Logic and
Resolution Proof

In this chapter, you learn about logic, an important addition to your
knowledge of problem-solving paradigms.

Like the other paradigms, logic has both seductive advantages and
bothersome disadvantages. On the positive side, the ideas of logic, having
matured for centuries, are concise and universally understood, like Latin.
Moreover, until recently, logicians have focused on proving theorems about
what can be proved. Consequently, when a problem can be attacked by
logic successfully, you are in luck, for you know exactly what you can and
cannot do.

On the negative side, logic can be a procrustean bed, for concentrating
on logic can lead to concentrating on the mathematics of logic, deflecting
attention away from valuable problem-solving methods that resist mathe-
matical analysis.

First, you learn how to handle the notation used in logic; building
on that notation, you see how rules of inference, such as modus ponens,
modus tolens, and resolution, make it possible to create new expressions
from existing ones. Then, you explore the notion of proof, and you use
proof by refutation and resolution theorem proving.

In the course of learning about logic, you are exposed to a blizzard of
new concepts. Accordingly, the key points in this chapter are illustrated
with ridiculously simple examples designed to keep human intuition fully
engaged. These examples stick to the blocks world, showing how one rela-
tion can be deduced from others.

283

284

Chapter

13 Logic and Resolution Proof

RULES OF INFERENCE

You know that something is a bird if it has feathers or if it flies and lays
eggs. This knowledge was expressed before, in Chapter 7, in the form of
if-then rules:

13 If the animal has feathers
then it is a bird

14 If the animal flies
it lays eggs
then it is a bird

In this section, you see the same sort of knowledge expressed in the language
of logic, and you learn about the rules of inference that make it possible to
use knowledge expressed in that language.

Logic Has a Traditional Notation

In logic, to express the sense of the antecedent—consequent rule concerning
feathers and birds, you need a way to capture the idea that something has
feathers and that something is a bird. You capture such ideas by using
predicates, for predicates are functions that map object arguments
into true or false values.

For example, with the normal way of interpreting the object Albatross
and the predicates Feathers and Bird, you can say, informally, that the
following are true expressions:

Feathers(Albatross)
Bird(Albatross)
Now suppose you say that the following is a true expression:
Feathers(Squigs)

Evidently, Squigs is a symbol that denotes something that has feathers, con-
straining what Squigs can possibly name, for Squigs satisfies the Feathers
predicate.

You can express other constraints with other predicates, such as Flies
and Lays-eggs. In fact, you can limit the objects that Squigs can name to
those objects that satisfy both predicates together by saying that both of
the following expressions are true:

Flies(Squigs)
Lays-eggs(Squigs)
There is a more traditional way to express this idea, however. You simply

combine the first expression and the second expression and say that the
combination is true:

Flies(Squigs) and Lays-eggs(Squigs)

Logic Has a Traditional Notation 285

Of course, you can also insist that Squigs names something that satisfies
either of the two predicates. You specify this constraint as follows:

Flies(Squigs) or Lays-eggs(Squigs)
Logicians prefer a different notation, however. They like to write and as &

and oras V.
Now you can rewrite the expressions you wrote before, recasting them
as a logician would write them:

Flies(Squigs)&Lays-eggs(Squigs)
Flies(Squigs) V Lays-eggs(Squigs)

When expressions are joined by &, they form a conjunction, and each
part is called a conjunct. Similarly, when expressions are joined by V,
they form a disjunction, and each part is called a disjunct.
Note that & and V are called logical connectives because they map
combinations of true and false to true or false.
In addition to & and V, there are two other essential connectives: one
is not, written as —, and the other is implies, written as =>. Consider this:
—Feathers(Suzie)

For this expression to be true, Suzie must denote something for which
Feathers(Suzie) is not true. That is, Suzie must be something for which
the predicate Feathers is not satisfied.

Moving on, using =, here is an expression that resembles one of the
antecedent—consequent rules:

Feathers(Suzie) = Bird(Suzie)
Saying that the value of this expression is true constrains what Suzie can
denote. One allowed possibility is that Suzie is something for which both
Feathers(Suzie) and Bird(Suzie) are true. Naturally, the definition of =
also allows both Feathers(Suzie) and Bird(Suzie) to be false. Curiously,
another possibility, allowed by the definition of =, is that Feathers(Suzie)
is false but Bird(Suzie) is true. If Feathers(Suzie) is true and Bird(Suzie) is
false, however, then the expression Feathers(Suzie) = Bird(Suzie) is false.

Perhaps it is time to be more precise about the =, &, Vv, and - con-
nectives, before it is too late. Thinking of them as functions, it is easy to
define them by listing the approved value for each possible combination of
arguments. Such a list is shown in figure 13.1, which contains diagrams
that are called truth tables.

