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Abstract—In this paper, we introduce a novel method to solve shape alignment problems. We use gray-scale “images” to represent
source shapes, and propose a novel two-component Gaussian Mixture (GM) distance map representation for target shapes. This
asymmetric representation is a flexible image-based representation which is able to represent different kinds of shape data, including
continuous contours, unstructured sparse point sets, edge maps, and even gray-scale gradient maps. Using this representation, a new
energy function based on a novel two-component Gaussian Mixture distance model is proposed. The new energy function was
empirically evaluated to be a more robust shape dissimilarity metric that can be computed efficiently. Such high efficiency is essential
for global optimization methods. We adopt and modify one of them, the Particle Swarm Optimization (PSO), to effectively estimate the
global optimum of the new energy function. Differently from the original PSO, several new strategies were employed to make the
optimization more robust and prevent it from converging prematurely. The overall performance of the proposed framework as well as
the properties of each algorithmic component were evaluated and compared with those of some state-of-the-art methods. Extensive
experiments and comparison performed on generalized 2D and 3D shape data demonstrate the robustness and effectiveness of the

method.

Index Terms—Shape alignment, point registration, matching, distance transform, particle swarm optimization.

1 INTRODUCTION

SHAPE registration is a crucial problem in computer vision
and medical image analysis [46]. Shape alignment, also
known as global shape registration, aims to recover a global
transformation, such as rigid, similarity, or affine transfor-
mation, that brings the pose of a source (also known as model
or moving) shape as close as possible to that of a target (also
known as template or fixed) shape. The alignment has
extensive uses in recognition, indexing and retrieval, and
tracking. Shape alignment algorithms are usually different
from each other in three aspects: shape representation,
energy function, and optimization method.

In this paper, we introduce a novel shape alignment
algorithm which has a robust shape dissimilarity measure
defined on image-based representations and an efficient
energy function whose optimum is found with a global
optimizer. Inspired by [16], we propose a new asymmetric
image-based representation which employs gray-scale
images to represent source shapes and uses precomputed
“distance” maps to represent target shapes. The gray-scale
image representation for source shapes can represent shapes
of arbitrary topology, even including generalized shapes
such as gradient maps. Such flexibility enables directly using
“raw” shapes, such as gradient maps of natural images, as
source shapes and therefore avoids the need for shape
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extraction (Section 4.5). For target shape “distance” maps,
observing several drawbacks of the widely used nearest L
distance model, we create a novel two-component univariate
Gaussian Mixture (GM) distance model which achieves a
high-peak-fat-tail effect. This model was empirically eval-
uated to be a more robust shape distance metric. It is
different from the Gaussian Mixture models proposed in [5],
[26], where an n-point set is modeled as an n-component
bivariate (2D) or trivariate (3D) GM distribution if no prior
knowledge is given and the problem of alignment is treated
as fitting of GM distributions.

We also propose an energy function that can be computed
efficiently by using precomputed target “distance” maps.
Such efficiency enables us to use a global optimization
method, the Particle Swarm Optimization (PSO), to find the
globally optimal transformation parameters. The PSO, un-
like the Particle Filtering (PF) in [37], is able to estimate the
global optimum of a nonanalytic high-dimensional function
without any a priori knowledge. In contrast, PF requires its
proposal density to be properly approximated, which is of
utmost importance in any Monte Carlo method. In addition
to the original PSO, we detect “inactive particles” and use
them to define a convergence criterion.

The main contribution of our algorithm is threefold: 1) A
shape dissimilarity metric more robust than the widely
used nearest L, distance is created based on the new
asymmetric shape representation and GM distance model.
Moreover, the new representation can represent not only
arbitrary shapes but also gradient maps, which are difficult
for existing representations. 2) The high efficiency of the
new energy function makes it feasible for the Particle
Swarm Optimization, which has shown its effectiveness in
various global optimization problems, to be used to recover
the best transformation. 3) Based on the concept of “inactive
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particles” from the Adaptive Particle Swarm Optimization
(APSO) [52], we propose a convergence criterion for the
PSO optimizer which reliably detects when the optimiza-
tion process has found approximately the global optimum,
while other global optimization frameworks—such as
Simulated Annealing and Genetic Algorithm—usually lack
convergence criteria.

