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Agents that reason

• With rule-based knowledge representation, we can perform 
rule-based reasoning
• However, the rules are heuristic in nature, and the 

conclusions need not be logically sound
• In logic-based systems, conclusions derived from the 

assertions universally hold, and provably correct (if the 
underlying inference algorithm is sound)
• Logic based systems can be made more or less expressive 

based on the type of logic used
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Logic and AI

• ``Civilization advances by extending the number of important 
operations which we can perform without thinking of them. ”
     ― Alfred North Whitehead
• ``It is unworthy of excellent men to lose hours like slaves in the labor 

of calculation which could safely be relegated to anyone else if 
machines were used’’.

   ― Gottfried Leibniz
• ``He that cannot reason is a fool. He that will not is a bigot. He that 

dare not is a slave.’’
      ― Andrew Carnegie
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Deliberative Agents
• Can represent and reason with knowledge
• Exhibit logical rationality
• Derive  conclusions 
• that logically follow from a given set of facts and 
• only those that logically follow from the facts
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Structure of logical arguments

• Logic is normative
• Logic dictates how a logically rational agent 

should reason, 
• Not necessarily how individuals reason
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Knowledge representation (KR) is a surrogate
A declarative knowledge representation

• Encodes facts that are true in the world into sentences

• Reasoning is performed by manipulating sentences 
according to sound rules of inference

• The results of inference are  sentences that correspond 
to facts that are true in the world
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Knowledge representation (KR) is a surrogate

• The correspondence between facts that hold in the world and 
sentences that describe the world gives meaning to the 
representation

• Logic allows agents to substitute thinking for acting in the world

Known facts
• The coffee is hot; 
• coffee is a liquid; 
• a hot liquid will burn your tongue 

Inferred fact
• Coffee will burn your tongue 
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The nature of representation

World W

Conceptualization

Facts 
about Whold

hold

Sentences

represent

Facts 
about W

represent

Sentences
entail

infer
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Logic as a Knowledge Representation Formalism

Logic is a declarative language to:
• Assert sentences representing facts that hold in a real or 

imagined world W (these sentences are given the value true)
• Deduce the true/false values of sentences representing other 

aspects of W
• We shall see that Logical reasoning = computation

• Anticipated by Leibnitz, Hilbert
• Can all truths be reduced to calculation?
• Is there an effective procedure for determining whether or 

not a conclusion is a logical consequence of a set of facts?
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(Boolean) Propositional Logic  - Syntax
Propositional logic is a formal language with syntax and semantics
• Syntax refers to the structure or form of the sentences
• Semantics refers to the meaning of sentences
Syntax
• Basic units – propositions, e.g., 𝐴,𝐵, 𝑇𝑎𝑙𝑙, 𝑆ℎ𝑜𝑟𝑡, 𝑅𝑖𝑐ℎ, 𝑃𝑜𝑜𝑟	that 

can be True or False
• Propositions have no intrinsic meaning
• Logical connectives
•  ∧  or logical AND
• ∨	 or logical OR
• ¬  or logical negation or NOT
• ≡  or logical equivalence
• → or logical implication
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Propositional Logic - Syntax
Valid sentences include:

• Basic sentences 
• Propositions, e.g., 𝐴, 𝐵, 𝑅𝑖𝑐ℎ, 𝑃𝑜𝑜𝑟	that can be True or False

• Sentences that combine other sentences using logical connectives 
∧, 	 ∨	,  ¬, →

• If 𝑆! and 𝑆" are sentences, so are
• ¬𝑆!, ¬𝑆"
• 𝑆! ∧ 𝑆"
• 𝑆! ∨ 𝑆"
• 𝑆! → 𝑆"

• We use extra-linguistic symbols like parenthesis to disambiguate 
e.g., (𝐴 ∧ 𝐵) ∨ (¬𝐵 ∧ 𝐶)

Note that this is a recursive definition
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Propositional Logic - Semantics
A proposition (sentence)
• does not have intrinsic meaning
• gets its meaning from correspondence with properties of the world 

(interpretation)

e.g., proposition B denotes the fact that battery is charged
• There are two possible worlds – one in which battery is charged and 

one in which it is not
• The proposition B is  True or False in a real or imagined world
• B is true in the world in which the battery is charged and false in the 

world in which it is not charged

𝐵	 = 𝑇𝑟𝑢𝑒 Charged battery
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Propositional Logic - Semantics
• Meaning of Logical connectives
• 𝐴 ∧ 𝐵  is True if both 𝐴 and 𝐵 are True
• 𝐴 ∨ 𝐵	 is True if 𝐴 is True or 𝐵 is True, or both 𝐴	and 𝐵 are True
• ¬𝐴  is True if and only if  𝐴 is False and 
• ¬𝐴  is False if and only if  𝐴 is True, 
• The truth or falsity of a compound sentence is completely 

determined by the truth or falsity of the components of the 
sentence and not any other extraneous information
𝐴	 𝐵	 𝐴 ∧ 𝐵 𝐴	 𝐵	 𝐴 ∨ 𝐵 𝐴	 ¬𝐴
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Propositional Logic - Semantics
• Meaning of Logical connectives
• 𝐴 → 𝐵 is equivalent to ¬𝐴 ∨ 𝐵
• 𝐴 → 𝐵 is True whenever 𝐴 is False or 𝐵 is True

𝐴 𝐵 ¬𝐴 ¬𝐴 ∨ 𝐵 𝑨 → 𝑩
True True False True True
True False False False False
False True True True True
False False True True True

• What does 𝐴 → 𝐵	 really mean?
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What does 𝐴 → 𝐵 really mean?
• 𝐴 → 𝐵 is True whenever 𝐴 is False or 𝐵 is True

𝐴 𝐵 ¬𝐴 ¬𝐴 ∨ 𝐵 𝑨 → 𝑩
True True False True True
True False False False False
False True True True True
False False True True True

• The correct way to think about logical implication is as 
expression of a promise and not to causal relationship
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What does 𝐴 → 𝐵 really mean?

• Now let's see the conditions under which the promise 𝐴 → 𝐵 holds
• If 𝐴	 is true (you ace your exam) and 𝐵 is true (your parents buy 

you a car) then the promise A → 𝐵 held or remained intact  (is 
true).

𝐴 𝐵 ¬𝐴 ¬𝐴 ∨ 𝐵 𝑨 → 𝑩
True True False True True
True False False False False
False True True True True
False False True True True

• Suppose your parents promise you:
• If you ace your exam, then we buy you a car.

• Let  𝐴 denote ”you ace your exam” and 𝐵 denote “we buy you a car”.
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What does 𝐴 → 𝐵 really mean?