Note that the connectives have an accepted precedence. In ordinary
arithmetic, a unary minus sign has precedence higher than that of a plus
sign, so you can write —a + b, meaning (—a) + b, not —(a + b). Similarly,
because — has precedence higher than that of Vv, you can write ~E; V Ej,
meaning (—F;) V E,, without any possibility of confusion with —(E; V E3).

TActually, most logicians write and as A, instead of as &. In this book, & is used
because it is easy for beginners to distinguish & from V.

286 Chapter 13 Logic and Resolution Proof

Figure 13.1 Truth tables
show what =, &, Vv, and —

do. E2
]

True False

E1 = E2 E1 True True False

False True True

True False

E1 & E2 E1 True True False
False False False
Es

True False

E1 v E2 E1 True True True
False True False

-E True Faise
E

False True

The accepted precedence is — first, followed by & and Vv, with = bring-
ing up the rear. A good habit is to use parentheses liberally, even when
not strictly necessary, to reduce the likelihood of a mistake.

Note that the truth-table definition for = indicates that the values
of Ey = E, are the same as the values of —=F; V E, for all combinations
of values for Ey and F,. Consequently, and important to note, =F; V E,
can be substituted for E; = E», and vice versa, at any time. Rules for
reversible substitution are expressed by a < symbol:

Ey= E & -EVE

Truth tables also demonstrate other useful properties of logical connectives,
which are listed here, partly for the sake of completeness and partly because

Quantifiers Determine When Expressions Are True 287

you need some of them to deal with forthcoming examples. First, the &
and V connectives are commutative:

E\& By & FR&F,
E\VE, & E,VE
Next, they are distributive:
E\&(Ex V E3) & (B\&Ey) V (E1& E3)
EyV (BE&E3) & (B V Ey)&(EL V E)
In addition, they are associative:
E\&(B &) & (E\& Ep)&Es
E\V(EyV E;) & (E\VE)VE;s
They obey de Morgan’s laws:
(BE1&E,) & (-B)V (-E)
(B V Ey) & (-E)&(~E)
And finally, two — symbols annihilate each other:
-(-E) & B

Quantifiers Determine When Expressions Are True

To signal that an expression is universally true, you use a symbol meaning
for all, written as V, as well as a variable standing in for possible objects.
In the following example, the expression, when true, says that any object
having feathers is a bird:

Vz|Feathers(z) = Bird(z))

Like other expressions, Vz[Feathers(z) = Bird(z)] can be true or false.
If true, a V expression means that you get a true expression when you
substitute any object for z inside the square brackets. For example, if
Vz[Feathers(z) = Bird(z)] is true, then certainly Feathers(Squigs) =
Bird(Squigs) is true and Feathers(Suzie) = Bird(Suzie) is true.

When an expression is surrounded by the square brackets associated
with a quantifier, the expression is said to lie within the scope of that
quantifier. The expression Feathers(z) = Bird(z) therefore lies within the
scope of the V quantifier.

Because true expressions starting with V say something about all possi-
ble object-for-variable substitutions within their scope, they are said to be
universally quantified. Consequently, V is called the universal quan-
tifier.

Some expressions, although not always true, are true at least for some
objects. Logic captures this idea using a symbol meaning there exists,
written as 3, used like this:

Jz[Bird(z)]

288

Chapter

13 Logic and Resolution Proof

When true, this expression means that there is at least one possible ob-
ject, that, when substituted for z, makes the expression inside the square
brackets true. Perhaps Bird(Squigs) is true; in any case, something like
Bird(Squigs) is true.

Expressions with 3 are said to be existentially quantified. The
symbol 3 is called the existential quantifier.

Logic Has a Rich Vocabulary

One problem with logic is that there is a large vocabulary to keep straight.
For reference, let us gather together and complete the common elements of
that vocabulary now, by way of figure 13.2 and the following definitions:

m A world’s objects are terms.

m Variables ranging over a world’s objects are terms.

m Functions are terms. The arguments to functions and the values
returned are terms.

Terms are the only things that appear as arguments to predicates.

m Atomic formulas are individual predicates, together with arguments.

m Literals are atomic formulas and negated atomic formulas.

m Well-formed formulas, generally referred to, regrettably, by the ab-
breviation wffs, are defined recursively: literals are wifs; wffs connected
together by, -, &, V, and = are wifs; and wiffs surrounded by quanti-
fiers are also wifs.

