

ARTIFICIAL INTELLIGENCE

The Very Idea

Vasant G. Honavar

Dorothy Foehr Huck and J. Lloyd Huck Chair in Biomedical Data Sciences and Artificial Intelligence Professor of Data Sciences, Informatics, Computer Science, Bioinformatics & Genomics and Neuroscience Director, Artificial Intelligence Research Laboratory

Director, Center for Artificial Intelligence Foundations and Scientific Applications Associate Director, Institute for Computational and Data Sciences Pennsylvania State University

vhonavar@psu.edu http://faculty.ist.psu.edu/vhonavar http://ailab.ist.psu.edu

AI 100 Fall 2024

Vasant G Honavar

PennState
Clinical and Translationa

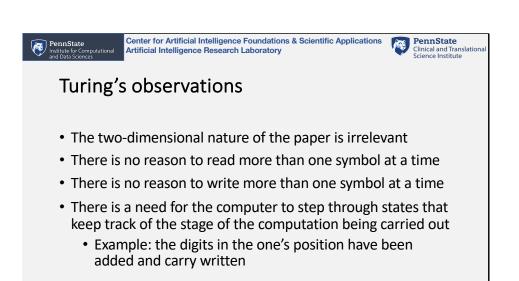
Turing Machine

- Hilbert and Ackerman (1928)
 - Decision Problem: "Is there an effective procedure, that allows us to decide, by means of finitely many operations, whether any given theorem is provable from a given set of premises?"
- Alan Turing (1936)
 - What is an effective procedure?
 - An effective procedure is an algorithm step-by-step sequence of instructions that can be executed by a human or a machine
 - What kind of machine?
 - · Turing Machine!

AI 100 Fall 2024

Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory

PennState Clinical and Translation


Turing's observations

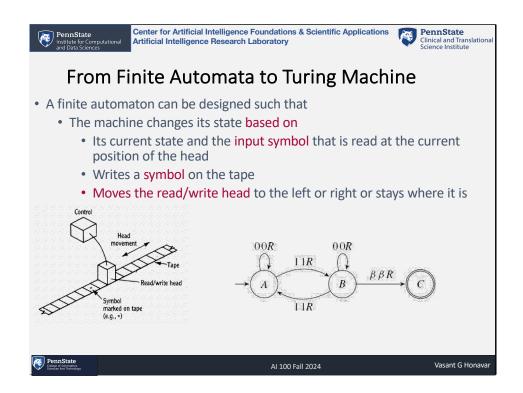
Based on his observation of human computers at work, Turing concluded that a computer must be able to:

- Read the inputs of the computation (e.g., "455 + 376")
- Execute the appropriate algorithm
 - A sequence of simple steps like adding two digits in the 1's position
 - or steps in the computation which Turing called the states of mind of the (human) computer
 - · which later got abbreviated as simply states
- Write results to keep track of the results of each stage.

AI 100 Fall 2024

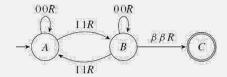
PennState
College of Information
Sciences And Technology

