
ARTIFICIAL INTELLIGENCE 117

An Admissible and Optimal Algorithm
for Searchtag AND/OR Graphs

C. L. Chang
and
J. n. Slagle
Heuristics Laboratory, Division of Computer Research and
Technology, National Institutes of Health, Department of
Health, Education and Welfare, Bethesda, Maryland 20014

Recommended by N. J. Nilsson

ABSTRACT
An AND/OR graph is a graph which represents a problem-solving process. A solution graph
is a subgraph of the ANDIOR graph which represents a derivation for a solution of the prob-
lem. Therefore, solving a problem can be viewed as searching for a ~olution grtph in an
AND/OR gra~,h. A "cost" is associated with every solution grapm~. A minimal solutiou graph
is a solution graph with minimal cost. In this paper, an algorithm for searching for a minimal
solution graph in an AND[OR graph is described. I f the "lower bound" condition is satisfled~
the algorithm is guaranteed to find a minimal solution grapll when one exists. Furthermore,
the "'optimality" of the algorithm is also proved.

Introduction
In automatic problem.solving, one is given a problem to solve, e.g., an
integration to perform, a theorem to prove or a game position to analyze,
etc. The usual approach [I-7] is to transform the original problem into
several subproblems. Each subproblem is again converted into subproblems,
and so on. This process can be easily represented by a directed graph. V~ ~:
consider that each node of a graph represents a problem statement. A problem
and its subproblems are linked by arcs pointing from the node representing
the problem to the nodes representing its subproblems. The ~'elar:onship
between a problem and its subproblems is stated by a Boolean function in
disjunctive normal form. (We assume that no negative literal appears in the
disjunctive normal form.) Every such Boolean function indicates whether or
not a problem is solved if some of its subproblems are solved. The proposition
N associated with a node n is the statement that the corresponding problem
is solved. We shall use lower and upper cases to denote respectively a node
and the proposition associated with it. Any such directed graph which

Artificial Intelligence 2 (1971), 117-128

Copyright ~) 1971 by North.Holla,,d Publish'.ng Company

118 C. L. CHANG AND J. R. SLAGLE

represents the above problem-solving process is called an AND/OR graph.
An AND/OR graph is sttown in Fig. 1. In Fig. I, the node a represents the
original problem. The prob!em a is converted into three subproblems b, e
and d. The relation between a, b, e and d is given by the Boolean function
A = B v CD. This means that the problem a is solved if either the sub-
problem b is solved, or if the subproblems e and d are both solved. The
subproblem b is transformed into the subproblems • and f, and is related by
B = EF, and so on. To check how the problem a is related to e, i and j,
we can make the following substitutions,

A - B v C D
= EF v CD (since B - £F)
= E(I v J) v CD (since F = I v J)
= EI v E I v CD.

This means that if the subproblems • and i, or • and j (or e and d) are solved,
then the problem a is also solved. Later on, we shall call El, E l and CD
implicants of ,4, i.e., El, EJ and CD imply ,4 according to the AND/OR
graph shown in Fig.]. The AND/OR gt'aph shown in Fig. 1 is actually an
AND/OR tree [7]. However, as discussed in [8], the AND/OR tree representa-
tion requires more space to handle duplicate nodes (nodes which represent
the same problem) than does the AND/OR graph representation. Therefore,
in this paper, we shall use the AND/OR graph representation, where every
node represents a distinct problem.

/d
• B

The I~meence of ~'~ indlcoles "ANW' whtle Ih~
obmence of It indlcolos a n " O l " relatlol*th|p.

FIG. 1

Next, we consider terminal nodes of an AND/OR graph. The two kinds
of terminal nodes are called Type I and Type H terminal nodes. A Type I
terminai node represents a problem whose solution is immediately known to
exist. A Type I[terminal node represents a problem whose solution is im-
mediately known not to exist.. A node having no successor nodes can be
considered as a Type II terminal node, In this paper, when a Type I[~erminal
node is generated, it will be deleted from further consideration. Therefore,
in the sequel, without any confusion, Type I terminal nodes will be simply
Artificial Intelligence 2 (197 I), 117-128

ADMISSIBLE AND OPTIMAL ALGORITHM FOR SEARCHING AND/OR C~ICAPHS 119

called terminal nodes. A node which represents an original problem is called
a starting node. There can be many starting nodes. If there are q starting
nodes s t , . . . , sq, we shal| always le!L S - St . . . S¢.