For wffs, there are some special cases:

m A wif in which all the variables, if any, are inside the scope of corre-
sponding quantifiers is a sentence. These are sentences:

Vz|Feathers(z) = Bird(z)]
Feathers(Albatross) = Bird(Albatross)

Variables such as z, appearing within the scope of corresponding quanti-
fiers, are said to be bound. Variables that are not bound are free. The
following expression is not a sentence, because it contains a free variable,
iy
Vz[Feathers(z) V —Feathers(y))

Note carefully that variables can represent objects only; variables cannot
represent predicates. Consequently, this discussion is limited to a kind
of logic called first-order predicate calculus. A more advanced topic,
second-order predicate calculus permits variables representing predi-
cates. A less advanced topic, propositional calculus, permits no vari-
ables of any kind.

8 A wif consisting of a disjunction of literals is a clause.

Generally, the word ezpression is used interchangeably with wff, for using
a lot of wifs makes it difficult to think about logic, instead of kennels.

Logic Has a Rich Vocabulary 289

Figure 13.2 The vocabulary
of logic. Informally, the sample
well-formed formula says this:
Stating that the unspecified
object, z, satisfies the predicate
Feathers implies that z satisfies

the predicate Bird.
L~

=

l / Feathers

Atomlc formulas Negatlu
eathers

!

Connectives Literals Quantifiers

ﬂv&a\i‘/ v 3

l

uVell-forméd formulas—[

vx[Feathers(x) = Bird(x)]

290 Chapter 13 Logic and Resolution Proof

Figure 13.3 An interpretation
is an accounting for how
objects and relations map to

object symbols and predicates.
’

Logic Imaginable world
Object symbols Objects

B (J e [

A (T

Predicates Relations

On(B,A) < e R -->» On-relation

Interpretations Tie Logic Symbols to Worlds

Ultimately, the point of logic is to say something about an imaginable
world. Consequently, object symbols and predicates must be related to
more tangible things. As figure 13.3 illustrates, the two symbol categories
correspond to two world categories:

Objects in a world correspond to object symbols in logic. In the ex-
ample shown in figure 13.3, the object symbols A and B on the left
correspond to two things in the imaginable world shown on the right.
Relations in a world correspond to predicates in logic. Whenever a
relation holds with respect to some objects, the corresponding pred-
icate is true when applied to the corresponding object symbols. In
the example, the logic-world predicate, On, applied to object symbols
B and A, is true because the imaginable-world relation, On-relation,
holds between the two imaginable-world objects.

An interpretation is a full accounting of the correspondence between
objects and object symbols, and between relations and predicates.

Proofs Tie Axioms to Consequences 291

Proofs Tie Axioms to Consequences

Now you are ready to explore the notion of proof. Suppose that you are
told that both of the following expressions are true:

Feathers(Squigs)
Vz|Feathers(z) = Bird(z)]

From the perspective of interpretations, to say that such expressions are
true means that you are restricting the interpretations for the object sym-
bols and predicates to those objects and relations for which the implied
imaginable-world relations hold. Any such interpretation is said to be a
model for the expressions.

When you are told Feathers(Squigs) and Vz[Feathers(z) = Bird(z)]
are true, those expressions are called axioms. Now suppose that you are
asked to show that all interpretations that make the axioms true also make
the following expression true:

Bird(Squigs)

If you succeed, you have proved that Bird(Squigs) is a theorem with
respect to the axioms:

m Said in the simplest terms, you prove that an expression is a theorem
when you show that the theorem must be true, given that the axioms
are true.

m Said in the fanciest terms, you prove that an expression is a theorem
when you show that any model for the axioms is also a model for the
theorem. You say that the theorem logically follows from the axioms.

The way to prove a theorem is to use a proof procedure. Proof procedures
use manipulations called sound rules of inference that produce new
expressions from old expressions such that, said precisely, models of the
old expressions are guaranteed to be models of the new ones too.

The most straightforward proof procedure is to apply sound rules of
inference to the axioms, and to the results of applying sound rules of infer-
ence, until the desired theorem appears.

Note that proving a theorem is not the same as showing that an ex-
pression is valid, meaning that the expression is true for all possible inter-
pretations of the symbols. Similarly, proving a theorem is not the same as
showing that an expression is satisfiable, meaning that it is true for some
possible interpretation of the symbols.

The most straightforward sound rule of inference used in proof proce-
dures is modus ponens. Modus ponens says this: If there is an axiom of
the form F, = E,, and there is another axiom of the form F;, then E,
logically follows.

If E; is the theorem to be proved, you are done. If not, you might as
well add E,; to the axioms, for it will always be true when all the rest of
the axioms are true. Continuing with modus ponens on an ever-increasing

292

Chapter 13 Logic and Resolution Proof

list of axioms may eventually show that the desired theorem is true, thus
proving the theorem.

For the feathers-and-bird example, the axioms are just about right for
the application of modus ponens. First, however, you must specialize the
second expression. You have Vz[Feathers(z) = Bird(z)]. Because you are
dealing with interpretations for which Feathers(z) = Bird(z) is true for
all z, it must be true for the special case where z is Squigs. Consequently,
Feathers(Squigs) = Bird(Squigs) must be true.

