (certain); (c) performs as well as specialists in its problem area; (d) 
makes understandable both what it knows and the reasons for its answers; 
and (e) retains flexibility. 

An expert system that meets these conditions is the Dipmeter Advisor 
System (Smith & Young 1984; Smith 1984). Its task is to help petroleum 
engineers determine the "map" of geological strata through which an oil 
well is being drilled-e.g. the depth and the dip, or "tilt", of individual 
layers of sandstone, shale, and other rocks. It meets our desiderata in the 
following respects: (a) The knowledge utilized is partly mathematical (e.g. 
trigonometry) but largely nonnumeric geological knowledge (e.g. about 
how sand is deposited around river beds). (b) Its reasoning is based on 
heuristics that well-logging experts use to interpet data from bore holes. 
(c) It aids specialists, providing interpretations better than those of novices. 
(d) It uses a variety of graphical and textual displays to make its knowledge 
understandable and to justify its interpretations. And (e) it is flexible 
enough to be modified and extended frequently, without rewriting the 
programs that interpret the knowledge. Figure I shows what the Dipmeter 
Advisor System's computer screen looks like as an illustration of what a 
user of an expert system might see. 

Characteristics (a) and (b), above-symbolic reasoning and heuristic 
methods-define expert systems as artificial intelligence programs. Expert 
systems became an identifiable part of AI in the late 1960s and early 1970s 
with the realization that application of AI to science, engineering, and 
medicine could both assist those disciplines and challenge AI. The DEND­
RAL (Lindsay et al 1980) and MACSYMA (Moses 1971) programs sug­
gested that high performance in a subject area such as organic chemistry 
was more readily achieved by giving a program substantial subject-specific 
knowledge than by giving it the general axioms of the subject area plus a 
powerful, but general, deductive apparatus. The DENDRAL program 
represented many specific facts about organic chemistry in a variety of 
ways and used those facts in rather simple inferences. It represented the 
masses and valences of atoms as values of attributes; it represented classes 
of unstable chemical compounds as partial graph structures in a table; and 
it represented certain major patterns of molecular fragmentation in a mass 
spectrometer as predictive rules. From this work emerged the first principle 
of expert system building, as enunciated by Feigenbaum (Feigenbaum et 
al 197 1): "In the knowledge lies the power". The concept of a knowledge 
base has consequentially become central in expert systems. In contrast, 
most other AI work of the concerned reasoning by such general methods 
as theorem proving. Researchers sought to give programs power by means 
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Figure 1 Screen from Dipmeter Advisor System: This screen shows the input data and a partial 
explanation for a conclusion drawn by the system, The left-hand column shows natural 
gamma radiation against depth, To its right is shown dip against depth, Individual dip 
estimates (called "tadpoles") show the magnitude of the dip as horizontal position, and the 
azimuth as a small direction line, High-quality estimates have solid circles, low-quality 
estimates are hollow, A dip pattern, found by the system, is shown as crosshatching over the 
relevant tadpoles, To the right are three windows describing the fact that the system has 
inferred the existence of a Growth Fault, a specialized type of Normal Fault. One window 
describes the attributes of the fault, another shows a portion of the reasoning trace, and a 
third describes the rule that made the inference, 
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26 BUCHANAN & SMITH 

of general planning heuristics, exhibited, for example, in problem areas 
where knowledge about the objects of the domain was almost irrelevant. 
A favorite problem area was the so-called "Blocks World" of children's 
blocks on a table. General knowledge about stability and support, plus 
general knowledge about planning and constraint satisfaction, allowed 
programs to reason, say, about the sequence of operations needed to stack 
blocks in a specified order. 

Desideratum c separates high-performance programs from others. By 
specifying human specialists as a standard of comparison, this condition 
also suggests using the knowledge of specialists to achieve high perform­
ance. Predefining the scope of problem solving to a narrow "slice" through 
a domain (like the slice mastered by most human specialists) has become 
a pragmatic principle of design. As discussed below, bounding the scope 
of the problem in advance avoids many of the challenges of building a 
generally intelligent robot that would behave appropriately in a wide range 
of situations. 

Desiderata d (a system's explaining its reasoning) and e (the provision 
of flexibility) are less frequently cited and less frequently achieved than a­

c. They may be seen as means of achieving high performance but are 
included here to highlight their importance in designing and implementing 
any expert system. 

Understandability and flexibility are important both while expert sys­
tems are being designed and when they are used. During design and 
implementation, not all the requisite knowledge is in hand, because not 
even specialists can say precisely what a program needs to know. Thus 
expert systems are constructed incrementally. Important to under­
standability is the use of the same tenninology that specialists and prac­
titioners use. Understanding the static knowledge base allows one to decide 
what knowledge needs to be added to improve perfonnance. Under­
standing the dynamics of the reasoning is also important in deciding what 
to change. Flexibility is thus needed to allow the changes to be made easily. 
Explanations help designers as well as end-users understand the reasons 
for a program's conclusions. This capability is especially important when 
end-users accept legal, moral, or financial responsibility for actions taken 
on the program's recommendations. 

1.2 Examples 

Many expert systems are in routine use (see Rauch-Hindin 1 986; Buchanan 
1 986; Walker & Miller 1986; and Harmon & King 1985 for lists of exam­
ples). Some of the best known, such as XCON and the Dipmeter Advisor 
System, have been used commercially for many years (produced by Digital 
Equipment and Schlumberger, respectively). The programs shown in Table 
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were chosen because they illustrate a variety of problem types and 
contexts of use. There are roughly two classes of problems addressed in 
these several systems: (I) problems of interpreting data to analyze a situ­
ation, and (II) problems of constructing a solution within specified con­
straints. Within each category are listed several different examples under 
general task names that are descriptive but not necessarily distinct. 

1.3 Historical Note 

Early work in AI ( 1950s-1960s) focused on (a) psychological modeling, 
and (b) search techniques. Expert systems synthesize some of that work, 
but shift the focus to representing and using knowledge of specific task 
areas. Early work used game playing and reasoning about children's blocks 
as simple task domains in which to test methods of reasoning. Work on 
expert systems emphasizes problems of commercial or scientific impor­
tance, as defined by persons outside of AI. Newell calls MYCIN "the 
original expert system" (Foreword to Buchanan & Shortliffe 1984) because 
it crystallized the design considerations and emphasized the application. 
Expert systems continue to build on-and contribute to-AI research 
by testing the strengths of existing methods and helping to define their 
limitations (Buchanan 1988). In the 1970s expert-systems work developed 
the use of production systems, based on the early work in psychological 
modeling. In the 1980s fundamental work on knowledge representation 
has evolved into useful object-oriented substrates (Stefik & Bobrow 1986). 

Hardware developments in the last decade have made a significant 
difference in the commercialization of expert systems. Stand-alone work­
stations provide special hardware for AI programming languages, high­
resolution interactive graphics, and large address spaces in small boxes at 
affordable prices (Wah 1987). These have simplified development, since it 
is no longer necessary to depend on large, time-shared central mainframes 
for development and debugging. They also provide an acceptable answer 
to questions of portability for field personnel. Development of expert 
systems-and the languages and environments (called "shells") for build­
ing them-in standard languages such as Common Lisp and,C have 
essentially eliminated the last barriers to portability. 

2 FUNDAMENT AL PRINCIPLES 

All AI programs, including expert systems, represent and use knowledge. 
The conceptual paradigm of problem solving that underlies all of AI is 
one of search (i.e. a program, or person, can solve a problem by searching 
among alternative solutions). Although immediately clear and simple, this 
formulation does not tell us how to search a solution space efficiently and 
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Table 1 Expert systems working in various problem areas" 

Class I: Problems of Interpretation 

Data Interpretation 

Schlumberger [Dipmeter Advisor System] -interpret down-hole data from oil well bore 
holes to assist in prospecting (Smith & Young 1984) 

St. Vincents Hospital (Sydney)-aid in interpreting diagnostic tests on thyroid function 
(Horn et al 1985) 

NL Baroid [MUDMAN]-determine causes of problems in drilling oil wells and rec­
ommend additives to the drilling fluid that will correct them (Kahn & McDermott 1 986) 

Equipment Diagnosis 

General Motors [VIBRATION]-determine causes of vibration noises and recommend 
repairs (Teknowledge 1987) 

Kodak [BLOW MOLDING INJECTION ADVISOR]-diagnose faults and suggest 
repairs for plastic injection molding machines (Teknowledge 1987) 

AT &T [ACE]-provide troubleshooting and diagnostic reports on telephone cable prob­
lems (Miller et al 1984) 

General Electric rCA TS]-diagnose problems in diesel-electric locomotives (Sweet 1 985) 

Troubleshooting Processes 

Hewlett Packard-diagnose causes of problems in photolithography steps of wafer fab­
rication (Cline et al 1985) 