We now consider the following definitions.
D~FINmON. Let n be a node in art AND/OR graph. Suppose n is related to

its immediate succest~or nodes by a Boolean function
N : C t vC2 v. . .vC=,

where C~, i : 1 , . . . , m, are conjunctions of propositions. Then each CI is
called an immediate implicant of N.

DEFINmON. Let a ,~onjunction Q = N t . . . N,, where r >~ 1. Then Q' is
said to be an immediate implicant of Q iff Q' is a conjunction obtained from
Q by replacing an N~. by one of its immediate implicants, 1 ~< k ~< r.

DEFINmON. A conjunction Q is an implicant of a conjunction P iff there is
a sequence of conjunctions Rt, R2, • •. , R, such that P - Rt, Q = R,, and
Rt is an immediate implicant of Rt_~ for i - 2 , . . . , n.

~ $ ' A I I

Q

-F

FIg. 2

DEFINITION. Let P -- Nt . . . Nr. A path graph from the nodes a t , . . ,, nr
to the nodes m r , . . . , ms in an AND/OR graph O is a finite subgraph G' of G
such that

(i) All the nodes a t , . . . , n,, m r , . . . , my are in G';
(ii) In G', only n t , . . . , n, have no arcs pointing to them, and only

m r , . . . , ms bave no arcs leaviing from them;
(iii) For every node n in G' different from m r , . . . , ms, there are immediate

successor nodes a t , . . . , at of n in G' such that At • . . At is the only
immediate implicant of N in "~" I I ,

. (iv) Mt . . . Ms is an implicant of P according to G'.
DEFINmON. A path graph from the nodes a t , . . . , n, to some terminal

nodes t t , . . . , ts is called a solution graph started with a t , . •., n~. A solution
graph started with the starting nodes s t , . . . , s¢ will be simply called a
solution graph.

Figure 2 shows a solution graph, where s is a starting node, and e and •
Artificial Intelligence 2 (1971), 117-128

120 C. L. CHANG AND J. R. SLAGLE

are the terminal nodes denoted by the double circles. Since $ - A B - A F =
AA = A = C D ffi CE, CE is an implicant of S.
However, the graph shown in Fig. 3 is not a solution graph since CD is not
an implicant of S. This graph has what is called an impossible loop by Slagle
and Koniver [8].

.e.-K

FIG. 3

In this paper, we shall associate with each arc in an AND/OR graph a
cost called the arc cost. Let the cost of a graph be the sum of all arc costs
in the graph. Therefore, every Solution graph in an AND/OR graph has a
cost. For any AND/OR graph, our task is to find a solution graph with
minimal cost, i.e., a minimal solution graph, Although, with some changes
if necessary, many heuristic tree or graph searching techniques [1, 9, 10, 2,
11-13, 3, 4, 14, 15, 5, 16-18, 6, 7, 19, 8] can be used in this task, we shall
present another algorithm for searching for a minimal solution graph in an
AND/OR graph. Our algorithm is an extension of the algorithm given by
Hart et al. [20]. We shall prove that if the "lower bound" condition is satisfied,
our algorithm is guaranteed to find a minimal solution graph if one exists.
The optimality of our algorithm will also be discussed.

1. An Admissible Searching Algorithm

An algorithm which is guaranteed to find a minimal solution graph if
one exists is called admissible. In this paper, we shall be concerned with
AND/OR graphs implicitly specified by the starting nodes s t , . . . , s¢ and
a (node) successor operator F. 1 ~ r ~< q, application of F to s, generates
a number of successor nodes attached to s, by arcs pointing from s, to its
successor nodes, and specifies a Boolean function relating s, to its successor
nodes. Application of the successor operator F to the successor nodes of s,
generates more successor nodes and Boolean functions, and so on. When
a successor node of n is generated which is the same as a node m generated
before, a new node is not created, but instead we provide an arc pointing
from n to m. Generating the successor nodes of a node by the successor
operator is called expanding a node. A terminal node is never expanded.
A node which is not a terminal node and which is not yet expanded is called
Artificial Intelligence 2 (1971), 117-128

ADMISSIBLE AND OPT]~MAL ALGORITHM FOR SEARCHING AND/OR GRAPHS 121

an unexpanded node. Let a conjunction Q = N~ . . . N,. We say that Q / s
expanded iff all the non-terminal nodes of nt, ,n, are expanded. When
a solution graph is partially expanded, we shall call it a partially expanded
solution graph. For example, the four graphs shown in Fig. 4 are partially
expanded solution graphs of the solution graph shown in Fig. 2. We note
that the conjunction of the propositions associated with all the unexpanded
and terminal nodes in a partially expanded solution graph must be an im-
plicant of S.