AI 100 Fall 2024

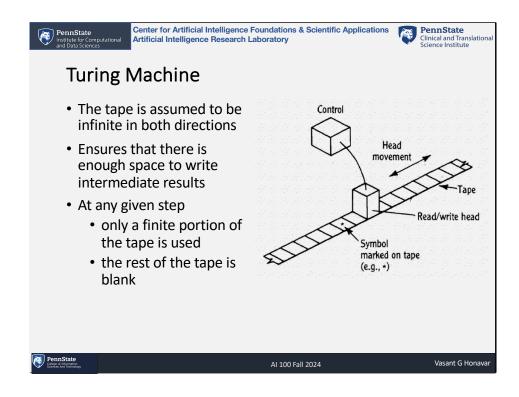


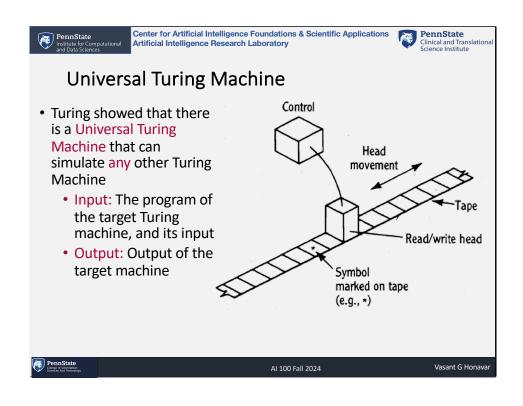
Turing's claim

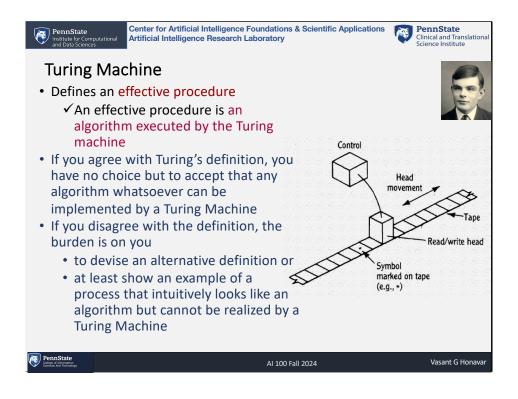
- An effective procedure is simply an algorithm that tells a machine exactly what to do at any given step
- From the standpoint of executing such an algorithm human and the machine are functionally equivalent
 - Given the same input, they both can be seen as carrying out identical steps ending up with identical outputs
- The physical substrate used to implement the machine is immaterial
- All that is needed is the ability to manipulate symbols based on the syntax of the input
- One can build computers out of silicon, tinker toys, ...

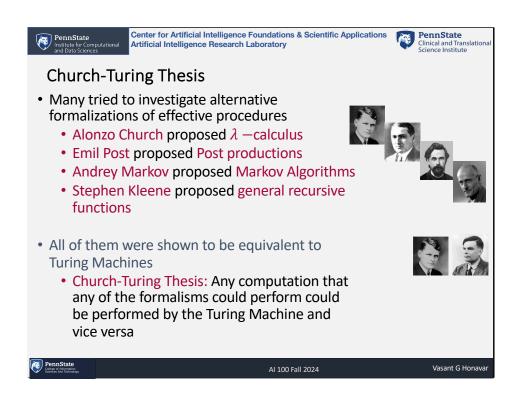

PennState
College of Information
Sciences And Technology

AI 100 Fall 2024

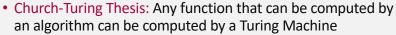

From Finite Automata to Turing Machine




- In state A, if you read a 0, write a 0, move R, and stay in A
- In state A, if you read a 1, write a 1, move R, and enter B
- In state B, if you read a 1, write a 1, move R, and enter A
- In state B, if you read a 0, write a 0, move R, and stay in B
- In state B, if you read a blank (β) , write a blank, move R, and enter C


PennState
College of Information
Sciences And Technology

Al 100 Fall 2024



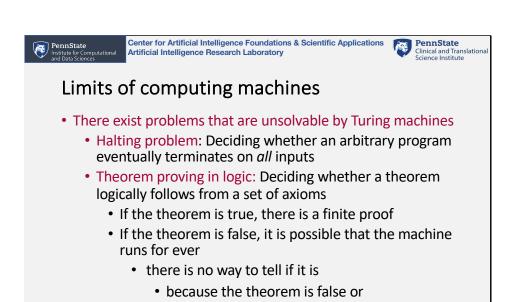
Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory

Church-Turing Thesis

- All the attempts at alternative formalizations of effective procedures were shown to be equivalent to Turing machines
 - Any computation that any of the formalisms could perform could be performed by the Turing Machine and vice versa

- What does it mean for a function to be computed by an algorithm?
 - Executing a finite sequence of instructions on a finite input producing a finite output
 - Transforming one finite sequence of letters into another sequence of letters according to a set of rules in a finite number of steps

AI 100 Fall 2024



Implications of Church-Turing Thesis

- Any computer that is sufficiently powerful (Turing equivalent) can execute any algorithm or program whatsoever
- Any program for one computer can be translated to an equivalent program for another computer
 - Why?
- Programs written in one programming language can be translated into programs written in any other programming language
 - Why?
- The design of modern computers, programming languages, software .. rests on Church-Turing Thesis

PennState
College of Information
Sciences And Technology

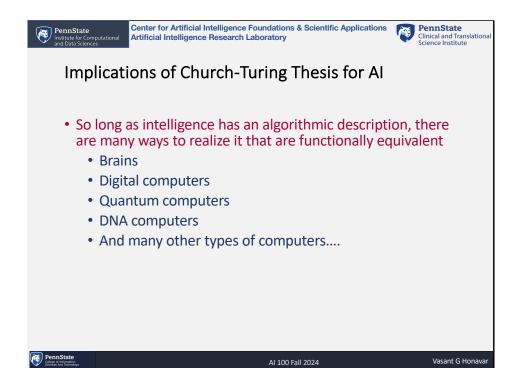
AI 100 Fall 2024

PennState
College of Information
Sciences And Technology

AI 100 Fall 2024

· because the machine needs more time

• Hilbert's decision problem is semi-decidable



Can we build computers that are more powerful than Turing machines?