• If  𝐴	 is true (you ace your exam) and 𝐵 is false (your parents 
didn't buy you a car) then the promise didn't hold so A → 𝐵 is false.

𝐴 𝐵 ¬𝐴 ¬𝐴 ∨ 𝐵 𝑨 → 𝑩
True True False True True
True False False False False
False True True True True
False False True True True

• Suppose your parents promise you:
• If you ace your exam, then we buy you a car.

• Let  𝐴 denote ”you ace your exam” and 𝐵 denote “we buy you a car”.
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What does 𝐴 → 𝐵 really mean?
• Suppose your parents promise you:

• If you ace your exam, then we buy you a car.
• Let  𝐴 denote ”you ace your exam” and 𝐵 denote “we buy you a car”.
• If  𝐴	 is false (you did not ace your exam) and  𝐵	 is true (your parents 

bought you a car anyway) then the promise is intact and A → 𝐵 is true 
• Because your parents never said what would happen if you did 

not ace your exam!
• Buying a car even if you did not ace the exam does not violate the 

promise

𝐴 𝐵 ¬𝐴 ¬𝐴 ∨ 𝐵 𝑨 → 𝑩
True True False True True
True False False False False
False True True True True
False False True True True
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What does 𝐴 → 𝐵 really mean?
• Suppose your parents promise you:

• If you ace your exam, then we buy you a car.
• Let  𝐴 denote ”you ace your exam” and 𝐵 denote “we buy you a car”.
• Now let's see the conditions under which the promise 𝐴 → 𝐵 holds

• If  𝐴	 is false (you did not ace your exam) and  𝐵	is false (your 
parents didn't buy you a car) then the promise is intact and A →
𝐵 is true 

• Because you were promised a car if you aced your exam. 
• For the promise to hold, your parents need not buy you a car 

if you did not ace the exam

𝐴 𝐵 ¬𝐴 ¬𝐴 ∨ 𝐵 𝑨 → 𝑩
True True False True True
True False False False False
False True True True True
False False True True True
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Notes about logical implication 
• Unlike ∧ and ∨, → is not commutative
•  𝐴 → 𝐵 is not the same as 𝐵 → 𝐴 

• The meaning of logical implication is not quite the same as the 
conversational meaning we assign to implication
• 𝑆𝑡𝑢𝑑𝑦 → 𝑃𝑎𝑠𝑠
• If the antecedent is true, → has the usual conversational meaning
• If antecedent is false, then the implication is true regardless of 

the truth or falsity of the conclusion
• In everyday conversation when we say 𝐴 implies 𝐵 we often 

imply a causal relationship between 𝐴 and 𝐵
• Why? Because 𝐴 → 𝐵 ≡	¬𝐴 ∨ 𝐵
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What can we infer in propositional logic?
• Propositional logic provides the machinery for us to determine 
• Whether or not some conclusion follows logically from a given 

set of assertions (facts or assumptions)
• Provided both the conclusion and facts/assumptions are 

sentences in propositional logic
• What does it mean for a conclusion to logically follow from a 

set of assertions?
• We shall see that Reasoning = computation
• Anticipated by Leibnitz, Hilbert
• Can all truths be reduced to calculation?
• Is there an effective procedure for determining whether or not 

a conclusion is a logical consequence of a set of facts?



22

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G Honavar

  
   
   
              
   
  

AI 100 Fall 2025

Model theoretic or Tarskian Semantics
• Consider a logic with only two propositions: 
• 𝑅𝑖𝑐ℎ, 𝑃𝑜𝑜𝑟	
• denoting “Tom is rich” and “Tom is poor” respectively

• A model 𝑀 is a subset of the set 𝐴 of atomic sentences or 
propositions in the language
• Given this logic, we have

𝐴 = {𝑅𝑖𝑐ℎ, 𝑃𝑜𝑜𝑟}
• The models correspond to all possible subsets of 𝐴	

𝑀# =
𝑀! = 𝑅𝑖𝑐ℎ
𝑀" = 𝑃𝑜𝑜𝑟
𝑀$ = 𝑅𝑖𝑐ℎ, 𝑃𝑜𝑜𝑟

• The models denote possible worlds, that is, the possible states 
of affairs that one can describe or imagine in this  logic
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Exercise
𝑀& =
𝑀' = 𝑅𝑖𝑐ℎ
𝑀( = 𝑃𝑜𝑜𝑟
𝑀) = 𝑅𝑖𝑐ℎ, 𝑃𝑜𝑜𝑟

Identify the models where the following sentences are true
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Exercise
𝑀& =
𝑀' = 𝑅𝑖𝑐ℎ
𝑀( = 𝑃𝑜𝑜𝑟
𝑀) = 𝑅𝑖𝑐ℎ, 𝑃𝑜𝑜𝑟

Identify the models where the following sentences are true



25

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G Honavar

  
   
   
              
   
  

AI 100 Fall 2025

Model theoretic or Tarskian Semantics
• Given the set of atomic sentences 𝑅𝑖𝑐ℎ, 𝑃𝑜𝑜𝑟 , the possible 

worlds are

𝑀# = ,𝑀! = 𝑅𝑖𝑐ℎ ,𝑀" = 𝑃𝑜𝑜𝑟 ,𝑀$ = 𝑅𝑖𝑐ℎ, 𝑃𝑜𝑜𝑟
• By a model M we mean the state of affairs in the world  in which 
• every atomic sentence that is in M is true and 
• every atomic sentence that is not in M is false

• In 𝑀# Tom is neither rich nor poor
• In 𝑀! Tom is rich
• In 𝑀" Tom is poor
• In 𝑀$ Tom is both rich and poor
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Model theoretic or Tarskian Semantics
• We have

𝐴 = {𝑅𝑖𝑐ℎ, 𝑃𝑜𝑜𝑟}
• The possible worlds are

𝑀# =
𝑀! = 𝑅𝑖𝑐ℎ
𝑀" = 𝑃𝑜𝑜𝑟
𝑀$ = 𝑅𝑖𝑐ℎ, 𝑃𝑜𝑜𝑟

• In 𝑀# Tom is neither rich nor poor
• In 𝑀! Tom is rich
• In 𝑀" Tom is poor
• In 𝑀$ Tom is both rich and poor
• How could this be?
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Model theoretic or Tarskian Semantics
• The possible worlds are

𝑀# = ,𝑀! = 𝑅𝑖𝑐ℎ ,𝑀" = 𝑃𝑜𝑜𝑟 ,𝑀$ = 𝑅𝑖𝑐ℎ, 𝑃𝑜𝑜𝑟
• By a model M we mean the state of affairs in the world  in which 
• every atomic sentence that is in M is true and 
• every atomic sentence that is not in M is false