Elf Aquitaine Oil Company [DRILLING ADVISORj-demonstrate reasoning used to 
find the cause of drill bit sticking in oil wells and to correct the problem (used for training) 
(Rauch-Hinden 1 986) 

Monitoring 

IBM [YES/MVS]-monitor and adjust operation of MVS operating system (Rauch­
Hindin 1 986) 

National Aeronautics and Space Administration [LOX]-monitor data during liquid 
oxygen tanking process (Kolcum 1986) 

Preventive Maintenance 

NCR [ESPm]-monitor computers in the field, analyze error logs, and suggest preventive 
maintenance procedures before a computer fails (Teknowledge 1987) 

Screening 

US Environmental Protection Agency [EDDAS]-determine which requests for infor­
mation fall under the exceptions to the Freedom of Information Act (Feinstein & Siems 
1985) 

Credit Authorization 

American Express [AA]-assist in authorizing charges from card members or in deter­
mining that a request is suspect or fraudulent (Klahr et al 1 987) 

Financial Auditing 

Arthur Young [ASQj-assist auditors with planning and developing approaches to field 
audits (Hernandez 1 987) 
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EXPERT SYSTEMS 29 

AT&T [ REXl-advise persons on which subroutines in large statistical package to use 
for their problems and how to use them (Rauch-Hinden 1986) 

Equipment Tuning 

Lawrence Livermore National Laboratory [TQMSTUNEl-specify parameter settings to 
bring a sensitive instrument into alignment (Rauch-Hinden 1986) 

Inventory Control 

Federal Express [INVENTORY SETUP ADVISORl-heip decide whether or not to 
stock spares in inventory of 40,000 parts (Teknowledge 1987) 

Class II: Problems of Construction 

Configuration 

Digital Equipment Corp. [XCON]-translate customers' orders for computer systems 
into shipping orders (Rauch-Hindin 1986) 

Design 

Xerox [PRIDEl-design paper handling systems inside copiers and duplicators (Mittal et 
al 1985) 

OM Delco Products [MOTOR EXPERTl-generate information necessary to make pro­
duction drawings for low-voltage DC motor brushes by interacting with designers 
(Rauch-Hinden 1986) 

Loading 

US Army (AALPSl-design loading plan of cargo and equipment into aircraft of different 
types (AALPS 1985) 

Planning 

Hazeltine [OPOENl-plan and prepare "operations sheets" of assembly instructions for 
printed-circuit boards (Rauch-Hindin 1 986) 

Hughes Aircraft [HI-CLASS]-set up sequence of hand-assembly steps for printed-circuit 
boards (Hi-Class 1985) 

Scheduling 

Westinghouse [ISIS]-plan manufacturing steps in Turbine Component Plant to avoid 
bottlenecks and delays (Fox & Smith 1984) 

Babcock & Wilcox-automate generation of weld schedule information (e.g. weld pro­
cedure, preheat, postheat, and nondestructive examination requirements) (Rauch-Hin­
din 1 986) 

Therapy Management 

Stanford Medical Center [ONCOCINl-assist in managing multi-step chemotherapy for 
cancer patients (Hickam et al 1985) 

"Although the problems are quite different, they can be categorized into two major classes. We show 
more than one example of each type to illustrate a range of systems and approaches. 
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accurately. The number of possible solutions may be astronomical, as 
illustrated in Table 2. Thus exhaustive consideration of alternatives is out 
of the question. Most expert systems, however, use heuristics to avoid 
exhaustive search, much as experts do. For problem areas in which experts 
are acknowledged to be more efficient and accurate than nonspecialists, it 
is reasonable to assume that what the experts know can be codified for use 
by a program. This is one of the fundamental assumptions of knowledge 
engineering, the art of building expert systems by eliciting knowledge from 
experts (Hayes-Roth et al 1983). 

In this section, we discuss several dimensions of current architectures: 
representation of knowledge, reasoning, knowledge acquisition, expla­
nation, system-building tools, and validation. In each of these subsections, 
we try to elucidate the fundamental principles underlying the architectural 
choices. In the discussion we relate each of the classes of choices to 
desiderata a-e for expert systems, enumerated in Section 1. Several obser­
vations others have made about expert systems are restated in the text. 
Each of these observations is valid for today's expert systems and thus 
serves to clarify the present state of the art. Underneath each, however, is 

, a trade-off that designers of systems have had to work with. Each obser­
vation involves a trade-off. Section 3 discusses research aimed at gaining 
more of the best of both sides of such trade-offs. We end the section with 
three advantages of knowledge-based systems over traditional software. 

2.1 Representation 

One of the hallmarks of an expert system is the use of specific knowledge 
of its domain of application, applied by a relatively simple inference engine. 
The phrase "knowledge programming" has been used to denote the 
emphasis of the effort of building an expert system. The single most 
important representational principle is the principle of declarative knowl-

Table 2 The size of the solution spaces for several expert systems' 

MYCIN: combinations of 1-6 organisms from list of 120 
organisms (many of which are equivalent) 

INTERNIST: combinations of 1-3 diseases from list of 571  

Dipmeter Advisor System: combinations o f  650 geological 
categories for an arbitrary number of depth intervals­
e.g. 500 ten-foot intervals 

XCON: arbitrary number of computer system components 
selected from 20,000 catalog items 50-150 at a time 

> 6x 106 

>31x106 

> (500)650 

> 10200 

'The number of possible solutions defined by the vocabulary of each system is reduced to one, or a few, 
plausible answers hy exploiting domain-specific heuristics. 
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edge enunciated by McCarthy in the formative years of AI (McCarthy 
1958); see also Winograd's discussion of this principle (Winograd 1975). 
Simply put, this principle states that knowledge must be encoded in an 
intelligent program explicitly, in a manner that allows other programs to 
reason about it. Arbitrary Fortran or Lisp procedures, for example, cannot 
be explained or edited by other programs (although they can be compiled 
and executed), while stylized attribute-value pairs, record structures, or 
other, more complex, stylized data structures can be. 

To a certain extent, a knowledge base is a database. The essential 
differences between knowledge bases and databases are flexibility and 
complexity of the relations. Current research on AI and databases, some­
times called expert database systems (Kerschberg 1986), is reducing these 
differences. A knowledge base requires an organizational paradigm plus 
data structures for implementation. These two parts together constitute 
the representation of knowledge in an AI program. 

Elements of knowledge needed for problem solving may be organized 
around either the primary objects (or concepts) of a problem area or 
around the actions (including inferential relations) among those objects. 
For example, in medicine one may think primarily about the evidential 
links among manifestations and diseases, and the links among diseases 
and therapeutic actions, and secondarily about the concepts so linked. In 
this paradigm, one concentrates on the knowledge that allows inferences 
to be drawn and actions to be taken-the "how to" knowledge. Alter­
natively, one might organize medical knowledge primarily around the 
taxonomy of diseases and the taxonomy of their manifestations and sec­
ondarily around the inference rules that relate manifestations to diseases. 
In this second paradigm, one concentrates on what might be called the 
"what is" knowledge. These two conceptual views are known as "action­
centered" or "object-centered" paradigms for representing knowledge. 
They have counterparts at the implementation level in program organ­
ization. 

For each type of representation, one may identify the primitive unit and 
the primitive action. The primitive unit, in the case of action-centered 
representations, is the fact (e.g. the freezing temperature of water is 
O°C). Primitive facts are linked in conditional sentences by rules "if . . .  
then . . .  " statements). Note that these links may reflect causal associations, 
based on theory, or empirical associations, based on experience. An 
example from the Dipmeter Advisor System, which is an abbreviated causal 
description as found in geology texts, is shown in Figure 2. 

Conversely, the primitive unit of an object-centered representation is 
the object, with a number of attributes (called "slots") and values (e.g. a 
spur gear with number-of-teeth = 24, material = cast-steel, and diam-
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Crevasse-Fan-Rule 

if: 
(1) There exists an element from Sand-Zones In well 'Well' <s> 
(2) There exists an element from Energy-Zones in well 'Well' <e>, 

such that there is an intersection of s and e <i1 >, and 
such that the Energy of e is Moderate 

(3) There exists an element from Texture-Zones in well 'Well* <I>, 
such that there is an intersection of i1 and t <i2>, and 

then: 

such that the Grain-Size of t is (Fine·Sand Medium-Sand), and 
such that the Sorting of t is ModeratElly-Weil-Sorted 

(1) Create a Crevasse-Fan-Zone from the top of i2 to the bottom of i2 in 
well 'Well' 

Figure 2 Dipmeter Advisor System rule: One of a set used to perform sedimentary environ­
ment analysis. This rule is only attempted after the system has determined that the overall 
sedimentary environment is a deltaic plain. 

eter = 5 cm). Objects typically also encapsulate procedures (called 
"methods"). In addition, they may contain defaults, uncertainty, relations 
to other objects (e.g. generalizations, parts), and a variety of other infor­
mation. An object can be viewed as a structured collection of facts. Minsky 
(1975) popularized the use of objects (then called "frames") for AI. An 
example of an object definition from the Dipmeter Advisor System is 
shown in Figure 3. 

