
393

CHAPTER 12

Constraint Satisfaction

What is common between solving a sudoku or a crossword puzzle and placing eight
queens on a chessboard so that none attacks another? They are all problems where
each number or word or queen placed on the board is not independent of the others.
Each constrains some others. Like a piece in a jigsaw puzzle that must conform to
its neighbours. Interestingly, all these puzzles can be posed in a uniform formalism,
constraints. The constraints must be respected by the solution – the constraints must be
satisfied. And a unified representation admits general purpose solvers. This has given
rise to an entire community engaged in constraint processing. Constraint processing
goes beyond constraint satisfaction, with variations concerned with optimization. And
it is applicable on a vast plethora of problems, some of which have been tackled by
specialized algorithms like linear programming and integer programming.

In this chapter we confine ourselves to finite domain constraint satisfaction problems
(CSPs) and study different approaches to solving them. We highlight the fact that CSP
solvers can combine search and logical inferences in a flexible manner.

A constraint network ℛ or a CSP is a triple,

ℛ = <X, D, C>

where X is a set of variable names, D is a set of domains, one for each variable, and C is
a set of constraints on some subsets of variables (Dechter, 2003). We will use the names
X = {x1, x2, …, xn} where convenient with the corresponding domains D = {D1, D2, …, Dn}.
The domains can be different for each variable and each domain has values that the variable
can take, Di = {ai1, ai2, …, aik}. Let C = {C1, C2, …, Cm} be the constraints. Each constraint Ci
has a scope Si ⊆ X and a relation Ri that is a subset of the cross product of the domains of the
variables in Si. Based on the size of Si, we will refer to the constraints as unary, binary, ternary,
and so on. A CSP is often depicted by a constraint graph and a matching diagram, as described
in the examples to follow.

We will confine ourselves to finite domain CSPs, in which the domain of each variable is
discrete and finite. We will also specify the relations in extensional form well suited for our
algorithms. For example, given a common domain {1, 2, 3, 4} for each variable, if we have a

Chapter_12 Page 393 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

394 Search Methods in Artificial Intelligence

binary constraint between two variables xi and xk in which the value in xi is smaller, then we
represent it as

Rik = {<1, 2>, <1, 3>, <1, 4>, <2, 3>, <2, 4>, <3, 4>}

The pairs in the relation are the allowable combination of values for the two variables
respectively. For example, xi = 1 and xk = 4 are allowed. Note that we have adopted a naming
convention for the relation as well, with the subscripts in Rik referring to the subscripts of the
two related variables. We shall focus largely on binary constraint networks (BCNs) in this
chapter.

An assignment 𝒜 is a set of variable–value pairs, for example, {x2 = a21, x4 = a45,
x7 = a72}. We also say that the assignment is an instantiation of the set of variables. An
assignment to a subset of the variables is a partial assignment. Wherever there is no confusion,
we will represent the assignment as a tuple 𝒜 = <a1, a2, …, ap> where it is understood that
these are the variables x1, x2, …, xp instantiated.

An assignment 𝒜 satisfies a constraint Ci if Si ⊆ {x1, x2, …, xp} and 𝒜Si ∈ Ri where 𝒜Si is
the projection of 𝒜 onto Si.

An assignment 𝒜 is consistent if it satisfies all the constraints whose scope is covered by 𝒜.
A solution to a CSP is a consistent assignment over all the variables in X. The CSP

expresses the relation 𝜎X, also called sol(ℛ), the solution relation, which is a relation on all the
variables of X.

12.1 Constraints: Clearing the Fog

The solution sol(ℛ) for a CSP is implicit in the network ℛ. Only that it is not explicitly specified.
It is specified piecewise, like the description given by the blind men who are touching different
parts of an elephant in an ancient parable in which each has only partial knowledge. The local
constraints allow assignment of more values than the ones in the solution relation. There is a
fog of possibilities that has to be cleared away for the solution to reveal itself. We begin with
some examples to understand the problem.

12.1.1 The map colouring problem

The map colouring problem is a natural CSP. Political maps in school atlases demarcate the
different regions using different colours. Such a colouring is the solution we seek. No two
regions that share a boundary can have the same colour. This translates naturally into a set of
binary constraints, and the map colouring problem is a BCN. Consider a small map of five
regions A, B, C, D, and E, with the following pairs of regions sharing a boundary: <A, B>, <B,
C>, <B, D>, <C, D>, and <D, E>. In our formulation, each region is a variable in the CSP.
Each region has its own set of allowed colours as described in the domains below.

ℛ = <X, D, C>
X = {A, B, C, D, E}, D = {DA, DB, DC, DD, DE}, C = {RAB, RBC, RBD, RCD, RDE}
DA = {b, g}, DB = {r, b, g}, DC = {b}, DD = {r, b, g}, DE = {r}
RAB = {<b, r>, <b, g>, <g, r>, <g, b>}

Chapter_12 Page 394 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 395

RBC = {<r, b>, <g, b>}
RBD = {<r, b>, <r, g>, <b, r>, <b, g>, <g, r>, <g, b>}
RCD = {<b, r>, <b, g>}
RDE = {<b, r>, <g, r>}

Every CSP can be depicted as a constraint graph. The nodes in the graph are the variables
in the CSP and an edge between two nodes says that the two variables participate in a constraint.
This is true even when the constraint is ternary or higher. Constraint graphs are consulted by
some algorithms in deciding the order of visiting variables.

Another diagram that is useful is the matching diagram. An edge in the matching diagram
connects two values in two variables that together participate in some constraint. Figure 12.1
shows three views of the map colouring problem. On the left is the map showing the regions
that share a boundary. In the centre is the constraint graph, where each region is represented
by a node or a variable with an edge between two nodes that share a boundary. In the figure
the nodes have the domains shown alongside, and the label on an edge represents the not-equal
relation. The two related variables are only allowed different values. On the right is the matching
diagram that makes the relation explicit, with every pair of allowed values being connected
with an edge. Implicit in the matching diagram is the universal relation between nodes not
connected in the constraint graph, for example, A and C. Any combination of values of such
pairs of nodes is allowed, though not shown explicitly in the matching diagram.

C

D

B

A

E

A D

E

B C

{b,g}

{r,b,g} {b}

{r,b,g}

{r}

C

D

B

A

Er

b g b

bb g

r

r g

Figure 12.1 A map colouring problem on regions A, B, C, D, and E is on the left. The constraint
graph is in the centre and the matching diagram on the right. An edge in the matching diagram
stands for an allowable pair of colours. For regions that are not adjacent, the matching
diagram has an implicit universal relation where any combination of values is allowed.

The matching diagram shows pairs of values that can possibly occur together in a solution.
When the fog clears, only the pairs that are part of a solution are left. We illustrate this
phenomenon with the 6-queens problem in the next section.

12.1.2 The N-queens puzzle

The general task is to place N queens on an N × N chessboard such that no queen attacks another.
A queen attacks another in chess if the two are in the same row, same column, or the same
diagonal. We can state this as a binary CSP by specifying constraints between any two queens.

Chapter_12 Page 395 15/04/24 11:16 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

396 Search Methods in Artificial Intelligence

Thinking of a physical chessboard, the first thought is to have N2 variables for the squares with
each possibly having a queen. But we can exploit the knowledge that only one queen can be in
one row and one column. This suggests a compact representation that is commonly used. Each
row (or each column) can be a variable which will have one queen identified by the column (or
row) in which it is. Figure 12.2 shows the 6-queens problem in which a queen has to be placed
in each row. The row number becomes the variable, and the column number the value. In this
representation there are six variables X = {1, 2, 3, 4, 5, 6} and each Di = {a, b, c, d, e, f}.

a b c d e f

6

5

4

3

2

1

1

2

5

4

3

6

Figure 12.2 The 6-queens problem is to place the six queens on a 6 × 6 chessboard such that
no queen attacks another. The six queens must be on six different rows. We name each row
as a variable, with the column names as values. The arrows show the squares attacked by a
queen on square c4. The figure on the right is the constraint graph, which is a complete graph
since each queen is constrained by every other queen.

As one can see, the constraint graph, shown on the right, is a complete graph. This is
because every queen can potentially be attacked by every other queen. The pairwise allowed
values are captured in the relations C = {R12, R13, R14, R15, R16, R23, R24, R25, R26, R34, R35, R36,
R45, R46, R56}. We describe R12 and leave the other relations for the reader to complete.

R12 = {<a, c>, <a, d>, <a, e>, <a, f>,
<b, d>, <b, e>, <b, f>,
<c, a>, <c, e>, <c, f>,
<d, a>, <d, b>, <d, f>,
<e, a>, <e, b>, <e, c>,
<f, a>, <f, b>, <f, c>, <f, d>}

Figure 12.3 shows a part of the matching diagram. The relations covered in the diagram
are R12, R13, R14, R15, R16, R25, and R36. Even with this subset of relations, one can see that
there is a large number of combinations to choose from. As one can see, there is verily a fog of
connections for each variable.

Chapter_12 Page 396 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 397

fedcba

fedcba

1

6

5

4

3

2

Figure 12.3 The matching diagram for the 6-queens problem. Only edges for the relations
R12, R13, R14, R15, R16, R25, and R36 are drawn in the figure, giving rise to the higher density of
edges on the left. A close scrutiny will reveal that there are three of four edges from a value for
one variable to values in another variable.

In the solution, one value must be selected from the domain of each variable. Further,
each value in each variable must have an edge connected to a value in every other variable that
must be in the solution. The task of solving the CSP is to clear the fog and reveal the solution.
Figure 12.4 shows one solution for the 6-queens problem.

5

2
fedcba

fedcba

1

6
4

3
a b c d e f

6

5

4

3

2

1

Figure 12.4 A solution <b, d, f, a, c, e> for the 6-queens problem highlighted on the matching
diagram. The solution is also shown on the board on the right.

Chapter_12 Page 397 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

398 Search Methods in Artificial Intelligence

The solution <b, d, f, a, c, e> is also shown in the figure on the right.
Now we turn our gaze towards solving CSPs. The algorithms we are interested in are

domain independent in nature, exemplifying the spirit of this book. The idea is again that users
can pose their problems as a CSP, and then use a general off-the-shelf solver for solving the
CSP. There is a two pronged strategy for solving a CSP. One is search. The idea here is that one
picks the variables one at a time and assigns a value to the variable, which is consistent with
earlier variables. The main problem faced by brute force search is combinatorial explosion,
and we look at methods to mitigate that. The second is consistency enforcement or constraint
propagation, which aims to prune the space being searched. Done to the extreme this can obviate
the need for search altogether, but at a considerable cost. In practice, a judicious combination of
the two works best. We begin with search.

12.2 Algorithm Backtracking

Search is the soul of solving CSPs. Most algorithms employ depth first search (DFS) wherein
the algorithm picks one variable at a time and attempts to assign a consistent value to it. Which
variable to pick next and which value to try for the variable will be questions we will address as
we go along. For the moment we assume that the order (x1, x2, …, xN) of the variables is given
in advance for a CSP with N variables.