Now, the first expression, Feathers(Squigs), and the specialization of
the second expression, Feathers(Squigs) = Bird(Squigs), fit modus ponens
exactly, once you substitute Feathers(Squigs) for E; and Bird(Squigs) for
E». You conclude that Bird(Squigs) must be true. The theorem is proved.

Resolution Is a Sound Rule of Inference

One of the most important rules of inference is resolution. Resolution
says this: If there is an axiom of the form E; V E,, and there is another
axiom of the form —E, V E3, then E1 V E; logically follows. The expression
E, V Ej3 is called the resolvent of E; V E; and ~E; V E3.

Let us look at the various possibilities to see whether resolution is
believable. First, suppose E is true; then —FE, must be false. But if ~Ey is
false, from the second expression, then E3 must be true. But if Ej is true,
then surely E; V E3 is true. Second, suppose that E» is false. Then, from
the first expression, E; must be true. But if E, is true, then surely Ey V E3
is true. You conclude that the resolvent, E, V E3, must be true as long as
both Ej V E; and ~E, V Ej are true.

It is easy to generalize resolution such that there can be any number
of disjuncts, including just one, in either of the two resolving expressions.
The only demand is that one resolving expression must have a disjunct
that is the negation of a disjunct in the other resolving expression. Once
generalized, you can use resolution to reach the same conclusion about
Squigs that you reached before with modus ponens.

The first step is to specialize the quantified expression to Squigs. The
next step is to rewrite it, eliminating =, producing these:

Feathers(Squigs)
—Feathers(Squigs) V Bird(Squigs)

So written, resolution obviously applies, dropping out Feathers(Squigs) and
—Feathers(Squigs), producing Bird(Squigs).

As a matter of fact, this example suggests a general truth: Modus
ponens can be viewed as a special case of resolution, because anything
concluded with modus ponens can be concluded with resolution as well. To
see why, let one expression be E,, and let the other be Ey = E,. According
to modus ponens, E; must be true. But you know that Ey = E, can be
rewritten as —~FE; V Eo. So rewritten, resolution can be applied, dropping

Resolution Proves Theorems by Refutation 293

out the F; and the —F;, producing F,, which is the same result that you
obtained using modus ponens.

Similarly, resolution subsumes another rule of inference called modus
tolens. Modus tolens says this: If there is an axiom of the form E; = F,
and there is another axiom of the form —E;, then - £ logically follows.

RESOLUTION PROOFS

To prove a theorem, one obvious strategy is to search forward from the
axioms using sound rules of inference, hoping to stumble across the theorem
eventually. In this section, you learn about another strategy, the one used
in resolution theorem proving, that requires you to show that the negation
of a theorem cannot be true:

m Assume that the negation of the theorem is true.

® Show that the axioms and the assumed negation of the theorem to-
gether force an expression to be true that cannot be true.

m Conclude that the assumed negation of the theorem cannot be true
because it leads to a contradiction.

m Conclude that the theorem must be true because the assumed negation
of the theorem cannot be true.

Proving a theorem by showing its negation cannot be true is called proof
by refutation.

Resolution Proves Theorems by Refutation

Consider the Squigs example again. Recall that you know from the axioms
the following;:

—Feathers(Squigs) V Bird(Squigs)
Feathers(Squigs)
Adding the negation of the expression to be proved, you have this list:
—Feathers(Squigs) Vv Bird(Squigs)
Feathers(Squigs)
-Bird(Squigs)
Resolving the first and second axiom, as before, permits you to add a new
expression to the list:
—Feathers(Squigs) V Bird(Squigs)
Feathers(Squigs)
-Bird(Squigs)
Bird(Squigs)
But now there is a contradiction. All the things in the list are supposed to

be true. But it cannot be that Bird(Squigs) and —Bird(Squigs) are both
true. Consequently, the assumption that led to this contradiction must be

294 Chapter 13 Logic and Resolution Proof

(1)

—Feathers(Squigs) V Bird(Squigs) Bird(Squigs)

(2)
Feathers(Squigs)

|

(4)

(3)

-Bird(Squigs) Nil

(5)

Figure 13.4 A

tree recording the
resolutions needed

to prove Bird(Squigs).

R

false; that is, the negation of the theorem, —Bird(Squigs), must be false;
hence, the theorem, Bird(Squigs), must be true, which is what you set out
to show.

The traditional way to recognize that the theorem is proved is to wait
until resolution happens on a literal and that literal’s contradicting nega-
tion. The result is an empty clause—one with nothing in it—which by
convention is written as Nil. When resolution produces Nil, you are guar-
anteed that resolution has produced manifestly contradictory expressions.
Consequently, production of Nil is the signal that resolution has proved the
theorem.