Smalltalk (Goldberg & Robson 1983) was one of the early languages 
that showed both the power of objects as programming constructs and 
the power of an integrated graphical programming environment. Many 
commercial expert-system shells contain an object-oriented component 
(Stefik & Bobrow 1986). 

The primitive action in action-centered representations is often referred 
to as "firing a rule": If the premise conditions of a conditional rule are 
true in a situation, then take the actions specified in the consequent part 
of the rule. For example, in a medical system, conclude that an organism 
may be streptococcus ifits gram stain is positive. This style of programming 
began as production systems, made popular by Newell's work in the 1960s 
(see Buchanan & ShortIiffe 1984, Ch. 2). 

Observation: The domain models are not "deep" models (Davis 1987). Expert systems 
rely more on special-case formulations of relations than on "first principles". Although 
a set of general principles such as Maxwell's equations governs the behavior of a large 
class of devices, designers of expert systems prefer to codify special cases, exceptions, 
and empirical associations, as well as some causal associations, in order to put the 
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Normal Fault 

Object: Normal-Fault 
Synonyms: 
Generalizations: Fault 
Groups: 
Type: Class 
Edited: 13-Dec-87 14:26:25 PST By: Schoen 
Pic'ure[Bilmap): llii ;::*�:t;/:�:��tl�:i 
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Hanging-Wall-Block{Downthrown-Block} [Object]: 
Upper-Distortio n-Reg ion[Object]: 
Breccia-Region{ Crushed-Zone} [Object]: 
Fault-Plane[Object] : 
Lower-Distortion-Region[Object] : 
Foot-Wall-Block{Upthrown-Block} [Object]: 
Time-Of-Faulting[Geologic-Age] : 
Strike[Azimuth] : 
Slip[Floatingpointnumber]: 
Fault-Angle{Hade} [Dipmagnitude]: 
Direction-To-Downth rown-Block[Azimuth]: 
Throw[Distance] : 
Draw[Lisp]: Drawfault 

Instantiate[Lisp]: Instantiatefault 
Detect[Rule]: (Rule-Nfr1 Rule-Nfr3 Rule-Nfr4 Rule-Nfr5 Rule-Nfr7) 
Specialize[Rule]: (Rule-Nfr6 Rule-Nfr9 Rule-Nfr11 Rule-Nfr12) 

Figure 3 Dipmeter Advisor System object: Encapsulates information about normal or ten­
sional geologic faults. Individual attribute (slot) names are shown in boldface (e.g. Hanging­
Wall-Block). Where used, synonyms for attribute names are enclosed in braces (e.g. {Down­
thrown-Block}). The "type" of each attribute value is shown in square brackets (e.g. the value 
of the Strike slot is expected to be a datum of type [Azimuth]). 

general principles in forms that can be applied more quickly and more precisely. As a 
result, they are unable to fall back on a better theory in some situations. 

A related observation: Expert systems are "brittle" (Davis 1987, Lenat et al 1986). 
Without knowledge of first principles, current expert systems may fail precipitously on 
a new case that is at the boundary of the system's competence. The performance of 
humans is more robust: As we reach the extent of what we know about a problem area, 
we often can give appropriate answers that are approximately correct, although not 
very precise-and we know the difference. The standard solution today is to codify 
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rules that screen out cases that are outside the intended scope in order to further ensure 
that the system is being used in an appropriate way. 

Given that rule-oriented programming often involves making deduc­
tions, it has been argued that various forms of logic are well-suited for use 
in expert systems. Simple systems have used propositional logic, more 
complex systems have used first-order predicate logic, and there is ongoing 
research in use of higher-order logics to express relations among beliefs, 
temporal relations, necessity, and uncertain information (both the uncer­
tainty with which data must be regarded in many real systems and uncer­
tainty about the strength of heuristic rules, which reflects a lack of detailed 
understanding of a domain). 

Observation: The reasoning is not formal (Nilsson 1982). Many designers of expert 
systems are uncomfortable with mathematical logic as a representation language because 
it lacks expressive power. Numerous extensions must be made to express some of the 
concepts that are frequently used in applications: uncertainty, strategy knowledge, and 
temporal relations. Some logicians are uncomfortable with reasoning that is not theorem 
proving and with knowledge bases that are not axiomatic systems that allow proofs of 
consistency and completeness. The search for new logical formalisms that are more 

powerful than predicate calculus reflects the tension between simple, well-understood 
formalisms and expressive power. 

In object-centered representations, the primitive action is called "sending 
a message": If an action needs to be taken (e.g. a value of an attribute is 
needed), send a request to the object that can take the action (e.g. compute, 
or conclude, the value). For example, in a geology system, send the 
Analyze-Sedimentary-Environment message to an instance of the Borehole­
Interval object. The effect is to perform an arbitrary action, which could 
include drawing inferences; in our example, the action performed is to 
draw conclusions about the geological "story" of sedimentation at a spe­
cific depth interval penetrated by the oil rig's drill. This style of object­
oriented programming was defined by Hewitt (Hewitt 1977). 

In terms of data structures, objects are much like record structures. 
Each object has a number affixed fields. Unlike record structures, however, 
new fields can be added to objects during a computation. Objects divide 
into two types: instances and classes. Instances are individuals in a domain 
(e.g. a specific depth interval from 1200 to 1225 feet in a specific borehole). 
Classes represent sets of individuals (e.g. any depth interval). They define 
the characteristics of the individuals that are their instances. Classes are 
usually organized into hierarchies according to different relations. The 
most common relations are the specialization, subclass, or "is-a" relation 
(e.g. a reverse geological fault is a kind of geological fault) and the "part­
of" relation (e.g. a fault plane is part of a geological fault). Object-oriented 
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systems allow arbitrary relations to be encoded, but often provide efficient 
support for one or two specific relations. 

In order to support the characteristics of expert systems listed in the 
Introduction, representation mechanisms must have sufficient expressive 
power to state, clearly and succinctly, both "what is" knowledge and "how 
to" knowledge. [This is sometimes called the "epistemological adequacy" 
of a representation (McCarthy & Hayes 1969)] . Expressive power has 
both design-time and run-time implications. One of the key problems for 
designers of expert systems is management of complexity. Impoverished 
representation mechanisms force designers to encode information in 
obscure ways, which eventually leads to difficulty in extending and explain­
ing the behavior of expert systems. Representation mechanisms that permit 
efficient compilation and structuring of knowledge reduce run-time 
requirements of both time and memory. 

As an example, an object-oriented language allows some information 
to be stated once, in an abstract class, and accessed (by inheritance) in a 
large number of subclasses. A representational mechanism that does not 
allow this forces designers to confront the complexity of stating essentially 
the same information many times. This may lead to inconsistency and 
difficulty in updating the information. It also has an obvious memory cost. 
At run time, each of the separate encodings of the information may have 
to be considered individually, resulting in an obvious performance penalty. 
An example of a taxonomic hierarchy is shown in Figure 4. 

Action-centered and object-centered paradigms are in fact two ends of 
a spectrum of representational possibilities. The two emphasize different 
aspects of modeling. Contemporary AI programs often use heterogeneous 
representational paradigms (e.g. coupling the simplicity of rules with the 
expressive power of objects). 

Extensible representation schemes facilitate the incremental devel­
opment of expert systems, which is necessary when there is no complete 
specification of either the problem or the knowledge required to solve it. 
When new concepts, attributes, and relations are added incrementally, a 
designer must not be forced to recode substantial portions of the knowl­
edge already encoded. 

Observation: Knowledge bases are not reusable (Lenat et al 1986). Since the cost of 
building a knowledge base is substantial, it is desirable to amortize it over several related 
expert systems, with unique extensions to cover unique circumstances. For example, 
many medical systems use facts about anatomy and physiology, yet often each encodes 
those facts specifically for use in a unique way. The challenge is to develop knowledge 
representations that can be used efficiently, independent of the specific context of use. 

Experience has shown that declarative, modular representations are 
useful for expert systems. Some information is more difficult to encode in 
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Graph of Progeny for Tectonic-Feature in Geology 

Tectonlc-Featur 

�ntiCline 
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{is(:onformity 
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onconformlty 
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�ormal-FaUIt ormal-Fault-1 

aul rowth-Fault�rowth-Fault-1 

everse-Fault-Thrust-Fault 

trike/Slip-Fault 

Figure 4 Dipmeter Advisor System Tectonic Feature hierarchy: Subclasses of each object 
are shown in boldface, to its right, connected to it by lines. Individual instances are shown 
in lightface. 

the action-centered paradigm, other information more difficult in the 
object-centered paradigm. For example, sequencing of actions is difficult 
to encode in an action-centered paradigm. The same is true of information 
that is essentially static, such as causal or structural descriptions. On 
the other hand, object-centered representations have no built-in inference 
mechanism beyond inheritance (although they support them, and many 
commercial shells have an integrated rule-oriented component). In 
addition, in some domains, subclasses are "soft" and it may be inap­
propriate to wire in hard distinctions between classes (e.g. in geology, 
classification of rocks according to lithology-sandstone, shale, car­
bonate-is not firm because the end-members are mixed to varying 
degrees). Consequently, there is no single answer to the question "Which 
representation method is best?" Contemporary expert systems use a variety 
of methods but attempt to integrate them into a uniform framework. As 
systems become more complex, it will be more and more difficult to 
maintain a uniform view. 