The well known algorithm Backtracking is described below. The inputs to the algorithm
are the three constituents of the CSP, the set of variables X, their domains D, and the constraints
C. It builds an assignment 𝒜 incrementally starting from scratch. The value for the next
variable must satisfy any constraints that are defined over that variable and its predecessors.
That is, 𝒜 must be consistent at all times. If it cannot be extended to the next variable, then the
algorithm backtracks and tries a different value for the last variable it assigned a value to. When
it considers a new variable, it makes a copy of its domain and passes it to function SelectValue
along with the partial assignment 𝒜 constructed so far. SelectValue sifts through the values
in the domain till it finds a value consistent with 𝒜. The parent Backtracking accepts that
value, augments the assignment, and moves on to the next variable. If SelectValue cannot
find a consistent value, then Backtracking retreats to the previous variable and looks for
another value.

Algorithm 12.1. Given an ordering of the variables, algorithm Backtracking picks
variables one by one and incrementally builds the assignment 𝒜. Function SelectValue
takes a copy of the domain of the ith variable, the current assignment, and removes
values that are not consistent with 𝒜. When it finds a consistent value it returns the value
to Backtracking which moves on to the next variable. If it cannot find a consistent value,
Backtracking backtracks to look for another value for the previous variable.

Backtracking {X, D, C)
 1. 𝒜 ← []
 2. i ← 1
 3. D’

i ← Di

Chapter_12 Page 398 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 399

 4. while 1 ≤ i ≤ N
 5. ai ← SelectValue (D’

i, 𝒜, C)
 6. if ai = null
 7. then i ← i − 1
 8. 𝒜 ← tail 𝒜
 9. else 𝒜 ← ai : 𝒜
 10. i ← i+1
 11. if i ≤ N
 12. then D’

i ← Di

 13. return Reverse(𝒜)

SelectValue(D’
i, 𝒜, C)

 1. while D’
i is not empty

 2. ai ← head D’
i

 3. D’
i ← tail D’

i

 4. if Consistent(ai : 𝒜)
 5. then return ai

 6. return null

Figure 12.5 shows the progress on the tiny map colouring problem from Figure 12.1. The
order of variables is alphabetic. The very first choices for the variables A, B, and C are accepted,
but when it comes to variable D only the third choice g works.

A

B

C

b

r

b

D

E

r b g

r

Figure 12.5 Backtracking does depth first search on the problem from Figure 12.1 and finds
the solution <b, r, b, g, r>. On the way SelectValue has rejected the values D = r and D = b.
The constraint graph is shown on the right.

Chapter_12 Page 399 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

400 Search Methods in Artificial Intelligence

The order of processing variables will clearly impact the complexity of the search. There
are essentially two approaches to deciding this order. One is a static approach that looks at
the topology of the constraint graph to choose an order with fewer dead ends. We look at that
next. The other is to dynamically choose the next variable to try, in tandem with constraint
propagation. We will describe that after looking at the consistency enforcement algorithms.

12.2.1 Static variable ordering

The choice of a value for a variable is constrained by the other variables it is related to. If a
variable X is connected to only one other variable Y, then the moment one chooses a value
for Y, a value for X can be chosen, and that would be final. But imagine a variable U related
to three other variables X, Y, and Z. Then choosing values for X, Y, and Z first may not leave a
consistent value for Z. For example, if the domain of all four variables is {r, b, g}, then choosing
X = r, Y = b, and Z = g leaves no value for U. But choosing a value U = r first allows for a
choice of two values for each of X, Y, and Z. One can then hypothesize that variables of higher
degree (connected to more other variables) should be assigned values earlier. This topological
argument is the reason for choosing an ordering based on the degrees of the nodes. We begin
with some definitions.

Given a CSP <X, D, C> and an ordering O of the variables (x1, x2, …, xN), the width of a
node in the ordering is the number of parents that it is connected to. A node xi is the parent of a
node xk if the two have an edge between them in the constraint graph, and xi precedes xk in the
ordering. The width of an ordering is the maximum of the width of all nodes in that ordering.

A min-width ordering of a graph is an ordering which has the lowest width (Dechter,
2003). A greedy algorithm described below produces the min-width ordering. It begins with an
empty list O. In each cycle the algorithm plucks a node with the smallest degree along with its
edges from the graph and concatenates it to O. As a result, the nodes with the smallest degree
are placed in the end of the order, and the nodes with the largest degree at the front.

Algorithm 12.2. Algorithm MinWidth accepts a graph <V, E> with N nodes and returns
a min-width ordering of the graph.

MinWidth (Graph = <V, E>, N)
 1. O ← []
 2. for i = N downto 1
 3. v ← a node in V with the smallest degree
 4. O ← v : O
 5. remove v from V
 6. remove edges to v from E
 7. return O

Chapter_12 Page 400 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 401

When a node has multiple parents, perhaps constraints can be imposed between them.
Consider the example of variable U having variables X, Y, and Z as parents. Searching for
values in the given order one can see that if X, Y, and Z were originally unrelated, then adding
the constraints X = Z, X = Y, and Y = Z would have made finding a value for U easier. One
would not have to backtrack and try different values for X or Y or Z. As we shall see later,
adding such constraints with the goal of minimizing backtracking is a strategy in consistency
enforcement. It would be desirable to enforce enough consistency to make the search backtrack
free. But the cost of achieving that could outweigh the savings.

In this context one can introduce the notion of an induced graph with an induced width, in
which edges are added connecting parents of nodes in the order being imposed. Unfortunately,
finding a min induced width ordering is NP-complete, but the following greedy algorithm
often produces very good ones (Dechter, 2003). The greedy algorithm below is similar to
Algorithm 12.2 except that before removing the selected node v from the graph, all its parents
are connected pairwise.

Algorithm 12.3. Algorithm MininducedWidth is similar to MinWidth except that before
plucking the node v from the graph all its parents are connected pairwise.

MinInducedWidth (Graph = <V, E>, N)
 1. O ← []
 2. for i = N downto 1
 3. v ← a node in V with the smallest degree
 4. O ← v: O
 5. connect each pair of parents of v
 6. remove v from V
 7. remove edges to v from E
 8. return O

A variation that often performs better is to choose the node to be plucked using a different
criterion. Instead of selecting the node with the lowest degree, one picks a node which has a
minimum number of unconnected parents. Then only a few new edges will need to be added.
This algorithm is called MinFill.

Figure 12.6 shows a few orderings for a small graph with seven nodes X = {A, B, C, D,
E, F, G} shown on the top. The first ordering in the figure is the alphabetic ordering (A, B, C,
D, E, F, G). With this ordering Backtracking would assign a value for variable A first and
variable G last. The alphabetic ordering has a width 3, because node E has three parents A, B,
and D. The second ordering is reverse alphabetic and has width 4 since A has degree 4. The
third ordering is the one produced by the MinWidth algorithm and has a width 2. The last one
is the one produced by the MinInducedWidth algorithm. It also has a width 2, but has an
additional edge connecting D and G, the parents of F which occurs later in the ordering.

Chapter_12 Page 401 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

402 Search Methods in Artificial Intelligence

A B EC D F G

A B

E
C

D

F G

A E GD B F C

G F CE D B A

A E GD B F C

Alphabetic
width = 3

Min width
width = 2

Induced min width
width = 2

Reverse alphabetic
width = 4

Figure 12.6 A graph and some orderings. Both the min-width and min-induced-width orderings
have a width 2. The alphabetic ordering has a width 3, and the reverse alphabetic ordering has
the maximum width possible 4.

The reader should verify that if the given graph were to be a tree, then both the algorithms
will produce an ordering of width 1. When we have a CSP ordering of width 1, then it is
possible to do backtrack free search. This is because each node is constrained by only one
parent who already has a value.

If the graph has cycles, then the minimum width possible is 2. This is the case for the
example above.

12.2.2 Dynamic variable ordering

The search algorithm backtracks when it cannot find a value for a variable consistent with
the earlier variables. This is because all values available in the domain of the variable may be
conflicting with values assigned to earlier variables. This could be because there are too many
parents, like when X, Y, and Z are parents of variable U. But this could be also because there are
too few values left in the domain of the current variable. For example, if the domain of U has only
one variable, then it could easily conflict with earlier variables. One strategy would be to assign

Chapter_12 Page 402 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 403

a value to this variable before considering the others. This is the approach taken in dynamic
variable ordering, where the order in which variables are processed is decided on the fly.

This becomes even more relevant when the domains of future variables are pruned by
the algorithm. We illustrate this with a cursory description of the algorithm Forwardchecking
discussed later in more detail. The crux of the algorithm is that when it considers a value for a
variable, it deletes values from future variables that would become inconsistent with the current
assignment. We illustrate this with the small map colouring example from Figure 12.1. The
domains and the constraints are reproduced below.

DA = {b, g}, DB = {r, b, g}, DC = {b}, DD = {r, b, g}, DE = {r}
RAB = {<b, r>, <b, g>, <g, r>, <g, b>}
RBC = {<r, b>, <g, b>}
RBD = {<r, b>, <r, g>, <b, r>, <b, g>, <g, r>, <g, b>}
RCD = {<b, r>, <b, g>}
RDE = {<b, r>, <g, r>}

We begin with the variable C which is one of the two with the smallest domains.

 1. C = b. Region C is adjacent to regions B and D. ForwardChecking deletes b from their
domains. Now DB = {r, g} and DD = {g, r} after pruning. Next, we consider E which has
the smallest domain.

 2. E = r. Region E is adjacent to D, and we prune the domain of D to get DD = {g}. Now D
becomes the smallest domain.

 3. D = g. Only B is a future variable related to D. DB = {r} after pruning.
 4. B = r. This value in B does not conflict with the values in A.
 5. A can be either blue or green.

As seen here, dynamic variable ordering considers those variables first which have the fewest
values to choose from. And deleting values from future variables removes potentially conflicting
choices. In the process, if a future variable becomes empty, the search algorithm can backtrack
from the current variable itself. We will illustrate this in Section 12.4.

12.3 Constraint Propagation

A typical CSP describes the constraints in parts. A search algorithm wades through the
constraints looking for an assignment. Backtracking happens when a partial assignment that
satisfies some constraints cannot be extended to another variable and another constraint. For
example, given the CSP <{X, Y, Z}, {DX = DY = DZ = {1, 2, 3}}, {RXY = X < Y, RYZ = Y < Z},
then choosing X = 2 allows us to choose Y = 3 but we cannot choose a value of Z.

Constraint propagation or consistency enforcement is the endeavour to tighten the CSP so
that these kinds of dead ends do not arise. This can be done by pruning domains of variables
in the simplest case, or by adding constraints to limit the choices to values that can be part of
a solution. Done to an extreme, consistency enforcement can make search backtrack free. But
at a prohibitive computational cost. Very often the best approach is to adopt a combination of
reasoning and search that is optimal. In this chapter we study a few algorithms for consistency
enforcement.

Chapter_12 Page 403 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

404 Search Methods in Artificial Intelligence

We begin with the general notion of i-consistency. A network ℛ is said to be i-consistent
if every consistent assignment to any i – 1 variables can be extended to one more variable. A
network is said to be strongly i-consistent if it is also j-consistent for all j ≤ i.

A node is said to be 1-consistent or node consistent (NC) iff every variable x in the domain
satisfies all constraints Rx on the variable. For example, if Rx = Even(x), then there must be no
odd value in any variable. Node consistency can be achieved by inspecting the domains of all
variables and removing any values that do not satisfy some constraint.