Usually, it is illuminating to use a treelike diagram to record how
clauses get resolved together on the way to producing an empty clause.
Figure 13.4 is the tree for the proof.

Using Resolution Requires Axioms to Be in Clause Form

Now that you have the general idea of how proof by resolution works, it is
time to understand various manipulations that make harder proofs possible.
Basically, the point of these manipulations is to transform arbitrary logic
expressions into a form that enables resolution. Specifically, you need a
way to transform the given axioms into equivalent, new axioms that are all
disjunctions of literals. Said another way, you want the new axioms to be
in clause form.

An axiom involving blocks illustrates the manipulations. Although the
axiom is a bit artificial, so as to exercise all the transformation steps, the
axiom’s message is simple. First, a brick is on something that is not a
pyramid; second, there is nothing that a brick is on and that is on the

Using Resolution Requires Axioms to Be in Clause Form 295

brick as well; and third, there is nothing that is not a brick and also is the
same thing as the brick:

Vz[Brick(z) = (3y[On(z, y)&—-Pyramid(y)]
&—-3y[On(z, y)&On(y, z)]
&Vy[-Brick(y) = ~Equal(z, y)])]

As given, however, the axiom cannot be used to produce resolvents because
it is not in clause form. Accordingly, the axiom has to be transformed into
one or more equivalent axioms in clause form. You soon see that the
transformation leads to four new axioms and requires the introduction of
another function, Support:

—Brick(z) V On(z, Support(z))
=Brick(w) V =Pyramid(Support(w))
—Brick(u) V =On(u, y) V =On(y, v)
—Brick(v) V Brick(z) V =Equal(v, z)
Next, let us consider the steps needed to transform arbitrary logical ex-

pressions into clause form. Once explained, the steps will be summarized
in a procedure.

@ Eliminate implications.

The first thing to do is to get rid of all the implications. This step is easy:
All you need to do is to substitute —E, V E, for F; = E,. For the example,
you have to make two such substitutions, leaving you with this:

Vz[-Brick(z) V (3y[On(z, y)&-Pyramid(y)]
&-3y[On(z, y)&On(y, z)]
&Vy[-~(=Brick(y)) V ~Equal(z, y)])]

B Move negations down to the atomic formulas.

Doing this step requires a number of identities, one for dealing with the
negation of & expressions, one for V expressions, one for — expressions, and
one each for V and 3:

(E1&Ep) — (Ey) V (- Ey)
~(EvV Ep) — (~E)&(—E;)
~(=E) - B
~Vz[Ey(z)] — 3z[-E1(z)]
—3z[E; (z)] — Vz[~E(z))
For the example, you need the third identity, which eliminates the dou-

ble negations, and you need the final identity, which eliminates an 3 and
introduces another V, leaving this:

Vz[-Brick(z) V (y[On(z, y)&-Pyramid(y)]
&Vy[-On(z, y) V ~On(y, z)]
&Vy[Brick(y) V ~Equal(z, y)])]

296

Chapter

13 Logic and Resolution Proof

m Eliminate existential quantifiers.

Unfortunately, the procedure for eliminating existential quantifiers is a little
obscure, so you must work hard to understand it. Let us begin by looking
closely at the part of the axiom involving 3:
3y(On(z, y)&-Pyramid(y)]

Reflect on what this expression means. Evidently, if someone gives you
some particular object z, you will be able to identify an object for y that
makes the expression true. Said another way, there is a function that takes
argument z and returns a proper . You do not necessarily know how
the function works, but such a function must exist. Let us call it, for the
moment, Magic(z).

Using the new function, you no longer need to say that y exists, for you
have a way of producing the proper y in any circumstance. Consequently,
you can rewrite the expression as follows:

On(z, Magic(z))&-Pyramid(Magic(z))
Functions that eliminate the need for existential quantifiers are called
Skolem functions. Note carefully that the Skolem function, Magic(z),
must depend on z, for otherwise it could not produce a y that depends on
a particular z. The general rule is that the universal quantifiers determine
which arguments Skolem functions need: There is one argument for each
universally quantified variable whose scope contains the Skolem function.

Here then is the evolving axiom, after eliminating the 3 and introducing
the Skolem function, which you now can call the Support function:

vz [-Brick(z) V ((On(z, Support(m))&—\Pyramid(Support(x)))
&Vy[-On(z, y) V ~On(y, z)]
&Vy(Brick(y) V ~Equal(z, DI

m Rename variables, as necessary, so that no two variables are the same.