We did extensive comparison with several state-of-the-
art shape/point set registration algorithms. Experiments
on a variety of shape data, which include continuous
shapes, unstructured sparse point sets, edge maps, and
gradient maps in both 2D and 3D, show the advantages of
our algorithm.

2 BACKGROUND

Because of our interest in shape alignment, we mainly focus
on the class of global transformation-based shape/point set
matching methods. There has been a lot of previous research
on this topic. We grouped the algorithms into the following
four categories based on their shape representations.

2.1 Point-Based Representation

Point-based representations are widely used since they can
represent shapes of arbitrary dimension and topology. The
Iterative Closest Point (ICP) [3], [54] algorithm is one of the
most widely used point sets alignment methods. The ICP
algorithm iteratively associates points between the source
and target point sets by the nearest neighbor criterion and
transforms the source point set to minimize distances
between these associated points. It terminates until the
change in the sum of those distances falls below a given
threshold. There are a large number of variants introduced
on the basic ICP concept [36].

Although the standard ICP shows its effectiveness in
various registration problems [36], it uses the L, distance
metric, which may not be a proper shape dissimilarity
metric. It was observed in [45], [54] that longer “closest”
distances tend to be between false correspondences,
especially when outliers exist. To alleviate this problem,
there are several mitigation measures proposed which can
be categorized into two classes: rejection [11], [32], [45], [54]
and weighting [17] (Section 3.3).

In ICP’s correspondence update step, for each point in the
source shape it needs to find its nearest neighbor on the
target shape. Therefore, it leads to an O(n?) time complexity
energy function. To accelerate the computation process of
ICP, Fitzgibbon [16] suggested that the use of precomputed
distance map could result in more efficient computation of
the energy function. After the distance map of the target
point set was calculated in linear time, the ICP energy
function could also be calculated in linear time, which is
asymptotically faster than the original ICP energy function’s
quadratic time complexity. Most recently, Sandhu et al. [37]
used the standard ICP energy function to match points, but
applied PF in the iterative step to recover the best
transformation. This algorithm expresses robust perfor-
mance in partial matching and alignment in the presence
of outliers.

Rangarajan et al. [35] proposed the Robust Point
Matching (RPM) algorithm, in which an affine alignment

is interpreted as a mixed variable (binary and continuous)
optimization problem. The correspondence problem is
mapped into a linear assignment problem solved by
softassign and deterministic annealing. Then, the transfor-
mation parameters are solved by least squares using
obtained correspondences. Similarly to ICP, two such
operations—correspondence assignment and transforma-
tion estimation—run alternatively until convergence. Chui
and Rangarajan [6] further extended the PRM method to
solve nonrigid point sets registration problems. The EM-ICP
method [19] corresponds to an ICP with multiple matches
weighted by normalized Gaussian weights in the case of
Gaussian noises. It leads to an efficient matching algorithm
based on Expectation-Maximization (EM) principles. Its
experimental results demonstrated its improvements over
ICP in terms of robustness and speed. Tsin and Kanade [44]
proposed a kernel correlation-based point set registration
approach where the cost function is proportional to the
correlation of two kernel density estimates. This method
can be considered as a robust, multiple-linked ICP. It has a
built-in smoothing mechanism that makes it robust against
noise and outlier corrupted data sets. Chui and Rangarajan
[5] modeled the target point set by a Gaussian mixture and
treated the source point set as sample data. Then, the point
matching problem was treated as a mixture density
estimation problem and solved by an EM-like algorithm.
Another point sets registration method using Gaussian
mixture models was proposed by Jian and Vemuri [26].
Unlike the work of [5], they treat two point sets symme-
trically: Both point sets are modeled as Mixtures of
Gaussian (MG) distributions. L, distance is then used to
measure dissimilarity between the distributions, which is
minimized by Gradient Descent. Wang et al. [49], [48]
employed the same MG distribution model, but extended it
to groupwise point sets registration by using Jensen-
Shannon (JS)/CDF-JS Divergence for atlas creation and
distance measuring. A fully automatic approach for 3D
point sets registration was proposed in [30]. Its crude
alignment is based on the correlation of two Extended
Gaussian Images (EGIs) in the Fourier domain and makes
use of the spherical and rotational harmonic transform.