12.3.1 Arc consistency

A variable X is said to be arc consistent (AC) with respect to a variable Y if there is an edge
(X, Y) in the constraint graph and for every value a ∈ DX, there exists a value b ∈ DY such that
<a, b> ∈ RXY. We say that a supports b, and b supports a. A simple algorithm Revise((X), Y)
makes X arc consistent to Y.

Algorithm 12.4. Algorithm reViSe prunes the domain of variable X, removing any value
that is not paired to a matching value in the domain of variable Y.

Revise((X), Y)
 1. for every a ∈ Dx

 2. if there is no b ∈ DY s.t. <a,b> ∈ RXY

 3. then delete a from Dx

The worst case complexity of Revise is 𝒪(k2) where k is the size of each domain. The
worst case happens when no value in X has a matching value in Y. An edge (X, Y) in a constraint
graph is said to be arc consistent iff both X and Y are arc consistent with respect to each other.
A constraint network ℛ is said to be arc consistent if all edges in the constraint graph are arc
consistent. A node is said to be 2-consistent if an assignment to any variable can be extended
to a consistent assignment to any other variable. Clearly, if a network is 2-consistent, it must
be arc consistent as well. A simple brute force algorithm AC-1 cycles through all edges in the
constraint graph until no domain changes (Mackworth, 1977; Mackworth and Freuder, 1985).

Algorithm 12.5. Algorithm AC-1 cycles through all edges repeatedly even if one value
is removed from one variable.

AC-1 (X, D, C)
 1. repeat
 2. for each edge (x, y) in the constraint graph
 3. Revise((x), y)
 4. Revise((y), x)
 5. until no domain changes in the cycle

Chapter_12 Page 404 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 405

Let there be n variables, each with domain of size k. Let there be e edges in the constraint
graph. Every cycle then has complexity 𝒪(ek2). In the worst case, the network is not AC, and in
every cycle exactly one element in one domain is removed. Then there will be nk cycles. The
worst case complexity of AC-1 is therefore 𝒪(nek3).

Before improving upon the arc consistency algorithm, we look at how deduction with
modus ponens can be seen as constraint propagation. Let the knowledge base be {P, P ⊃ Q,
Q ⊃ R, R ⊃ S}. Working with Boolean formulas each propositional variable has two values in
its domain, 1 (true) and 0 (false). The truth table of the binary relation X ⊃ Y can be represented
by the constraint ⊃XY = {<0, 0>, <0, 1>, <1, 1>}. The CSP can then be viewed as

<X, D, C> where
X = {P, Q, R, S},
DP = DQ = DR = DS = {0, 1}
RP = {<1>}
RPQ = RQR = RRS = {<0, 0>, <0, 1>, <1, 1>}

First achieving node consistency prunes the domain of P to {1}. Then achieving arc
consistency prunes the rest of the variables to also contain only 1. The process is illustrated in
Figure 12.7 with matching diagrams.

1

0

1

0

P

1 1

0

Q R S

0

1

0

1

0

1 1

0

1 11 1

Figure 12.7 Logical deduction can be seen as consistency enforcement. Given the variables
P, Q, R, and S and the constraints defined by the KB = {P, P ⊃ Q, Q ⊃ R, R ⊃ S}. Node
consistency followed by arc consistency results in the domains of all variables having only 1.
This amounts to deducing that Q, R, and S are true.

Chapter_12 Page 405 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

406 Search Methods in Artificial Intelligence

The algorithm AC-1 is an overkill. It makes unnecessary calls to Revise. A better strategy
is as follows. If Revise((X), Y) removes some value v from the variable X, one need only check
that all edges connected to X are still arc consistent. It is possible that the value v was the only
support for some value w in a variable W. Then a call to Revise((W), X) is needed. This is done
by algorithm AC-3 that pushes all such connected pairs of variables into a queue. A change in
a variable is propagated to the connected variables. Only those are considered again for a call
to Revise.

Algorithm 12.6. Algorithm AC-3 begins by invoking reViSe for all edges in the
constraint graph. After that, if the domain of a variable P has changed, then consistency
w.r.t. P is enforced for all neighbours of P.

AC-3(X, D, C)
 1. Q ← []
 2. for each edge (N,M) in the constraint graph
 3. Q ← Q ++ (N,M) : [(M,N)]
 4. while Q is not empty
 5. (P,T) ← head Q
 6. Q ← tail Q
 7. Revise((P), T)
 8. if Dp has changed
 9. for each R ≠ T and (R,P) in the constraint graph
 10. Q ← Q ++ [(R,P)]

The complexity of AC-3 is 𝒪(ek3) where e is the number of edges and each domain is of
size k. Of this, k2 comes from Revise. For each of the e edges, it makes 2k calls to Revise in
the worst case if it deletes all values from the two connected variables.

One can be more frugal if one realizes that the call to Revise can itself be an overkill.
Just because a value v has been deleted from a variable1 X why should one make a call Revise
((Y), X) to check if every value in Y is still supported by values in X? If one could keep track of
the values in Y that were being supported by v ∈ DX, then if v were the only support of a value
w ∈ DY, then one can go ahead and delete w from DY. Following this, we will have to check if w
in turn was the only support for some value in a connected variable. This is done by algorithm
AC-4 which, however, needs more bookkeeping to be done to keep track of individual support
from values. The following data structures are used. Let ℛ = <X, D, C> be the network, and
let x and y be variables in X (Dechter, 2003).

 – The support set S is a set of sets, one for each variable–value pair <x, a>, named S<x, a>.
For each variable–value pair <x, a> the support set contains a list of supporting pairs from
other variables. When a value a ∈ Dx is deleted the set S<x, a> is instrumental in checking
which values in other variables might have lost a support.

1 We often say ‘from a variable X’ as a short form for ‘from the domain of a variable X’.

Chapter_12 Page 406 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 407

 S <x,a> = { <y, b> | y ∈ X, b ∈ D y and <a, b> ∈ R xy }
Given e constraints and domain sizes k, computing S is 𝒪(ek2).

 – Counter array counter. For each value a ∈ Dx, denoted by <x, a>, the counter array
maintains the number of supports from a variable y. If the counter value becomes zero,
then the value a has to be removed from Dx.

Counter(x, a, y) = the number of values in Dy that support the pair <x, a>
The counter array can be constructed along with S, adding a constant amount of

computation for each label.
 – A queue Q of labels without support that need to be processed. The unsupported variable–

value pairs are added to this as and when they are identified.

The algorithm AC-4 begins by inspecting the network ℛ setting up the records of links from the
matching diagram in the set S, and a count of how many values from a variable y support a value
a ∈ Dx. This requires visiting both ends of all the e edges in the network and all k2 combination
of values for the two connected variables. This is done in 𝒪(ek2) time, and also requires 𝒪(ek2)
space. All this work is done upfront.

Algorithm 12.7. Algorithm AC-4 begins by inspecting all edges in the matching
diagram and identifying the list of all supports for all variable–value pairs, and the count of
number of supports for each value from another variable. It deletes a value with count 0
and then decrements the count of all connected values.

AC-4(X, D, C)
 1. Q ← []
 2. initialize S<x,a> and counter(x, a, y) for each Rxy in C
 3. for each counter
 4. if counter(x, a, y) = 0
 5. Q ← Q ++ <x, a>
 6. while Q is not empty
 7. <x, a> ← head Q
 8. delete a from Dx

 9. for each <y, b> in S<x,a>

 10. counter(y, b, x) ← counter(y, b, x) − 1
 11. if counter(y, b, x) = 0
 12. Q ← Q ++ <y, b>

After the initialization, if there is a missing support for a value a for variable x (from some
variable y), then a is deleted from Dx and then the set S is inspected to decrement all counters
for all related variable–value pairs <y, b>. If any counter becomes 0, then that variable–value
pair is added to the queue Q of values destined for deletion. In this manner, the propagation
is extremely fine grained. Whenever a value is deleted, the algorithm pursues the links in the
matching diagram, effectively deleting each such link. Then if a value in some domain is left
without a link, that is added to the queue for deletion as well.

Chapter_12 Page 407 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

408 Search Methods in Artificial Intelligence

The initialization step that creates the counters and the support pointers requires, at most,
𝒪(ek2) steps. The number of elements in S < x,a> is of the order of ek2 and each is accessed at
most once. Therefore the time and space complexity of AC-4 is 𝒪(ek2).

What can one say about a CSP on which arc consistency has been achieved and no domain
is empty? If the constraint graph is a tree, then the CSP has a solution. This is because each
variable is constrained by exactly one variable. Moreover, if one chooses the min-width
ordering of the variables, the search will be backtrack free. If the constraint graph is not a tree,
then it may be possible that the CSP has no solution. This is illustrated in Figure 12.8 where
the network on the left has no solution even though it is arc consistent. But after removing one
edge (BC) it becomes a tree, and this has two solutions.

A D

E

B C

{r,b}

{r,b} {r,b}

{r,b}

{r,b}

≠

≠

≠

≠

≠

A D

E

B C

{r,b}

{r,b} {r,b}

{r,b}

{r,b}

≠ ≠

≠

≠

Figure 12.8 The CSP on the left is arc consistent but does not have a solution. The network
on the right is similar to the one on the left except that it has one edge (B,C) less which makes
it a tree. This network has two solutions.

The reader is encouraged to try out different orderings of the network and verify that the
min-width ordering for the tree can be solved in a backtrack free manner.

12.3.2 The Waltz algorithm

During the early 1970s, a bunch of students at MIT worked on the problem of interpreting line
drawings. It started with Adolfo Guzman, a graduate student of Marvin Minsky’s, who took up
the problem of writing a program to look at a line drawing to ascertain how many objects were
present in it. David Huffman then limited the line drawings to those of trihedral objects without
any cracks and shadows, and where the viewpoint was such that a slight shift did not produce
drastic changes in the image. A trihedral object is one in which exactly three straight line edges
meet at every vertex. This also means that a vertex was created by three plane surfaces meeting
at one point.

The objective was to label each line drawing with one of three kinds of labels. A convex
edge is one where two faces are visible and the solid matter subtends an angle less than 180°,
like the edge of a cube. Such an edge is to be labelled ‘+’. A concave edge is one where two
faces are visible and the solid matter subtends an angle more than 180°, like the line where two
walls in a room meet. This is labelled with ‘−’. The third kind of label is an arrow, when only
one face is visible. The visible face is on the right when one travels along the direction of the
arrow. Thus there are two different arrow labels. This task is also known as Huffman–Clowes
labelling (Clowes, 1971; Huffman, 1971).

The visible vertices are of four kinds as shown in Figure 12.9.

Chapter_12 Page 408 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 409

W vertex
Y vertex

T vertex

L vertex

Figure 12.9 The three kinds of edge labels and four kinds of vertices in trihedral objects.

Each edge in a line drawing can be labelled in one of four ways: +, −, →, and ←. Then a W
or a Y or a T vertex can have 43 = 64 different combined labels and an L vertex can have 42 = 16.
The interesting thing is that for trihedral objects without cracks or shadows, there are only 18
kinds of edge label combinations that are physically possible. These are shown in Figure 12.10.

Figure 12.10 The 18 different kinds of vertices possible in line drawings for trihedral objects
without cracks or shadows. Some texts leave out the middle two T vertices because that
configuration comes from a non-normal viewpoint.