- Maybe, if we can allow the machines to take advantage of something Turing machine can't
 - Infinite precision numbers
 - There is no physical substrate capable of supporting infinite precision
 - Quantum phenomena machines that make use of quantum as opposed to deterministic states
 - There is no evidence that quantum computers can circumvent the limitations of Turing machines although they can be far more efficient than conventional computers on some problems
- We don't know if we can build computers that are more powerful than Turing Machines
- No one has succeeded to date in doing so

AI 100 Fall 2024

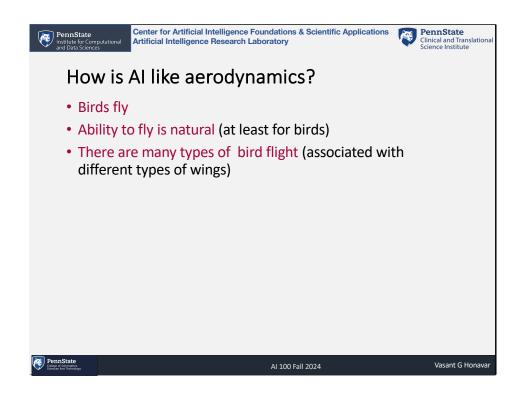
- Position 2: Powers of mind exceed those of computers Tantamount to saying that minds have no finite algorithmic description
- Position 3: Semi-decidability is a property of machines that reason deductively. Most of our knowledge of the world comes from inductive and not deductive methods so the limits of deductive methods are only partially relevant to Al

PennState
College of Information
Sciences And Technology

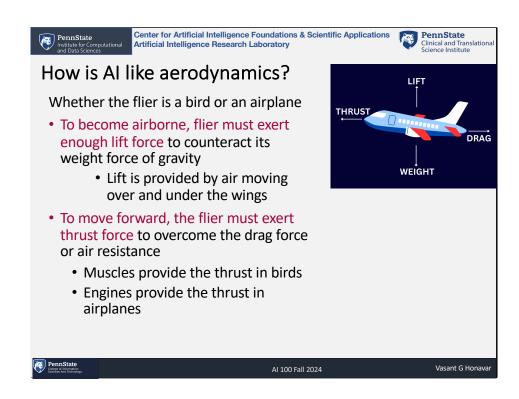
AI 100 Fall 2024

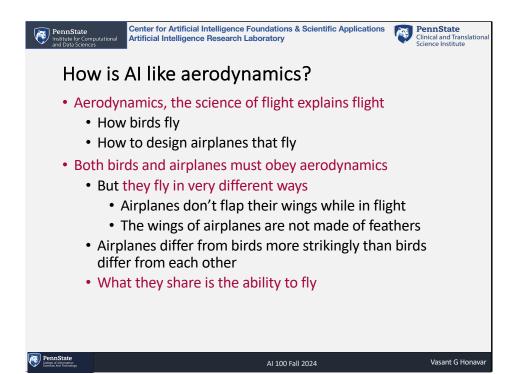
• Implicit in this is the audacious idea is a functional or naturalist view of intelligence

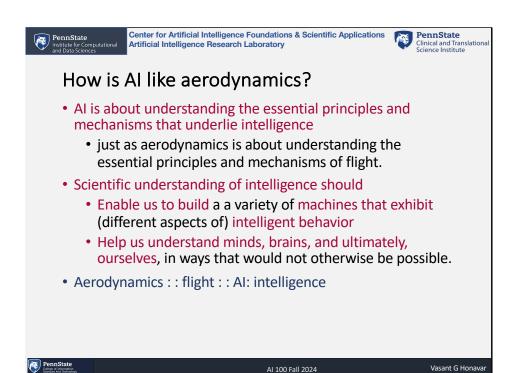
• independently of its realization in animals or


- McCarthy envisioned AI studying intelligence in a manner analogous to aerodynamics studies flight
 - · independent of its applications and


humans."