Fm. 4

Let s~, . . . , sq be the starting nodes. Our algorithm which we shall present
is based upon an evaluation function f (P) for each implicant P of S. This
f (P) can be written as f (e) - o (e) + h(e), where if P = N 1 . . . N,, then
g(P) is the cost of a minimal path graph from s l , . . . , s~ to the nodes n~,. . . , n,,
and h(P) is the cost of a minimal solution graph started with n l , . . . , n,. Note

r

that in general if P = N l . . . N,, h(e) <<. ~ h(N,). For example, consider the
1

minimal solution graph shown in Fig. 5(a). P = NIN, and h(P) = 4. How-
ever, if we consider n~ and n2 separately, we obtain the two solution graphs
shown in Fig. 5(b). Consequently, we have h(Nl)= 3 and h(N2) = 3. Hence,

'*~A.IS¢
(al (bi

FIG. 5

h(P) < h(Nl) + h(N2). In general,f (P) is not known. However, for a specific
problem domain, we can use an estimate f (P) = O(P) + $(P) off(P): where
~(P) and]I(P) are the estimates of g(P) and h(P), respectively. In this paper,
if P = NI . . . N,, we shall let O(P) be the cost of the path graph from the
starting nodes s l , . . . , sq to the nodes n~, . . . , n, having the smallest cost so

Artificial Intelligence 2 (1971), 117-128

122 C. L. CHANG AND J. R. SLAGLE

far found by the algorithm, h(P) is usually a lower bound of h(P). Using this
f (P) , we now state our algorithm A* as follows:
sTep 1. Let W = {S} and R = the empty set.
sTep 2. Calculate f (Q) for each element Q in the set W. Select a P in W such
that f (P) is smallest. Resolve ties arbitrarily, but always in favor of an
element of W which is a conjunction of propositions associated with terminal
nodes.
sTep 3. Let P = P~ . . . P,, where P~ is the proposition associated with the
node p~, i = 1 , . . . , r. If P i , . . . , P, are terminal nodes, terminate A * ; ~ a

solution graph has been found. Otherwise, go to the next step.
step 4. If P is expanded, go to Step 6. Otherwise, go to the next step.
STEP 5. Expand all the unexpanded non-terminal nodes of p i , . . . , Pr.
STeP 6. Let V be the set of all the implicants of S constructed from P -
P x . . - P , by replacing each (non-terminal) Pl by one of its immediate im-
plicants, i - 1 , . . . , r. Let R - R u {P}.
STeP 7. Let W -- (W u V) - R. If W is empty, terminate A*; there is no
solution graph. Otherwise, go to Step 2.

We give a simple example to illustrate the algorithm A*. The graph to be
searched is shown in Fig, 6(a), where the number beside each node n is the
estimated cost ~(N) of h(N). Arc costs are assumed to be unity. For this
example, if P - N t . . N r, then, we defme ~ (P) - - (r - 1) + Min{~(Nt),.. . ,
~(N,)}. It is clear that if ~(Ni) is a lc-,ver bound for h(Nl), i - 1,~.. , r, then
~(P) is a lower bound for h(P) since for each i, a solution graph started with
the nodes n l , . . . , nr contains a solution graph started with the node as.
In fact, ~(N~) is easier to obtain than ~(P) for most practical problems.
Therefore, it is often necessary to define ~(P) in terms of,~(Ni). In the above
defined ~(P), (r - 1) is used stance there might be a minimr~l solution graph
started with n t , . . . , n, which consists of a solution graph started with at,
1 <~ k <<. r, and (r - 1) arcs connecting from n~, to at, j = 1 , . . . , k - 1,

•

k + 1 , . . . , r. We now describe how the algorithm can be applied to obtain
a minimal solution graph in the following:

(I) Expanding the node s, we obtain the graph shown in Fig. 6(b). We
know that J~" = {AB, C}. Since ~(AB)= (2 1) + Min{~(A), ~(B)}
= ~ + Min {2, 3} = 3, and K(C) = 5, we obtain that ~ (AB) - O(AB)
+~(AB) = 2 + 3 = 5, and.~(C) = O(C) + K(C) = 1 + $ = 6. ~ (AB)
is less than f (C). Therefore, we choose AB for expansion.

