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ABSTRACT 
An AND/OR graph is a graph which represents a problem-solving process. A solution graph 
is a subgraph of  the ANDIOR graph which represents a derivation for a solution of  the prob- 
lem. Therefore, solving a problem can be viewed as searching for a ~olution grtph in an 
AND/OR gra~,h. A "cost" is associated with every solution grapm~. A minimal solutiou graph 
is a solution graph with minimal cost. In this paper, an algorithm for searching for a minimal 
solution graph in an AND[OR graph is described. I f  the "lower bound" condition is satisfled~ 
the algorithm is guaranteed to find a minimal solution grapll when one exists. Furthermore, 
the "'optimality" of  the algorithm is also proved. 

Introduction 
In automatic problem.solving, one is given a problem to solve, e.g., an 
integration to perform, a theorem to prove or a game position to analyze, 
etc. The usual approach [I-7] is to transform the original problem into 
several subproblems. Each subproblem is again converted into subproblems, 
and so on. This process can be easily represented by a directed graph. V~ ~: 
consider that each node of a graph represents a problem statement. A problem 
and its subproblems are linked by arcs pointing from the node representing 
the problem to the nodes representing its subproblems. The ~'elar:onship 
between a problem and its subproblems is stated by a Boolean function in 
disjunctive normal form. (We assume that no negative literal appears in the 
disjunctive normal form.) Every such Boolean function indicates whether or 
not a problem is solved if some of its subproblems are solved. The proposition 
N associated with a node n is the statement that the corresponding problem 
is solved. We shall use lower and upper cases to denote respectively a node 
and the proposition associated with it. Any such directed graph which 
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represents the above problem-solving process is called an AND/OR graph. 
An AND/OR graph is sttown in Fig. 1. In Fig. I, the node a represents the 
original problem. The prob!em a is converted into three subproblems b, e 
and d. The relation between a, b, e and d is given by the Boolean function 
A = B v CD. This means that the problem a is solved if either the sub- 
problem b is solved, or if the subproblems e and d are both solved. The 
subproblem b is transformed into the subproblems • and f, and is related by 
B = EF, and so on. To check how the problem a is related to e, i and j, 
we can make the following substitutions, 

A - B v C D  
= EF v CD (since B - £F)  
= E(I v J)  v CD (since F = I v J)  
= EI  v E I  v CD. 

This means that if the subproblems • and i, or • and j (or e and d) are solved, 
then the problem a is also solved. Later on, we shall call El, E l  and CD 
implicants of ,4, i.e., El, EJ and CD imply ,4 according to the AND/OR 
graph shown in Fig. ]. The AND/OR gt'aph shown in Fig. 1 is actually an 
AND/OR tree [7]. However, as discussed in [8], the AND/OR tree representa- 
tion requires more space to handle duplicate nodes (nodes which represent 
the same problem) than does the AND/OR graph representation. Therefore, 
in this paper, we shall use the AND/OR graph representation, where every 
node represents a distinct problem. 

/d 
• B 

The I~meence of ~'~ indlcoles "ANW' whtle Ih~ 
obmence of It indlcolos a n " O l "  relatlol*th|p. 

FIG. 1 

Next, we consider terminal nodes of an AND/OR graph. The two kinds 
of terminal nodes are called Type I and Type H terminal nodes. A Type I 
terminai node represents a problem whose solution is immediately known to 
exist. A Type I[ terminal node represents a problem whose solution is im- 
mediately known not to exist.. A node having no successor nodes can be 
considered as a Type II terminal node, In this paper, when a Type I[ ~erminal 
node is generated, it will be deleted from further consideration. Therefore, 
in the sequel, without any confusion, Type I terminal nodes will be simply 
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called terminal nodes. A node which represents an original problem is called 
a starting node. There can be many starting nodes. If  there are q starting 
nodes s t , . . . ,  sq, we shal| always le!L S - St . . .  S¢. 

We now consider the following definitions. 
D~FINmON. Let n be a node in art AND/OR graph. Suppose n is related to 

its immediate succest~or nodes by a Boolean function 
N : C t  vC2 v. . .vC=,  

where C~, i : 1 , . . . ,  m, are conjunctions of propositions. Then each CI is 
called an immediate implicant of N. 

DEFINmON. Let a ,~onjunction Q = N t . . .  N,, where r >~ 1. Then Q'  is 
said to be an immediate implicant of Q iff Q' is a conjunction obtained from 
Q by replacing an N~. by one of its immediate implicants, 1 ~< k ~< r. 