Another important family of point matching algorithms is
RANSAC [15]. It randomly samples a minimal number of
matches to estimate the geometric transformation between
two point sets and then evaluates the estimated transforma-
tion using all points. But as the number of outliers increases,
its computation time increases dramatically.

There are also lots of point matching algorithms
proposed in the computational and digital geometry area
[10], [14]. Most recently, Bhowmick et al. [4] proposed an
approximate 2D point sets matching algorithm using a data
structure called “Angular Tree,” which showed its effec-
tiveness and efficiency on various test point sets.

2.2 Image-Based Representation

Image-based representations have recently gained increas-
ing attention both in shape registration [22] and in statistical
shape modeling [28]. They are obtained by embedding
shapes into image planes. Most embedding methods are able
to represent shapes of arbitrary dimension and topology.
Through the embedding, an image-based representation
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provides more constraints and supporting information from
neighboring areas of the shape.

Distance transform is one of the most popular shape
embedding methods. It is attractive in that it provides a
generic distance function representation that naturally
handles shapes of arbitrary dimension and topology.
Because it represents shapes using their distance map
“images,” it does not require explicit parameterization of
the shapes. Paragios et al. [34] used signed distance
functions whose zero level set represents original shapes.
Shape dissimilarity is then calculated by computing the
sum of squared differences (SSD) between two functions
and minimized by Gradient Descent. Huang et al. [22]
adopted the same level set shape representation and
optimization method as those of [34]. The Mutual Informa-
tion (MI) is employed to measure the dissimilarity between
two distance functions. It is empirically evaluated and is
shown to be more appropriate than SSD as a shape
dissimilarity metric in estimating similarity and affine
transformations between shapes. E1 Munim and Farag [13]
kept a framework similar to [34], but euclidean distance
functions are replaced by Vector Distance Functions (VDFs).
Experimental results in [34], [22], [13] demonstrated the
robustness of distance functions to shape perturbations and
noise. In our experiments, however, we observed it is
sometimes vulnerable to outliers.

Along this line, Tang and Hamarneh [42] computed
various shape features, including geometric, appearance,
and medial-axis-based shape features, which were then
organized into vectors and assigned to the nearest pixels of
corresponding shape parts to create feature images. How-
ever, the shapes this representation can represent are
restricted by the feature descriptors it uses. For instance, all
descriptors mentioned in [42] are for 2D closed contours.
Moreover, the representation is based on the nearest neighbor
transform and hence generates discontinuities in shape
images, which may result in obstacles in the optimization.

2.3 Graph-Based Representation

Graph-based representations have a long history as shape
representations. Methods based on this kind of representa-
tion usually directly recover point correspondences. Cross
and Hancock [9] created graphs from point sets using
Delaunay triangulation. The correspondence is recovered
via inexact graph matching. In [51], given a 3D surface
mesh, each vertex’s Gaussian curvature is calculated and
projected into an extended boundary closed Markov
Random Field (MRF). The correspondence between two
meshes is then established by performing Gibbs sampling
on the MRF. However, the Gaussian curvature is only
locally isometric; hence, it cannot match meshes with
significantly different scales. In [25], point sets are repre-
sented by a weighted undirected graph where pairwise
distances specify weights between every two points. Then,
point matching is obtained via a two-scale thermody-
namics-based approach. Schmidt et al. [38] modeled the
problem of 2D planar shape matching as finding the
shortest path through a graph spanned by the two shapes,
where nodes of the graph encode the local similarity of
respective points on each contour. Huang et al. [21]
proposed a Profile Hidden Markov Model (PHMM) for

2D planar shape modeling based on curvature descriptors.
The special states and architecture in PHMMSs can tolerate
shape contour perturbations. This model shows effective-
ness on planar shape registration and recognition.