Every edge in a line drawing connects two vertices but it can have only one label. This lays
the foundation of constraint propagation. If one knows the label at one end, then that label must
be propagated to the other end as well. And at the other end, the other edges impinging on the
vertex will be constrained by possibilities shown in Figure 12.10.

The constraint propagation algorithm was written by David Waltz who extended the scope
of objects manifold (Waltz, 1975). The Waltz algorithm, as it is now known, could handle
objects with more than 3-edge vertices, objects with cracks, and images with light and shadows.
The number of edge labels shot up from 4 to 50-plus, and the number of valid vertices shot

Chapter_12 Page 409 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

410 Search Methods in Artificial Intelligence

up to thousands. The algorithm is somewhere between AC-1 and AC-3 and does propagation
from vertex to vertex. We illustrate the propagation with a trihedral object shown on the left in
Figure 12.11.

+

+
A

B

C

D

E

F

G
+

A

B

C

D

E

F

G

+

–

+
H

I
J

K

Figure 12.11 The Waltz algorithm begins by demarcating the two solid objects and marks
the external sequence of edges A–B–C–D–E–F with arrows surrounding the solid material.
In the diagram on the left the edge B–G in the W junction at B gets a label +. This + label
must be the same at the G end of the edge B–G as well. The other two edges on vertex G
can now only be +. This is the kind of propagation the Waltz algorithm does. A similar process
is followed in the line diagram on the right, but where one has two choices for the edge 1−J
during propagation.

Both the objects in Figure 12.11 are solid objects, as careful observation will reveal. The
Waltz algorithm begins by isolating an object from the background. It does so by labelling
the outermost edges with arrows, going in the clockwise direction along the outermost lines.
In both the objects, these are A → B, B → C, C → D, D → E, and E → F. Now there are
only three kinds of W vertices as shown in Figure 12.10, and only one of them has two arrow
labels. Consequently, the third edge in these vertices must be convex edges and can be labelled
with a ‘+’.

This is illustrated for the edge B–G for the object on the left. We have labelled it twice to
emphasize the fact that the label is propagated from the W vertex B to the Y vertex G. Now
there is only one kind of Y vertex that has ‘+’ labels, and all three of the edges impinging on
it must be labelled ‘+’. This label can now be propagated along the two edges emanating from
G to the connected W edges. This process continues and the entire set of edges can be labelled
unambiguously.

For the object on the right, the labelling may involve backtracking. The reader should
verify that the edge H–I must be labelled with a ‘−’. Now there are two possibilities of labelling
the other two edges at vertex I. Either both must be ‘−’ or both must be arrows. If I–J is a ‘−’,

Chapter_12 Page 410 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 411

then the edge J–K can only be a ‘+’ given the constraints on W vertices. This results in K being
labelled with ‘+++’. If it is to be an arrow, then the direction must be I → J. But then there is
no label possible for the edge J–K. So if the algorithm were to select I → J, it would have to
backtrack and select the label ‘−’.

The reader is encouraged to complete the labelling process for both objects.

12.3.3 Path consistency

A network ℛ is said to be path consistent (PC) or 3-consistent if a consistent assignment to
any two variables can be extended to any third variable. Consider the simple map colouring
problem with five regions on the left. As discussed earlier, the network is arc consistent but
does not have backtrack free search. The assignment {A = r, B = b, C = r} is consistent but
cannot be extended to variable D. Making it path consistent involves adding a new constraint
RBC = {<r, r>, <b, b>} to the network as shown on the right. When that happens the assignment
{A = r, B = b, C = r} is no longer consistent and Backtracking has to choose C = b instead,
which allows D = r.

A D

E

B C

{r,b}

{r,b} {r,b}

{r,b}

{r,b}

A D

E

B C

{r,b}

{r,b} {r,b}

{r,b}

{r,b}

Figure 12.12 The network on the left is not path consistent because an assignment <B = r,
C = b> cannot be extended to the variable D. Making it path consistent adds a new constraint
RBC = {<r, r>, <b, b>} to the CSP. Now the variables B and C are related by the equality
relation. Earlier, it was implicitly the universal relation.

The astute reader would have noticed that in the process of making the network 3-consistent
we have introduced a new edge in the constraint graph for the relation B = C. The reader must
also keep in mind that when the vertices B and C were not connected in the constraint graph,
it meant that any value in B was locally consistent with any value in C. That is, no constraint
between B and C was specified, and RBC was a universal relation {<r, r>, <r, b>, <b, r>,
<b, b>}. After the propagation this was pruned to {<r, r>, <b, b>}, and then an edge B–C
was introduced in the constraint graph. This is done by the algorithm reViSe-3 which takes
three variables X, Y, and Z, and removes any pair of values <X = a, Y = b> when a and b
are not connected to some value c ∈ DZ (Dechter, 2003). In other words, we are pruning the
relation RXY.

Chapter_12 Page 411 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

412 Search Methods in Artificial Intelligence

Algorithm 12.8. Algorithm reViSe-3 prunes the relation RXY, removing any edge <a, b>
that does not have a matching value in the domain of variable Z.

Revise-3((X,Y), Z)
 1. for every <a, b> ∈ RXY

 2. if there is no c ∈ DZ s.t. <a, c> ∈ RXZ and <b, c> ∈ RYZ

 3. then delete <a, b> from RXY

This is, in fact, an instance of the general case wherein making a network N-consistent
induces a relation of arity N − 1, which essentially prunes an existing relation that could have
been universal. This was the case also for arc consistency, because pruning the domain of a
variable X is equivalent to inducing a relation RX on the network. We will have more to say on
this later.

The simplest algorithm to achieve path consistency is analogous to AC-1. It repeatedly
considers all variable pairs X and Y and eliminates pairs of values a ∈ DX and b ∈ DY that
cannot be extended to a third variable Z. The algorithm is called PC-1.

Algorithm 12.9. Algorithm PC-1 repeatedly calls reViSe-3 with every pair of variables
for path consistency with every other variable, until no relation RYZ is pruned. The
algorithm assumes that every pair of variables is related, even if by a universal relation
which does not show up in the constraint graph.

PC-1(X, D, C)
 1. repeat
 2. for each x in X
 3. for each y and z in X
 4. Revise-3((y, z), x)
 5. until no relation changes in the cycle

Let there be n variables, each with domain of size k. The complexity of Revise-3 is 𝒪(k3)
because the algorithm has to look at all values of the three variables. In each cycle the algorithm
PC-1 inspects (n – 1)2 edges for each of the n variables, requiring 𝒪(k3) computations for
each call to Revise-3. Therefore, in each cycle, the algorithm will do 𝒪(n3k3) computations.
In the worst case, PC-1 will remove one pair of values <a, b> from some constraint Rxy.
Then the number of cycles is 𝒪(n2k2), because there are n2 pairs of variables, each having
k2 elements. Thus in the worst case, algorithm PC-1 will require 𝒪(n5k5) computations
(Dechter, 2003).

Note that unlike AC-1, the algorithm PC-1 is not confined to working only with the edges
in the constraint graph but considers all pairs of variables. It might be pertinent to remember
that two variables in the constraint graph without an edge are related by the universal relation,

Chapter_12 Page 412 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 413

which means that any combination of values is allowed. Achieving path consistency may delete
some elements from the universal relation, as illustrated in Figure 12.13.

DW

j

h

g

f

e

dc

b

a

i

j

h

g

f

e

dc

b

a

i

DX

DY DZ

DW DX

DY DZ

W X

Y Z

W X

Y Z

Figure 12.13 The two figures on the left are the constraint graph and the matching diagram
for a network with four variables W, X, Y, and Z. The dashed edges represent the implicit
universal relations Rwz and RXY. On the right are the corresponding figures after the network
is made path consistent. The relations Rwz and RXY are now non-universal and show up in the
constraint graph. The edge c–d is deleted along with eight edges from Rwz and RXY.

It can be observed that after achieving path consistency every edge in the matching diagram
is part of a triangle with all other variables. The edge c–d in Figure 12.13 on the left gets deleted
because it is not part of any triangle with values in variables Y and Z. For the same reason, four
edges from each of the two implicit universal relations Rwz and RXY are also deleted. In the
network on the right, every edge is a part of two triangles.

Algorithm PC-1 looks at all triples of variables in every cycle. A better approach is to look
only at variables where an edge deletion may have broken a triangle in the spirit of AC-3. Let
the variables be an ordered set X = {x1, x2, …, xN}. Algorithm PC-2 too tests every variable pair
<xi, xj> where i < j against all other variables. It begins by enqueuing all such triples for calls
to Revise-3. Each pair of variables is added only once. If an edge <a, b> ∈ Rxy is deleted by a
call to Revise-3, then PC-2 only checks for the triangles formed by all other variables with x
and y. In the following algorithm, the indices 1, 2, …, N of the variables x1, x2, …, xN are stored
in the queue Q to enable only one of <xi, xj> and <xj, xi> to be added.

Chapter_12 Page 413 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

414 Search Methods in Artificial Intelligence

Algorithm 12.10. Algorithm PC-2 begins by enqueuing all triples of distinct
variables. It dequeues them one by one and calls reViSe-3((x,y), z). If any edge in x–y
is deleted, then for every other variable w, PC-2 sets up calls to reViSe-3((x, w), y) and
reViSe-3((y,w), x).

PC-2 (X, D, C)
 1. Q ← []
 2. for i ← 1 to N−1
 3. for j ← i+1 to N
 4. for each k s.t. k ≠ i and k ≠ j
 5. Q ← Q ++ ((i, j), k)
 6. while Q is not empty
 7. ((i, j), k) ← head Q
 8. Q ← tail Q
 9. Revise-3((xi, xj), xk)
 10. if Rij has changed
 11. for k ← 1 to N
 12. if k ≠ i and k ≠ j
 13. Q ← Q ++ ((i, k), j): [((j, k), i)]

Each call to Revise-3 is 𝒪(k3). The minimum number of calls is 𝒪(n3), which is the number
of distinct calls that can be made initially. In the worst case, one pair of values is deleted in each
call to Revise-3 in the while loop. In the worst case, n3 calls to Revise-3 are made. In each call
to Revise-3, at most k2 edges can be removed. Hence the while loop can be executed at most
𝒪(n3k2) times and with Revise-3 being 𝒪(k3), the complexity of PC-2 is 𝒪(n3k5).

Like AC-1 and AC-3, both PC-1 and PC-2 rely on calls to Revise-3, which can be a little
bit of overkill. Like in AC-4, one can work at the value level, but we will not pursue those edges
in the matching diagram. Mohr and Henderson (1986) have devised such an algorithm PC-4
with complexity 𝒪(n3k3).

It is worth noting that path consistency does not automatically imply arc consistency. This
is evident in Figure 12.13. The CSP is path consistent, but it is not arc consistent. In general, if
a CSP is i-consistent it does not mean that it is (i – 1)-consistent as well.

12.3.4 i-Consistency

The concept of consistency can be applied to any number of variables. Without going into the
details we observe that the process involves defining a function reViSe-i in which a tuple tS from
a set S of (i – 1) variables is checked with one variable X for consistency. If there is no value v in
X that is consistent with the tuple then tS is deleted. This is equivalent to introducing a relation
RS of arity (i – 1). In general, the complexity of Revise-i is 𝒪(ki), and algorithms for enforcing
i-consistency have the worst case time complexity 𝒪((nk)2i2i) and space complexity of O(niki)
as described in (Dechter, 2003).