(2) Expanding the nodes a and b, we obtain the graph shown in Fig. 6(c).
Since AB = DE(E + F) = DEE + DEF = DE + DEF, we have W =
{DE, DEF, C}. Since ~(DE) - (2 - 1) + Min {~(D), ~(E)} = 1 +
Min {0, 1} = 1, and ~(D£F) = (3 - 1) + Min {~(D),~(£),~(F)} =
2 + Min {0, 1, 2} = 2, we obtain that f (D £) = #(DE) + ~(DE) =
5 + 1 = 6, and ~(DEF) = O(DEF) + ~(DEF) = 5 + 2 = 7..~(D£)and

ArtiJ~cial Intelligence 2 (1971), 117-128

ADMISSIBLE AND OPTIMAL ALGORITHM FOR SEARCHING AND/OR GRAPHS 123

f (C) are less than.~ (DEF). We can arbitrarily choose either DE or C
for expansion. Suppose we choose DE for expansion.

(3) Expanding the node e, we obtain the graph shown in Fig. 6(d). Since
D E - - D D = D, we have W = {D, DEF, C}. Since ~ (D) = 0 ,
f(D) = ¢(D) +/~(D) = 6 + 0 = 6. Therefore, f (D) = f (C) = 6. We
can arbitrarily choose D or C. However, since d is a terminal node,
we select D. We then terminate the algorithm and obtain the solution
graph shown in Fig. 6(e). The cost of this solution graph is 6 which
happens to be minimal. Actually, this will always happen if/~(Q) ~ h(Q)
for all implicants Q of $.

(e)

, .

(b)

(¢!

FIG. 6

(d) |e!

An AND/OR graph is called an OR-graph if for each node n arid its
successor nodes n l , . . . , n,, in the graph, N = Nt v . . . v N , Hart et al.
[20] have considered an algorithm for OR-graphs. For an OR-graph, our
algorithm works exactly like theirs since in this case, every im;,licant of S is
a single proposition. For 6 > 0, an AND/OR graph G is ¢~lled a 6-oraph iff
the cost of every arc of G is greater than or equal to 6. The following proofs

Arti]icial Intelligence 2 (1971), 117-128

124 C. L. CHANG AND J. R. SLAGLE

of Lemma 1 and Theorem 1 are essentially those of Hart et al. [20] and
Nilsson [3].

LEMMA 1. Suppose ~(Q) <~ h(Q) for all implicants Q of S. l f P is an implicant
of S selected by the algorithm A*, and if' there is a minimal solution graph, then
f (P) <~ f (S).
Proof. Let G. be a minimal solution g~aph. Let Go be the partially expanded
solution graph of Gm so far generated when A* selects a n. Let q~ , . . . , qm be
the terminal and unexpanded nodes in Go. Then clearly, Q - Q t . - . Q,~ is
an implicant of S, and Q must be in W. Since G. is minimal and Go is part
of G, , f (S) = f (Q) = g(Q) + h(Q) and #(Q) = o(Q), Since ~(Q) ~< h(Q),

] (Q) ffi #(Q) +
--. = g(Q) + ~(Q)

<<. g(Q) + h(O)
- f (Q)
-- f (S).

Since e is selected by A*, f (P) <~ f(Q). Therefore, f (e) <~ f(S) . This com-
pletes the proof of Lemma 1.