The quantifiers do not care what their variable names are. Accordingly,
you can rename any duplicates so that each quantifier has a unique name.
You do this renaming because you want to move all the universal quantifiers
together at the left of each expression in the next step, without confounding
them. In the example, the substitutions leave this:
Vz[-Brick(z) V ((On(z, Support(z))&—ﬂPyramid(Support(x)))
&Vy[~On(z, y) vV —=On(y, z)]
&Vz|Brick(z) vV “Equal(z, 2)))]

s Move the universal quantifiers to the left.
This step works because, by now, each quantifier uses a unique variable

name—no confusion results from leftward movement. In the example, the
result is as follows:

Using Resolution Requires Axioms to Be in Clause Form 297

VzVyVz[-Brick(z) V ((On(z, Support(z))&—Pyramid(Support(z)))
&=On(z,y) v ~On(y, z)
&Brick(z) vV ~Equal(z, z)))

® Move the disjunctions down to the literals.

This step requires you to move the Vs inside the &s; to do this movement,
you need to use one of the distributive laws:

By V (Ex&Es) © (E1 V E)&(Ey V E3)
For the example, let us do the work in two steps:
VaVyVz[(-Brick(z) vV (On(z, Support(z))&—~Pyramid(Support(z))))
&(—Brick(z) V =On(z, y) V =On(y, z))
&(—Brick(z) V Brick(z) vV =Equal(z, 2))]
VazVyVz[(—Brick(z) vV On(z, Support(z)))
&(-Brick(z) V —Pyramid(Support(z)))
&(—Brick(z) V =On(z, y) V ~On(y, z))
&(—Brick(z) V Brick(z) V ~Equal(z, 2))]

® Eliminate the conjunctions.

Actually, you do not really eliminate them. Instead, you simply write
each part of a conjunction as though it were a separate axiom. This way
of writing a conjunction makes sense, because each part of a conjunction
must be true if the whole conjunction is true. Here is the result:

Vz[-Brick(z) vV On(z, Support(z))]
Vz[-Brick(z) V =Pyramid(Support(z))]
VzVy[-Brick(z) vV ~On(z, y) V =On(y, z))
VzVz[-Brick(z) V Brick(z) vV ~Equal(z, z))

m Rename all the variables, as necessary, so that no two variables are the
same.

There is no problem with renaming variables at this step, for you are merely
renaming the universally quantified variables in each part of a conjunction.
Because each of the conjoined parts must be true for any variable values, it
does not matter whether the variables have different names for each part.
Here is the result for the example:

Vz[=Brick(z) V On(z, Support(z))]

Vw[-Brick(w) V =Pyramid(Support(w))]

VuVy[-Brick(u) V ~On(u, y) V =On(y, u)]

Vu¥z[—=Brick(v) V Brick(z) vV ~Equal(v, 2)]

298

Chapter

13 Logic and Resolution Proof

m Eliminate the universal quantifiers.

Actually, you do not really eliminate them. You just adopt a convention
whereby all variables at this point are presumed to be universally quanti-
fied. Now, the example looks like this:

—Brick(z) V On(z, Support(z))

—Brick(w) V ~Pyramid(Support(w))

—Brick(u) V -On(u, y) V ~On(y, u)

—Brick(v) V Brick(z) vV =Equal(v, 2)
The result is now in clause form, as required when you wish to use reso-
lution. Each clause consists of a disjunction of literals. Taking the whole
set of clauses together, you have an implied & on the top level, literals on
the bottom level, and Vs in between. FEach clause’s variables are different,

and all variables are implicitly universally quantified. To summarize, here
is the procedure for translating axioms into clause form:

To put axioms into clause form,
> Eliminate the implications.
> Move the negations down to the atomic formulas.
> Eliminate the existential quantifiers.
> Rename the variables, if necessary.
> Move the universal quantifiers to the left.
Move the disjunctions down to the literals.

>

> Eliminate the conjunctions.

> Rename the variables, if necessary.
>

Eliminate the universal quantifiers.

Here is the procedure for doing resolution proof:

To prove a theorem using resolution,

> Negate the theorem to be proved, and add the result to the list
of axioms.

> Put the list of axioms into clause form.
> Until there is no resolvable pair of clauses,

> Find resolvable clauses and resolve them.

> Add the results of resolution to the list of clauses.

> If Nil is produced, stop and report that the theorem is true.
> Stop and report that the theorem is false.