Chapter_12 Page 414 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 415

A network is said to be strongly i-consistent if it is i-consistent and is j-consistent for all
j < i. If a network is strongly i-consistent, then the algorithm Backtracking will find the
solution in the first shot and will be backtrack free. However, the cost of achieving this can be
prohibitive, and there are other approaches that one can employ to chip away at the complexity
of depth first search. We first look at directional consistency.

12.3.5 Directional consistency

When a network is i-consistent, then a consistent assignment to any (i – 1) variables can be
extended to i variables. In practice, though, we often have an order in which the algorithm
Backtracking searches. One only needs to ensure that the variables that precede a given
variable X have values that admit a consistent value for X. This brings in the notion of directional
consistency in which consistency is only in the direction from parents to children, and not for
any subset of variables, as illustrated in Figure 12.14.

DX DY DZ

r

r b

b b

g

Figure 12.14 The above network is neither arc consistent nor path consistent, but is both
directionally arc consistent and directionally path consistent. Given the order X, Y, Z,
Backtracking finds a solution without backtracking.

Given an ordering X = (x1, x2, …, xN), a network <X, D, C> is said to be directionally arc
consistent (DAC) if for every edge <xi, xj> in the constraint graph such that i < j, variable xi is
arc consistent with respect to variable xj. DAC arc consistency can be achieved in a single pass,
processing variables from the last to the first.

Algorithm 12.11. Algorithm DAC scans the variables from the last to first calling
reViSe with all parents in the constraint graph.

DAC(X = [x1, x2, …, xn], D, C)
 1. for i ← N downto 2
 2. for j ← i−1 downto 1
 3. if Rij ∈ C
 4. Revise((xj), xi)

Directional path consistency (DPC) is similar, except that it prunes binary relations and
looks at all triples without any heed to the constraint graph. When it prunes an edge in the
matching diagram, it adds a relation to the constraint graph. In the following algorithm, we
have included DAC as well.

Chapter_12 Page 415 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

416 Search Methods in Artificial Intelligence

Algorithm 12.12. Algorithm DPC does one pass from the last variable down to the first
one. For each variable, it calls reViSe-3 with all the preceding variables, and then it also
calls reViSe.

DPC(X = [x1, x2, …, xN], D, C)
 1. for i ← N downto 3
 2. for j ← i−1 downto 2
 3. for k ← j−1 downto 1
 4. Revise-3((xk, xj), xi)
 5. add Rkj to C
 6. for j ← i−1 downto 1
 7. if Rij ∈ C
 8. Revise((xj), xi)

Figure 12.15 illustrates the DPC algorithm on a 4-variable 2-colour map colouring
problem. To begin with, the constraint graph has three relations RWY, RXZ, and RYZ. After the
call Revise-3((X, Y), Z) an induced relation RXY is added, and after Revise-3((W, X), Z) the
relation RWX is added.

DW DX DY DZ

r

rr

r

b

b b

Revise-3((X,Y), Z)
Revise-3((W,Y), Z)
Revise-3((W,X), Z)

r

rr

r

b

b b

W

rr

b

b b

rr b b

X Y Z

W X Y Z
Revise((Y), Z)
Revise((X), Z)
Revise((W), Z)
Revise-3((W,X), Y)

Revise((X), Y)
Revise((W), Y)
Revise((W), X)

Figure 12.15 DPC and DAC process the network in one pass from the last to the first node.
The original matching diagram and the constraint graph are on the top. The dashed edges
are from the universal relations. The revised versions are shown progressively below. The final
network is strongly path consistent and backtrack free.

Chapter_12 Page 416 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 417

The resultant network has an induced width 2. Observe that the edge <r, r> between
variables W and Z is a remnant of the universal relation, and not a member of an induced
relation. The induced width of the graph is 2, and for that DPC is sufficient for search to
be backtrack free. If the induced width were to be higher, then a higher level of consistency
would be required. This is neatly arrived at by the algorithm adaptiVeconSiStency, which also
processes the variables from the last to the first, but for each variable the degree of consistency
is tailor-made based on the number of parents the node has. One must keep in mind that as
the algorithm achieves the requisite consistency for a variable, it induces new relations on the
parents, which may increase the width of some nodes. The algorithm is described below. In
the literature a variation, called bucket elimination, that focuses on the relations explicitly is
also popular.

Algorithm 12.13. Algorithm adaptiVeconSiStency looks at the number t of parents of
a variable x, and calls reViSe-t to filter out value combinations from the parents S. It then
adds edges between all parents and augments the constraint graph. It also induces a
relation Rs by deleting those sets of values in the parents that do not have a matching
value in Dx.

AdaptiveConsistency(X = [x1, x2, …, xN], D, C)
 1. E ← set of edges in the constraint graph
 2. for i ← N downto 2
 3. S ← Parents(xi)
 4. t ← |S|
 5. Rs ← Revise-t(S, xi)
 6. for all xj, xk ∈ S
 7. E ← {<xj, xk>} ∪ E
 8. C ← {Rs} ∪ C

The propagation techniques for combating combinatorial explosion seen so far are largely
static and precede the search for solutions. Now we turn our attention to how some of these
can be carried forward to the search phase itself. We have already mentioned dynamic variable
ordering earlier. In the next section we look at ways for constraint propagation during search.
Before picking a value for a variable, can we compute the impact on the domains of future
variables?

Look before you leap.

12.4 Lookahead Search

Solving a CSP is often a mix of search and reasoning. Search tries out various assignments
choosing variables and trying out values from their domains. Reasoning aims to compress
the search space to minimize the work to be done by search. The consistency enforcement
approaches described earlier process the CSP before Backtracking takes over. While looking
for a value for a variable, Backtracking checks each value for consistency with the values

Chapter_12 Page 417 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

418 Search Methods in Artificial Intelligence

assigned to earlier variables. The algorithms in this section look ahead at future variables in
addition to the ones in the past. Of course, as before, there is a cost to be paid for the extra
reasoning one does.

Consider trying to solve an N-queens problem on a real chessboard or one drawn on a piece
of paper. Every queen one places rules out all the squares it attacks for the other queens to be
placed. Imagine marking those squares with a cross. In Figure 12.16 we illustrate how placing
six queens row by row, this marking process can help narrow down search and backtrack even
before a dead end is reached.

A B

C

Figure 12.16 After placing a queen in the corner of the top row, the crosses mark the squares
no longer available. By the time search places the third queen in board position A, many
squares in the bottom half are already marked. At this point, placing a queen in the fourth row
would block the entire sixth row. The algorithm backtracks and tries position B with similar
effect. It next goes back to trying a new value for the second queen in board position C.

Placing queens row by row in the first available position, one finds oneself in board position
A after placing three queens. There is one unmarked square in row 4, but if one were to place
a queen there, row 6 would be completely blocked. The next, and last, option, marked B, for
the third queen would have a similar impact with row 5 being ruled out this time. Without even
placing the fourth queen one, can backtrack and try another square for queen number 2 in board
C. This is in essence the algorithm forward checking (FC).

Chapter_12 Page 418 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 419

12.4.1 Algorithm forward checking

Algorithm FC is a variation of Backtracking in which the function called for selecting a
value for the next variable does some lookahead. While considering a value ai for the variable
xi, the algorithm looks at all values in all future variables (Lines 4–7 of SelectValue-Fc in
Algorithm 12.14) and deletes values that are not consistent with the proposed extension of the
assignment 𝒜. Only if no future domain is empty does it return the value ai, else it undoes the
deletions done with respect to this value (Lines 10–11). It is still in the while loop (Lines 1–11)
and if there is another value available in the domain of xi it considers that next. If it emerges
from the while loop without success, it returns null which triggers the parent algorithm to go
back and look for another value for variable xi−1 (Lines 7–10 in algorithm FC).

Algorithm 12.14. Given an ordering of the variables x1, …, xN algorithm FC is similar
to algorithm Backtracking except that the function SelectValue-Fc does more work
pruning values from each future domain that is not consistent with the assignment 𝒜 and
the value ai being considered for variable xi.

ForwardChecking(X, D, C)
 1. 𝒜← []
 2. for k ← 1 to N
 3. D’

k ← Dk

 4. i ← 1
 5. while 1 ≤ i ≤ N
 6. ai ← SelectValue-FC(D’

i, 𝒜, C)
 7. if ai = null
 8. then Undo lookahead pruning done while choosing ai−1

 9. i ← i – 1 /* look for new value */
 10. 𝒜 ← tail 𝒜
 11. else 𝒜 ← ai : 𝒜
 12. i ← i + 1
 13. return Reverse(𝒜)

SelectValue-FC(D’
i, 𝒜, C)

 1. while D’
i is not empty

 2. ai ← head D’
i

 3. D’
i ← tail Di

 4. for k ← i + 1 to N
 5. for each b in D’

k

 6. if not Consistent(b : ai : 𝒜)
 7. delete b from D’

k

 8. if no D’
k is empty

 9. then return ai

 10. else for k ← i + 1 to N
 11. undo deletes in D’

k

 12. return null

Chapter_12 Page 419 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

420 Search Methods in Artificial Intelligence

Algorithm FC does one pass over the future variables deleting values that are not going to
be consistent with the current assignment. We illustrate the algorithm by following its progress
on the matching diagram of a tiny example with five variables x1, …, x5 processed in the given
order. Figure 12.17 shows the constraint graph and the matching diagram at the start.

a

b

c

g
h

k

d

e

f

l

m

n

p

q

r

x1 x2 x5x3 x4

Figure 12.17 A tiny CSP with five variables processed in the order x1, x2, x3, x4, and x5. The
constraint graph is shown at the top and the matching diagram at the bottom. Each domain
has three values, selected in alphabetical order.

FC begins by calling for a value for variable x1. SelectValue-FC picks the first value a
from x1. This value is connected to values e and f in x2 but not connected to value d. Consequently,
SelectValue-FC removes d from Dx2. Values deleted by SelectValue-FC are shown with
shaded circles in the figures that follow. In a similar manner, it also deletes values m and n from
the domain of x4. These are the only two variables which are related to x1. SelectValue-FC
does no other pruning while considering value a. Then FC moves to x2 and SelectValue-FC
tries the next available value e. This in turn deletes l from x4 and p and r from x5. The situation
at this point is shown in Figure 12.18.

At this point, the domain of variable x4 has become empty and the algorithm undoes the
deletions done with respect to x2 = e and backtracks to try another value.

When SelectValue-FC tries the next value x2 = f, it deletes p from variable x5 but
that still has q and r. It returns x2 = f to FC, which calls it again looking for a value for x3.
SelectValue-FC tries x3 = g and x3 = h but both delete l from Dx4. The next value k does not,
but it deletes q and r from the domain of x5, which now becomes empty. The situation is shown
in Figure 12.19. It has assigned values to the first three variables but does not even try to for
the fourth.

Chapter_12 Page 420 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 421

a

b

c

g

h

k

d

e

f

l

m

n

p

q

r

X1

X2

X3

X4

X5

Figure 12.18 When FC tries x1 = a and the first available value x2 = e, it discovers that the
domain of variable x4 has become empty, because all three values are not consistent with tries
x1 = a and x2 = e. It will now undo deletion of values l, p, and r done while assigning x2 = e
and will try the next value x2 = f.

a

b

c

g

h

k

d

e

f

l

m

n

p

q

r

X1

X2

X3

X4

X5

Figure 12.19 When FC tries the next value x2 = f after undeleting values l, p, and r. This
deletes p from x5. It next tries values g and h for x3 but both delete l in x4. SelectValue-Fc next
tries x3 = k but that deletes q and r from x5, which becomes empty. There are no more values
to backtrack to in x2 and x3 and it backtracks to x1 and tries the value b.