We now show that A* is admissible.
THEOREM 1. Suppose ~(Q) <~ h(Q) for all implicants Q of S. The algorithm

A* is admissible for all 6-graphs.
PROOF. Assume a 6-graph G has a minimal solution graph G.. We divide the
proof into three steps as follows"
(1) A* must terminate°
For any implicant I in IV, if I = Nt . . . N, and if n t , . . . , n, are d arcs from
the nearest node of s t , . . . , sq, then f(1) >i d& Hence, if the cost of G,~ is
f (S) , then for any such implieant I = N~ . . . N, with n t , . . . , n, more than
f(S)/6 arcs from the nearest nodes of s t , . . . , sq, f(1) > f(S). However, by
I.emma 1, for any implicant P selected by A*, f (P) <~ f(S) . Therefore, such
I will not be selected by A*. Consequently, the algorithm A* must eventually
terminate.
(2) A* must terminate at a solution graph.
Since G has Gin, W will not be empty at any time. Therefore, A* will never
stop in Step 7 of A*. However, by (1), A* must terminate. Therefore, A*
must terminate in Step 3 of A*. This implies that a solution graph is obtained.
(3) A* must terminate at a minimal solution graph.
Let T be the (terminal) implicant selected by A* just before termination. By
l.emma 1, f (T) ~< f(S). Therefore,

f (T) = o(T)
O(T)

= f f f)

f (s) .
Artificial Intelligence 2 (1971), 117-128

ADMISSIBLE AND OPTIMAL ALGORITHM FOR SEARCHING AND/OR GRAPHS 125

Since f (T) does not exceed f (S) which is minimal, f (T) must be minimal.
This completes the proof of Theorem 1.

An AND/OR graph as formulated in the Introduction may be reformulated
as an OR-graph: Let the starting node be S. Define the "impiicant" successor
operator, F', which, applied to $, creates a set of (say) m implicants of S.
Let these m implicants of S be $1,. •., Sin. Application of F' to St yields all
the successor nodes (implicants) of St. Application of F ' t o $, toits successors,
and so forth as long as new nodes (implicants) can be generated results in an
explicit specification of an OR-graph G'. Thus, it seems that we may prove
Theorem 1 by applying the theorem of Hart et al. [20] to the OR-graph G'.
However, there are some complications which can arise when we have to
relate the minimal path in G' to the minimal solution graph in the original
AND/OR graph. Therefore, we rather use a direct proof of Theorem 1 as
given above.

2. The Optimality of A*

The algorithm A* is actually a family of algorithms; the choice of a
particular function/~ selects a particular algorithm from the family. In this
section, we shall consider how the choice of an ~ will effect the number of
nodes being expanded by the algorithm A*. Hart et al. [20] showed that, for
OR-graphs, if a lower bound ~ for h used by algorithm A is greater than
that used by B, then A will generally expand fewer nodes than B does. It is
in this sense that we shall compare algorithms in the family of the algorithm
A*. We shall say that algorithm AI is more informed than algorithm A2 iff
~I(P) > ~z(P) for all implicants P of S which contain at least one proposition
associated with a non-terminal node. For implicants P which contain pro-
positions associated only with terminal nodes, we assume ~(P) = 0. We shall
say that ~ is consistent iff/~(Q) - ~(P) ~< k(Q, P) for any implicant Q of S
and any implicant _P of Q, where k(Q, P) is the cost of a minimal path graph
from Q to P. With these two concepts - more informedness and consistency -
we can now prove a theorem about the optimality of A*. We first prove the
following lemma. The proof of Lemma 2 follows that of Nilsson [3].

L~MMA 2. I f ~ is consistent and ~ P is an implicant selected by A*, then
ffi g (e) .

PROOF. Suppose the contrary, i.e., suppose ~(P) > g(P). Let P = P1 . . . P,.
Then, there exists some minimal path graph Go from the starting nodes
s ~ , . . . , sq to p~ , . . . , p~. Since d(P) > g(P), Go is only partially expanded.
Let q~, . . . , qm be all the terminal and unexpanded nodes in Go. Clearly,
Q = Q~. . . Qm must be in W, and P is an implicant of Q. Since Go is
minimal, d(Q) = g(Q). Hence, o(P) = o(Q) + k(Q,P) = O(Q) + k(Q, e).
Therefore, if we assume that ~(P) > o(P), then 0(e) > 0(Q) + k(Q,e).
Adding ~(P) to both sides yields .~(P) +/~(P) > O(Q) + k(Q, P) + ~(P).

Artificial Intelligence 2 (1971), 117- ! 28

126 C. L. CHANG AND J. R. SLAGLE

However, ~(Q) ~< k(Q,P) + ~(P). Therefore, we obtain 0(P) +/~(P)>
0(Q) + ~(Q), or f (P) > f(Q). This means Q will be selected rather than P.
Therefore, 0(P) = o(P). This completes the proof of Lemma 2.