• In 𝑀# Tom is neither rich nor poor 𝑅𝑖𝑐ℎ	is False and 𝑃𝑜𝑜𝑟	is False
• In 𝑀! Tom is rich: 𝑅𝑖𝑐ℎ	is True, 𝑃𝑜𝑜𝑟	is False
• In 𝑀" Tom is poor: 𝑃𝑜𝑜𝑟	is True, 𝑅𝑖𝑐ℎ	is False
• In 𝑀$ Tom is both rich and poor: 𝑅𝑖𝑐ℎ	is True and 𝑃𝑜𝑜𝑟	is True
• How could this be?
• Because the propositions 𝑅𝑖𝑐ℎ, 𝑃𝑜𝑜𝑟 have no intrinsic meaning!
• They get their meaning from correspondence with the states of the 

world
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Model theoretic or Tarskian Semantics
• The possible worlds are

𝑀# = ,𝑀! = 𝑅𝑖𝑐ℎ ,𝑀" = 𝑃𝑜𝑜𝑟 ,𝑀$ = 𝑅𝑖𝑐ℎ, 𝑃𝑜𝑜𝑟
• What if we wanted to ensure that the meaning of 𝑅𝑖𝑐ℎ	and Poor 

are mutually exclusive?
• We must assert that Tom cannot be both rich and poor: 
¬(𝑅𝑖𝑐ℎ ∧ 𝑃𝑜𝑜𝑟)

• What if we wanted to assert that Tom has to be either rich nor 
poor?
• We must assert that: 𝑅𝑖𝑐ℎ ∨ 𝑃𝑜𝑜𝑟

• Hence, if we want to ensure that our logical assertions align with 
their intuitive meanings, we restrict their  meanings by the 
additional assertions ¬(𝑅𝑖𝑐ℎ ∧ 𝑃𝑜𝑜𝑟), 𝑅𝑖𝑐ℎ ∨ 𝑃𝑜𝑜𝑟
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Some laws of propositional logic
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Logical entailment

• What does it mean for a conclusion to logically follow from a 
given set of assertions?
• First, note that any set of assertions can be combined using 
∧ to obtain a single equivalent sentence
• ``𝐴 ∧ 𝐵	is True  and ¬𝐶 ∨𝐷 is True ‘’ is equivalent to 
• (𝐴 ∧ 𝐵)⋀(¬𝐶 ∨ 𝐷) is True

• Hence, it suffices to consider what it means for one 
sentence, say 𝑞, to logically follow from another, say, 𝑝
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Logical Entailment
• What does it mean for 𝑞 to logically follow from 𝑝?

• We say that 𝑝 entails 𝑞 (written as 𝑝 ⊨ 𝑞) if 𝑞	holds in 
every model in which 𝑝 holds

• Suppose
• 𝜇%  is the set of models in with 𝑞	holds
• 𝜇&  is the set of models in with 𝑝	holds

• Then 𝑝 ⊨ 𝑞 if it is the case that 𝜇& ⊆ 𝜇%  
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Logical Entailment
• What does it mean for 𝑞 to logically follow from 𝑝?

• We say that 𝑝 entails 𝑞 (written as 𝑝 ⊨ 𝑞) if 𝑞	holds in 
every model in which 𝑝 holds, that is, 𝜇& ⊆ 𝜇%  

• Note that entailment ⊨ is akin to what we 
conversationally mean by implication which is 
different from logical implication (→)
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What does it mean to be logically rational?

• Infer only those conclusions from one’s knowledge 
base that are sanctioned by logical entailment

• To find out if 𝑝 ⊨ 𝑞, an agent can 
• Enumerate 𝜇/,	the set of models in which 𝑝 holds
• Enumerate 𝜇0 ,	the set of models in which 𝑞 holds
• Check if 𝜇/ ⊆ 𝜇0
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What does it mean to be logically rational?

• Infer only those conclusions from one’s knowledge base that are 
sanctioned by logical entailment
• Suppose you know that being human implies being mortal
• Then you find out that you are human 
• Is it rational for you to conclude that you are mortal?



35

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G Honavar

  
   
   
              
   
  

AI 100 Fall 2025

What does it mean to be logically rational?

• Suppose you know that being human implies being mortal

• Then you find out that you are human 
• Is it rational for you to conclude that you are mortal?

Let us construct a logic to find out
• Let 𝐻 denote being human

• Let 𝑀 denote being mortal
• Knowledge base: 𝐻 →𝑀,𝐻

• We need to check whether 𝐻 ∧ (𝐻 → 𝑀) ⊨ 𝑀
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How can we tell if 𝐻 ∧ (𝐻 → 𝑀) ⊨ 𝑀?
Enumerate the models 

𝑀# = {	}, 𝑀! = {𝐻	} 𝑀" = {𝑀}, 𝑀$ = {𝐻,𝑀}
Let 𝑝 be the sentence 𝐻 ∧ 𝐻 → 𝑀 	and 𝑞 be the sentence 𝑀
𝜇' = the set of models in which 𝐻 holds = {𝑀!, 𝑀$}
𝜇'→) 	= the set of models in which 𝐻 →𝑀 holds

 = the set of models in which ¬𝐻 ∨𝑀 holds
 = 𝜇¬' ∪ 𝜇) = 𝑀# ,𝑀"  ∪ 𝑀" ,𝑀$ = 𝑀# ,𝑀" ,𝑀$

𝜇'∧ '→) = 𝜇' ∩ 𝜇'→) 	= {𝑀!, 𝑀$} ∩ 𝑀# ,𝑀" ,𝑀$ = 𝑀$ = 𝜇&
𝜇) = 𝑀" ,𝑀$ = 𝜇%
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How can we tell if 𝐻 ∧ (𝐻 → 𝑀) ⊨ 𝑀?
Enumerate the models 

𝑀# = {	}, 𝑀! = {𝐻	} 𝑀" = {𝑀}, 𝑀$ = {𝐻,𝑀}
Let 𝑝 be the sentence 𝐻 ∧ 𝐻 → 𝑀 	and 𝑞 be the sentence 𝑀

𝜇& 	= 𝑀$

𝜇% = 𝑀" ,𝑀$

Clearly, 𝜇& ⊆ 𝜇%
Hence 𝑝 ⊨ 𝑞
Therefore 𝐻 ∧ (𝐻 → 𝑀) ⊨ 𝑀
That is, given 𝐻 and 𝐻 →𝑀, it is logically rational to conclude 𝑀
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What did we just do?