SelectValue-FC reports failure to find a value for x3 and backtracks to x2 but there is no
other value available. It will next try x1 = b. The reader is encouraged to verify that FC will
backtrack because the Dx5 will again become empty after assigning the last possible value
to x3. The algorithm next tries x1 = c and eventually finds a solution with matching diagram as
shown in Figure 12.20.

Chapter_12 Page 421 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

422 Search Methods in Artificial Intelligence

a

b

c

g

h

k

d

n

p

X1

X2

X3

X4

X5

Figure 12.20 The matching diagram at the point when FC finds the solution <c, d, k, n, p>.
Note that values a, b, g, and h were not deleted because variables x1 and x3 do not have any
parents in the given ordering.

In the diagram in Figure 12.20 there are still some unconnected values in the domains of x1
and x3 that have not been deleted. This is because there were no parents who could have done
so. The next algorithm does a little bit more pruning of future domains.

12.4.2 Algorithm DAC-Lookahead

Algorithm dac-lookahead, also known as partiallookahead, follows up with doing directional
arc consistency on the future variables after SelectValue-DAC has deleted future values.
In Algorithm 12.15 Lines 4–7 of SelectValue-DAC are the same as in SelectValue-FC,
pruning future domains. Line 8 is the new addition where a call is made to DAC
(Algorithm 12.11) for the future variable {xi+1, …, xN}. Recall that DAC does one pass from the
last variable to the first calling Revise with each connected parent.

Algorithm 12.15. Given an ordering of the variables x1,…, xN algorithm
dac-lookahead does even more pruning than Fc. After finding a value for variable X;
consistent with the assignment 𝒜, and deleting future nodes like in Algorithm 12.5,
SelectValue-dac does one pass of DAC on the future variables. If the current value a;
does not work, it undoes the deletion done before trying the next value.

DAC-Lookhead(X, D, C)
 1. 𝒜 ← []
 2. for k ←1 to N
 3. D’

k ← Dk

 4. i ← 1
 5. while 1 ≤ i ≤ N

Chapter_12 Page 422 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 423

 6. ai ← SelectValue-FC(D’k, 𝒜, C)
 7. if ai = null
 8. then Undo lookahead pruning done while choosing ai–1

 9. i ← i – 1 /* look for new value */
 10. 𝒜 ← tail 𝒜
 11. else 𝒜 ← ai : 𝒜
 12. i ← i + 1
 13. return Reverse(𝒜)

SelectValue-DAC(D’
i, 𝒜, C)

 1. while D’
i is not empty

 2. ai ← head D’
i

 3. D’
i ← tail D’

i

 4. for k ← i + 1 to N
 5. for each b in D’k

 6. if not Consistent(b: ai : 𝒜)
 7. delete b from D’k

 8. DAC ({xi+1.. xN}, D’, C)
 9. if no domain is empty
 10. return ai

 11. else for k ← i + 1 to N
 12. undo deletes in D’k

 13. return null

The extra work done in DAC-Lookahead are these calls to DAC. We illustrate the effect
of these on the tiny problem in Figure 12.17. DAC-Lookahead too begins by selecting
x1 = a and deleting d from x2 and m, n from x4. As in the diagrams previously discussed, we
show these as shaded circles in Figure 12.21, but we have deleted the edges emanating from
them for clarity. Now DAC is called with the future variables x2, x3, x4, and x5 shown inside the
dashed oval. Both x2 and x3 are arc consistent with respect to x5 and no deletions happen. But
values e in x2 and g, h in x3 do not have supporting values in x4 and are deleted. The deletions
by DAC are shown with cross marks, and the situation is as shown in Figure 12.21.

In the situation in Figure 12.21, DAC-Lookahead next tries the value x2 = f. The future
variables are now only x3, x4, and x5 as shown inside the dashed oval in Figure 12.22. Forward
checking deletes the value p from the domain of x5. This has a cascading effect when DAC kicks
in with the value k being deleted from x3. The domain of x3 is now empty and DAC-Lookahead
retreats to x1 and will try the value b.

Algorithm FC had looked at all values in the domain of x3 before backtracking to x1 to try
the next value. Algorithm DAC-Lookahead retreated because it could not find a consistent
value for x2 without going to x3. The next algorithm AC-Lookahead finds that it is unable to
even assign x1 = a.

Chapter_12 Page 423 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

424 Search Methods in Artificial Intelligence

a

b

c

g

h

k

e

f

l

p

q

r

X1

X2

X3

X4

X5

d

m

n

Figure 12.21 Algorithm dac-lookahead begins like FC with x1 = a deleting values d, m,
and n. The DAC component in SelectValue-dac kicks in for the remaining four variables x2, x3,
x4, and x5 shown in the dashed oval resulting in e being deleted from x2 and g, h being deleted
from x3. dac-lookahead will try x2 = f next.

a

b

c

k

f

l

p

q

r

X1

X2

X3

X4

X5

Figure 12.22 When algorithm dac-lookahead picks value f in x2, forward checking deletes
the value p in x5. The DAC component in SelectValue-dac kicks in for the remaining
three variables x4, x5, and x5, shown in the dashed oval resulting in Dx3 becoming empty.
dac-lookahead retreats to variable x1 without looking at x3.

Chapter_12 Page 424 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 425

12.4.3 Algorithm AC-Lookahead

The algorithm ac-lookahead is similar to DAC-Lookahead except that in Line 8 of
SelectValue-AC the algorithm calls for doing a full arc consistency of the future variables.
This is clearly more work and also results in more pruning of the search space. We look at how
the algorithm performs on the tiny problem from Figure 12.17.

Figure 12.23 shows the first part of the pruning phase when AC-Lookahead tries the
first value a from the domain of x1. Value e in x2 has no support from x4 and is deleted, as are
values g and h in x3. Likewise, the value p is deleted from the domain of x5 because it does not
have support from x2.

a

b

c

g

h

k

e

f

l

p

q

r

X1

X2

X3

X4

X5

d

m

n

Figure 12.23 Algorithm ac-lookahead begins like FC with x1 = a deleting values d, m, and n.
After this variables x2, x3, x4, and x5 are made arc consistent. Values e in x2 without support in
x4, g and h in x3 also without support in x4, and p in x5 without support in x2 are the first to go,
shown by cross marks.

The matching diagram at this stage is shown in Figure 12.24 where the pruning process
continues after we have removed the pruned nodes from the figure. At this point, there are only
five values remaining in the four future variables. Value k in variable x3 is deleted because it has
no support in x5, and this results in l in x4 and p, q in x5 also being deleted, after which f goes
from x2.

Chapter_12 Page 425 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

426 Search Methods in Artificial Intelligence

a

b

c

k

f

l

q

r

X1

X2

X3

X4

X5

Figure 12.24 Continuing from Figure 12.23 values k in x3 without support in x5, q and r in x5
without support in x3 will go next. At this point, the domains of x3 and x5 have become empty,
and x2 and x4 follow suit. Algorithm ac-lookahead abandons the value a for x1 and moves
on to b.

At this point, algorithm AC-Lookahead abandons the value a it was considering for x1 and
moves on to the next value b. In practice, while implementing the algorithm one might exit as
soon as one domain becomes empty. This is not reflected in our algorithm, where one blanket
call is made to the algorithm for arc consistency.

The reader might have felt that AC-Lookahead perhaps does too much work. An
algorithm we have not mentioned here is Fulllookahead, which does a little bit less. This is
like AC-Lookahead except that it does only one pass of calling Revise for every pair of future
variables.

We now turn our attention to informed or intelligent backtracking.

12.5 Informed Backtracking

Given an ordering of variables, a search algorithm builds an assignment incrementally, looking
for a consistent value for each variable. We take up the action when the algorithm is looking for
a value for xi and has a partial assignment 𝒜 = <a1, a2, …, ai−1>. This assignment is consistent,
which means that it satisfies all the constraints whose scope lies in the set {x1, x2, …, xi−1}.
Now the algorithm seeks a value for xi that is consistent with 𝒜. If it cannot find one, then it has
reached a dead end. The search must retreat and try options other than 𝒜 = <a1, a2, …, ai−1>.

Algorithm Backtracking takes one step back and tries another value for xi−1. The algorithm
systematically tries different values for xi−1 and will not miss a solution if one of them were
to lead to one. This is called chronological backtracking, because the last variable that was
assigned a value is looked at again. But the real reason behind the dead end may lie elsewhere,

Chapter_12 Page 426 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 427

and the work done trying different values for xi−1 may be futile. Informed backtracking aims to
reduce such unnecessary search and jump back to a variable where a different value may allow
some value in xi.

We say that the assignment 𝒜 = <a1, a2, …, ai−1> is a conflict set with respect to xi if
we cannot find a value b in Di such that <a1, a2, …, ai−1, b> is consistent. If no subset of
𝒜 = <a1, a2, …, ai−1> is a conflict set with respect to xi we say that 𝒜 is a minimal conflict set.
We say that <a1, a2, …, ai−1> is a dead end with respect to xi, and xi is a leaf dead end variable.
If in addition <a1, a2, …, ai−1> cannot appear in any solution, we say that it is a no-good. It
is possible for an assignment to be a no-good but not be a dead-end for any single variable.
A minimal no-good is one which does not have any subset that is a no-good.

When <a1, a2, …, ai−1> is a conflict set with respect to xi, then search can jump back to
any variable xj such that j < i − 1 in the quest for a solution. This process is called backjumping.
We say that the jump back is safe if there is no k between j and i − 1 such that a new value
for xk leads to a solution. Jumping back to a safe variable will thus not preclude any solution
and affect the completeness of the algorithm. We say that a safe backjump to a variable xj is
maximal if there is no m < j such that a backjump to xm is safe.

The question is: given an assignment <a1, a2, …, ai−1> that is a dead end for a variable, what
is a safe and maximal backjump? We look at three well known algorithms for backjumping.
Each collects differing kinds of data, based on which it decides the variable that is safe to jump
back to. Each of them, however, arrives at a different answer to what is a maximal backjump
that is safe.

12.5.1 Gaschnig’s backjumping

Gaschnig’s backjumping (GBJ) algorithm looks carefully at the current assignment 𝒜 = <a1,
a2, …, ai−1> while searching for a value for xi. Before GBJ calls SelectValue-gBJ for a value
for xi, it sets a variable latesti to 0. SelectValue-GBJ starts with the first value b ∈ Di and
scans 𝒜 incrementally starting from a1 to identify the index k in 𝒜 where the sub-tuple first
becomes inconsistent with b. If this k is greater than latesti, its sets latesti to k. Then it moves on
to the next value in Di, where it could possibly increase the value of latesti further. If a value in
Di were to be consistent with 𝒜, the latesti would end up with the value i − 1.

If the call to SelectValue-GBJ were to return no value, then latesti would identify the
culprit variable that GBJ needs to jump back to. We illustrate this process with the 8-queens
example shown in Figure 12.25 in which five queens have been placed in rows 1–5, and GBJ is
unable to place a queen in row 6.