Using Resolution Requires Axioms to Be in Clause Form 299

Figure 13.5 Some fodder for

a proof.
|

Before discussing which clause pairs to resolve at any given point, let us
work out an example. The following axioms account for the observed block
relations in figure 13.5:

On(B,A)

On(A, Table)
These axioms, of course, are already in clause form. Let us use them to
show that B is above the table:

Above(B, Table)

To show this, you need the clause form of two universally quantified ex-
pressions. The first says that being on an object implies being above that
object. The second says that one object is above another if there is an
object in between:

VzVy[On(z, y) = Above(z, y)]
VzVyVz[Above(z, y)&Above(y, z) = Above(z, z)]
After you go through the procedure for reduction to clause form, these
axioms look like this:
=On(u, v} V Above(u, v)
—Above(z, y) V ~Above(y, z) V Above(z, 2)
Recall that the expression to be proved is Above(B, Table). No conversion
is needed after negation:
—Above(B, Table)

Next, all the clauses need identifying numbers to make it easy to refer to

them:
—On(u, v) V Above(u, v) (1)
—Above(z, y) V ~Above(y, z) V Above(z, 2) (2)
On(B,A) (3)
On(A, Table) 4)

-Above(B, Table) (5)

300

Chapter

13 Logic and Resolution Proof

Now you can start. First, you resolve clause 2 and clause 5 by specializing
z to B and z to Table so that the final part of clause 2 looks exactly like
the expression negated in clause 5, producing clause 6:

—~Above(B, y) V ~Above(y, Table) V Above(B, Table) (2)
—Above(B, Table) (5)
—Above(B, y) vV ~Above(y, Table) (6)

Now, you can resolve (1) with clause 6 by replacing u with y and special-
izing v to Table:

-On(y, Table) V Above(y, Table) (1)
—~Above(B, y) V ~Above(y, Table) (6)
—-On(y, Table) V ~Above(B, y) (7

Curiously, it pays to use (1) again with clause 7, with u specialized to B
and v replaced by y:

-On(B, y) V Above(B, y) (1)
-On(y, Table) V ~Above(B, y) (7)
-On(B, y) V ~On(y, Table) (8)
Now, let us use clause 3 and clause 8, specializing y to A:

On(B,A) (3)
-On(B, A) V -On(A, Table) (8)
—-On(A, Table) (9)

Now, clause 4 and clause 9 resolve to Nil, the empty clause.
On(A, Table) (4)
—On(A, Table) (9)
Nil (10)

You must be finished: You have arrived at a contradiction, so the negation
of the theorem, —Above(B, Table), must be false. Hence, the theorem,
Above(B, Table), must be true.

Proof Is Exponential

One big question is, How can you be so shrewd as to pick just the right
clauses to resolve? The answer is that you take advantage of two ideas:

m First, you can be sure that every resolution involves the negated the-
orem or a clause derived —directly or indirectly—using the negated
theorem.

m Second, you know where you are, and you know where you are going,
so you can note the difference and use your intuition.

Unfortunately, there are limits to what you can express if you restrict your-
self to the mathematically attractive concepts in pure logic. For example,
pure logic does not allow you to express concepts such as difference, as

Resolution Requires Unification 301

required by means-ends analysis, or heuristic distances, as required by
best-first search. Theorem provers can use such concepts, but then a large
fraction of the problem-solving burden rests on knowledge lying outside the
statement, in logical notation, of what is known and what is to be done.

Although some search strategies require you to separate yourself con-
siderably from pure logic, others do not. One such strategy, the unit-
preference strategy, gives preference to resolutions involving the clauses
with the smallest number of literals. The set-of-support strategy allows
only resolutions involving the negated theorem or new clauses derived—
directly or indirectly—using the negated theorem. The breadth-first
strategy first resolves all possible pairs of the initial clauses, then resolves
all possible pairs of the resulting set together with the initial set, level
by level. All these strategies are said to be complete because they are
guaranteed to find a proof if the theorem logically follows from the axioms.
Unfortunately, there is another side:

® All resolution search strategies, like many searches, are subject to the
exponential-explosion problem, preventing success for proofs that
require long chains of inference.

m All resolution search strategies are subject to a version of the halting
problem, for search is not guaranteed to terminate unless there actu-
ally is a proof.

In fact, all complete proof procedures for the first-order predicate calculus
are subject to the halting problem. Complete proof procedures are said
to be semidecidable because they are guaranteed to tell you whether an
expression is a theorem only if the expression is indeed a theorem.

Resolution Requires Unification

To resolve two clauses, two literals must match exactly, except that one
is negated. Sometimes, literals match exactly as they stand; sometimes,
literals can be made to match by an appropriate substitution.

In the examples so far, the matching part of resolution was easy: The
same constant appeared in the same place, obviously matching, or a con-
stant appeared in the place occupied by a universally quantified variable,
matching because the variable could be the observed constant as well as
any other.

You need a better way to keep track of substitutions, and you need
the rules by which substitutions can be made. First, let us agree to denote
substitutions as follows:

{n =Gy — w350 — f(..)}
This expression mean that the variable v; is replaced by the constant C,
the variable v, is replaced by the variable v, and the variable vy4 is replaced

by a function, f, together with the function’s arguments.” The rules for

tOther authors denote the same substitution by {C/v1, v3/vg, f(...)/m}, which is
easier to write but harder to keep straight.