• independent of its realization in birds that fly

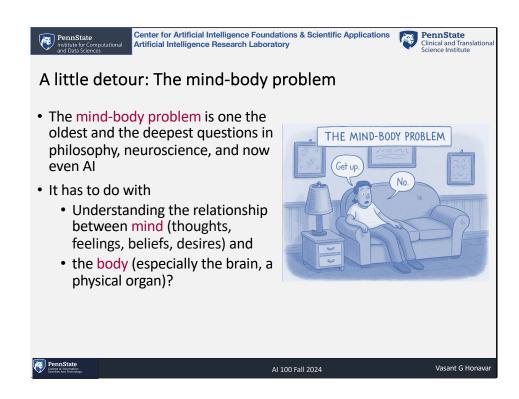



AI 100 Fall 2024

Working hypothesis of AI and what it entails

- · Working hypothesis of AI
 - Cognition is (or at least can be modeled by) computation
- We will have a theory of
 - Problem-solving if we can devise algorithms that can solve problems
 - Game-playing if we can devise algorithms that play games e.g., chess
 - Reasoning if we can devise algorithms that reason from assumptions to conclusions
 - Learning if we can devise algorithms for learning from experience
 - Language if we can devise algorithms that effectively communicate using language
 - Cooperation if we have a computational model of multi-agent collaboration
 - Creativity if we can devise algorithms that exhibit creativity

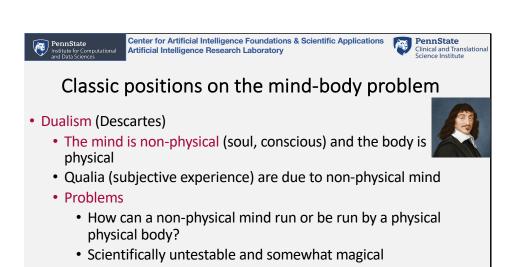
AI 100 Fall 2024



Working hypothesis of Al

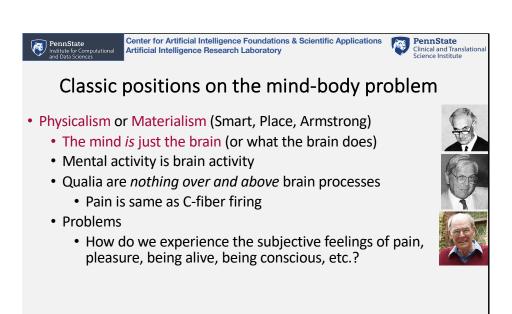
- · Working hypothesis of AI
 - Cognition is (or at least can be modeled by) computation
- How do we know the working hypothesis of AI is true?
 - · We really do not!
 - Like any other working hypothesis in science, this hypothesis is
 - subject to revision
 - or even outright replacement
 - if scientific evidence so warrants
- Yet, exploring this hypothesis has led to significant advances in
 - Our understanding of intelligence
 - Our ability to build AI systems
- Working hypothesis of AI has given birth to the computational theories of mind

AI 100 Fall 2024



What is the Mind-body problem?

- Mental states
 - pain, joy, imagining a sunset, loving someone, or believing 2+2=4
 - seem to be very different from physical states like neurons firing or chemicals flowing in the brain
- Yet science shows that if there is damage to the brain, mental functions are impacted
 - Mental function appears to depend on the brain function
- The mind-body problem can be summarized as follows:
 - Are mind and brain the same?
 - Are they distinct entities?
 - If so, how are they related?


PennState
College of Information
Sciences And Technology

AI 100 Fall 2024

PennState

AI 100 Fall 2024

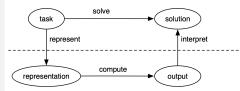
AI 100 Fall 2024

Computational theory of mind and the mind-body problem

- Computational theory of mind (CTM) (Putnam, Fodor, Dennett)
 - Mind: Brain:: Software: Hardware
 - CTM a functionalist theory of mind
 - Offers a neat model of how the mind works
 - Qualia = the functional/causal role of internal states
 - · what they do, not what they're made of
 - Problems
 - Is simulating a mind the same as having a mind?
 - What is consciousness? How does it arise?