When SelectValue-GBJ tried placing the sixth queen on square a6, it was being attacked
by the queen in row 1. The variable latest6 is set to 1. Then it tries square b6 which is attacked
by queens 3 and 5. If the culprit were one of these, then undoing the placement of queen 5
would not help, because queen 3 would still be attacking the square b6. So latest6 is updated
to 3. For square c6 the earliest queen attacking is queen 2. But it would not be safe to jump
back to queen 2 because a solution might have been possible by trying a new square for queen
3. Therefore, the latest that it is safe to jump back to is still 3, as reflected in the value of latest6.
It cannot jump back farther than 3, so it would be a maximal jump that is safe. Then looking at
square d6 this value is further increased to 4, where it stays over the next four squares in row 6.

Chapter_12 Page 427 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

428 Search Methods in Artificial Intelligence

a b c d e f

6

5

4

3

2

1

7

8

g h

1 3,4 2,5 4,5 3,5 1 2 3

latest6 1 3 43 4 4 4 4

Figure 12.25 SelectValue-gBJ is unable to find a value (column name) for the sixth queen.
The numbers in row 6 are the numbers of the queens attacking that square. In each of these,
the earliest counts for each square. The value of latest6 begins with 1 for square a6,
becomes 3, the earlier queen attacking b6, and so on. The largest value is 4 from the square
d6. GBJ would backtrack to the fourth queen.

The assignment <a, c, e, b> for the first four queens is a no-good. One of the queens must
be relocated. It can only be queen 4 because a solution by relocating that could still be possible.
Skipping queen 4 and relocating an earlier queen might miss a solution that relocating 4 might
yield. So jumping back to queen 4 is both maximal and safe, and queen 4 is the culprit.

The algorithm GBJ is described below. Observe that the variable latesti is a global variable,
initialized in the main program, set in the call to SelectValue-GBJ, and used in the main
program for jumping back when a null value is returned.

Algorithm 12.16. Algorithm GBJ is similar to algorithm Backtracking except that it
can jump back more than one step from leaf dead ends. The function SelectValue-gBJ
operates a global ratchet variable that identifies the maximal safe variable to jump back
to when a value for xi cannot be found. For each value ai in Di it sets latesti to the index of
the latest sub-tuple that is consistent with ai if that index is higher than the current value.

GBJ(X, D, C)
 1. 𝒜 ← []
 2. i ← 1
 3. D’

i ← Di

 4. while 1 ≤ i ≤ N
 5. latesti ← 0
 6. ai ← SelectValue-GBJ(D’

i, 𝒜, C)
 7. if ai = null
 8. then
 9. while i > latesti

Chapter_12 Page 428 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 429

 10. i ← i − 1
 11. 𝒜 ← tail 𝒜
 12. else
 13. 𝒜 ← ai : 𝒜
 14. i ← i + 1
 15. D’

i ← D i
 16. return Reverse(𝒜)

SelectValue-GBJ(D’
i, 𝒜, C)

 1. while D’
i is not empty

 2. ai ← head D’
i

 3. D’
i ← tail D’

i

 4. consistent ← true
 5. k ← 1
 6. while k < i and consistent
 7. 𝒜k ← take k 𝒜
 8. if k > latesti
 9. latesti ← k
 10. if not Consistent(ai : 𝒜k)
 11. consistent ← false
 12. else
 13. k ← k + 1
 14. if consistent
 15. return ai

 16. return null

When SelectValue-GBJ does return a value for xi, the variable latesti has a value i − 1
and GBJ moves on to xi+1. If at a later point GBJ were to backtrack to xi, and if that had no
value left in its domain, where would it backtrack to? This is known as an internal dead end.
The value of latesti is i − 1, and hence GBJ would just move one step back. The algorithm GBJ
thus does a safe and maximal backjump from a leaf dead end, but just moves one step back
from an internal dead end.

12.5.2 Graph based backjumping

While GBJ pays no heed to the constraint graph when deciding where to jump back, Graph
based backjumping (GBBJ) relies only on the relations between variables. So much so that
when a dead end is reached, it concludes that a parent must be the culprit.

The algorithm defines and utilizes the following information relating to the constraint
graph with a given ordering of variables. The set of ancestors anc(x) of a node x are all the
nodes connected to x which precede it in the ordering. Of these nodes, the parent of x, parent(x),
is the most recent ancestor. When the algorithm GBBJ encounters a leaf dead end, it jumps
back to its parent, assuming that the parent is the source of the conflict.

Chapter_12 Page 429 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

430 Search Methods in Artificial Intelligence

Figure 12.26 shows the graph from Figure 12.6 with the alphabetic ordering. Of the four
nodes connected to node E, three are its ancestors in the given ordering. Of A, B, and D, the last
one is the parent, and if node E were to be a leaf dead end, then it would try a new value of its
parent D. This happens to be the last node visited, but that is not the case for nodes C and F who
have only one ancestor and who is the parent. If C were to be a leaf dead end, GBBJ would try
A next, and if F were to be a leaf dead end, GBBJ would try D next.

A B EC D F G
Alphabetic
width = 3

Figure 12.26 On the alphabetic ordering in the graph from Figure 12.6 node E has three
ancestors A, B, and D of which D is the parent. Nodes C and F have only one ancestor each
which is the parent.

When GBBJ jumps back from a leaf dead end, it may encounter an internal dead end,
which is the node it has jumped back to but which does not have any consistent value left.
Where does it go next? Consider the case when node G were to be a leaf dead end and GBBJ
jumped back to its parent F. If there is no value left in F, should it jump to its parent D? That
would not be safe, because the original conflict in G might have been caused by E, its other
ancestor. Bypassing E would not be safe. GBBJ handles this and similar cases as follows.

We say that GBBJ invisits a node x when it visits it in the forward direction, that is, after a
node preceding it in the ordering. Starting from there, the current session of x includes all the
nodes it has tried after invisiting x till the time it finds x to be an internal dead end.

We define the set of relevant dead ends r(x) of a node x as follows:

 – If x is a leaf dead end, then r(x) = {x}
 – If x is an internal dead end after jumping back from node y, then r(x) = r(x)∪r(y)

The set of induced ancestors of a node x is defined as follows. Let Y be the set of relevant dead
ends in the current session of x. Then the set of induced ancestors Ix(Y) of node x is the union of
all ancestors of nodes in Y which precede x in the ordering. The induced parent Px(Y) of node x
is the latest amongst the induced ancestors of x. When x is a dead end, algorithm GBBJ jumps
to the induced parent of a node x.

In Figure 12.26, when G turns out to be a leaf dead end, GBBJ tries its induced parent F
(which is also its parent). The induced parent of F is E because E is the latest induced ancestor
of F, an ancestor of G, which is a relevant dead end for F. So if F is an internal dead end, GBBJ
will try E next. If E is an internal dead end too, the algorithm will try D. The current session
of D includes E, F, and G, and hence the induced parent of D is B, which is where GBBJ will
jump back to if D were to be a dead end too.

Contrast this with the case when F is a leaf dead end. GBBJ will jump back to D the parent
of F. The relevant dead ends of D are F and D itself. The only induced ancestor of D is A.
Remember that E is not a relevant dead end. If D were to be an internal dead end, the algorithm
will now jump back to A.

Chapter_12 Page 430 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 431

The algorithm GBBJ shown below begins by computing the set of ancestors anc(x)
for each variable, given the ordering x1, x2, …, xn. Whenever it moves forward to a node
xi, it initializes the set of induced ancestors li of xi to anc(xi) in Lines 6, 7 and 22, 23 of
Algorithm 12.17. The index p of the induced parent of the current node is always the latest node
in the set of induced ancestors li (Lines 7, 17, and 23). When it encounters a dead end xi, which
is when there is no consistent value for the current variable, it jumps back to induced parent xj.
It updates the induced ancestors of xj and identifies the induced parent to which it would jump
back from xj if needed (Lines 12–17).

Algorithm 12.17. Algorithm GBBJ begins by computing the ancestors of each node. It
keeps track of the induced ancestors when it jumps back to a node. It always jumps back
to the induced parent on reaching a dead-end. The SelectValue function is the simple
one used in Backtracking.

GBBJ(X, D, C)
 1. 𝒜 ← []
 2. for k ← 1 to N
 3. compute anc(k) the set of ancestors of xk

 4. i ← 1
 5. D’

i ← Di

 6. Ii ← anc(i)
 7. p ← latest node in Ii

 8. while 1 ≤ i ≤ N
 9. ai ← Select Value(D’

i, 𝒜, C)
 10. if ai = null
 11. then
 12. iprev ← i
 13. while i > p
 14. i ← i −1
 15. 𝒜 ← tail 𝒜
 16. Ii ← Ii ∪ {liprev − {xi}}
 17. p ← latest node in Ii

 18. else
 19. 𝒜 ← ai : 𝒜
 20. i ← i + 1
 21. D’

i ← Di

 22. Ii ← anc(i)
 23. p ← latest node in Ii

 24. return Reverse(𝒜)

SelectValue(D’
i, 𝒜, C)

 1. while D’
i is not empty

 2. ai ← head D’
i

Chapter_12 Page 431 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

432 Search Methods in Artificial Intelligence

 3. D’
i ← tail D’

i

 4. if Consistent(ai : 𝒜)
 5. then return ai

 6. return null

The jumping back behaviour of GBBJ is the same whether it does so from an internal dead
end or a leaf dead end. This is an improvement over GBJ, which can jump back only from leaf
dead ends. But GBBJ is conservative and assumes that if a node is a parent in the constraint
graph, it must be the cause of the dead end, and jumps to that as an insurance. It will also not
miss out on any solution and its jumps are safe. But it may jump back less than it needs to
because it does not look at the values in the domains that lead to the conflict. The next algorithm
makes use of both kinds of information, based on the values that conflict, and also the graph
topology.

12.5.3 Conflict directed backjumping

The reason why search has to backtrack is that it cannot find a value for the next variable xi that
is consistent with the current assignment 𝒜 being constructed. A value ai of xi being considered
conflicts with 𝒜 because it conflicts with some constraint RS whose scope S is within the set
of variables x1 … xi−1 already instantiated. As soon as the select value function in algorithm
conflict directed backjumping (CDBJ) spots a conflict, it identifies the earliest constraint that
conflicts with ai.

Given an ordering of variables x1, x2, …, xn, a constraint Ri is said to be earlier than a
constraint Rk if the latest variable in Ri which is not in Rk is earlier than the latest variable in Rk
which is not in Ri. That is, the latest in Si − Sk is earlier that the latest in Sk − Si where Si and Sk
are the scopes respectively of Ri and Rk. For example, given Si = {x6, x10} and Sk = {x1, x3, x7,
x8, x10}, the constraint Ri is earlier than Rk because x6 is earlier than x8.