We just proved that 𝐻 ∧ (𝐻 → 𝑀) ⊨ 𝑀
• Note that we never really made use of the fact that 𝐻 and 𝑀 denote 

being human and being mortal respectively

• So long as our knowledge base has two sentences of the form 𝛼 and 
𝛼 → 𝛽 hold, logic permits us to conclude that 𝛽 holds as well
• This yields a logically sound rule of inference that we can 

mechanically apply to any knowledge base:
 Given 𝛼, 𝛼 → 𝛽 , infer 𝛽 

• This is the rule called Modus Ponens that Aristotle had introduced but 
without solid justification which we now have, thanks to Tarski
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Logical Rationality
• A logical agent 𝐴 with a knowledge base 𝐾𝐵𝐴  is justified in 

inferring 𝑞 if it is the case that 𝐾𝐵𝐴 ⊨ 𝑞
• How can the agent	𝐴	decide whether in fact 𝐾𝐵𝐴 ⊨ 𝑞 ?
• Model checking
• Enumerate 𝜇-.!	 i.e., all the models in which 𝐾𝐵𝐴  holds
• Enumerate 𝜇% 	i.e., all the models in which	𝑞	holds
• Check whether	𝜇-.! ⊆ 𝜇%

• Inference algorithm based on inference rules
• We saw one such inference rule that is provably sound: 
• Given 𝛼, 𝛼 → 𝛽 , infer 𝛽 
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Proving theorems using Modus Ponens

• Suppose you are told that 
• “Today is Tuesday” and 
• “If Today is Tuesday, You have AI100 lecture today”

• Can a machine prove that “You have AI100 lecture today”?
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Proving theorems using Modus Ponens
• Suppose you are told that 
• “Today is Tuesday” and 
• “If Today is Tuesday, You have AI100 lecture today”

• Can a machine prove that “You have AI100 lecture today”?
• Let 𝑃	stand for “Today is Tuesday  ”
• Let 𝑄	stand for “You have AI100 lecture today”
• We are told
• 𝑃 → 𝑄
• 𝑃

• Modus ponens tells us that 𝑃,𝑃 → 𝑄 ⊨ 𝑄
• That concludes the proof.
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Reasoning with Modus Ponens
• Given:
• 𝑃
• 𝑃 → 𝑄 
• 𝑄 → 𝑅

• Prove 𝑅	
• Modus ponens (MP) tells us: 𝑃,𝑃 → 𝑄 ⊨ 𝑄
• What did we do?
• Used Modus Ponens to construct a proof
• A sequence of applications of one or 

more  inference rules – in this case, MP

𝑃
𝑃 → 𝑄	
𝑄 → 𝑅

𝑃
𝑃 → 𝑄	
𝑄 → 𝑅
𝑄

𝑃
𝑃 → 𝑄	
𝑄 → 𝑅
𝑄
𝑅

MP

MP
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Reasoning with Modus Ponens
• We can see that reasoning or theorem 

proving can be reduced to state space search
• Start state
• The given set of logical assertions

• Actions or operators
• Applications of an inference rule such as 

Modus Ponens
• Goal state
• A set of logical assertions that includes 

the desired conclusion
• Proof (of the conclusion)
• A sequence of actions that take you from 

the start state to a goal state

𝑃
𝑃 → 𝑄	
𝑄 → 𝑅

𝑃
𝑃 → 𝑄	
𝑄 → 𝑅
𝑄

𝑃
𝑃 → 𝑄	
𝑄 → 𝑅
𝑄
𝑅

MP

MP
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Search for proofs: inference
• An inference rule 𝛼, 𝛽 ⊢ 𝛾 consists of 
• two sentence patterns 𝛼 and 𝛽 called the premises and 
• one sentence pattern 𝛾 called the consequent

• Note the difference between ⊨ and ⊢
• ⊨ is a semantic notion
• ⊢ is a syntactic pattern matching procedure

• If 𝛼 and 𝛽 match two sentences of KB then 
• the corresponding sentence of the form 𝛾 can be inferred 

according to the rule
• Given one or more sound inference rules and a knowledge base 

KB 
• inference is the process of successively applying inference 

rules to KB
• Each rule application adds its consequent to the KB
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Generalized Modus Ponens

{	𝑝 → 𝑞	, 𝑝	} ⊢ 𝑞

{𝛼, 𝛽} ⊢ 𝛾

.	 .	
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Generalized Modus Ponens

{	𝑝 → 𝑞	, 𝑝	} ⊢ 𝑞

{𝛼, 𝛽} ⊢ 𝛾

.	 .	

Generalized Modus Ponens
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Reasoning with inference rules
• Forward chaining
• Start with the given facts
• Recursively apply the rule(s) of inference to derive the 

conclusion
• Backward chaining
• Start with the conclusion you want to prove
• Apply the inference rules backwards until you derive the given 

facts
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Application of generalized modus ponens 
KB:

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾	Ù	𝐵𝑢𝑙𝑏𝑠𝑂𝐾	 → 	𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠𝑊𝑜𝑟𝑘

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾	Ù	𝑆𝑡𝑎𝑟𝑡𝑒𝑟𝑂𝐾	Ù	¬𝐸𝑚𝑝𝑡𝑦𝐺𝑎𝑠𝑇𝑎𝑛𝑘	 → 	𝐸𝑛𝑔𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡𝑠

𝐸𝑛𝑔𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡𝑠	Ù	¬𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒	Ù	𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠𝑊𝑜𝑟𝑘	 → 	𝐶𝑎𝑟𝑂𝐾

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾,𝐵𝑢𝑙𝑏𝑠𝑂𝐾, 𝑆𝑡𝑎𝑟𝑡𝑒𝑟𝑂𝐾	,¬𝐸𝑚𝑝𝑡𝑦𝐺𝑎𝑠𝑇𝑎𝑛𝑘,¬𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒	

Query:
 𝐶𝑎𝑟𝑂𝐾?
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Example: Forward-chaining using Modus Ponens
𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾	Ù	𝐵𝑢𝑙𝑏𝑠𝑂𝐾	 → 	𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠𝑊𝑜𝑟𝑘

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾, 𝐵𝑢𝑙𝑏𝑠𝑂𝐾
	 	 	 	 -------------------------------------------

𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠𝑊𝑜𝑟𝑘

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾	Ù	𝑆𝑡𝑎𝑟𝑡𝑒𝑟𝑂𝐾	Ù	¬𝐸𝑚𝑝𝑡𝑦𝐺𝑎𝑠𝑇𝑎𝑛𝑘	 → 	𝐸𝑛𝑔𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡𝑠
𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾	, 𝑆𝑡𝑎𝑟𝑡𝑒𝑟𝑂𝐾	,¬𝐸𝑚𝑝𝑡𝑦𝐺𝑎𝑠𝑇𝑎𝑛𝑘