2_2 Reasoning 

Inference methods are required to make appropriate and efficient use of 
the items in a knowledge base to achieve some purpose, such as diagnosing 
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a disease. Logically speaking, the two rules of inference most used in 
prob1em solving are modus ponens ("If A implies B and you know A, then 
infer B") and modus tollens ("If A implies B and you know not-B, then 
infer not-A"). The former is sometimes called the "chain rule" because 
inferences can be chained together in a sequence of deductions: 

Therefore, D 

In addition to these two simple rules, rules of quantification are sometimes 
used-e.g. "If all As are Bs and x is an A, then x is a B". With a few 
simple rules of inference such as these driving the problem solving, a 
knowledge base full of many special facts and relations about the problem 
area can provide the expertise on which high performance is based. 

Observation: Expert systems make little use of common sense reasoning (McCarthy 
1983). Designers of current expert systems resolve this by (a) assuming that users can 
exercise some common sense, and (b) specifying common facts explicitly when needed. 
The INTERNIST system, for example, contains about 100,000 commonsense medical 
facts such as "males do not get pregnant" and "aspirin obscures the results of thyroid 
tests" (R. Miller, personal communication). The challenge is to construct a "com­
monsense reasoning component" that is general enough to avoid errors that "any fool" 
would avoid and specific enough to reason reliably and efficiently. 

Some expert systems (e.g. those written in Prolog) use a theorem prover 
to determine the truth or falsity of propositions and to bind variables so 
as to make propositions true. Others use their own interpreters in order 
to incorporate more than a theorem prover provides-most importantly, 
capabilities for controlling the order of inferences, strategic reasoning, and 
reasoning under uncertainty. Most fielded rule-based expert systems have 
used specialized rule interpreters, not based directly on logic. To some 
extent this reflects timing-efficient Prolog interpreters and compilers have 
only recently become available (Clocksin & Mellish 1981). However, it 
also reflects a need for more flexible styles of inference (in addition to a 
theorem prover's depth-first backtracking) and control over the strategies 
guiding the order of inferences. 

2.2.1 CONTROLLING THE ORDER OF INFERENCES AND QUESTIONS From a 
logical point of view, the order in which new facts are derived is irrelevant, 
if all logical consequences of the initial facts are to be considered. For 
pragmatic reasons, expert systems often need to be selective about which 
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facts to consider and which consequences to pursue. Space and time are 
often limited, for example, and it may also be important to develop a line 
of reasoning that a user can follow. Thus, expert systems are organized 
around three different reasoning paradigms: forward, backward, and 
opportunistic reasoning. 

Forward reasoning from data to conclusions is used when the cost or 
inconvenience of gathering data is low and there are relatively few hypoth­
eses to explore. A forward-chaining system starts with a collection of facts 
and draws allowable conclusions, adding those to the collection and cycling 
through the rules. The stopping conditions vary from stopping with the 
first plausible hypothesis to stopping only when no more new conclusions 
can be drawn. The XCON computer configuration system is a classic 
example of a forward-chaining system. 

Expert systems may be faced with inconsistent or time-varying data. As 
a result, the reasoning employed is often nonmonotonic-i.e. conclusions 
may be altered or withdrawn as problem solving proceeds. This, too, 
necessitates a departure from a traditional logical view (Bobrow 1980). 

Matching the premise clauses of all rules in a knowledge base against 
each new situation can be prohibitively expensive when there are many 
rules and many new situations created by inferring new facts. Rules often 
contain variables that can be bound in many different wa·ys, thus creating 
additional ways that their premises can match a situation. Rule interpreters 
commonly provide mechanisms for the compilation of rules and rule­
matching procedures (Brownston et al 1985). In addition, all but the 
simplest rule-based systems organize and index rules in groups in order to 
control the expense of matching and invocation. Rule groups (called "rule 
sets", "tasks", or "control blocks") are also used to control the expert 
system's focus of attention in order to make interactions with users more 
comprehensible. For example, in a medical system, it helps users under­
stand the reasoning if data requests are clustered by grouping rules that 
(a) perform disease diagnosis, (b) focus on the patient's history or on the 
laboratory tests, and (c) recommend therapy. (This also facilitates the 
acquisition of knowledge and the maintenance of knowledge bases.) 

Backward reasoning is goal-directed and does not require all relevant 
data to be available at the time inferences are begun. It is more appropriate 
when a user supplies many of the data, and when the user cares about the 
order in which data are requested. MYCIN is a classic example. A back­
ward-chaining system starts with a hypothesis (goal) to establish and asks, 
in effect, "What facts (premise clauses of rules) would need to be true in 
order to know that the hypothesis is true?" Some of these facts may be 
known because they were given as initial data, others may be known after 
asking the user about them, and still others may be known only after 
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starting with them as new subgoals, and chaining backward. The stopping 
conditions vary from stopping with the first hypothesis found true (or 
"true enough") to stopping only after all possibly relevant hypotheses have 
been explored. 

Opportunistic reasoning combines some elements of both data-directed 
(forward) and goal-directed (backward) reasoning. It is useful when the 
number of possible inferences is very large, no single line of reasoning is 
likely to succeed, and the reasoning system must be responsive to new 
data's becoming known. As new data are observed, or become known, 
new inferences can be drawn; and as new conclusions are drawn, new 
questions about specific data become relevant. An opportunistic reasoning 
system can thus set up expectations that help discriminate a few data 
elements from an otherwise confusing mass. The key element of such a 
system is an agenda of actions with an associated scheduler that enables 
explicit decisions to be made about which actions are to be taken (e.g. 
which rules to apply, whether to apply them in a forward- or backward­
chaining manner, and which object is to be the focus of attention). Such 
decisions, by contrast, are hard-wired into forward- and backward-chain­
ing systems. One successful prototype based on this paradigm is the HASP 
system (Nii et al 1982). Acoustic data from sensors in the ocean provide 
information about the types and locations of vessels. As data are received 
over time, hypotheses are revised. With each revision, new ambiguities 
arise, which can be resolved by reprocessing old data or looking for new 
signals. 

2.2.2 USING EXPLICIT STRATEGIES The three major reasoning paradigms 
of forward, backward, and opportunistic reasoning are primitive strategies 
that may need refinement and coordination in order to reflect a complex 
decision strategy such as medical diagnosis. Representing strategic knowl­
edge explicitly, an important trend in expert systems, becomes important 
whenever strategic issues are subject to change or explanation. MYCIN's 
metarules, a solution to this problem in the late 1 970s, represent knowledge 
of reasoning strategy as rules (Buchanan & Shortliffe 1984). They differ 
from the other "domain knowledge" rules in the system in that they refer 
to those rules in some of their premise or conclusion clauses: 

IF <medical context) AND there are rules that mention fact A and 
that mention fact B, 
THEN reason with the rules mentioning A before the others. 

Strategies can also be represented as an organization of steps to perform, 
in a stylized definition of a procedure (Clancey 1 986; Hickam et aI 1 985). 
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Explicit representation of strategy knowledge can also improve a systems's 
ability to explain its own behavior. 

2.2.3 REASONING UNDER UNCERTAINTY Reasoning under uncertainty is 
essential in problem areas outside of logic and mathematics, in which 
information is incomplete or erroneous. In medicine, for example, there is 
rarely complete certainty about having all the data or about the accuracy 
of the data. Several methods are used in expert systems to deal with 
uncertainty arising from (a) uncertainty of the data, (b) less than certain 
associations between data and conclusions, and (c) combinations of these. 
The major methods for addressing these issues are listed below. 

1. Abstraction-assume that the uncertainty is small and can safely be 
ignored. The method is extremely simple and efficient to use. However, 
many problems require more precision in estimating uncertainty. 

2. Bayes's Theorem-use prior and posterior probabilities to represent 
less than certain data and associations; then compute new probabilities 
with some variation of Bayes's Theorem (Gorry 1970). This method is 
based on a solid formalism, but it requires either frequency data or 
subjective estimates for many combinations of events. 

3. Fuzzy Logic-represent the uncertainty of propositions such as "John 
is tall" with a distribution of values; then reason about combinations 
of distributions (Zadeh 1979). This is intuitively appealing because it is 
based on ordinary linguistic concepts. It is computationally more com­
plex than other mechanisms because it propagates uncertainty through 
distributions of values. 