DEFINmON. A conjunction Q is an implicant of a conjunction P iff there is 
a sequence of conjunctions Rt, R2, • •. ,  R, such that P - Rt,  Q = R,, and 
Rt is an immediate implicant of Rt_~ for i - 2 , . . . ,  n. 

~ $ ' A I I  

Q 

-F 

FIg. 2 

DEFINITION. Let P -- Nt . . .  Nr. A path graph from the nodes a t , . .  ,, nr 
to the nodes m r , . . . ,  ms in an AND/OR graph O is a finite subgraph G' of G 
such that 

(i) All the nodes a t , . . . ,  n,, m r , . . . ,  my are in G'; 
(ii) In G', only n t , . . . ,  n, have no arcs pointing to them, and only 

m r , . . . ,  ms bave no arcs leaviing from them; 
(iii) For every node n in G' different from m r , . . . ,  ms, there are immediate 

successor nodes a t , . . . ,  at of  n in G' such that At • . .  At is the only 
immediate implicant of N in "~" I I ,  

. (iv) Mt . . .  Ms is an implicant of P according to G'. 
DEFINmON. A path graph from the nodes a t , . . . ,  n, to some terminal 

nodes t t , . . . ,  ts is called a solution graph started with a t , .  •., n~. A solution 
graph started with the starting nodes s t , . . . ,  s¢ will be simply called a 
solution graph. 

Figure 2 shows a solution graph, where s is a starting node, and e and • 
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are the terminal nodes denoted by the double circles. Since $ - A B -  A F  = 
AA = A = C D  ffi CE, CE is an implicant of S.  
However, the graph shown in Fig. 3 is not a solution graph since CD is not 
an implicant of S. This graph has what is called an impossible loop by Slagle 
and Koniver [8]. 

.e.-K 

FIG. 3 

In this paper, we shall associate with each arc in an AND/OR graph a 
cost called the arc  cost. Let the cost of a graph be the sum of all arc costs 
in the graph. Therefore, every Solution graph in an AND/OR graph has a 
cost. For any AND/OR graph, our task is to find a solution graph with 
minimal cost, i.e., a minimal solution graph, Although, with some changes 
if necessary, many heuristic tree or graph searching techniques [1, 9, 10, 2, 
11-13, 3, 4, 14, 15, 5, 16-18, 6, 7, 19, 8] can be used in this task, we shall 
present another algorithm for searching for a minimal solution graph in an 
AND/OR graph. Our algorithm is an extension of the algorithm given by 
Hart et al. [20]. We shall prove that if the "lower bound" condition is satisfied, 
our algorithm is guaranteed to find a minimal solution graph if one exists. 
The optimality of our algorithm will also be discussed. 

1. An Admissible Searching Algorithm 

An algorithm which is guaranteed to find a minimal solution graph if 
one exists is called admissible. In  this paper, we shall be concerned with 
AND/OR graphs implicitly specified by the starting nodes s t , . . . ,  s¢ and 
a (node) successor operator F. 1 ~ r ~< q, application of F to s, generates 
a number of successor nodes attached to s, by arcs pointing from s, to its 
successor nodes, and specifies a Boolean function relating s, to its successor 
nodes. Application of the successor operator F to the successor nodes of s, 
generates more successor nodes and Boolean functions, and so on. When 
a successor node of n is generated which is the same as a node m generated 
before, a new node is not created, but instead we provide an arc pointing 
from n to m. Generating the successor nodes of a node by the successor 
operator is called expanding a node. A terminal node is never expanded. 
A node which is not a terminal node and which is not yet expanded is called 
Artificial Intelligence 2 (1971), 117-128 
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an unexpanded node. Let a conjunction Q = N~ . . .  N,. We say that Q / s  
expanded iff all the non-terminal nodes of nt, .... ,n,  are expanded. When 
a solution graph is partially expanded, we shall call it a partially expanded 
solution graph. For example, the four graphs shown in Fig. 4 are partially 
expanded solution graphs of the solution graph shown in Fig. 2.  We note 
that the conjunction of the propositions associated with all the unexpanded 
and terminal nodes in a partially expanded solution graph must be an im- 
plicant of S. 