   -----------------------------------------------------------------------------
      𝐸𝑛𝑔𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡𝑠

𝐸𝑛𝑔𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡𝑠Ù¬𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒Ù𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠𝑊𝑜𝑟𝑘 → 𝐶𝑎𝑟𝑂𝐾
𝐸𝑛𝑔𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡𝑠 ,¬𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒,𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠𝑊𝑜𝑟𝑘

   ------------------------------------------------------------------------
     𝐶𝑎𝑟𝑂𝐾
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Example: Backward chaining to prove 𝐶𝑎𝑟𝑂𝐾	

KB:
𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾	Ù	𝐵𝑢𝑙𝑏𝑠𝑂𝐾	 → 	𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠𝑊𝑜𝑟𝑘

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾	Ù	𝑆𝑡𝑎𝑟𝑡𝑒𝑟𝑂𝐾	Ù	¬𝐸𝑚𝑝𝑡𝑦𝐺𝑎𝑠𝑇𝑎𝑛𝑘	 → 	𝐸𝑛𝑔𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡𝑠

𝐸𝑛𝑔𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡𝑠	Ù	¬𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒	Ù	𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠𝑊𝑜𝑟𝑘	 → 	𝐶𝑎𝑟𝑂𝐾

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾, 𝐵𝑢𝑙𝑏𝑠𝑂𝐾, 𝑆𝑡𝑎𝑟𝑡𝑒𝑟𝑂𝐾	,¬𝐸𝑚𝑝𝑡𝑦𝐺𝑎𝑠𝑇𝑎𝑛𝑘,¬𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒	

Query:
 𝐶𝑎𝑟𝑂𝐾?
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Example: Backward chaining to prove 𝐶𝑎𝑟𝑂𝐾	
𝐶𝑎𝑟𝑂𝐾

𝐸𝑛𝑔𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡𝑠	Ù	¬𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒	Ù	𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠𝑊𝑜𝑟𝑘	
---------------------------------------------------------------------------------
-
𝐸𝑛𝑔𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡𝑠	Ù	¬𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒	Ù	𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠𝑊𝑜𝑟𝑘

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾	Ù	𝐵𝑢𝑙𝑏𝑠𝑂𝐾	 → 	𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠𝑊𝑜𝑟𝑘
   ---------------------------------------------------------------------

𝐸𝑛𝑔𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡𝑠	Ù	¬𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒 Ù 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾	Ù	𝐵𝑢𝑙𝑏𝑠𝑂𝐾	

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾	Ù	𝑆𝑡𝑎𝑟𝑡𝑒𝑟𝑂𝐾	Ù	¬𝐸𝑚𝑝𝑡𝑦𝐺𝑎𝑠𝑇𝑎𝑛𝑘	 → 	𝐸𝑛𝑔𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡𝑠
  ------------------------------------------------------------------------------------------
¬𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒 Ù 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾	Ù	𝐵𝑢𝑙𝑏𝑠𝑂𝐾 Ù 𝑆𝑡𝑎𝑟𝑡𝑒𝑟𝑂𝐾	Ù	¬𝐸𝑚𝑝𝑡𝑦𝐺𝑎𝑠𝑇𝑎𝑛𝑘

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾, 𝐵𝑢𝑙𝑏𝑠𝑂𝐾, 𝑆𝑡𝑎𝑟𝑡𝑒𝑟𝑂𝐾	,¬𝐸𝑚𝑝𝑡𝑦𝐺𝑎𝑠𝑇𝑎𝑛𝑘,¬𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒	
  



52

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G Honavar

  
   
   
              
   
  

AI 100 Fall 2025

Forward chaining
Work forwards from premises to conclusion
• To prove q by forward chaining,
• Put given facts into working memory
• Apply applicable rules generate next states
• Repeat until you end up with a state that contains 𝑞

Avoid loops
• Check if new fact is already in working memory
• If so, do not add it to working memory
We can ensure this by not applying a rule if it has been applied 
already
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Forward chaining

• Appy any rule whose premises are satisfied in the KB
• Add its conclusion to the KB, until the conclusion is added to KB

1. 𝑃 → 𝑄
2. 𝐿 ∧𝑀 → 𝑃
3. 𝐵 ∧ 𝐿 → 𝑀
4. 𝐴 ∧ 𝑃 → 𝐿
5. 𝐴 ∧ 𝐵 → 𝐿

A, B

A, B, L

5

A, B, L, M

A, B, L, M, P

3

2

A, B, L, M, P, Q
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Backward chaining
Work backwards from the goal q
• To prove q by backward chaining,
• check if q is known already, or
• prove by BC all premises of some rule concluding q

Avoid loops
• Check if new subgoal is already on the goal list 

Avoid repeated work 
• check if new subgoal has already been proved true, or
• has already failed
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Backward chaining
AND-OR search working backwards from the goal
• To prove goal by backward chaining,
• check if goal is known already, or
• Recursively prove by BC all premises of some rule concluding goal

R1. 𝑃 → 𝑄
R2. 𝐿 ∧𝑀 → 𝑃
R3. 𝐵 ∧ 𝐿 → 𝑀
R4. 𝐴 ∧ 𝑃 → 𝐿
R5. 𝐴 ∧ 𝐵 → 𝐿

Q

P

R1

M

A

R2

R4
L

B

R3

R5

Partial solutions
Q
P
M&L
B&L
A&B, A&P
∎
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Forward chaining (FC) vs. backward chaining (BC)

• FC is data-driven, automatic, unconscious processing
• May do lots of work that is irrelevant to the conclusion
• BC is goal-driven, appropriate for problem-solving,
• Complexity of BC can be much less than linear in size of KB
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Not all inference rules are sound

• Modus ponens

• Loony tunes 

Modus ponens derives only inferences 
sanctioned by entailment

Modus ponens is sound

Loony tunes  can derive inferences that 
are not sanctioned by entailment

Loony tunes is not sound

{𝛼 → 𝛽, 𝛼} ⊢ 𝛽 

𝐹𝑟𝑖𝑑𝑎𝑦 ⊢ 𝛽
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Soundness and Completeness of an inference rule ⊢

• We write    𝑝 ⊢ 𝑞  to denote that that 𝑝 can be inferred from 
𝑞	using the inference rule ⊢

An inference rule ⊢  is said to be 
• Sound if whenever  𝑝 ⊢ 𝑞, it is also the case that 𝑝 ⊨ 𝑞
• That is, the inference rule yields only those conclusions that are 

sanctioned by entailment
• Complete if whenever 𝑝 ⊨ 𝑞 , it is also the case that 𝑝 ⊢ 𝑞 
• That is, the inference rule can be used to derive all the 

conclusions that are sanctioned by entailment
• Ideally, we want inference rules that are both sound and complete
• Logical rationality requires inference rules that are sound
• We may settle for sound inference rules that are not complete



59

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

Vasant G Honavar

  
   
   
              
   
  

AI 100 Fall 2025

Soundness and Completeness of Modus Ponens

• We can show that modus ponens is sound, but not complete 
• unless the KB is Horn i.e., the KB can be written as a collection 

of sentences of the form
• 𝑎! ∧ 𝑎" ∧ 𝑎$…𝑎DE! ∧ 𝑎D ∧ 𝑎DF! ∧ 𝑎DF"… ∧ 𝑎G → 𝑏
• Where each 𝑎D  and 𝑏 are atomic sentences 
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Unsound inference rules are not necessarily useless!