4. Criterion Tables-assign categories or weights to clauses in rules based 
on their relative importance in drawing conclusions (e.g. major and 
minor findings associated with a disease); then allow a conclusion to 
be drawn if sufficient numbers of clauses in each category are true 
(Kulikowski & Weiss 1982). This is a simple mechanism that is com­
putationally very fast. It fails to capture gradations between categories, 
however, and thus lacks the expressive power to reason in some complex 
problem areas. 

5. Certainty Factors (CFs)-assign single numbers to propositions, and 
to associations among propositions, representing either probabilities or 
a combination of probabilities and utilities; then use MYCIN's formulas 
to determine CFs for inferred beliefs (Buchanan & Shortliffe 1 984). This 
calculus has been frequently used and has been shown to have a formal 
interpretation in probability theory. Since it is based on measures of 
increased belief, the effects of adding new relations or changing CFs 
may be difficult to predict. 



D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  P
en

ns
yl

va
ni

a 
St

at
e 

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:  

13
2.

17
4.

25
4.

15
9 

O
n:

 T
ue

,
22

 O
ct

 2
02

4 
04

:2
7:

59

EXPERT SYSTEMS 41  

A general problem with methods 2-5 i s  arriving at  a coherent set 
of numbers. Typically these are obtained from experts over several itera­
tions, with empirical testing, because valid, objective numbers are not 
available. 

2.2.4 SUMMARY There is no single answer to the question, "Which infer­
ence method is best?" Each expert system, or system-building shell, pro­
vides a nearly unique set of choices for controlling the inferences, using 
strategies and reasoning under uncertainty. Some feature still other issues, 
such as methods for backtracking (recovering from local failures), cri­
tiquing (making no recommendations unless the user needs them), reason­
ing about shapes or positions, and reasoning about temporal dependencies. 
Most present-day systems allow no modification of the inference methods 
they use. This is a shortcoming that has not received widespread attention, 
but that causes system builders to make inappropriate or unhappy choices 
because they must work with an inference procedure within a shell in 
which someone else made those choices. 

2.3 Knowledge Base Development 

For the last decade, everyone involved has referred to the process of 
putting knowledge into a knowledge base as a "bottleneck" in building 
expert systems (Hayes-Roth et aI 1 983). Usually this process involves two 
persons (or teams): an expert whose knowledge is to be partially mirrored 
in the knowledge base, and a knowledge engineer who interviews the expert 
to map his/her knowledge into the program's data structures. The process 
is time-consuming and difficult, yet the performance of the resulting expert 
system depends on its being done well. This is exacerbated by the fact that 
knowledge base design often involves integrating the knowledge of several 
experts, because relying on a single expert may cause implicit assumptions 
to be overlooked. A survey conducted by SRI International indicates that 
the average cost of developing an application (knowledge engineering plus 
end-user interface alone) is about $260,000. For small systems, these costs 
are about $5000; for large systems, more than $ 1.5 million (Fried 1987). 
Note that these estimates do not include the cost of constructing an expert 
system shell. 

M uch of the process of knowledge engineering is engineering. Yet there 
are several different issues of a fundamental nature wrapped up in the 
steps of the process. 

1 .  During the first step, problem assessment, the knowledge engineer 
must match characteristics of the proposed problem against characteristics 
of known solution methods. Unfortunately there are no good taxonomies 
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of either problems or solution methods and no good criteria for deciding 
that there is a match. 

2. The second major step is exploratory programming, in which a series 
of experimental prototypes are constructed quickly, first as proof-of­
concept, then with successively larger fractions of an expert's knowledge, 
showing that a part of the problem can be (partially) solved with that 
knowledge encoded in a specific environment. Two substantial issues here 
are (a) formulating an accurate conceptual framework, including 
terminology, to allow knowledge to be added incrementally; and (b) 
interacting with-not just passively listening to-the expert efficiently to 
elicit what he/she knows about the problem that is relevant for the expert 
system. 

3. Developing the knowledge base, to increase both the breadth and 
depth of the system's competence, is the third major step. This step takes 
the most time (several person-years) but is relatively straightforward if 
steps I and 2 have been done well. One difficult issue here is anticipating 
characteristics of end-users and their context of use. Another is deciding 
which new facts and relations are and which are not relevant for the 
system's performance and understandability in context. The competing 
paradigms for making this decision-and for knowledge engineering gen­
erally-may be called "model-directed" and "case-directed" knowledge 
base development. In the former, the knowledge base is largely developed 
along the lines of a model, or theory, of the problem area. In the latter, it 
is largely developed in response to errors exhibited in solving test cases. 
Neither is entirely adequate by itself; knowledge engineers must use both. 
Whatever combination of development paradigms is used, there is no clear 
stopping criterion for development. This presents problems in providing 
for continual additions and modifications to a knowledge base-the exten­
sibility mentioned above. 

4. The last step of the process is software engineering, to ensure that the 
system fits into the end-users' environment, is responsive to their needs, 
etc. The difficult issues at this step are not unique to expert systems. It is 
included as a reminder that a successful application requires more than 
developing a knowledge base. 

Observation: Expert systems do not learn from experience (Schank 1983). Research on 
machine learning is maturing to the point where expert systems will be able to learn 
from their mistakes and successes. Learning by induction from a large library of solved 
cases is already well enough understood to allow induction systems to learn classification 
rules that an expert system then uses (Michie et al 1 984; Michalski et al 1 986). Prototype 
systems have been built that emphasize learning in context, sometimes called explan­
ation-based learning or apprentice learning, which appears to hold promise for expert 
systems (Mitchell et al 1986). The challenge is to design learning mechanisms that are 
as accurate as knowledge engineering but are more cost effective. 
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One of the defining criteria of expert systms is their ability to "explain" 
their operation. Early forms of explanation focussed on showing the line 
of reasoning, typically a sequence of rule firings, that led to a particular 
conclusion. This was normally done in stylized natural language (Buchanan 
& Shortliffe 1984, Pt. 6). The user could ask the system questions of the 
form "How did you conclude . . . .  " In a sense it is an extension to the kind 
of dialog that was originally shown in the SHRDLU system (Winograd 
1972). That system answered questions by actually looking in its environ­
ment and on its own goal stack (i .e. agenda of goals and subgoals). 

Although natural language interfaces were used almost exclusively in 
early expert systems, powerful, low-cost graphics workstations have fueled 
a trend towards graphical interfaces [e.g. the STEAMER system, used to 
train naval personnel to operate steam power plants onboard ships (Hollan 
et al 1984)]. Contemporary systems often provide mixed natural language 
and graphical interfaces [e.g. the Drilling Advisor System (Rauch-Hindin 
1986)]. 

Lines of reasoning [e.g. the GUIDON-WATCH System (Richer & Clan­
cey 1985)] may be shown as graphs that permit user interaction to explore 
alternative possible lines of reasoning. Perhaps this makes clear the fact 
that current explanation facilities are much like sophisticated program 
debugging facilities and are often used as such. Like all good debugging 
systems, they permit the programmer/user to examine system operation in 
high-level terms, rather than in terms of the low-level machine instructions 
actually executed. There is a trend today towards recording justifications 
that underlie the items in the knowledge base (Smith et al 1985). These 
can be used to augment explanations. Research is ongoing to enable expert 
systems themselves to use this information. 

The term "explanation" can also be used to cover examination of the 
static knowledge base. Object-oriented representations and sophisticated 
graphics facilities enhance the ability of a domain specialist to understand 
what has been encoded (Smith et al 1987). As found in the GUIDON 
system (Clancey 1986), however, such facilities do not in and of themselves 
constitute a tutoring system. 

Observation: The expert's conceptual framework may not be the same as the users' 
(Winograd & Flores 1986). Knowledge engineers work under the assumption that the 
experts they work with know the context of intended use and the intended users' 
terminology and point of view. This may result in misuse of a system when a user 
attaches different meanings to terms than did the expert who designed the knowledge 
base. There are no safeguards built into today's systems to test this assumption. Thus 
the challenge is to provide enough ways of explaining what is in the knowledge base to 
make its contents clear to all users. 
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A related observation: Expert systems have little self-knowledge (Lenat et aI 1983). While 
expert systems can often give explanations of what they know, they do not have a 
general "awareness" of what the scope and l imitations of their own knowledge are. 
Metalevel knowledge, such as rules of strategy, can offset this shortcoming in special 
situations but 'does not constitute a general capability. 

One could argue that the user of a conventional Fortran program can 
also examine the "knowledge base" of the program. Depending on how 
the program is written, this is true to a certain extent. It would typically 
be done with a text editor. One thing that sets expert systems apart, 
however, is their ability to be queried in the run-time context. Whereas a 
conventional program can be examined only statically, an expert system 
can be examined dynamically. It is true that a programmer can examine 
the stack of a conventional program with a debugger, but such programs 
do not maintain an explicit goal stack or line of reasoning. This is not a 
statement about implementation language but rather about system design 
style. 

