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Problem solving through problem decomposition

* Problem
* Solving an integral
* Sub-problems
* Easier integrals to solve
* Actions or operators
* Rules of integral calculus and algebra

* Primitive problems

* Problems whose solutions can be looked up or
computed by executing a known procedure
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Example

* Problem
* solving an integral

\. AND
* Sub-problems J/ o

2 2, i,
/:'.‘f + sec”t sin“t + T )dt

* easier integrals to solve /‘2, dt + / sec?t sint dt + /r.u
* Operators ‘ ‘ o
* rules of integral / ~
calculus and algebra / 2t (1 — cos?t) dt / VTR PY Y

* Primitive problems

* problems whose
solutions can be looked
up or computed by
executing a known
procedure
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Problem reduction representation (PRR)

* A PRR problem is specified by a 3-tuple (G, O, P)
* Gis a problem to be solved

* Ois a set of operators for decomposing problems into sub-problems
through AND or OR decompositions

* Pis a set of primitive problems with known solutions

* Solution
* An AND decomposition is solved when each of the sub-problems is solved

* An OR decomposition is solved when at least one of the sub-problems is
solved

* A problem is unsolvable if it is neither a primitive problem nor can it be
further decomposed

* PRRis a generalization of the state space representation (why?)
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Problem reduction representation

* Solving a problem in PRR /[2, + sec®t sindt + 7

reduces to searching an y \ o
/:l:\\ AND  (3-connector)

AND-OR graph : .
* Nodes correspond to [orar /”,_gfimg,,“,/,.“,f
problems : :
. OR
* Connectors correspond to / N
actions / sect (1 — cost) dt / 1 4 tan2t)sin’t dt

* Connectors correspond to
AND or OR decompositions

* Connectors of arity k are
called k-connectors
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Example

Problem

| «—Primitive problem
3+ Unsolvable problem

a
1
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Solution to an PRR problem

* A sub-graph s, of an AND-OR graph is said to be solution to a
problem g if

* syis rooted at g

* Each non-leaf node y in s, has exactly one connector
out of it that belongsto s,

* Each leaf node in s, is a primitive problem (i.e. a member
of P)

* A problem g is said to be solvable if
* asub-graph s, of an AND-OR graph is a solution to g
* Solving a problem G using a PRR (G, O, P) entails finding a

sub-graph S of the corresponding AND-OR graph that is a
solution of G
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Question — How can we solve an PRR problem?

* Basicidea:
* Generalize state-space search
* How?
* Generalize partial paths to sub graphs of the PRR AND-
OR graph

* Expanding a node must comply with the semantics of
AND and OR connectors

* Termination test must comply with the definition of a
solution
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Example — BFS

“— Primitive problem
“— Unsolvable problem

List

(Q)

(A) (B & C)

( B~ & C)

(D& F)(E & F) (D &K) (E & K)

Exercise: Solve the same problem using DFS
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Optimal (minimum cost) solution of AND-OR graphs

* Cost of an unsolvable primitive
problem — infinity

* Cost of connectors and primitive
problems are assumed to be
strictly positive and bounded

Example:

/\

Cost(Sy) = Cost(ky) + Cost(Sp) + Cost(Sc)
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Optimal solution of an SRR problem

Example:

Cheapest solution:
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Branch and Bound Search for Optimal Solution

T .
) List
J
5, | \_6
(A, 0)
(B (©) ( IT\)

(B&C,5) (D, 6)

\ 3 JAS
\ /[ \ (E&C, 6)(D, 6) (F & C, )
[t} 1] 1] (D, 6) (E&G&H, 9) (F&C, m)

(E&G&H,9)(l&)J,16) (F&C, =)
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Using Heuristics

—~
|\;\_')
5/

h(C) (D)

P 1
™\
GRY)

F(C&D) = 5 + h(C) + h(D)
f(E) =2+ h(E)

Admissible heuristic function

h(n)< h'(n)= Cost(n)
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Vasant G Honavar

13



@ PennState Center for Artificial Intelligence Foundations & Scientific Applications @ PennState

LETe LN E Artificial Intelligence Research Laboratory @ Clinical and Translational

and Data Sciences Science Institute

AO* - Searching AND-OR graphs
Example: h(A) =0
h(C) = h(D) = h(I) =Ah(Jjw =i

("\\ (Al O+0)
' (1&J,3+2) (C& D, 5+2)
(K& M & N,6) (C&D, 5+2) (L & M & N, o)

Al 100 Fall 2025 Vasant G Honavar
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Properties of AO*

* AO* is a generalization of A* for AND-OR graphs
* AO*, like A*, is admissible if the heuristic function is
admissible under the usual assumptions
* finite branching factor
* strictly positive action costs

* AO*, like A* is also optimal among the class of heuristic

search algorithms that use an additive cost evaluation
function
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Solving Constraint Satisfaction Problems
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Constraint Satisfaction Problem (CSP)

* Special class of state-space search problems
* States are defined by values assigned to some or all of the variables
{X1, X2 ., X}
* Each variable X; takes values from a domain D;
* In the most common setting, D; is finite