Algorithm CDBJ works with a set emc(xi) or emc(𝒜) of conflicting values called the
earliest minimal conflict set associated with the variable xi that the algorithm is seeking to pick
a value from. The variables var-emc(xi) in this set define the jumpback set Ji for variable xi.
The jumpback set serves the same purpose that the ancestor set anc(xi) did in algorithm GBBJ,
which is that the algorithm jumps back to the latest variable in this set. The difference is that
GBBJ constructs the set based on the graph topology while CDBJ, like GBJ, does so based on
an actual conflict of values. Both CDBJ and GBJ would jump back to the same variable from
a leaf dead end, but CDBJ can jump back even from internal dead ends because it maintains
an induced jumpback set Ji when it jumps back based on all relevant dead ends, like in GBBJ.
At the same time, the induced jumpback set in CDBG can be a subset of the induced ancestor
set of GBBJ because CDBG only adds variables when it detects a real conflict, whereas GBBJ
conservatively assumes that if the variables are connected, one of them must be the culprit.
Thus GBBJ may jump back to a variable that CDBJ knows is not the actual culprit.

When algorithm CDBJ visits a new variable (Lines 2–4 and 17–19 in Algorithm 12.18),
it initializes the jumpback set to the empty set. Then it calls SelectValue-cdBJ, which, like
SelectValue-gBJ, scans the values in the assignment 𝒜 incrementally checking for consistency

Chapter_12 Page 432 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 433

(Lines 5–13 of SelectValue-cdBJ). The moment the value ai from the domain of xi conflicts
with 𝒜k, it adds the variables in the earliest conflict to the jumpback set Ji. Note that more than
one constraint may simultaneously conflict with ai for a particular value of k. That is why one
needs to select the earliest one amongst them (Lines 11−13). Having done that, it moves on to
the next value in the domain D i ′ to test for consistency. For every value in D i ′ it finds a conflict,
it adds the earliest conflict to the jumpback set Ji. If SelectValue-cdBJ cannot find a consistent
value, then xi would be a leaf dead end and the parent program would jump back to the latest
variable in the jumpback set Ji. Observe that like in algorithm GBJ we have assumed that Ji is
global data structure.

Algorithm 12.18. Algorithm CDBJ looks at actual conflicts of values a little bit like
GBJ, but constructs the earliest minimal conflict set in SelectValue-cdBJ when it spots a
conflict based on the earliest constraint that conflicts with a value in xi. Like GBBJ it can
combine the data gleaned from relevant dead ends in the main algorithm to be able to
jump back from internal dead ends as well.

CDBJ(X, D, C)
 1. 𝒜 ←[]
 2. i ← 1
 3. D’

i ← Di

 4. Ji ← {}
 5. while 1 ≤ i ≤ N
 6. ai ← SelectValue(D’

i, 𝒜, C)
 7. if ai = null
 8. then
 9. iprev ← i
 10. p ← latest node in Ji

 11. while i > p
 12. i ← i − 1
 13. 𝒜 ← tail 𝒜
 14. Ji ← Ji ∪ {Jiprev − {xi}}
 15. else
 16. 𝒜 ← ai : 𝒜
 17. i ← i + 1
 18. D’

i ← Di

 19. Ji ← {}
 20. return Reverse(𝒜)

Select Value-CDBJ(D’
i, 𝒜, C)

 1. while D’
i is not empty

 2. ai ← head D’
i

 3. D’
i ← tail D’

i

 4. consistent ← true
 5. k ← 1

Chapter_12 Page 433 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

434 Search Methods in Artificial Intelligence

 6. while k < i and consistent
 7. 𝒜k ← take k𝒜
 8. if Consistent(ai : 𝒜k)
 9. k ← k + 1
 10. else
 11. Rs ← earliest constraint with scope S causing the conflict
 12. Ji ← Ji ∪ {S − {xi}}
 13. consistent ← false
 14. if consistent
 15. return ai

 16. return null

Observe that when CDBJ jumps back to variable xi (Lines 10–14 of CDBJ), it is still in the
current session of the variable, not yet having retreated from there. It might find a value for this
variable and go forth to the next variable and onwards, till it strikes another dead end and again
jumps back to xi from a relevant dead end. The merging of jumpack sets in Line 14 of CDBJ is
similar to the process of computing the induced ancestors in GBBJ which enables the algorithm
to jump back safely and maximally from the internal dead end as well.

Summary

Constraints offer a uniform formalism for representing what an agent knows about the world.
The world is represented as a set of variables each with its own domain of values, along with
local constraints between subsets of variables. The fact that constraints are local obfuscates the
world view. It is not clear what combination of values for each variable is globally consistent.
The task of solving the CSP is to elucidate these values, which can be thought of as unearthing
the solution relation that prescribes all consistent combinations of values.

There are two approaches to strive for this clarity, and constraint processing allows for
the interleaving of both. On the one hand, there is constraint propagation or reasoning that
eliminates infeasible combinations of values, in the process adding new constraints to the
network. On the other is search, the basic strategy of problem solving by first principles.

We explored various combinations of techniques. This includes various levels of consistency
that can be enforced. We looked at algorithms for arc consistency and path consistency. We
also looked at the advantages of directional consistency and a little bit on ordering variables
for search. Then we started with the basic search algorithm Backtracking which essentially
searches through combinations of values for variables. This can be augmented with look ahead
methods that prune future variables, and by look back methods that make an informed choice
of which variable to jump back to when a dead end is encountered. In all cases a dead end
forces the search algorithm to retreat and undo some instantiations to try new combinations.
One aspect we have not studied is no-good learning. Here, every time an algorithm jumps back
to a culprit variable, the combination of conflicting values can be marked to be avoided in the

Chapter_12 Page 434 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 435

future. Clearly, no-good learning would be meaningful in large problems with huge search trees
that can benefit with such pruning.

We have not looked at many applications despite having said that the CSPs present a very
attractive formulation in which all kinds of problems can be posed, and then solved using
some of the methods we have studied. We did mention in the chapter on planning that planning
can be posed as a CSP, and illustrated the idea by posing it as satisfiability. Another frequent
application is classroom scheduling and timetable generation which has its own group of
interested researchers. Also, we have confined ourselves to finite domain CSPs with the general
methods that they admit. We have not looked at specialized constraint solving problems and
methods like linear and integer programming that have evolved as areas of study in themselves,
beyond the scope of this book.

Exercises

 1. Which of the following statements are true regarding solving a CSP?
 a. Values must be assigned to ALL variables such that ALL constraints are satisfied.
 b. Values must be assigned to at least SOME variables such that ALL constraints are

satisfied.
 c. Values must be assigned to ALL variables such that at least SOME constraints are

satisfied.
 d. Values must be assigned to at least SOME variables such that at least SOME constraints

are satisfied.
 2. Pose the following cryptarithmetic problems as CSP:

TWO + TWO = ONE
JAB + JAB = FREE
SEND + MORE = MONEY

 3. Consider the following constraint network R = <{x1, x2, x3}, {D1, D2, D3}, {C}> where
D1 = D2 = D3 = {a, b, c} and C = <{x1, x2, x3}, {<a, a, b>, <a, b, b>, <b, a, c>,
<b, b, b>}. How many solutions exist?

 4. Given a constraint satisfaction problem with two variables x and y whose domains are
Dx = {1,2,3}, Dy = {1,2,3}, and constraint x < y, what happens to Dx and Dy after the
Revise(x,y) algorithm is called?

 a. Both Dx and Dy remain the same as before
 b. Dx = {1,2} and Dy = {1,2,3}
 c. Dx = {2,3} and Dy = {1,2}
 d. Dx = {} and Dy = {1,2,3}
 5. Draw the search tree explored by algorithm Backtracking for the 5-queens problem till

it finds the first solution.
 6. What is the best case complexity of Revise((X), Y) when the size of each domain is k?
 7. Draw the matching diagram for the network in Figure 12.1 after it has been made arc

consistent. Has the network become backtrack free?
 8. What does one conclude when the domain of some variable X while computing arc

consistency becomes empty?

Chapter_12 Page 435 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

436 Search Methods in Artificial Intelligence

 9. Try out different orderings for the two networks in Figure 2.8 and investigate how
Backtracking performs.

 10. Is the following object a trihedral object? Label the edges, and explain your answer.

 11. Draw trihedral objects to illustrate all the vertex labels shown in Figure 12.10.
 12. [Baskaran] Label the edges in the following figure and identify each vertex type.

 13. Given the CSP on variables X = {x, y, z} and the relations Rxy, Rxz, Ryz depicted in the
matching diagram below, draw the matching diagram after the CSP has been made arc
consistent. State the resulting CSP.

a

A

Dx

DyDz

b
c

d

D
C

B

1 2 3 4

Chapter_12 Page 436 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 437

 14. Consider the following CSP for a map colouring problem. Answer the questions that
follow.

 A. The GeneralizedLookahead algorithm with SelectValue-FC is applied to the
CSP in the figure, for the ordering (x1, x2, x3, x4, x5, x6, x7). If the algorithm chooses
the assignments x1 = r, x2 = b, and x3 = b, how many total values are pruned from the
domains of the variables x4, x5, x6, and x7?

 B. The GeneralizedLookahead algorithm with SelectValue-AC is applied to the
CSP in the figure, for the ordering (x1, x2, x3, x4, x5, x6, x7). If the algorithm chooses
the assignments x1 = r, x2 = b, and x3 = b, how many total values are pruned from the
domains of the variables x4, x5, x6, and x7?

 C. The GeneralizedLookahead algorithm with SelectValue-PartialLookahead
is applied to the CSP in the figure, for the ordering (x1, x2, x3, x4, x5, x6, x7). If the
algorithm chooses the assignments x1 = r, x2 = b, and x3 = b, how many total values
are pruned from the domains of the variables x4, x5, x6, and x7?

 D. The GeneralizedLookahead algorithm with SelectValue-FullLookahead
is applied to the CSP in the figure, for the ordering (x1, x2, x3, x4, x5, x6, x7). If the
algorithm chooses the assignments x1 = r, x2 = b, and x3 = b, how many total values
are pruned from the domains of the variables x4, x5, x6, and x7?

 15. The objective of a 4 × 4 Sudoku puzzle is to fill a 4 × 4 grid so that each column, each row,
and each of the four disjoint 2 × 2 subgrids contains all of the digits from 1 to 4.

Chapter_12 Page 437 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

438 Search Methods in Artificial Intelligence

The following figure depicts the domains of the variables for the given 4 × 4 Sudoku
problem. Note that some cells have only one value in their domain. Show the order in
which dynamic variable ordering with forward checking (DVFC) algorithm will fill in the
values. Let the algorithm prefer variables in the order (x1, x2, …, x16) at each tie break.

 16. [Baskaran] The following figure shows a constraint graph of a binary CSP and a part of the
matching diagram. When a pair of variables (like X1 and X3) do not have a constraint in the
constraint graph then assume a universal relation in the matching diagram.

The FC algorithm begins by assigning X1 = a. What are the next four values assigned to
variables by the FC algorithm? List the values as a comma separated list in the order they
are assigned.

 17. What is the first solution found by the FC algorithm for the above problem?
 18. The following figure shows the constraint graph of a binary CSP on the left and a part of the

matching diagram on the right. Please assume a universal relation in the matching diagram
where there is no constraint between variables in the constraint graph. The variables, and
their values, are to be considered in alphabetical order.
Algorithm FC is about to begin by assigning X1 = a. What are the next six values assigned
to variables? Draw the matching diagram at this point.
What is the first solution found by the algorithm?

Chapter_12 Page 438 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Constraint Satisfaction 439

 19. Repeat the above question for the following CSP:

Chapter_12 Page 439 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

Chapter_12 Page 440 03/01/24 9:20 AM

https://doi.org/10.1017/9781009284325.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.013