Fm. 4 

Let s~, . . . ,  sq be the starting nodes. Our algorithm which we shall present 
is based upon an evaluation function f (P)  for each implicant P of S. This 
f (P )  can be written as f ( e )  - o (e )  + h(e), where if P = N 1 . . .  N,, then 
g(P) is the cost of a minimal path graph from s l , . . . ,  s~ to the nodes n~,. . . ,  n,, 
and h(P) is the cost of a minimal solution graph started with n l , . . . ,  n,. Note 

r 

that in general if P = N l . . .  N,, h(e) <<. ~ h(N,). For example, consider the 
1 

minimal solution graph shown in Fig. 5(a). P = NIN, and h(P) = 4. How- 
ever, if we consider n~ and n2 separately, we obtain the two solution graphs 
shown in Fig. 5(b). Consequently, we have h(Nl)= 3 and h(N2) = 3. Hence, 

'*~A.IS¢ 
(al (bi 

FIG. 5 

h(P) < h(Nl) + h(N2). In general,f (P) is not known. However, for a specific 
problem domain, we can use an estimate f (P)  = O(P) + $(P) off(P): where 
~(P) and ]I(P) are the estimates of g(P) and h(P), respectively. In this paper, 
if P = NI . . .  N,, we shall let O(P) be the cost of the path graph from the 
starting nodes s l , . . . ,  sq to the nodes n~, . . . ,  n, having the smallest cost so 

Artificial Intelligence 2 (1971), 117-128 



122 C. L. CHANG AND J. R. SLAGLE 

far found by the algorithm, h(P) is usually a lower bound of h(P). Using this 
f (P) ,  we now state our algorithm A* as follows: 
sTep 1. Let W = {S} and R = the empty set. 
sTep 2. Calculate f (Q) for each element Q in the set W. Select a P in W such 
that f (P)  is smallest. Resolve ties arbitrarily, but always in favor of an 
element of W which is a conjunction of propositions associated with terminal 
nodes. 
sTep 3. Let P = P~ . . .  P,, where P~ is the proposition associated with the 
node p~, i = 1 , . . . ,  r. If P i , . . . ,  P, are terminal nodes, terminate A * ;  ~ a 

solution graph has been found. Otherwise, go to the next step. 
step 4. If P is expanded, go to Step 6. Otherwise, go to the next step. 
STEP 5. Expand all the unexpanded non-terminal nodes of p i , . . . ,  Pr. 
STeP 6. Let V be the set of all the implicants of S constructed from P - 
P x . . - P ,  by replacing each (non-terminal) Pl by one of its immediate im- 
plicants, i - 1 , . . . ,  r. Let R - R u {P}. 
STeP 7. Let W -- (W u V) - R. If W is empty, terminate A*; there is no 
solution graph. Otherwise, go to Step 2. 

We give a simple example to illustrate the algorithm A*. The graph to be 
searched is shown in Fig, 6(a), where the number beside each node n is the 
estimated cost ~(N) of h(N). Arc costs are assumed to be unity. For this 
example, if P -  N t . .  N r, then, we defme ~ ( P ) - - ( r -  1 ) +  Min{~(Nt),.. . ,  
~(N,)}. It is clear that if ~(Ni) is a lc-,ver bound for h(Nl), i - 1,~.. ,  r, then 
~(P) is a lower bound for h(P) since for each i, a solution graph started with 
the nodes n l , . . . ,  nr contains a solution graph started with the node as. 
In fact, ~(N~) is easier to obtain than ~(P) for most practical problems. 
Therefore, it is often necessary to define ~(P) in terms of,~(Ni). In the above 
defined ~(P), (r - 1) is used stance there might be a minimr~l solution graph 
started with n t , . . . ,  n, which consists of a solution graph started with at, 
1 <~ k <<. r, and ( r -  1) arcs connecting from n~, to at, j = 1 , . . . ,  k - 1, 

• 

k + 1 , . . . ,  r. We now describe how the algorithm can be applied to obtain 
a minimal solution graph in the following: 

(I) Expanding the node s, we obtain the graph shown in Fig. 6(b). We 
know that J~" = {AB, C}. Since ~(AB)= (2 1 )  + Min{~(A), ~(B)} 
= ~ + Min {2, 3} = 3, and K(C) = 5, we obtain that ~ (AB) - O(AB) 
+~(AB) = 2 + 3 = 5, and.~(C) = O(C) + K(C) = 1 + $ = 6. ~ (AB) 
is less than f (C). Therefore, we choose AB for expansion. 