2.4 Feature-Based Representation

Shape features can be further categorized as global and local
features. On one hand, global features, similarly to other
shape representations, describe an entire shape as an entity.
Manay et al. [31] introduced a class of functionals which are
invariant with respect to the euclidean group and are
obtained by performing integral operations. Based on such
integral invariants, a shape distance between matching parts
is proposed which can be used for shape matching and
recognition. Zhang and Fiume [53] proposed the normalized
Fourier shape descriptor for 3D contours matching. It relies
on normalizing the Fourier descriptors (FDs) of a 3D contour
with respect to two FD coefficients corresponding to the
lowest two frequencies. The remaining matching task only
involves vertex shift and rotation about the z-axis. Medial
axis has a long history as the shape representation for planar
closed shapes. Liu and Greiger [29] used the A* algorithm to
match shape axis trees, which are defined by the locus of
midpoints of optimally corresponding boundary points.
Three local tree matching operations are introduced to yield
optimally approximate matches. A variant of the medial axis
is the shock graph, which is obtained by interpreting the
medial axis as the converging points of wave propagation
from shape boundaries [43]. One main advantage of the
shock graph is that it no longer requires shapes to be closed
contours. Sebastian et al. [39] presented a shape recognition
framework which is based on matching shock graphs of 2D
shape contours.

On the other hand, local features only have the ability to
describe characteristics of a part of a shape. They are
sometimes used as the basis for other kinds of representa-
tion [42], [38], [51], [21]. One most commonly used local
feature is the curvature [21], [51], [38]. In [18], a shape is
viewed as a set of line segments whose attributes are length
and orientation. Matching these segments uniquely deter-
mines the similarity transformation between two shapes.
An edit transformation which maps one shape to the other
was proposed using dynamic programming. Belongie et al.
[2] proposed the shape context descriptor. For every point, a
log-polar space histogram recording the number of points
in its neighborhood is calculated. Such histograms can then
be used in shape matching and recognition.

2.5 Optimization Models and Methods in Shape
Alignment
Various optimization models and methods are used in shape
alignment. Similarly to other computer vision problems, one
common way is to propose an energy function and then
minimize it. Gradient-based local optimization methods
such as Gradient Descent and Levenberg Marquardt are
widely used [3], [13], [16], [22], [26], [34], [44]. Since their
methods’ energy functions are usually highly nonconvex,
those optimization methods can only find local optima.
Other optimization models and methods are also
introduced. As mentioned before, RPM [6], [35] views point
sets matching as a mixed binary and continuous variable
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Fig. 1. (a) A circle (r = 40). (b) The squared euclidean distance model. (c) Image embedding of (a) based on the model (b) (normalized). (d) The
squared euclidean distance with threshold (D;;,.. = 15) model. (e) Image embedding of (a) based on the model (d) (normalized). (f) The proposed
two-component GM distance model. (g) Target shape representation of (a) based on the model (f) (normalized).

optimization problem, which is minimized by softassign
and deterministic annealing. The 2D planar closed contour
matching problem is modeled as finding a shortest path on
a graph using graph cuts in [38]. In [42], the performance of
a gradient-based optimizer is compared with that of a
genetic algorithm known as the one-plus-one evolutionary
algorithm for the registration of shape feature images.
Particle filtering is used in ICP’s iterative steps in [37]. More
recently, Lempitsky and Boykov [27] presented a new
regularization functional for the shape fitting problem,
which maximizes the number of data points contained by a
surface while tolerating some measurement errors. A touch-
expand algorithm for minimum cuts is proposed to find the
global minimum of its energy function.

3 METHODOLOGY

3.1 The Standard ICP Energy Function

When point sets are used to represent shapes, let C; and C;
be the source shape and target shape, respectively. Let x;
(i=1,...,N;) be the points on the source shape C;, and let
x;; (j =1,...,N;) be the points on the target shape C,. The
standard ICP energy function [3] based on squared
euclidean distances is given by

N Zuhd?

where d(x,C) = miny.ccd (x,%¢) and d'(x1,x2) is the eucli-
dean distance between the two points x; and x;. © denotes
the parameters of a chosen type of transformation, and
7 (x4, O) is the ith transformed source shape point accord-
ing to ©. w; denotes the weight of the ith “closest” distance,
which is usually set to 1 in the absence of a priori knowledge.