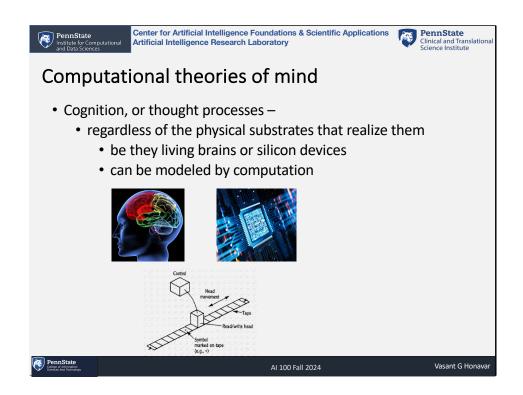
AI 100 Fall 2024

Computational theory of mind and the mind-body problem


- Why did Jill get on the plane?
 - Because she wanted to visit her mother and knew the plane would take her to New York where her mother lives.
 - If she hated her mother, or if she knew the plane would take her to San Francisco instead of New York, she would not be on the plane.
- Jill's desire to visit her mother and her knowledge that the plane would fly to New York are not physical, but mental entities.
- But they have the power to trigger or cause events in the physical world, such as getting Jill to get on the plane to New York.

AI 100 Fall 2024

Computational theory of mind and the mind-body problem



The computational theory of mind (CTM) offers a resolution of the mind-body problem.

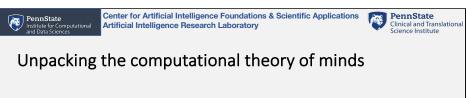
- CTM says that contents of the mental realm, e.g., thoughts, are encoded by configurations of symbols.
- The symbols are the states of a physical entity, like the circuits s in a computer or neurons in the brain
- Symbols represent objects, events, and relationships in the physical world
 - Because they are triggered by them via our sense organs, and
 - Because of the physical effects they result in once they are triggered

PennState
College of Information
Sciences And Technology

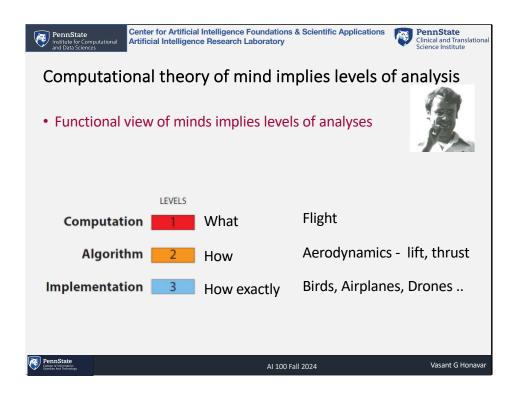
Al 100 Fall 2024

Unpacking the computational theories of mind

- Your message to your mother remains unaltered as it is carried by different media
 - from vibrations of air to
 - electrons in a wire to
 - · electromagnetic waves and
 - back again in the reverse order
- The same message could have been transmitted by a text or email
- Multiple physical substrates can carry the same information
- Likewise, multiple physical substrates can realize a functionally equivalent computation


AI 100 Fall 2024

- Computational theory of minds implies a functional view of minds
- Minds can be modeled by computation
- A computation is realized by a program that runs on a
 - a computer made of
 - · vacuum tubes
 - · electromagnetic switches
 - transistors
 - integrated circuits
 - brain
 - a group of humans passing notes to each other to accomplish the same functional behavior


AI 100 Fall 2024

- Computational theory of minds implies a functional view of minds
 - A functional view of minds
 - Is implicit in the attempts of Hobbes, Leibniz, Boole, and Turing to explain minds in computational terms
 - Is shared explicitly or implicitly by all the work in
 - Artificial Intelligence
 - Cognitive science
 - Computational neuroscience
 - Implies that intelligence is a functional capacity independent of the specific physical substrates that support it

PennState
College of Information
Sciences And Technology

AI 100 Fall 2024

Unpacking the computational theory of minds

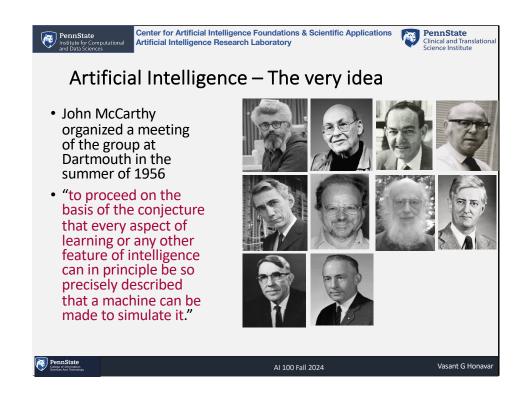
- Computational theory of minds implies a functional view of minds
- Does this mean that the physical substrate
 - whether it is the brain –
 - or the computer --
 - is irrelevant to understanding the minds?
- No!
 - Programs are executed by assemblies of simple information processing units of the sort that we saw earlier
 - Circuits made from neurons may be a lot slower than circuits made from silicon in performing complex arithmetic calculations
 - Neural circuits may be a lot faster than their silicon counterparts in making sense of a video