(2) Expanding the nodes a and b, we obtain the graph shown in Fig. 6(c). 
Since AB = DE(E + F) = DEE + DEF = DE + DEF, we have W = 
{DE, DEF, C}. Since ~(DE) - (2 - 1) + Min {~(D), ~(E)} = 1 + 
Min {0, 1} = 1, and ~(D£F) = (3 - 1) + Min {~(D),~(£),~(F)} = 
2 + Min {0, 1, 2} = 2, we obtain that f ( D £ )  = #(DE) + ~(DE) = 
5 + 1 = 6, and ~(DEF) = O(DEF) + ~(DEF) = 5 + 2 = 7..~(D£)and 

ArtiJ~cial Intelligence 2 (1971), 117-128 



ADMISSIBLE AND OPTIMAL ALGORITHM FOR SEARCHING AND/OR GRAPHS 123 

f (C) are less than.~ (DEF). We can arbitrarily choose either DE or C 
for expansion. Suppose we choose DE for expansion. 

(3) Expanding the node e, we obtain the graph shown in Fig. 6(d). Since 
D E - - D D =  D, we have W =  {D, DEF, C}. Since ~ ( D ) = 0 ,  
f(D) = ¢(D) +/~(D) = 6 + 0 = 6. Therefore, f ( D )  = f ( C ) =  6. We 
can arbitrarily choose D or C. However, since d is a terminal node, 
we select D. We then terminate the algorithm and obtain the solution 
graph shown in Fig. 6(e). The cost of this solution graph is 6 which 
happens to be minimal. Actually, this will always happen if/~(Q) ~ h(Q) 
for all implicants Q of $. 

(e) 

, . 

(b) 

(¢! 

FIG. 6 

(d) |e! 

An AND/OR graph is called an OR-graph if for each node n arid its 
successor nodes n l , . . . ,  n,, in the graph, N = Nt v . . .  v N ,  Hart et al. 
[20] have considered an algorithm for OR-graphs. For an OR-graph, our 
algorithm works exactly like theirs since in this case, every im;,licant of S is 
a single proposition. For 6 > 0, an AND/OR graph G is ¢~lled a 6-oraph iff 
the cost of every arc of G is greater than or equal to 6. The following proofs 
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of Lemma 1 and Theorem 1 are essentially those of Hart et al. [20] and 
Nilsson [3]. 

LEMMA 1. Suppose ~(Q) <~ h(Q) for all implicants Q of S. l f  P is an implicant 
of S selected by the algorithm A*, and if' there is a minimal solution graph, then 
f (P) <~ f (S). 
Proof. Let G. be a minimal solution g~aph. Let Go be the partially expanded 
solution graph of Gm so far generated when A* selects a n. Let q~ , . . . ,  qm be 
the terminal and unexpanded nodes in Go. Then clearly, Q - Q t . - .  Q,~ is 
an implicant of S, and Q must be in W. Since G. is minimal and Go is part 
of G, , f  (S) = f (Q) = g(Q) + h(Q) and #(Q) = o(Q), Since ~(Q) ~< h(Q), 

] (Q)  ffi #(Q) + 
--. = g(Q) + ~(Q) 

<<. g(Q) + h(O) 
- f (Q)  
-- f (S). 

Since e is selected by A*, f (P)  <~ f(Q). Therefore, f ( e )  <~ f(S) .  This com- 
pletes the proof of Lemma 1. 

We now show that A* is admissible. 
THEOREM 1. Suppose ~(Q) <~ h(Q) for all implicants Q of S. The algorithm 

A* is admissible for all 6-graphs. 
PROOF. Assume a 6-graph G has a minimal solution graph G.. We divide the 
proof into three steps as follows" 
(1) A* must terminate° 
For any implicant I in IV, if I = Nt . . .  N, and if n t , . . . ,  n, are d arcs from 
the nearest node of s t , . . . ,  sq, then f(1) >i d& Hence, if the cost of G,~ is 
f (S) ,  then for any such implieant I = N~ . . .  N, with n t , . . . ,  n, more than 
f(S)/6 arcs from the nearest nodes of s t , . . . ,  sq, f(1) > f(S).  However, by 
I.emma 1, for any implicant P selected by A*, f (P)  <~ f(S) .  Therefore, such 
I will not be selected by A*. Consequently, the algorithm A* must eventually 
terminate. 
(2) A* must terminate at a solution graph. 
Since G has Gin, W will not be empty at any time. Therefore, A* will never 
stop in Step 7 of A*. However, by (1), A* must terminate. Therefore, A* 
must terminate in Step 3 of A*. This implies that a solution graph is obtained. 
(3) A* must terminate at a minimal solution graph. 
Let T be the (terminal) implicant selected by A* just before termination. By 
l.emma 1, f (T) ~< f(S).  Therefore, 

f (T) = o(T) 
O(T) 

= f f f )  

f ( s ) .  
Artificial Intelligence 2 (1971), 117-128 
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Since f (T )  does not exceed f ( S )  which is minimal, f ( T )  must be minimal. 
This completes the proof of Theorem 1. 