0),C), (1)

XLS?

3.2 Previous Work on Computationally Efficient
Shape Dissimilarity Metric

Our goal is to build a robust, generic, but computationally
efficient shape dissimilarity metric because we want to
employ global optimization methods other than commonly
used gradient-based local optimization methods [13], [22],
[34], [54], which have shown poor performance in over-
coming local optima.

In [16], distance transform is applied to precompute a
target shape’s “closest” distances. Given a target shape C;,
the squared euclidean distance transform [33] of the target
shape, ¢, : @ — R*, is

(I)Ct(x’y) :dg((xvy)vct)’ (2)

where d((z,y),C;) denotes the minimum L, distance between
the pixel at location (z, y) and the shape C; (Figs. 1b and 1c).
The time complexity of euclidean distance transform is O(n),
where n is the number of samples in the finite image domain.
The ICP energy function based on the precomputed distance
map P, [33] is then given by

Ny
= Z wﬁI)ct (T
i=1

Except for the normalization term, (3) has the same meaning
as the standard ICP energy function (1). However, (3) is
more computationally efficient because precomputed dis-
tance maps circumvent the need for searching for “closest”
distances for every point x;, in every iterative step. This
technique is also related to Chamfer matching [1] and
partial Hausdorff distance matching [24]. To alleviate the
adverse effects of outliers, L, distance is further replaced by
the Huber norm in [16].

(Xi,sve))' (3)

3.3 New Asymmetric Shape Representation

Although the standard ICP energy function shows its
effectiveness in various shape registration problems, as
mentioned in Section 2.1, it uses the nearest L, distance,
which may not be a proper shape dissimilarity measure
since longer “closest” distances are more likely to be
between false correspondences. In agreement with this
observation are our empirical experiments (Section 4.1.1) in
which minimizing energy functions based on the nearest L
distance sometimes led to wrong transformations.

Existing mitigation methods can be categorized into two
classes: rejection [11], [32], [45], [54] and weighting [17]. One
rejection approach [45], [54] is to set a maximum distance
threshold, Dyjes. If a “closest” distance is greater than
Dipres, it would be rejected and not be used in the
calculation of the energy function (Figs. 1d and le).
However, this approach fails to properly measure the
dissimilarity between two shapes that are significantly
different in scale. For instance, a source shape which has all
of its points” “closest” distances greater than Dy, would
result in the rejection of all distances and thus cannot
converge to the pose of the target shape. Another rejection
policy, based on some multiple of the standard deviation of
distances, is presented in [32]. But the deviation would be
biased if strong outliers exist in the source shape.
Furthermore, distance or point weights cannot be easily
taken into consideration during the deviation computation.
Rejecting distances that are not consistent with neighboring
pairs was proposed in [11], although this rejection policy is
O(n?) complexity. All rejection-based methods cause
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Fig. 2. lllustration of source shape representations of a parametric curve and a discrete point set. Source shape representations for the parametric
curve (the purple curve) and discrete points (purple points) obtained through (a) and (b) discretization, and (c) and (d) antialiasing.

possible discontinuities in the energy function domain. A
linear weighting policy which assigns longer “closest”
distances lower weights, w; =1 — d;/Dyay, is proposed in
[17]. This scheme is sensitive to the D,,,, value, however. It
becomes similar to the L, distance model when D, is
large, and similar to the distance threshold model when
Doy is small.