Abduction (Charles Peirce) is not sound, but useful in diagnostic 
reasoning or hypothesis generation

 

𝑝 → 𝑞
𝑞
𝑝

𝐵𝑙𝑜𝑐𝑘𝑒𝑑𝐴𝑟𝑡𝑒𝑟𝑦 → 𝐻𝑒𝑎𝑟𝑡𝐴𝑡𝑡𝑎𝑐𝑘
𝐻𝑒𝑎𝑟𝑡𝐴𝑡𝑡𝑎𝑐𝑘
𝐵𝑙𝑜𝑐𝑘𝑒𝑑𝐴𝑟𝑡𝑒𝑟𝑦
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Validity and satisfiability, equivalence
• A sentence is valid if it is true in all models,
• e.g., True, 𝐴 ∨¬ 𝐴,	 𝐴 → 𝐴, (𝐴	 ∧	(𝐴	 → 	𝐵)) 	→ 	𝐵

• A sentence is satisfiable if it is true in some model
• e.g., 𝐴	 ∨ 	𝐵, 𝐶

• A sentence is unsatisfiable if it is true in no models
• e.g., 𝐴 ∧¬𝐴

• A useful result for proof by contradiction
• 𝐾𝐵	 ⊨ 𝑠	if and only if (𝐾𝐵	 ∧ ¬𝑠	)	is unsatisfiable

• Two sentences are logically equivalent iff they are true in same set 
of models or  a	º	b	 iff a	 ⊨ b	and  b	 ⊨ 	a.
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Constructing proofs
• Finding proofs can be cast as a search problem
• Search can involve 
• forward chaining to derive goal from KB
• or backward chaining from the goal to facts

• Searching for proofs 
• Involves repeated application of applicable inference rules. 
• Can be more efficient than enumerating models

• Propositional logic is monotonic
• Inference steps can only add inferred facts
• An inferred fact once added is never deleted
• A theorem once proven can never be disproven (barring error in 

proof)
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Soundness and Completeness of a logical reasoner

• An logical reasoner starts with the KB and applies applicable 
inference rules until the desired conclusion is reached 
• A logical reasoner is sound if it uses a sound inference rule 
• An inference algorithm is complete if 
• It uses a complete inference rule and
• a complete search procedure, that is one that is guaranteed to 

find a solution if one exists
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Completeness of Modus Ponens for Propositional Logic

• Modus Ponens is not complete for Propositional Logic
• Suppose that all classes at some university meet either 

Mon/Wed/Fri or Tue/Thu. 
• The AI course meets at 4 PM in the afternoon
• Jane has volleyball practice Thursdays and Fridays at that time. 
• Can Jane take AI?

1.𝑀𝑊𝐹𝐴𝐼4𝑝𝑚	 ∨ 𝑇𝑅𝐴𝐼4𝑝𝑚
2	𝑇𝑅𝐴𝐼4𝑝𝑚 ∧ 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚 → 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼
3.𝑀𝑊𝐹𝐴𝐼4𝑝𝑚 ∧ 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦4𝑝𝑚 → 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼

4. 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚
5. 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝐹4𝑝𝑚
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Completeness of Modus Ponens for Propositional Logic
• Modus Ponens is not complete for Propositional Logic
• Can Jane take AI?

1.𝑀𝑊𝐹𝐴𝐼4𝑝𝑚	 ∨ 𝑇𝑅𝐴𝐼4𝑝𝑚
2	𝑇𝑅𝐴𝐼4𝑝𝑚 ∧ 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚 → 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼
3.𝑀𝑊𝐹𝐴𝐼4𝑝𝑚 ∧ 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝐹4𝑝𝑚 → 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼

4. 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚
5. 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝐹4𝑝𝑚

• Of course not!
• Try proving this using Modus Ponens
• You can’t!
• Why?
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Completeness of Modus Ponens for Propositional Logic
1.𝑀𝑊𝐹𝐴𝐼4𝑝𝑚	 ∨ 𝑇𝑅𝐴𝐼4𝑝𝑚

2	𝑇𝑅𝐴𝐼4𝑝𝑚 ∧ 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚 → 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼
3.𝑀𝑊𝐹𝐴𝐼4𝑝𝑚 ∧ 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝐹4𝑝𝑚 → 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼

4. 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚
5. 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝐹4𝑝𝑚

	

We can use Modus Ponens to establish
2&4: 𝑇𝑅𝐴𝐼4𝑝𝑚 → 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼
3&4:𝑀𝑊𝐹𝐴𝐼4𝑝𝑚 → 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼

But Modus Ponens can’t take us further to conclude 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼!
• Modus Ponens is not complete for Propositional Logic (except in the 

restricted case when the KB is Horn)
• However, we can generalize Modus Ponens to obtain a sound and 

complete inference rule for Propositional Logic
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Soundness and Completeness of Forward Chaining

• An inference algorithm starts with the KB and applies applicable 
inference rules until the desired conclusion is reached 
• An inference algorithm is sound if it uses a sound inference rule 
• An inference algorithm is complete if 
• It uses a complete inference rule and
• a complete search procedure

• Forward chaining using Modus Ponens is sound and complete 
for Horn knowledge bases (i.e., knowledge bases that contain 
only Horn clauses)
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Forward vs. backward chaining

• FC is data-driven, automatic, unconscious processing,
• Akin to day dreaming…

• May do lots of work that is irrelevant to the goal 
• BC is goal-driven, appropriate for problem-solving
• e.g., Where are my keys? How do I get into a PhD program?