An AND/OR graph as formulated in the Introduction may be reformulated 
as an OR-graph: Let the starting node be S. Define the "impiicant" successor 
operator, F', which, applied to $, creates a set of (say) m implicants of S. 
Let these m implicants of S be $1,. •., Sin. Application of F' to St yields all 
the successor nodes (implicants) of St. Application of F ' t o  $, toits successors, 
and so forth as long as new nodes (implicants) can be generated results in an 
explicit specification of an OR-graph G'. Thus, it seems that we may prove 
Theorem 1 by applying the theorem of Hart et al. [20] to the OR-graph G'. 
However, there are some complications which can arise when we have to 
relate the minimal path in G' to the minimal solution graph in the original 
AND/OR graph. Therefore, we rather use a direct proof of Theorem 1 as 
given above. 

2. The Optimality of A* 

The algorithm A* is actually a family of algorithms; the choice of a 
particular function/~ selects a particular algorithm from the family. In this 
section, we shall consider how the choice of an ~ will effect the number of 
nodes being expanded by the algorithm A*. Hart et al. [20] showed that, for 
OR-graphs, if a lower bound ~ for h used by algorithm A is greater than 
that used by B, then A will generally expand fewer nodes than B does. It is 
in this sense that we shall compare algorithms in the family of the algorithm 
A*. We shall say that algorithm AI is more informed than algorithm A2 iff 
~I(P) > ~z(P) for all implicants P of S which contain at least one proposition 
associated with a non-terminal node. For implicants P which contain pro- 
positions associated only with terminal nodes, we assume ~(P) = 0. We shall 
say that ~ is consistent iff/~(Q) - ~(P) ~< k(Q, P) for any implicant Q of S 
and any implicant _P of Q, where k(Q, P) is the cost of a minimal path graph 
from Q to P. With these two concepts - more informedness and consistency - 
we can now prove a theorem about the optimality of A*. We first prove the 
following lemma. The proof of Lemma 2 follows that of Nilsson [3]. 

L~MMA 2. I f  ~ is consistent and ~ P is an implicant selected by A*, then 
ffi g ( e ) .  

PROOF. Suppose the contrary, i.e., suppose ~(P) > g(P). Let P = P1 . . .  P,. 
Then, there exists some minimal path graph Go from the starting nodes 
s ~ , . . . ,  sq to p~ , . . . ,  p~. Since d(P) > g(P), Go is only partially expanded. 
Let q~, . . . ,  qm be all the terminal and unexpanded nodes in Go. Clearly, 
Q = Q~. . .  Qm must be in W, and P is an implicant of Q. Since Go is 
minimal, d(Q) = g(Q). Hence, o(P) = o(Q) + k(Q,P) = O(Q) + k(Q, e). 
Therefore, if we assume that ~(P) > o(P), then 0(e) > 0(Q) + k(Q,e). 
Adding ~(P) to both sides yields .~(P) +/~(P) > O(Q) + k(Q, P) + ~(P). 
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However, ~(Q) ~< k(Q,P) + ~(P). Therefore, we obtain 0(P) +/~(P)> 
0(Q) + ~(Q), or f (P)  > f(Q). This means Q will be selected rather than P. 
Therefore, 0(P) = o(P). This completes the proof of Lemma 2. 