3.3.1 Proposed Target Shape Representation

To address the possible false correspondence problem, we
present a new target shape representation which replaces the
squared euclidean distance model with a high-peak-fat-tail
distance model. This model has an intuitive interpretation:
The high peak indicates higher weight on short distances, and
the fat tail decreases the weight for longer distances while
keeping the energy function smooth and differentiable
within the domain. In this paper, to achieve the high-peak-
fat-tail effect, we choose a two-component GM model,
leading to the following target shape representation:

W, (2, y) = _ e~ P (@)/208 _ 0—Pc (:1:,3/)/2(737 (4)

where &, is the squared euclidean distance function of
the target shape (2), a€(0,1) is the GM weighting
parameter, oy and oy (0 < 09) are the standard deviations
of the two Gaussians (Figs. 1f and 1g). In practice, we set
a=0.5 and oy = k,09, where k, € [5,10]. Please note that
the high-peak-fat-tail model is not limited to the proposed
Gaussian Mixture model. Other models achieving the
high-peak-fat-tail effect, such as the Pareto-Levy model,
can also be used.

The Gaussian Mixture model is related to M-estimators
in robust statistics [23]. Different objective functions of
M-estimators can be used to alleviate the effects of
outliers. However, our proposed GM model has its own
advantages in the alignment framework. Compared with
the Huber objective function, it more effectively sup-
presses the influence of outliers (Section 4.1.1). Compared
with the bisquare objective function, it provides gradient
toward the global minimum in fat-tail domains, while the
bisquare model does not.

3.3.2 Proposed Source Shape Representation

For a source shape, we introduce a new gray-scale “image”
representation that can represent generalized shapes in-
cluding parametric curves/surfaces, sparse point sets, edge
maps, and even gradient maps. Given a parametric shape or
a discrete point set, discretization and antialiasing [20] (e.g.,
supersampling) techniques are employed to embed the

shape into the image plane. Fig. 2 illustrates how these
techniques embed a parametric curve and a discrete point
set into image planes using discretization and antialiasing.
Clearly the antialiasing technique provides more accurate
embedding results than the discretization does with limited
image domain samples. Edge maps obtained by shape
extraction algorithms, such as Canny edge detector, and
even gradient maps can also be utilized directly as source
shapes. Directly using gradient maps as source shapes in
particular allows us to circumvent the shape extraction step
and reduces the risk of misalignment because of improper
shape extraction (Section 4.5).

Both the source and target shape representations can be
easily extended to 3D by using 3D discretization (or
antialiasing) and distance transform techniques, respectively.

3.4 Efficient Energy Function

Based on the source and target shape representations
proposed in Section 3.3, we define an energy function
measuring the dissimilarity between source and target
shapes:

_ ﬂT(S’ @)(1}, y) : \IIC;, (*77: y)dxdy (5)
- JT(S,0)(z,y)dxdy

My (0)

where 7(S5,0) is the transformed source shape image
according to transformation parameters ©. The numerator
of (5) calculates the sum of weighted “closest” GM distances
between points on the transformed source shape image,
7(S,0), and the target shape, C;. At a certain location (z, y),
according to the definition of the distance function (4),
e, (x,y) is the closest GM distance between the point (z, y)
and C;. If 7(S,0)(z,y) does not equal 0, 7(S,0)(z,y)-
Ve, (z,y) equals the GM distance between the weighted
point (z,y) on the 7 (5, ©) and C;. The weights are implicitly
specified by the pixel values in 7 (S5, ©). The denominator,
the sum of point weights on the transformed source shape,
is the normalization term necessary to handle scaling. Note
that the new target shape representation ¥¢, based on the
GM kernel is precomputed and most pixels in the source
representation 7 (S,0) have zero values. Therefore, com-
putation of the energy function (5) is highly efficient.

The time complexity of our energy function (5) can be
explained as follows: Given two n-point sets, let k be the
number of samples in the finite image domain. A one-time
overhead to run the linear time distance transform algorithm
is O(k) [33]. Then, it takes O(n) time to evaluate the energy
function (5). In practice, k£ grows asymptotically slower than
n does. Therefore, the overall time complexity can be further
simplified from O(k + n) to O(n). In contrast, the standard
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ICP energy function takes O(n?) by the brutal-force way or
O(nlogn) by the k-d tree approach to evaluate [36].