AI 100 Fall 2024

Computational theory of minds and AI

- Computational theory of minds implies a functional view of minds
- In this course, our focus is on
 - what is being computed by machines that behave as if they have minds
 - how it is computed by an algorithm
 - but not necessarily how exactly it is being computed
- The implementation of the computations on specific physical substrates is left to other courses
 - Al implementation using programs written in a specific programming language executed on digital computers
 - Neuroscience implementation in brains

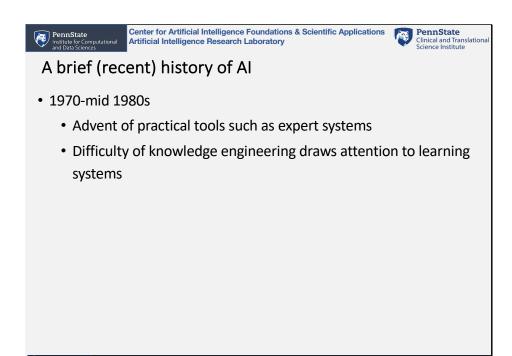
AI 100 Fall 2024

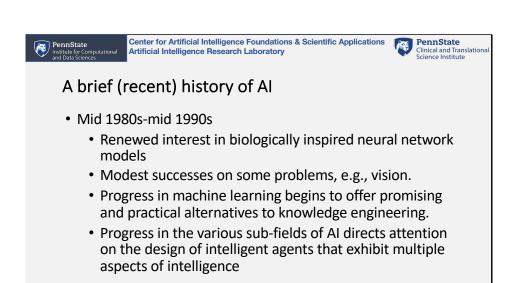


Artificial Intelligence – the Very Idea

- Working hypothesis of Al
 - Cognition is (or at least can be modeled by) computation
- · We will have a theory of
 - Problem-solving if we can devise algorithms that can solve problems
 - Game-playing if we can devise algorithms that play games e.g., chess
 - Reasoning if we can devise algorithms that reason from assumptions to conclusions
 - Learning if we can devise algorithms for learning from experience
 - Language if we can devise algorithms that effectively communicate using language
 - Cooperation if we have a computational model of multi-agent collaboration
 - Creativity if we can devise algorithms that exhibit creativity

AI 100 Fall 2024




A brief (recent) history of Al

- Birth of artificial intelligence (1956)
- Early demonstrations of artificial intelligence and the publication of Computers and Thought (1959)
- 1960-1970
 - Optimism fueled by early success on some problems thought to be hard (e.g., theorem proving)
 - Slow progress on many problems thought to be easy (e.g., vision, language);
 - Fragmentation of AI into sub-areas focused on problemsolving, knowledge representation and inference, vision, planning, language processing, learning, etc.

AI 100 Fall 2024

ennState

AI 100 Fall 2024

A brief (recent) history of Al

- Mid 1990s-2010
 - The advent of the World-Wide-Web and advances in computing and storage technologies make it possible for Al systems to be trained on massive amounts of data
 - Practical applications of AI in information retrieval, fault diagnosis, computer vision, information extraction from text, robotics, and related applications.
 - Major breakthroughs in learning theory offer insights that lead to practical advances, e.g., kernel machines, in machine learning.
 - Growing interest in studying multi-agent systems, including inter-agent communication, coordination, and multi-agent organizations.

PennState
College of Information
Sciences And Technology

AI 100 Fall 2024

A brief (recent) history of Al

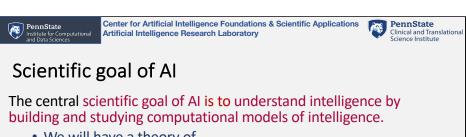
- 2010-2020
 - Increased availability of data and advanced hardware, e.g., graphical processing units, spur advances in deep learning and progress on computer vision, natural language processing, and related problems.
- 2020-present
 - Large language models capture public interest and imagination
 - Advances in powerful AI systems that could automate aspects
 of human intellectual work raise interest in socially responsible
 AI for maximizing the societal benefits of AI while minimizing
 its potential for harm.
 - There is a subtle shift in the goal of AI from automating intelligent behavior to augmenting and extending human intellect and abilities.