302

Chapter

13 Logic and Resolution Proof

such substitutions say that you can replace a variable by any term that
does not contain the same variable:

m You may replace a variable by a constant. That is, you can have the
substitution {v; — C}.

m You may replace a variable by a variable. That is, you can have the
substitution {vy — vs}.

m You may replace a variable by a function expression, as long as the
function expression does not contain the variable. That is, you can
have the substitution {vg — f(...)}.

A substitution that makes two clauses resolvable is called a unifier, and
the process of finding such substitutions is called unification. There are

many procedures for unification. For the examples, however, inspection
will do.

Traditional Logic Is Monotonic

Suppose that an expression is a theorem with respect to a certain set of
axioms. Is the expression still a theorem after the addition of some new
axioms? Surely it must be, for you can do the proof using the old axioms
exclusively, ignoring the new ones.

Because new axioms only add to the list of provable theorems and never
cause any to be withdrawn, traditional logic is said to be monotonic.

The monotonicity property is incompatible with some natural ways of
thinking, however. Suppose that you are told all birds fly, from which you
conclude that some particular bird flies, a perfectly reasonable conclusion,
given what you know. Then, someone points out that penguins do not fly,
nor do dead birds. Adding these new facts can block your already-made
conclusion, but cannot stop a theorem prover; only amending the initial
axioms can do that.

Research on this sort of problem has led to the development of logics
that are said to be nonmonotonic.

Theorem Proving Is Suitable for Certain
Problems, but Not for All Problems

Logic is terrific for some jobs, and is not so good for others. But because
logic is unbeatable for what it was developed to do, logic is seductive.
People try to use logic for all hard problems, rather than for only those
for which it is suited. That is like using a hammer to drive screws, just
because hammers are good at dealing with nails, which are simply one kind
of fastener.

Consequently, when using logic and a theorem prover seems unambigu-
ously right, review these caveats:

m Theorem provers may take too long.

Complete theorem provers require search, and the search is inherently expo-
nential. Methods for speeding up search, such as set-of-support resolution,

Summary 303

reduce the size of the exponent associated with the search, but do not
change the exponential character.

m Theorem provers may not help you to solve practical problems, even if
they do their work instantaneously.

Some knowledge resists embodiment in axioms. Formulating a problem in
logic may require enormous effort, whereas solving the problem formulated
in another way may be simple.

m Logic is weak as a representation for certain kinds of knowledge.

The notation of pure logic does not allow you to express such notions as
heuristic distances, or state differences, or the idea that one particular
approach is particularly fast, or the idea that some manipulation works
well, but only if done fewer than three times. Theorem provers can use
such knowledge, but you must represent that knowledge using concepts
other than those of pure logic.

SUMMARY

® Logic concentrates on using knowledge in a rigorous, provably correct
way; other problem-solving paradigms concentrate on the knowledge
itself.

m Logic has a traditional notation, requiring you to become familiar with
the symbols for ¢mplies, and, or, and not. These symbols are =, &, V,
and -.

m A universally quantified expression is true for all values of the quantified
variable. An existentially quantified expression is true for at least one
value.

® An interpretation is an account of how object symbols, predicates, and
functions map to objects, relations, and functions in some imaginable
world. A model of a set of expressions is an interpretation for which
the implied imaginable-world relations hold.

m A theorem logically follows from assumed axioms if there is a series
of steps connecting the theorem to the axioms using sound rules of
inference.

m The most obvious rule of inference is modus ponens. Another, more
general rule of inference is resolution.

m Resolution theorem proving uses resolution as the rule of inference and
refutation as the strategy. Resolution requires transforming axioms
and the negated theorem to clause form. Resolution also requires a
variable substitution process called unification.

@ The set-of-support strategy dictates using only resolutions in which at
least one resolvent descends from the negation of the theorem to be
proved.

304 Chapter 13 Logic and Resolution Proof

m Logic is seductive, because it often works neatly. There are caveats
that you must obey, however, for logic is just one of many tools that
you should have in your workshop.

BACKGROUND

The development of the resolution method for theorem proving is generally
credited to J. A. Robinson [1965, 1968].

PROLOG is a popular programming language based on logic. For an
excellent introduction to PROLOG, see PROLOG Programming for Artificial
Intelligence (second edition), by Ivan Bratko [1990]. PROLOG was devel-
oped by Alain Colmerauer and his associates [Colmerauer, H. Kanoui, R.
Pasero, and P. Roussel 1973; Colmerauer 1982].

For an excellent treatment of the role of logic in artificial intelligence,
see the papers of Patrick J. Hayes [1977].