We can now prove the optimality of the algorithm A*.
THEOREM 2. Let At and A2 be two admissible algorithms in A*. I f At is more

informed than A2, if ~ used in At is consistent, and if~t(Q) <~ h(Q) for any
implicant Q of S, then, for any 6-graph which has a minimal solution graph,
every implicant selected by A t is also selected by A2.
PROOF. Le t /1 , P 2 , . . . be the sequence of implicants selected by At. (Note
that P t -- S.) Suppose Theorem 2 is not true. Then there exists the first
implicant in the sequence, say Pt, such that Pt is selected by A ~ but not by A2.
Since Pt is never selected by A2, and A2 is admissible,

f2(P,) i> f (S) ,
or

O~:(Pt) + ~2(PI,) >I f ($) ,

/12(Pt) ~ f (S) - - 02(Pt)-
o r

(l)
Since ~1 i.~; consistent, by Lemma 2, 0t(Pt) - g(Pt). That is, ifP~ -- Ptt • • • P~,,
then when P z , . . . , Pt in the sequence are generated there is a minimal path
graph from the starting nodes s t , . . . , sq to Ptz,. •., P~. However, Pt is the
first implicant in the sequence selected by At but not by A2, hence P t , . . . , Pa
are also generated by A2. Therefore, at some stage, when P t , . . . , Pt are
generated by ,42, we have O2(Pt) -- g(Pt). Hence, (1) becomes

~2(Pt) ~ f (S) - g(P,).
On the other hand, AI used the evaluation function

From Lemma 1, we know that
f t(P,) <~ f (S),

or

+ h (ek) f (S),
or

(2)

(3)
However, as shown above, we know that Ot(Pt)= g(Pt). Therefore, (3)
becomes

~t(P a) ~< f (S) - g(Pt). (4)
From (2) and (4), we obtain

I;,(&)
This contradicts the assumption that A~ is more informed than A~. This
completes the proof of Theorem 2.

In the above proof, the derivation of the inequality (4) follows that of
Nilsson [3]. However, we use a different woof to derive the inequality (2).
Artilicial Intelligence 2 (1971), 117-128

ADMISSIBLE AND OPTIMAL ALGORITHM FOR SEARCHING AND/OR GRAPHS 127

Since in the algorithm A*, the expansion of nodes follows the selection
of implicants, the following is a trivial corollary of Theorem 2.

COKOLLARY. Let A t artd A 2 be two admissible algorithms in A*. I f At is more
informed than Az, i f]zl used in AI is consistent, and if ~l(Q) ~ h(Q) for any
implicant Q of s, then, for any 6-graph which has a minimal solution graph,
every node expanded by A t is also expanded by A 2.

As implied by the above corollary, the function ~ plays an important role
in the emciency of the algorithm A*. When absolutely no information can
be obtained from the problem domain, we may just let]~ - 0. However,
in most problem domains, we do know some information. For example,
consider the following problem: A telephone company decides to connect
each of the cities s t , . • . , sq to the city t. For convenience of installation, lines
will be put up along the existing highways connecting the cities s t , . . . , s¢ and
t. Find the shortest over-all route. Fig. 7 gives an example of such a problem,
where the shortest over-all route is to lay lines from st and sz to b, then b to t.
We note that the shortest route from st to t is slat. For this problem, we can
let a node represent a city or a junction of highways, and let]~(N) be the air-
line distance between the city (junction) n and the city t. If P ffi N t . . . N,,
let]~(P) ffi Min {~(N~),.. . ,]z(Nv)} for any implicant P. Using this estimate]~,
the algorithm would still find the shortest over-all route, but would do so by
expanding considerably fewer nodes than the algorithm which uses ~ = 0.

I~G. 7

We note that the algorithm A* expands several nodes simultaneously.
However, A* can be adapted to expand only one node at a time. This can be
easily done by replacing respectively Step 5 and Step 6 of A* by Step 5' and
Step 6' as follows:
STO 5'. Among P l , . . . , P,, arbitrarily select an unexpanded non-terminal
node p~ and expand it, 1 ~< k ~< r. (For this step, for example, we may choose
pa whose Pk appears most often in W, or pa which has the smallest]~(P~)
among P I , . . . , P , .)
STEP 6'. Let V be the set of all the implicants of $ constructed from
P - P t . . . P, by replacing each (non-terminal) expanded Pi by one of its
immediate implicants, i = 1 , . . . , r. Let R = R u {P}.