* The assignment of values to variables is subject to a set of constraints
{Cl, Cz, 000 g Cp}
* Each constraint relates a subset of variables by specifying the
valid combinations of their values
* Solution

* A goal state in which every variable has a value assigned to it and
the assignment satisfies the specified constraints

* Note: We don’t care about the path from start state to goal state,
only the assignment of variables in the goal state

Al 100 Fall 2025 Vasant G Honavar
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Example: Constraint satisfaction problem
* Variables: rows Q, - Qg

* Domain of each variable represents column in which

a queen is placed : {1 --- 8}
* Constraints
e foralli<j
* Q; # Q; (queens cannot share a row)

. |Ql- — Q]-| # |i — j| (no two queens can share

a diagonal)
* Solution

* An assignment of values to Q, -+ Qg that satisfies

the constraints

Al 100 Fall 2025
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Example: Map Coloring Problem _
Western Australia

Northern Territory
Queensland

South Australia
New South Wales
Victoria

Tasmania

* Variables: WA,NT,SA,Q,NSW,\V,T .
* Domain of each variable: {red, green, blue}
* Constraints: No two adjacent variables can have the same
value:
WA=NT, WA=SA, NT=SA, NT-Q, SA-Q,
SA=NSW, SA=V, Q=NSW, NSW=V

Al 100 Fall 2025 Vasant G Honavar
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Example: Course scheduling

Variables: Courses
Domains of variables: Cross product of rooms, timeslots and
instructors
Constraints:
* No two courses can share the same instructor and time slot
* No two courses can share the same room and time slot
Solution: An assignment of courses to rooms, timeslots and
instructors that satisfies the constraints

Al 100 Fall 2025 Vasant G Honavar
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CSP as a Search Problem
= nvariables X4, ..., X,

= Valid assignment: Assignment of values to the variables
without violating any of the constraints

= Complete assighment: one where each variable has a value
= States: valid assignment (no violation of constraints)
= |nitial state: empty assignment

= Successor of a state: assign a value to a variable without a value
assignment

= Goal test: complete assignment (which by design is also a valid
assignment)
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Key properties of (Discrete) CSP

* Search space is finite

* The order in which variables are assigned values has no impact
on the reachable complete valid assighments
* One can expand a node by first selecting any unassigned
variable and assign it a value from its domain without
violating the constraints
* Big reduction in branching factor compared to standard
search

* The solution is always of fixed depth = number of variables
* The path from start state to goal state does not matter
* All we care about is satisfying the constraints on the goal
* We can use a simplified depth-first search with backtracking

Al 100 Fall 2025 Vasant G Honavar
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u 0

Must backtrack because there is no legal color that can be assigned
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Sub-trees have similar topologies

* Suppose incompatible with Y = y,

* Depth first search will rediscover
this incompatibility in different
parts of the state space

* Can we avoid this unnecessary

work?

Similar Subtrees

Al 100 Fall 2025 Vasant G Honavar
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Variable ordering impacts size of search space
Variable ordering W, X, Y, Z

Search space size

= (4)(3)(2)(1)+(4)(3)(2)+(4)(3)+(4)
24+24+12+4

64
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Variable ordering and Search space size
YA

Variable ordering Z, Y, Z, W

Search space size
= (4)(3)(2)(1)+(3)(2)(1)+(2)(1)+1
= 24+6+2+1 =33
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Backtracking search

* Standard backtracking fails to exploit special properties of CSP
* Subtrees have similar topologies
* Can we eliminate the duplicate work of rediscovering
incompatible assignments?
* Yes, if we can propagate constraints
* Search space has minimal size under a certain ordering of
variables (most constrained to least constrained)

* Can we consider the variables and value assignments in
some order that effectively minimizes the size of the

search space to be considered?

Al 100 Fall 2025 Vasant G Honavar
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Propagating constraints: Forward checking

Avoiding rediscovering incompatible assignments
* Propagate the constraints

Assigning the value 5 to X
leads to removing values from
the domains of X, X3, -+ X3

X1 X2 X3 X3 X5 X6 X7 X8

Al 100 Fall 2025 Vasant G Honavar
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Constraint propagation through forward checking

Constraint graph facilitates constraint propagation

WA NT Q NSW Vv SA T
RGB RGB RGB RGB RGB RGB RGB

Al 100 Fall 2025 Vasant G Honavar

29



@ PennState Center for Artificial Intelligence Foundations & Scientific Applications @ PennState

LETe LN E Artificial Intelligence Research Laboratory @ Clinical and Translational

and Data Sciences Science Institute

Constraint propagation through forward checking

Constraint graph facilitates constraint propagation

WA NT Q NSW |V SA T
[RB  |KGB |reB |RGB |RGB |HGB [RGB
R GB RGB |RGB |RGB |GB RGB

Forward checking removes the value Red of NT and of SA

Al 100 Fall 2025 Vasant G Honavar
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Constraint propagation through forward checking
Constraint graph facilitates constraint propagation