PennState
College of Information
Sciences And Technology

AI 100 Fall 2024

Goals of Al

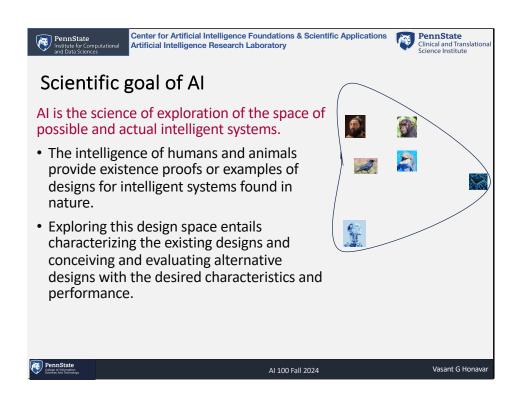
The long-term dream of AI is


- To build machines that have the full range of capabilities for intelligent action that people have
- To build machines that are self-aware, conscious, and autonomous in the same way that people like you and I are."

Michael Wooldridge in "A Brief History of Artificial Intelligence"

- This is the science fiction vision of AI you see in movies
- We don't really understand what such an effort entails recall the various tests of intelligence
- There is little consensus on whether human-like AI is feasible, or even desirable.

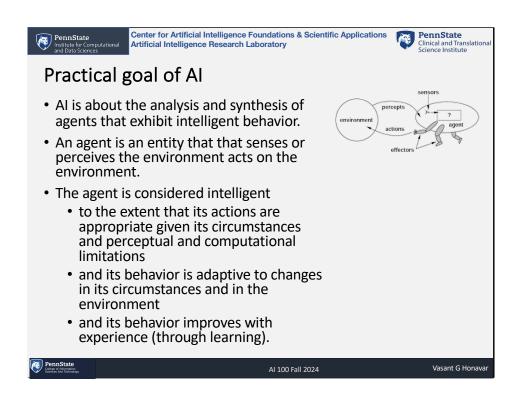
PennState
College of Information
Sciences And Technology


AI 100 Fall 2024

- We will have a theory of
 - Problem-solving if we can devise algorithms that can solve problems
 - Game-playing if we can devise algorithms that play games e.g., chess
 - Reasoning if we can devise algorithms that reason from assumptions to conclusions
 - Learning if we can devise algorithms for learning from experience
 - Language if we can devise algorithms that effectively communicate using language
 - Cooperation if we have a computational model of multiagent collaboration

vasan: G Honavar

AI 100 Fall 2024

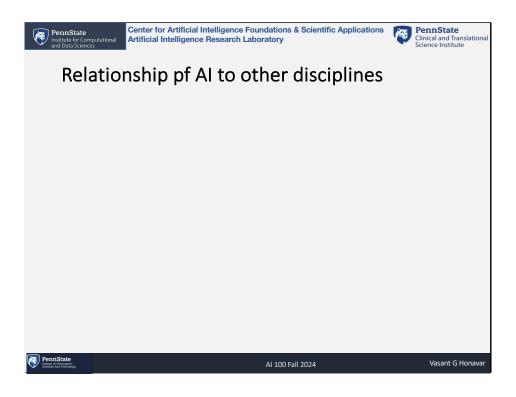

 Al is about augmenting and extending human intelligence, problem solving abilities, and creativity.

- An Al physician's assistant helps medical practitioners make better decisions
- A search engine augments human memory
- Natural language translation systems help people communicate across linguistic barriers
- An Al writer's assistant can act as a muse
- Al-powered scientist's assistants help identify promising hypotheses to pursue, optimal experiments to run, and help analyze and interpret experimental results

PennState
College of Information
Sciences And Technology

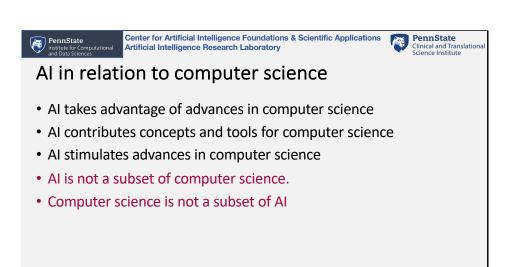
AI 100 Fall 2024

Success measures


Not everything that can be counted counts and not everything that counts can be counted