Artij~cial Intelligence 2 (1971), 117-128

128 C. L. CHANG AND J. R. SLAGLE

Let B* be the above modif icat ion of A*. I t is no t difficult to see tha t B* is
still admissible. However, B* is not optimal (in the sense stated in the above
corollary) any more. In fact, B* is a g e n e r a l i ~ t i o n of Nilsson 's me thod [4]
from A N D / O R trees to A N D / O R graphs.

REFERENCES

1. Amarel, S. An Approach to Heuristic Problem Solving and Theorem Proving in the
Propositional Calculus, In Systems and Computer Science, eds. Hart, J. F., and Takasu,
S. University of Toronto Press, Toronto, Ontario, Canada, 1967, pp. 125-220.

2. Ernst, G. W. and Newell, A. Generality and GPS. Doctoral dissertation at the Carnegie
Institute of Technology, Pittsburgh, Pa., January, 1967.

3. Nilsson, N. J. Problem Solving Methods in Artificial Intelligence. McGraw-Hill, 1971.
4. Nilsson, N. J. Searching Problem-Solving and Game Playing Trees for Minimal Cost

Solutions. IFIPS Congress Preprints (1968), pp. H 125-130.
5. Sandewall, E. J. Concepts and Methods for Heuristic Search. Prec. International Joint

Conference on Artificial Intelligence, Washington, D.C., 1969.
6. Slagle, J. R. Heuristic Search Programs. In Formal Systems and Non.Numerical Problem

Solving by Computers, R. Banerji and M. D. Mesarovic (Eds.). Springer-Verlag,
Berlin, 1970, pp. 246-273.

7. Slage, J. R. and Bursky, P. Experiments with a Multipurpose, Theorem-Proving
Heuristic Program. J. ACM, 15, No. 1 (Jan. 1968), pp. 8.5--99.

8. Single, J. R. and Koniver, D. A. Finding Resolution Proofs and Using Duplicate
Goals in AND/OR Trees. To appear in Information Sciences Journal (1971).

9. Baylor, G. W. and Simon, H. A. Chess Mating Combinations Program. Proceedings of
the 1966 @ring Joint Computer Conference, pp. 431.477.

10. Doran, J. E. and Michie, D. Experiments with the Graph Traverser Program. Prec.
Roy. Soc. A, 294, 1437 (1966), 235-259.

11. Feigenbaum, E. and Feldrnan, J. (Eds.) Computer and Thought. McGraw-Hill Book
Company, New York, 1963.

12. Gelernter, H. Realization of a Geometry Provhlg Machine. Prec. of the International
Conference on Information Processing, 1959. Reprinted in [11].

13. Michie, D. Strategy Building with the Graph Transver. In Collins, N. L., and Michie,
D. (Eds.), Machine Intelligence 1. Oliver and Boyd, Edinburgh, 1967, pp. 135-152.

14. Samuel, A. Some Studies in Machine Learning Using the Game of Checkers. IBM J.
3 (1959), 211-229. Reprinted in [11].

15. Samuel, A. Some Studies in Machine Learning Using the Game of Checkers II. Recent
Progress. IBMJ. of Research and Development, 11, No. 6 (1967), pp. 601-617.

16. Sandewall, E. J. A Planning Problem Solver Based on Look-Ahead in Stochastic Game
Trees. J. ACM, 16, No. 3 (July 1969), pp. 364-382.

17. Slagle, J. R. A Heuristic Program that Solves Symbolic Integration Problems in
Freshman Calculus. Reprinted in [11].

18. Single, J. R. A Multipurpose Theorem-Proving, Heuristic Program that Learns.
Prec. of the IFIP Congress, 1965.

19. Single: J. R. and Dixon, J. K. Experiments with Some Programs that Search Game
Trees.J. ACM, 16) No. 2 (April 1969), pp. 189-207.

20. Hart, P. E., Nilsson, N. J. and Raphael, B. A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths. IEEE Trans. or System Sciences and Cybernetics,
Vol. SSC-4, No. 2 (July 1968), pp. 100-107.

Accepted March 9, 1971

Artificial Intelligence 2 (1971), 117-128