2.5  System-Building Tools/Shells 

When the first commercial expert systems were being developed, the devel­
opers were faced with two major problems: (a) eliciting and encoding the 
domain knowledge necessary to solve the problem at hand, and (b) building 
programming systems with which to encode/apply the knowledge. There 
were almost no generally applicable rule interpreters or object-oriented 
programming languages. Most of the early "shells" had been constructed 
in universities as parts of specific applications. They typically made too 
many assumptions about either the domain of application of the problem­
solving methods to be used. Furthermore, they were typically only usable 
by highly trained specialists. Finally, their run-time, space, and implemen­
tation language requirements precluded their use in a wide variety of 
environments. Nevertheless, these shells represented generalizations, in 
code, of principles learned from experience with prior expert systems. 

One of the most practical effects of the recent commercial application 
of expert systems is the development of many dozens of robust shells and 
tool sets (Bundy 1 986; Gevarter 1987; Harmon 1 987; Richer 1986). These 
shells range in capability from those that can support little more than 
experimentation with rule-based techniques, to those that can support 
efficient development and operation of substantial systems. A few of the 
more powerful shells are used to support current research in expert systems. 
The shells are implemented in a number of programming languages (e.g. 
Lisp, C, Prolog) and run on a variety of hardware, including inexpensive 
PCs, workstations and mainframe computers. 

Today, users can expect a high-end shell to offer support for a number 
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of programming paradigms. The two most common are rule-oriented 
programming and object-oriented programming. Both forward and back­
ward chaining are standard, as is support for structuring rules into col­
lections (or rule sets) according to task. Rules are typically efficiently 
compiled into code in the underlying implementation language. Not all 
rule languages are extensible. The OPS5 rule language, for example, allows 
new action functions to be defined but does not allow new matching 
predicates (Brownston et aI 1 985). 

When support for object-oriented programming is provided, it includes 
multiple inheritance, message-passing, and active values. A common way 
to combine rules and objects is to construct a method that responds to a 
message by applying a set of rules, with either forward or backward 
chaining. Such a method may also be invoked in response to a change in 
an active value. The REACTORS system, for example, uses active values 
to respond to changes in the operating conditions of a nuclear power plant 
to invoke rules that suggest new responses (Rauch-Hindin 1 986). 

Some shells provide support for uncertainty in rules and in facts. The 
certainty factor calculus originally developed for the MYCIN system is 
widely used. Complete integration of inexact reasoning and objects has 
not yet been achieved. It is currently limited to support of uncertainty 
for slot values. Support for uncertainty in inter-object relations is less 
common. 

In the early years of commercial systems, expert systems were designed 
as stand-alone tools. As a result they were not well integrated with database 
management systems, large numerical packages, or other existing software 
and systems. Today's commercial systems are considerably better inte­
grated with other uses of computers. It is now common to see support for 
mixed-language environments (e.g. with some code in Lisp and some in 
C). 

Over the past few years, increasing attention has been focused on tools 
to support interaction between humans and expert systems. There are two 
major reasons for this: (a) in many fielded systems the end-user interface 
accounts for a substantial portion of the overall system, and success 
depends heavily on the quality of user interaction (Smith 1 984); and (b) 
the knowledge-acquisition process is simplified and enhanced when the 
expert can readily examine the evolving knowledge base and directly inter­
act with the system to refine its understanding of the domain (e.g. Davis 
& Lenat 1 982). It has also been found that the tools used to represent 
domain knowledge and strategy knowledge (e.g. objects and rules) can be 
applied to structuring user interfaces. Extensible systems and tools have 
been developed to support interaction requirements for knowledge engin­
eers, experts, and end-users (Smith et al 1 987). 
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2.6 Validation 

There are many dimensions along which we might wish to judge an expert 
system. The three most important of these are computational, psycho­
logical "look and feel," and performance. Computational issues include 
speed, memory required, extensibility, and portability. Psychological issues 
include ease of use, understandability and "naturalness," and online help. 
Performance issues-the sine qua non-include the scope of competence, 
percentage of false positive and negative solutions (false hits and misses), 
and time or money saved. Some involve evaluations of the static knowledge 
base (e.g. its scope) while others involve look,ing at the program in use 
(e.g. its ease of use or statistics on correctness). 

Formal validations of expert systems are rarely published, if done at all. 
The formal validation of MYCIN's performance (Buchanan & Shortliffe 
1 984, Pt. 1 0) stands out as an exception. In that study, outside evaluators 
reviewed therapy recommendations, for several randomly selected 
patients, as made by MYCIN and nine persons whose expertise ranged 
from acknowledged specialist to medical student. The evaluators (in a 
blinded study) judged MYCIN's recommendations to be indistinguishable 
from those of the specialists. In practice, expert systems are validated in 
the same way as conventional software. Developers demonstrate that a 
new system solves a variety of difficult problems before it is turned over 
to end-users (O'Keefe et al 1 987). A few of the end-users then try the new 
system in context on a large number of cases, often in parallel with the old 
method for solving these problems. Any errors that are detected are fixed. 
When the end-users and their managers are convinced of the program's 
effectiveness, the program is put into routine use, often at a single site 
first. 

With conventional programs, we often test each branch of each subrou­
tine with boundary values of variables, to assure ourselves that the pro­
gram's parts behave as specified. In an expert system, each element of 
the knowledge base is examinable in the same fashion as a single, small 
subroutine. As with subroutines, the places where unforeseen errors occur 
are in the interactions among the elements. These have to be uncovered 
by empirical tests-running the program on a large, random sample of 
problems (within the specified scope) and determining which. cases are 
solved correctly and which not. In the absence of a complete logical 
analysis that proves the correctness of both the knowledge base and the 
inference engine, we must analyze performance empirically. The criteria 
for "acceptable" levels of errors of any type, however, must be determined 
by weighing costs of errors of each type against the benefits of correct 
solutions. 
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2.7 Advantages over Traditional Software 

In general, the main issues in building expert systems revolve around 
complexity, interpretability, and explicit modular forms of knowledge. In 
this section we summarize some of the advantages of using expert systems 
instead of writing conventional software. 

2 .7 . 1  COMPLEXITY 

Complexity of problem Often when one begins designing an expert 
system, neither the problem nor the knowledge required to solve it is 
precisely specified. Initial descriptions of the problem are oversimplified, 
so the complexity becomes known only as early versions of the system 
solve simple versions of the problem. Expert systems are said to approach 
competence incrementally. A declarative, modular representation of 
knowledge, applied in a uniform manner, is the key to managing this kind 
of complexity. 

Complexity of project management The traditional life-cycle model of 
software construction and maintenance presumes that problems are speci­
fied. An alternative model, used in constructing expert systems, is explora­
tory programming in which problem definition and problem solution are 
mutually reinforcing. A key element in exploratory programming is a 
powerful, integrated development environment (Sheil 1 984). 

Complexity of system Conventional software can in principle be written 
by good programmers to solve any problem that an expert system solves. 
Frequently a system that is initially constructed in a shell system is rewrit­
ten in Fortran, PL l ,  C, or some other well-known language. Constructing 
the system in the first place, however, requires considerably more flexibility 
than is provided in a non-interpreted language, unless the designer has 
considerably more ability than most, or unless the shell system (itself in C 
or some other language) provides an interpreter for elements in its knowl­
edge base. 

2.7.2 INTERPRETATION One of the facilities commonly used to advantage 
in expert systems is evaluation-EVAL to the Lisp programmer. This 
facility allows the user (or the system itself) to specify a query or arbitrary 
computation to the running system and evaluate it in the run-time context. 
It lays open to examination the entire state of the system and its environ­
ment, including the knowledge base, the line of reasoning, agenda, etc. 
This is the sense in which programs written in interpretive languages like 
Lisp are said to themselves constitute data. It is one of the most important 
facilities upon which an expert system depends. It allows a system to 
reason not only about incoming data but also about past inferences and 
even about how it makes inferences. To a certain extent, operating systems 
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also perform this kind of introspection. However, these systems can usually 
only be tuned in a number of pre-defined ways, according to a fixed set of 
parameters; operating systems typically cannot look at their own 
procedures. By contrast, expert systems in principle can do this kind of 
detailed introspection, examining their procedures as well as their data. 

In order for this capability to be effectively used, it is important that the 
knowledge be represented explicitly (declaratively) and uniformly, and 
that it be applied in a relatively uniform manner. While it may be possible 
in principle to reason about pure Lisp code, in practice it is extremely 
difficult-for humans as well as programs. 