- Success measures depend on the goals
 - Successful automation of some aspect of intelligent behavior simply requires that the AI system perform the tasks at hand with a level of competence that makes it useful in practical settings.
 - Effectively augmenting or extending the capabilities of a physician in an emergency room calls for complementing and not duplicating what the physician is good at so that the human-Al team achieves outcomes that are superior to what either could on its own.
- · Choosing appropriate measures is critical to progress in Al

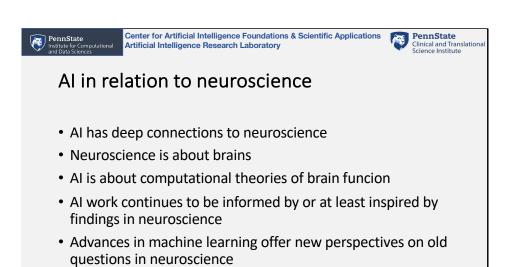
AI 100 Fall 2024



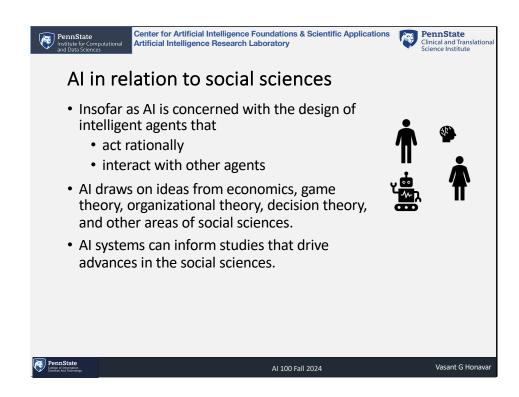
Al in relation to computer science

- Al has a special relationship to computer science because computation : mind :: calculus : physics
- The relationship of AI to Computer Science is like the relationship of physics to mathematics
- Mathematics offers essential tools for physics, but physics is not just mathematics
- The objects of study in mathematics can be entirely abstract with no relationship to the physical world or experimental measurements
- When mathematics is employed in physics, the definitions are abstractions or idealizations of entities in the natural world.
- Consequently, physical theories have to be verified through experiments

PennState
College of Information


AI 100 Fall 2024

Al in relation to psychology


- Al is often seen as a sibling of psychology
- Psychology is concerned with studies of human and animal behavior
- Al is concerned with computational models or artifacts that exhibit intelligent behavior
- Al is not committed to human-like mechanisms or any particular implementation of such mechanisms
- Computational models from AI have influenced contemporary research in psychology
- Findings and insights from psychology often have informed the design of AI models

nnState as And Stationary All 100 Fall 2024

PennState
College of Information
Sciences And Technology

AI 100 Fall 2024

Al in relation to engineering

- Insofar as AI is concerned with the design of intelligent artifacts, it both contributes to, and draws on advances in engineering.
- Al advances have resulted in practical tools for
 - configuring computer systems
 - Diagnosing faults in machinery
 - software agents that scour the Internet for information on demand
 - · Intelligent systems for planning and scheduling
 - Computer-aided design tools in many engineering disciplines
 - Self-driving automobiles, Smart buildings, smart robots, etc.

PennState
olispe of Internation
ciences And Technology

AI 100 Fall 2024

Some lessons from AI – or why is it hard to realize AI?

Easy problems for AI

- Arithmetic, algebra, logic
- We have precise algorithms to instruct computers

Somewhat hard problems for AI

- Board games like Chess, Backgammon, etc.
- Effective play requires looking ahead many moves search space too large – need heuristics

Moderately hard problems for AI

- Vision, language translation, etc.
- No known algorithm train machine learning on large data

Even harder problems for AI

Creativity

Hardest problem for AI

• Artificial General Intelligence

PennState
College of Information

AI 100 Fall 2024

Al and society

- AI will disrupt all areas of life
 - Automated driving can reduce accidents and save lives
 - · Automated driving will result in significant job loss
 - Similar dilemmas are presented by other areas accounting, healthcare, journalism, banking
 - What will happen to the workers who once occupied those jobs?
 - Will new jobs be created?
 - How can workers get trained for the new jobs?
 - How can we design systems and prepare society to best leverage the complementary strengths of humans and Al?
 - How can we ensure that AI systems do not become instruments of injustice, human rights violations, and oppression?
 - How can we maximize the benefits of AI while minimizing its potential for harm

AI 100 Fall 2024