• The run time of FC is linear in the size of the KB.
• The run time of BC can be, in practice, much less than linear in 

size of KB 
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Resolution principle
Any set of propositional logic sentences can be expressed 
in a standard form, CNF, conjunction  of disjunctions

Resolution is sound and complete for propositional KB

Given
¬𝑎" ∨ …∨¬𝑎#$" ∨ ¬𝑎# ∨¬𝑎#%" ∨…∨¬𝑎& ∨ 𝑞" ∨ 𝑞'… ∨ 𝑞(
𝑏" ∨ …∨ 𝑏) ∨ 𝑐" ∨ …∨ 𝑐*$"∨ 𝑐* ∨ 𝑐*%"… ∨ 𝑐+

If 𝑎𝑖 = 𝑐𝑗 then we can conclude: 
¬𝑎"…𝑎#$" ∨ ¬𝑎#%" ∨… ∨	¬𝑎& ∨ 𝑞" ∨ 𝑞'… ∨ 𝑞(  ∨ 𝑏" ∨ …∨ 𝑏) ∨ 𝑐" ∨ 
…∨ 𝑐*$"∨ 𝑐*%"… ∨ 𝑐+
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Transformation to Clause Form (CNF)
Example: (A Ú ¬B) →(C Ù D)

1. Eliminate → using 𝑝 → 𝑞 ≡ ¬𝑝 ∨ 𝑞 to get
 ¬(A Ú ¬B) Ú (C Ù D)

2. Reduce scope of ¬ using De Morgan’s 
laws (¬A Ù B) Ú (C Ù D)

3. Distribute Ú over Ù
 (¬A Ú (C Ù D)) Ù (B Ú (C Ù D)) to get

 (¬A Ú C) Ù (¬A Ú D) Ù (B Ú C) Ù (B Ú D)
4. Break up the conjunction into individual 

sentences to get a set of clauses or 
conjunction of disjunctions (CNF):

 {¬A Ú C , ¬A Ú D , B Ú C , B Ú D}
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Exercise: Transformation to Clause Form (CNF)
Example: (A Ú B Ú ¬ C) →(D Ù E Ù F)

1. Eliminate → using 𝑝 → 𝑞 ≡ ¬𝑝 ∨ 𝑞 to get
 

2. Reduce scope of ¬ using De Morgan’s 
laws to get 

3. Distribute Ú over Ù to get
 
Break up the conjunction into individual 
sentences to get a set of clauses or 
conjunction of disjunctions (CNF):
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Exercise: Transformation to Clause Form (CNF)
Example: (A Ú B Ú ¬ C) →(D Ù E Ù F)

1. Eliminate → using 𝑝 → 𝑞 ≡ ¬𝑝 ∨ 𝑞 to get
 ¬(A Ú B Ú ¬ C) Ú (D Ù E Ù F)

2. Reduce scope of ¬ using De Morgan’s laws: (¬A Ù ¬ B Ù C) Ú (D Ù E Ù F)
3. Distribute Ú over Ù to get

 (¬A Ú (D Ù E Ù F)) Ù (¬ B Ú (D Ù E Ù F)) Ù (C Ú (D Ù E Ù F))
 which is equivalent to
 (¬A Ú D) Ù (¬A Ú E) Ù (¬A Ú F) Ù
 (¬ B Ú D) Ù (¬ B Ú E) Ù(¬ B Ú F) Ù
 (CÚ D) Ù (CÚ E) Ù(CÚ F)

4. Break up the conjunction into individual sentences to get a set of clauses or 
conjunction of disjunctions (CNF):

 {¬A Ú D, ¬A Ú E, ¬A Ú F, ¬ B Ú D, ¬ B Ú E, ¬ B Ú F, CÚ D, CÚ E, CÚ F}
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Applying resolution
• Transform KB into an equivalent Conjunctive normal form (CNF)
• Each sentence in KB is a disjunction of literals (elementary 

propositions) or their negations using known logical 
equivalences
• KB is a conjunction of disjunctions

• Any propositional KB can be converted into CNF 
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Proof
• The proof of a sentence a from a set of sentences KB is the 

derivation of a obtained through a series of applications of sound 
inference rules to KB
• KB ⊨ a  if and only if  {KB,¬a} is unsatisfiable 
  {KB,¬a} ⊨ contradiction ( 𝑇 → 𝐹, ∎,	 empty sentence)
• Proving a from KB is equivalent to deriving a contradiction from 

KB augmented with the negation of a 
• The above strategy is called resolution by refutation
• Automated theorem provers for propositional logic use resolution 

by refutation to construct proofs for CNF formulas with thousands 
of variables and clauses
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Resolution by refutation
• To establish that a conclusion follows from a set of premises
• Negate the conclusion and add it to the premises
• Convert the resulting set of propositional logic sentences into 

clause normal form (CNF)
• Start with the clause(s) resulting from the negated conclusion and 

successively resolve them with other clauses until an empty 
clause results
• An empty clause corresponds to a logical contradiction in 

propositional logic 
• If the premises together with a negated conclusion yield a 

contradiction, the conclusion must follow from the premises
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Example: Applying resolution

• Given KB:  𝐼, 	𝐷, 	 ¬𝑅 ∨ 𝐿,    ¬𝐷 ∨¬𝐿
• To prove: 𝐼 ∧ ¬𝑅
• Negated theorem: ¬(𝐼 ∧ ¬𝑅) ≡ ¬𝐼 ∨ 𝑅

𝐼	 ¬𝐼 ∨ 𝑅

𝑅	 ¬𝑅 ∨ 𝐿 

𝐿     ¬𝐷 ∨¬𝐿

¬𝐷    𝐷

Proof
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Example
• Show that 𝑅 follows from the KB: 𝑃, 𝑃 → 𝑄, 𝑃 ∧ 𝑄 → 𝑅
• Convert the given sentences into CNF and negate the theorem
1. 𝑃
2. 𝑃 → 𝑄 ≡ ¬𝑃 ∨𝑄
3. 𝑃 ∧ 𝑄 → 𝑅 ≡	(¬𝑃 ∨¬𝑄) ∨ 𝑅 ≡ ¬𝑃 ∨¬𝑄 ∨ 𝑅 
4. ¬ 𝑅 (negated theorem)
Resolve 3,4 to get  5. ¬𝑃 ∨¬𝑄 
Resolve 1 and 5 to get 6. ¬𝑄 
Resolve 6 and 2 to get 7. ¬𝑃
Resolve 7 and 1 to get ∎	 (empty clause), thus proving that the KB 
entails 𝑅
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Some useful tricks
• Set of support strategy
• Start with the negated theorem
• At each step, use a clause derived from resolving the negated 

theorem or one of its descendants with some other clause
• Negated theorem must play a role in a resolution by 

refutation proof
• Unit clause strategy
• All things being equal, choose a clause with a single literal to 

resolve with a clause from the set of support
• Helps us get to the empty clause (contradiction) quicker
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Vasant Honavar, 2009. 