WA [NT Q NSW |V SA T

RGB [RGB |RGB |RGB |RGB |RGB [RGB
R GB RGB |RGB |RGB |GB RGB
R P G RgB [RGB |¢B RGB
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Constraint propagation through forward checking
Constraint graph facilitates constraint propagation

WA [NT Q NSW |V SA T
RGB |RGB |RGB [RGB |RGB |RGB [RGB
GB RGB |RGB |RGB  |GB RGB
G RB RGB |B RGB
G RY [B J4 RGB
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Constraint propagation through forward checking

Constraint graph facilitates constraint propagation

Empty set: the current assignment
{(WA € R), (Q € G), (V< B)}
does not lead to a solution

t
i
1
1
i
WA [NT Q NSW |V SA [T
RGB |RGB |RGB [RGB |RGB |RGB! [RGB
GB RGB |RGB |RGB  |GB RGB
G RB RGB [B | [RGB
G RY [B Z RGB
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Constraint propagation through Forward Checking

Whenever a pair (X<v) is added to assignment do:

For each variable Y not in the assignment:

For every constraint C relating Y to
the variables in the assignment:

Remove all values from Y’s domain
that do not satisfy C

@ SQHHStat?:LQ. Al 100 Fall 2025 Vasant G Honavar
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Modified Backtracking Algorithm

* Recall that search space is minimized by appropriate choice of the
order in which variables and values are considered

* Which variable X; should be assigned a value next?
* Most-constrained-variable heuristic
* Consider the variable with the fewest values in its domain
* Most-constraining-variable heuristic
* Consider the variable that will constrain the values of the
largest number of variables
* In which order should its values be assigned?
* Least-constraining-value heuristic

* Assign the value that allows the greatest flexibility in
assigning values to the remaining variables

Vasant G Honavar
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8-Queens

Numbers

of values for
each un-assigned
variable
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8-Queens

New assighment
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8-Queens

Numbers

of values for
each un-assigned
variable

New assignment
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8-Queens

Forward checking

New assighment

PennState
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8-Queens

--------- Next placement
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Map Coloring

NSW

vV

= SA’s remaining domain has size 1 (value Blue remaining)
= Q’s remaining domain has size 2
= NSW’s, V’s, and T’s remaining domains have size 3

Hence, we select SA

Al 100 Fall 2025 Vasant G Honavar
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Most-Constraining-Variable Heuristic

* Which variable Xshould be assigned a value next?
* Among the variables with the smallest remaining domains (ties
with respect to the most-constrained-variable heuristic)
* select the one that appears in the largest number of
constraints on variables not in the current assignment

Rationale: Increase future elimination of values, to reduce future
branching factors

Al 100 Fall 2025 Vasant G Honavar
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Map Coloring

NT
NT

WA

SA NSW a
T

= Before any value has been assigned, all variables have a domain
of size 3, but SA is involved in more constraints (5) than any
other variable

Hence, select SA and assign a value to it (e.g., Blue)
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Least-Constraining-Value Heuristic
* In which order should X’s values be assigned?

Select the value of X that removes the smallest number of

values from the domains of those variables which are not in
the current assignment

Rationale: Since only one value will eventually be assigned to
X, pick the least-constraining value first, since it is the most
likely not to lead to an invalid assignment

Note: Using this heuristic requires performing a forward-
checking step for every value, not just for the selected value

Al 100 Fall 2025 Vasant G Honavar
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Map Coloring

NSW

=

{

= Q’s domain has two remaining values: Blue and Red
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= Assigning Blue to Q would leave 0 value for SA, while assigning

Red would leave 1 value

Al 100 Fall 2025
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Map Coloring

NSW

{Blue}

= Q’s domain has two remaining values: Blue and Red

~§ PennState
& Clinical and Translational
Science Institute

= Assigning Blue to Q would leave 0 value for SA, while assigning

Red would leave 1 value
Hence, assign Red to Q

Al 100 Fall 2025
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Applications of CSP

= CSP techniques are widely used

= Applications include:
* Course scheduling
* Crew assignments to flights
* Management of transportation fleet
Flight/rail schedules
* Job shop scheduling
* Task scheduling in port operations
* Design, including spatial layout design

Al 100 Fall 2025 Vasant G Honavar
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Constraint Propagation

= Place a queen in a square
= Remove the attacked squares from future consideration

PennState
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Constraint Propagation

55 55567

= Count the number of non-attacked squares in every row and
column

= Place a queen in a row or column with minimum number
= Remove the attacked squares from future consideration
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Constraint Propagation

= Repeat
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Constraint Propagation

Hwnrn
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Constraint Propagation
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Constraint Propagation
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Constraint Propagation
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Constraint Propagation
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Constraint Propagation
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Constraint propagation

Constraint propagation finds broad applications
* Scheduling
* Surgeries
* Jobs to machines
* Courses
* Rooms
Map coloring
Layout Problems
* Road layout
* VLSI layout
* Floor plan layout
3D interpretation of 2D drawings
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