2.7.3 KNOWLEDGE Specialized knowledge of a problem area is the key to 
high performance. And the key insight from AI has been that representing a 
program's knowledge declaratively provides considerable advantages over 
hard-wiring what a program knows in coded subroutines. There is a 
continuum, of course, from parameterized procedures to completely styl­
ized, understandable, high-level procedure descriptions; and today's expert 
systems have room to improve. As discussed extensively above, the central 
knowledge issues in building expert systems are: representation, reasoning, 
acquisition, and explanation. Today's expert systems demonstrate the 
adequacy of current AI methods in these four areas, for some well-chosen 
problems. Shells, or system-building environments, codify many of the 
present methods. Yet there remain limitations on what can be easily 
represented, used, acquired, or explained. 

3 STATE OF THE ART 

Several recent books and publications provide extensive overviews and 
details about the state of the art. See, for example, Waterman (1 986), 
Rauch-Hinden ( 1 986), Mishkoff ( 1 985), and Scown ( 1 985) plus numerous 
current journals and newsletters such as Expert Systems, IEEE Expert, 
The AI Magazine, Expert System Strategies, and The Applied Artificial 
Intelligence Reporter. In this section we encapsulate our own under­
standing of the state of the art. 

3 .1  Size of System 

The numbers of expert systems and persons working on them have grown 
to the point where building expert systems has become routine. While their 
size and scope are definitely limited, it is difficult to characterize them, 
either numerically or symbolically. For example, MYCIN contained about 
1 ,000 rules and 20 class names, and XCON contains about 6,000 rules and 
1 00 class names. The INTERNIST system contains about 2,600 rules, 
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with another 50,000 links among roughly 600 diseases (objects), and 80 
manifestations (slots) per disease (chosen from approximately 4,500 mani­
festations in all). Numbers like these are difficult to compare because (a) 
there may be substantial differences in the level of conceptual detail covered 
in a rule in different shells (e.g. EMYCIN vs OPSS); (b) there is more in a 
knowledge base than rules and object names; (c) complex procedures 
contain considerable knowledge, even though not represented declar­
atively; and (d) a single concept, or a single clause in a rule, may stand for 
something very complex (e.g. "state of the patient") or for something quite 
straightforward (e.g. "patient's age"). As developers attempt to encode 
more information in objects (attempting to make fewer assumptions about 
how the knowledge will be used), the number of rules tends to be reduced 
in a faster than linear fashion. This occurs because the rules are written to 
be applied to members of hierarchically organized classes of objects, and 
not just to single individuals. 

A few expert system shelJs have small upper limits on the size of the 
knowledge base that can be accommodated, mostly for reasons of memory 
size of the underlying personal computer. Even systems that today are 
counted as modestly large or complex mention only a few thousand objects 
(or classes of objects) and relations among them (e.g. rules). These limits 
may be due to experts' and knowledge engineers' limitations in keeping 
track of larger numbers of items (and their interactions)-and to man­
agers' unwillingness to spend more than 1 2-24 months in developing a 
system-and not to hardware or software limits. New technology will be 
required, however, when we try to build knowledge bases that contain 
millions of items. An approximate characterization of the complexity of 
present-day knowledge bases is shown in Table 3. Assuming that facts are 
represented as object-attribute-value triples (e.g. "the identity of Organ­
ism-2 is E. coli"), it makes some sense to ask how many there are. There are 
complications, however, because (a) classes may be defined for arbitrarily 
many instances and (b) attributes may take on continuous values (e.g. any 
real number). So instead of showing the number of facts, Table 3 shows 
the number of components of facts. Also, instead of showing only the 
number of rules, this table indicates the depth and breadth of inference 
networks. It also suggests that knowledge bases are more complex when 
they must deal with uncertain facts and relations. 

The time it takes to build a system varies greatly depending on the scope 
of the problem and the expectations about the end product. A prototype 
that is expected to demonstrate feasibility on a smalJ troubleshooting 
problem, for example, may be built by a single person in one to ten weeks. 
A fully developed system ready for field use on a complex problem, on the 
other hand, may take a team of several persons one to three years or more. 
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Table 3 Approximate measures of complexity of expert systems built routinely in the late 
1 980s" 

Vocabulary 

Number of objects 
Number of attributes per object 
Number of legal values per attribute 

Inferential Relations (Rules) 

Number of rules 
Depth of longest chains 

Breadth of inferences 

Degrees of uncertainty 

1000s of objects or classes of objects 
10-250 named attributes 
3-100 discrete values, or arbitrarily many 

discrete ranges of values of continuous 
attributes 

100s to 1 ,000s 
2-10 steps from primary data to final 

conclusion 
2-1 0  ways of inferring values of any single 

attribute 
facts and relations may be expressed with 

degrees of uncertainty 

" These numbers represent empirical, not theoretical, upper bounds on several key parameters, 

One measure of our increased understanding of knowledge programming 
is that students are now routinely assigned one-term class projects that 
would have been two-year doctoral research projects a decade ago. 

3.2 Type of Problem 

Several types of problem for which systems can be built were listed above 
in two categories: interpretation and construction. We lack a robust tax­
onomy of problem types (among the best so far is the one proposed by 
Chandrasekaran 1 986), so the individual examples still provide a better 
characterization of the types of problem than general descriptions. Most 
expert systems described in the open literature address problems of data 
interpretation, mostly for purposes of troubleshooting or equipment diag­
nosis. They are mainly organized around the method of evidence gathering, 
in which evidence is gathered for and against a fixed set of hypotheses (or 
solutions), and the answer(s) with the best evidence is selected (Buchanan 
& Shortliffe 1 984). This is also known as catalog selection or heuristic 
classification (Clancey 1 985). Most of the commercial shells address prob­
lems of this type. However, more and more systems are being built for 
problems of the second category, and shell systems are emerging to handle 
the myriad constraints that shape a design, assembly, configuration, sched­
ule, or plan. 

Observation: Expert systems do not reason exactly as human experts do-e.g. they have 
no intuition (Dreyfus & Dreyfus 1986). So far, the problems that have been most 
successfully solved with expert systems have been those in which inferential knowledge 
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i s  easily formulated a s  rules and the organization o f  objects and concepts is  easily 
formulated as taxonomic (class-subclass-instance) hierarchies and part-whole hier­
archies. Reasoning by analogy or by intuition is still too unpredictable (and ill-under­
stood) to use in high-performance systems. 

3 .3  Some Limitations and Research Topics 

Expert systems are designed to solve specific problems in well-cir­
cumscribed task domains in which specialists can articulate the knowledge 
needed for high performance. Current methods for designing and building 
them have limitations, briefly discussed as observations above. These limi­
tations intersect somewhat with the research issues shown in Table 4. The 
difference between them is one of emphasizing performance (pragmatics) 
or issues (theory). In each of these areas some work has been done. To 
date, however, proposed methods have not been well integrated with shell 
systems, often because proposed methods have not been convincingly 
generalized or demonstrated. Table 4 is thus a partial list of doctoral 
dissertation topics brought into focus by work on expert systems. General 
solutions to any of these problems would constitute valuable contributions 
to AI. 

The limitations mentioned briefly above, although stated negatively to 
indicate the boundaries of what is common practice, also indicate direc­
tions in which expert systems research is growing. Some partial solutions 
to some of these shortcomings have been elucidated in research lab­
oratories and a few are exhibited in commercial systems. We will see more 
of these capabilities integrated in fielded systems of the future. 

4 CONCLUSIONS AND SUMMARY 

4. 1 Design Principles 

Out of the experimental work with expert systems over the last five to ten 
years, several "architectural principles" of expert systems have emerged. 
In 1 982, Davis articulated an early set of principles based on experience 
with a few rule-based systems (Davis 1 982; see McDermott 1 983 for 
another set of generalizations, and Hayes-Roth et al t 983, Ch. 5, for 
practical advice for knowledge engineers). Given additional experience, 
we can augment and refine these principles. 

4. t . 1  MODULAR, DECLARATIVE EXPRESSIONS OF KNOWLEDGE ARE NECESSARY 

I .  Represent all knowledge explicitly. This simplifies explanation of system 
behavior as well as refinement, both by human designers and by the 
system itself. The main feature of an expert system is the suite of specific 
knowledge it has about its domain of application. For reasons 
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Table 4 Nineteen research topics in expert systems" 

Topics in Representation 
Structure & Function-how to represent structural and functional models and their 

interdependencies (e.g. the way primitive physical parts, such as integrated circuit 
packages and wires, are placed and connected to make up the physical structure of a 
device, as opposed to the way the composition of the logical functions implemented by 
the primitive parts leads to the behavior embodied by the device). Progress in this area 
could lead to more robust diagnostic systems. They will be able to deal with faults whose 
diagnosis depends on knowledge of the interplay between the structural and functional 
decompositions of a device. 

Continuous Space & Time-how to represent (and reason efficiently about) arbitrary 
spatial regions and intervals of time. Specialized knowledge of spatial and temporal 
reasoning processes is essential for systems that deal with geometry (e.g. mechanical 
CAD/CAM systems) and time (e.g. budget planning systems). In a sense this is "domain 
knowledge" that is applicable to a variety of domains. 