Set of Support Strategy in Action
Given: 𝐼, 𝐷,¬𝑅 ∨ 𝐿,¬𝐷 ∨¬𝐿
To prove: 𝐼 ∧ ¬𝑅.
Negated theorem: ¬𝐼 ∨ 𝑅 ¬𝐼 ∨ 𝑅 𝐼

𝑅 ¬𝑅 ∨ 𝐿

𝐿 ¬𝐷 ∨¬𝐿

¬𝐷 𝐷
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Example: Applying Resolution
• Suppose that all classes at some university meet either 

Mon/Wed/Fri or Tue/Thu. 
• The AI course meets at 4 PM in the afternoon
• Jane has volleyball practice Thursdays and Fridays at 4pm. 
• Does Jane have a conflict with AI? Assume not.

 

1.𝑀𝑊𝐹𝐴𝐼4𝑝𝑚	 ∨ 𝑇𝑅𝐴𝐼4𝑝𝑚
2	𝑇𝑅𝐴𝐼4𝑝𝑚 ∧ 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚 → 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼
3.𝑀𝑊𝐹𝐴𝐼4𝑝𝑚 ∧ 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝐹4𝑝𝑚 → 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼

4. 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚
5. 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝐹4𝑝𝑚
6.¬𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼
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Example: Applying Resolution

• Transform to CNF and add negated theorem:

 

1.𝑀𝑊𝐹𝐴𝐼4𝑝𝑚	 ∨ 𝑇𝑅𝐴𝐼4𝑝𝑚
2	¬𝑇𝑅𝐴𝐼4𝑝𝑚 ∨¬𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚 ∨ 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼
3.¬𝑀𝑊𝐹𝐴𝐼4𝑝𝑚 ∨¬𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝐹4𝑝𝑚 ∨ 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼

4. 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚
5. 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝐹4𝑝𝑚
6.¬𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼
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Example: Applying Resolution
1.𝑀𝑊𝐹𝐴𝐼4𝑝𝑚	 ∨ 𝑇𝑅𝐴𝐼4𝑝𝑚

2	¬𝑇𝑅𝐴𝐼4𝑝𝑚 ∨¬𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚 ∨ 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼
3.¬𝑀𝑊𝐹𝐴𝐼4𝑝𝑚 ∨¬𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝐹4𝑝𝑚 ∨ 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼

4. 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚
5. 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝐹4𝑝𝑚
6.¬𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼

Resolution by refutation proof
2:	¬𝑇𝑅𝐴𝐼4𝑝𝑚 ∨¬𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚 ∨ 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼 6:	¬𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼
7:	¬𝑇𝑅𝐴𝐼4𝑝𝑚 ∨¬𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚 	 1: 	𝑀𝑊𝐹𝐴𝐼4𝑝𝑚 ∨ 𝑇𝑅𝐴𝐼4𝑝𝑚

8:	¬𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚 ∨𝑀𝑊𝐹𝐴𝐼4𝑝𝑚 	 4: 	𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝑅4𝑝𝑚
9: 	𝑀𝑊𝐹𝐴𝐼4𝑝𝑚	 3:	¬𝑀𝑊𝐹𝐴𝐼4𝑝𝑚 ∨¬𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝐹4𝑝𝑚 ∨ 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼

10: ¬𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝐹4𝑝𝑚 ∨ 𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼	 5: 𝐽𝑎𝑛𝑒𝐵𝑢𝑠𝑦𝐹4𝑝𝑚
11: 	𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼	 6:	¬𝐽𝑎𝑛𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝐼

∎
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Exercise: Prove 𝐶𝑎𝑟𝑂𝐾 using resolution
KB:

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾	Ù	𝐵𝑢𝑙𝑏𝑠𝑂𝐾	 → 	𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠𝑊𝑜𝑟𝑘

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾	Ù	𝑆𝑡𝑎𝑟𝑡𝑒𝑟𝑂𝐾	Ù	¬𝐸𝑚𝑝𝑡𝑦𝐺𝑎𝑠𝑇𝑎𝑛𝑘	 → 	𝐸𝑛𝑔𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡𝑠

𝐸𝑛𝑔𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡𝑠	Ù	¬𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒	Ù	𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠𝑊𝑜𝑟𝑘	 → 	𝐶𝑎𝑟𝑂𝐾

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑂𝐾,𝐵𝑢𝑙𝑏𝑠𝑂𝐾, 𝑆𝑡𝑎𝑟𝑡𝑒𝑟𝑂𝐾	,¬𝐸𝑚𝑝𝑡𝑦𝐺𝑎𝑠𝑇𝑎𝑛𝑘,¬𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒	

Theorem:
 𝐶𝑎𝑟𝑂𝐾?
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Beyond propositional logic
• Propositional logic 
• assumes the world can be represented using propositions
• has limited expressive power

• First-order predicate logic (like natural language) 
• assumes the world contains
• Objects: 
• people, flowers, houses, numbers, students,

• Relations: 
• red, round, prime, brother of, bigger than, part of 

• Functions: 
• father of, best friend of, plus, …

• Allows one to talk about some or all of the objects 
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Sentences in first-order logic
• Variables and quantifiers for all (∀)	and there exists ∃ 	can 

be used to express statements that describe all or some 
individuals 
• All humans are mortal

∀𝑥	𝐻𝑢𝑚𝑎𝑛 𝑥 → 𝑀𝑜𝑟𝑡𝑎𝑙 𝑥

• There exist students in AI100 who are smart

∃𝑥	𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑥, 𝐴𝐼100)	⋀𝑆𝑚𝑎𝑟𝑡(𝑥)
• There are no pigs that fly

¬∃𝑥	[𝑃𝑖𝑔(𝑥)	⋀𝐹𝑙𝑖𝑒𝑠(𝑥)]
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First order logic
• We can define the semantics of first order logic by noting 

that 
• The  semantics of for all (∀)	and there exists 
∃ 	 naturally follows from the semantics of logical AND 

and logical OR
• We can extend the inference rules to predicate logic
• ∀𝑥	𝐻𝑢𝑚𝑎𝑛 𝑥 → 𝑀𝑜𝑟𝑡𝑎𝑙 𝑥
• 𝐻𝑢𝑚𝑎𝑛 𝐽𝑜𝑒
• Prove 𝑀𝑜𝑟𝑡𝑎𝑙(𝐽𝑜𝑒)
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Beyond propositional logic

• First order logic allows quantification over variables
• Modal logics of knowledge support reasoning about 

knowledge like
• Sam knows that Joe did not do his homework
• John knows that everyone knows that Joe did not do his 

homework
• All of these logics generalize propositional logic so most

• Detailed discussion of first order and higher order logics is 
beyond the scope of this course