We can now prove the optimality of the algorithm A*. 
THEOREM 2. Let At and A2 be two admissible algorithms in A*. I f  At is more 

informed than A2, if ~ used in At is consistent, and if~t(Q) <~ h(Q) for any 
implicant Q of S, then, for any 6-graph which has a minimal solution graph, 
every implicant selected by A t is also selected by A2. 
PROOF. Le t /1 ,  P 2 , . . .  be the sequence of implicants selected by At. (Note 
that P t -- S.) Suppose Theorem 2 is not true. Then there exists the first 
implicant in the sequence, say Pt, such that Pt is selected by A ~ but not by A2. 
Since Pt is never selected by A2, and A2 is admissible, 

f2(P,) i> f (S) ,  
or  

O~:(Pt) + ~2(PI,) >I f ($) ,  

/12(Pt) ~ f ( S )  - -  02(Pt)- 
o r  

(l) 
Since ~1 i.~; consistent, by Lemma 2, 0t(Pt) - g(Pt). That is, ifP~ -- Ptt • • • P~,, 
then when P z , . . . ,  Pt in the sequence are generated there is a minimal path 
graph from the starting nodes s t , . . . ,  sq to Ptz,. •., P~. However, Pt is the 
first implicant in the sequence selected by At but not by A2, hence P t , . . . ,  Pa 
are also generated by A2. Therefore, at some stage, when P t , . . . ,  Pt are 
generated by ,42, we have O2(Pt) -- g(Pt). Hence, (1) becomes 

~2(Pt) ~ f (S) - g(P,). 
On the other hand, AI used the evaluation function 

From Lemma 1, we know that 
f t(P,) <~ f (S), 

or  

+ h (ek) f (S), 
or  

(2) 

(3) 
However, as shown above, we know that Ot(Pt)= g(Pt). Therefore, (3) 
becomes 

~t(P a) ~< f (S )  - g(Pt). (4) 
From (2) and (4), we obtain 

I;,(&) 
This contradicts the assumption that A~ is more informed than A~. This 
completes the proof of Theorem 2. 

In the above proof, the derivation of the inequality (4) follows that of 
Nilsson [3]. However, we use a different woof to derive the inequality (2). 
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Since in the algorithm A*, the expansion of nodes follows the selection 
of implicants, the following is a trivial corollary of Theorem 2. 

COKOLLARY. Let  A t artd A 2 be two admissible algorithms in A*. I f  At is more 
informed than Az, i f  ]zl used in AI is consistent, and if  ~l(Q) ~ h(Q) for any 
implicant Q of s, then, for any 6-graph which has a minimal solution graph, 
every node expanded by A t is also expanded by A 2. 

As implied by the above corollary, the function ~ plays an important role 
in the emciency of the algorithm A*. When absolutely no information can 
be obtained from the problem domain, we may just let ]~ - 0. However, 
in most problem domains, we do know some information. For example, 
consider the following problem: A telephone company decides to connect 
each of the cities s t , .  • . ,  sq to the city t. For convenience of installation, lines 
will be put up along the existing highways connecting the cities s t , . . . ,  s¢ and 
t. Find the shortest over-all route. Fig. 7 gives an example of such a problem, 
where the shortest over-all route is to lay lines from st and sz to b, then b to t. 
We note that the shortest route from st to t is slat. For this problem, we can 
let a node represent a city or a junction of highways, and let ]~(N) be the air- 
line distance between the city (junction) n and the city t. If P ffi N t . . .  N,, 
let ]~(P) ffi Min {~(N~),.. . ,  ]z(Nv)} for any implicant P. Using this estimate ]~, 
the algorithm would still find the shortest over-all route, but would do so by 
expanding considerably fewer nodes than the algorithm which uses ~ = 0. 

I~G. 7 

We note that the algorithm A* expands several nodes simultaneously. 
However, A* can be adapted to expand only one node at a time. This can be 
easily done by replacing respectively Step 5 and Step 6 of A* by Step 5' and 
Step 6' as follows: 
STO 5'. Among P l , . . . ,  P,, arbitrarily select an unexpanded non-terminal 
node p~ and expand it, 1 ~< k ~< r. (For this step, for example, we may choose 
pa whose Pk appears most often in W, or pa which has the smallest ]~(P~) 
among P I , . . . ,  P , . )  
STEP 6'. Let V be the set of all the implicants of $ constructed from 
P - P t . . .  P, by replacing each (non-terminal) expanded Pi by one of its 
immediate implicants, i = 1 , . . . ,  r. Let R = R u {P}. 
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Let B* be the above modif icat ion of  A*. I t  is no t  difficult to see tha t  B* is 
still admissible. However,  B* is not optimal  (in the sense stated in the above  
corollary) any more. In  fact, B* is a g e n e r a l i ~ t i o n  of  Nilsson 's  me thod  [4] 
from A N D / O R  trees to A N D / O R  graphs. 
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