Processes-how to represent explicitly knowledge about processes and procedures. Again, 
specialized knowledge is required for expert systems in areas like semiconductor or 
chemical manufacturing. 

Problem-Solving Methods-how to represent knowledge for solving specific classes of 
p1"()blems (e.g. heuristic classification, constraint propagation, top-down refinement, 
means-ends analysis). Expert systems shells can be made more powerful by inclusion of 
"generic" knowledge in particular areas (as noted above for Continuous Space & Time 
or Processes). They can also be made more powerful by inclusion of knowledge of 
particular problem-solving methods. 

Reusability-how to represent domain knowledge or strategy knowledge so that it can be 
used in different applications and extended by different users. The challenge is to encode 
knowledge in such a way as to be general enough to apply in a number of contexts, yet 
specific enough to provide real power. 

Topics in Reasoning 

Scale-how to store, access, and reason efficiently with knowledge bases that are orders 
of magnitude larger than today's (millions of items instead of thousands). This is 
essentially an engineering problem. Progress will involve techniques for reducing storage, 
techniques for dealing with knowledge bases that cannot be entirely loaded into virtual 
memory, improved knowledge indexing techniques for faster access, and techniques that 
allow distributed access and update. 

Interactions-how to reason effectively about multiple, interacting problems (e.g. faults 
in a device whose effects reinforce or mask each other or that otherwise provide test 
results different from the union of results for individual faults). 

Integration-how to exploit the special-purpose reasoning methods in existing software 
packages (e.g. spreadsheets) with knowledge-based reasoning. 

Distributed Knowledge-how to pass information (data, problems, and solutions) and 
coordinate activity in a network of distributed problem solvers (machine and human) 
reliably and efficiently. Progress in this area will lead to effective support for "virtual 
team" design and engineering. 

Parallel Problem Solving-how to solve parts of a problem simultaneously on different 
computers and synthesize a solution. 



D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  P
en

ns
yl

va
ni

a 
St

at
e 

U
ni

ve
rs

ity
 (a

r-2
70

78
7)

 IP
:  

13
2.

17
4.

25
4.

15
9 

O
n:

 T
ue

, 2
2

O
ct

 2
02

4 
04

:2
7:

59

EXPERT SYSTEMS 53 

First Principles-how to represent and use theoretical laws of prediction for other purposes 
(such as design or failure diagnosis), and how to effectively combine this type of 
reasoning with the use of simple associations. Progress will lead to systems that combine 
the robustness of first-principle and causal reasoning with the efficiency of associational 
reasoning. 

Constraint-Based Reasoning-how to efficiently represent and reason with dependencies 
among problem parameters. Progress is expected in languages for expressing constraints, 
and in techniques for reasoning based on constraint propagation, explicit solution of 
possibly nonlinear equations, and optimization. Ways of representing the degree to 
which constraints must be satisfied and control strategies able to selectively relax con­
straints are required. New techniques are also required to permit effective man-machine 
interaction for constraint-based reasoning systems. 

Analogical Reasoning-how to find "reasonable" pairs of problems or knowledge bases 
that make useful analogies, and how to use all and only "relevant" mappings out of the 
thousands of possible mappings. 

Topics in Knowledge Acquisition 

Intelligent Editors and Debugging Tools-how to assist in designing and building an expert 
system for a specialized task without already possessing knowledge about that task area. 

Learning-how to learn new knowledge from present experience, or from libraries of past 
problems; how to learn from data that may be erroneous. A central issue will be learning 
in the context of routine use, with feedback from users, as in the apprentice learning 
model. 

Consistency-how to find inconsistencies in a knowledge base, especially when it contains 
items with degrees of uncertainty; and how to suggest ways of making groups of items 
consistent. 

Multiple Sources of Knowledge-how to combine the contributions of many different 
specialists into a coherent knowledge base, especially when their knowledge is seemingly 
contradictory or is framed in incompatible vocabularies. 

Topics in Explanation 

Customized Explanations-how to tailor an explanation for an individual use and context 
without pre-specifying answers for each different class of situations. Important com­
ponents of progress in this area will be methods for representing and reasoning about 
human users, their goals, and the purposes for which they desire explanations. This 
includes providing intelligent summaries of a knowledge base or a line of reasoning that 
takes into account the background and assumptions of the person requesting the 
summary. It also includes explaining a process as well as explaining the contents of the 
knowledge base. 

Topics in Shells 

Knowledge Compilation-how to compile rules and objects efficiently while preserving 
explanation capabilities. 

" Each topic represents an open problem whose solution will enhance both the understanding of artificial 
intelligence and the performance of expert systems. 
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of extensibility and flexibility, it is important to separate the 
abstract concepts and relations of the target domain from inferences 
that can be made in the domain-i.e. "what is known" from "how to 
use it." 

2. Keep elements of the knowledge base as independent and modular as 
possible. When updating rules or links among objects, the fewer the 
interactions with other parts of the knowledge base the easier the iso­
lation and repair of problems. Although complete independence of rules 
or objects is impossible (without complex, lengthy descriptions of the 
context of relevance), partitioning the knowledge base into small, nearly 
independent modules facilitates maintenance. Common partitionings 
include: (a) domain-specific knowledge (e.g. a model of structural 
geology, which could be used in a variety of applications), (b) task­
specific knowledge (e.g. the knowledge of how to use the model of 
structural geology, together with a model of the data sensed by a 
dipmeter tool, to interpret the data in terms of geological structures), 
(c) knowledge about interaction with developers and users, (d) problem­
solving knowledge (e.g. strategies like top-down refinement and least­
commitment constraint propagation), and (e) other domain-inde­
pendent knowledge (e.g. commonsense facts, mathematics, etc). 

3. Separate the knowledge base from the programs that interpret it. 
Historically this has been phrased as "separate the k nowledge base and 
the inference engine" (Davis 1 982). 

4. Consider interaction with users as an integrated component. It is impor­
tant to avoid dealing with user interaction issues in an "add on" manner, 
after the expert system has been designed. High-quality user-interaction 
frameworks are often essential to end-user utility. They are also impor­
tant to easing the knowledge-acquisition bottleneck. 

S. A void assumptions about context of use. Extending a k nowledge base 
is made difficult when assumptions about how the individual packets of 
knowledge will be used are implicitly encoded. For example, important 
premise conditions of a rule may be omitted because the system devel­
oper knows the context in which that rule will be applied (as noted 
earlier with the sample rule from the Dipmeter Advisor System). This 
is also important if domain-specific knowledge bases are to be reused 
for a variety of applications. 

4. 1 .2 UNIFORMITY, SIMPLICITY, EFFICIENCY, AND EXPRESSIVE POWER ARE 

INTERDEPENDENT 

1 .  Use as uniform a representation as possible, although specialized rep­
resentations are often worth the cost of translating among represen-
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tations, because they may improve run-time performance and simplify 
knowledge acquisition. 

2. Keep the inference engine simple. A program's ability to reason about 
its actions depends on its ability to reason about the way it makes 
inferences, and complex inference procedures make this task more 
difficult. But this may cause problems in expressing knowledge in 
"appropriate" ways and in run-time efficiency. 

3. There is a logical equivalence among representational choices, but an 
object-centered paradigm offers the most flexibility, and thus the most 
expreSSIve power. 

4. Be sure the reasoning is based on sound, conceptually simple strategic 
knowledge. A knowledge base is more than a bag of facts and relations; 
it is used for a purpose with a reasoning strategy in mind. The clearer 
that strategy is, the more coherent the knowledge base will be. However, 
this may reduce run-time performance. 

4. 1 .3 REDUNDANCY IS DESIRABLE 

I .  Exploit redundancy. One advantage of a modular representation of the 
domain knowledge is that it allows the system to explore multiple lines 
of reasoning. By contrast, a conventional program typically has a single 
procedure with a fixed sequence of steps for achieving a goal. Reasoning 
with uncertain or missing data, or with knowledge that is uncertain or 
incomplete, requires building redundancy into the reasoning to allow 
correct conclusions to be drawn in spite of these deficiencies. 

4.2 Summary 

Expert systems use AI methods for representing and using experts' knowl­
edge about specific problem areas. They have been successfully used in 
many decision-making contexts in which (a) experts can articulate much 
of what they know (e.g. in training manuals), (b) experts reason quali­
tatively (e.g. based on what they have learned from experience) to augment 
the formulas in textbooks, and (c) the amount of knowledge required to 
solve problems is circumscribed and relatively small. 

While there remain many open research problems of great interest and 
importance, expert systems-and the shell systems that are generalizations 
of them-encapsulate solutions to many problems associated with the 
representation, use, acquisition, and explanation of knowledge. The engin­
eering solutions used in today's expert systems are not without limits, but 
they are well-enough understood and robust enough to support com­
mercial applications. Moreover, each application provides .more exper­
imental data about the strengths of current AI methods. 
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