3.5 Globally Optimal Transformation Estimation
using the Particle Swarm Optimization

In previous research, local optimization methods such as
Gradient Descent were widely used [13], [22], [34]. To these
local methods, good initial parameter estimates are essen-
tial. To avoid this problem, some other optimization
methods using particle filtering or genetic algorithms were
also introduced [37], [42]. In our algorithm, the PSO is
adopted to estimate the global optimum of the energy
function (5). The PSO, which belongs to the class of swarm
intelligence methods, is an effective optimization method
for high-dimensional optimization problems, originally
developed by Eberhart and Kennedy [12].

Let f(x) denote the function to be minimized. The basic
particle swarm model consists of a swarm of m particles
moving in an n-dimensional real valued variable space, each
position of which potentially gives the global optimum of
f(x) over a given domain. Let x; () = [z (£), 22(t), . . ., 2, (£)]"
and vi(t) = [v1(£), v2(t), ..., v.(t)]" be the ith particle’s
position and velocity at time ¢. Each particle knows the best
position it has been at so far, pbest;, and the overall best
position obtained so far, gbest, by any particle in the swarm.
Each particle updates its position and velocity according to
the following equations:

vi(t+1) =wv(t) + ¢ - rand() - (pbest; — x;(t))

+ ¢z - rand() - (gbest — x;(1)), v

xi(t+1) = xi(t) + vi(t), (7)

where w is the inertia weight representing the degree of
the momentum of the particles. ¢; and ¢, are “cognitive”
and “social” parameters modulating attraction terms that
move the ith particle toward pbest; and gbest, respectively.
rand() generates pseudorandom numbers drawn from a
uniform distribution in the range [0,1]. ||v;|| is usually
limited to be within a range [0, vmax], Where vy, is the
maximum velocity.

Before the PSO computation begins, positions and
speeds of all particles are randomly generated in the given
continuous domain. Then, they are iteratively renewed
according to (6) and (7) until a minimum error criterion or a
predefined maximum iteration is attained.

Because the objective is to find the global optimum, we
choose not to use the original PSO’s maximum iteration
stop criterion. In our modified PSO, to decide whether the
value of the energy function has globally converged or not,
first we use a relative error function,

o at) — Fgbest)]
A = Tin(F (o (8), f(gbest)]

proposed in [52], to determine inactive particles. If a
particle’s Af;(t) is less than a threshold for more than
T. time steps, we consider this particle to be inactive. If
during a certain period of time, the number of inactive
particles exceeds a threshold N., we consider the global
optimum found. During the computation and before
convergence, any detected inactive particles are randomly

(®)

relocated in the domain and are given random initial speeds
so that they can keep searching the space.

The PSO has a strong ability to find the global optimum
without any initial parameter estimate. In order to accel-
erate its convergence speed and to prevent premature
termination, many variants have been introduced. Shi and
Eberhart [41] presented a strategy of time-varying inertia
weight: w linearly decreases as the number of iteration
increases. The modified PSO in our algorithm also uses the
strategy of time-varying inertia weight [41]. The difference
from [41] is that each particle has its own inertia weight
instead of all particles sharing the same one. If a particle is
relocated, its inertia weight gets reinitialized to the
maximum inertia weight. This enables a newly relocated
particle to search more areas instead of directly traveling
back to gbest and becoming inactive again.

For 2D shape alignment, the search space for particles
has either four (similarity transformation) or six (affine
transformation) dimensions. In 3D, we consider similarity
transformation, which has an eight-dimensional search
space. The combination of the new energy function (5)
and the modified PSO allows us to solve shape alignment
problems robustly and efficiently, as we will demonstrate in
our experiments.

3.6 From 2D Alignment to 3D Alignment and
Handling Local Deformations
The proposed alignment framework can easily be extended
from 2D to 3D. For the source shape representation, existing
3D discretization or antialiasing techniques can be used to
embed shapes into 3D image volumes. For the target shape
representation, we create 3D image volumes using the results
of 3D GM distance transform of target shapes. The PSO’s
particles now search in an eight-dimensional variable space
for 3D cases instead of a four-dimensional one. In 3D, the
eight-dimensional variable consists of translation (three-
dimensional), rotation axis (three-dimensional), rotation
angle (one-dimensional), and scaling factor (one-dimen-
sional). Usually more particles are used in 3D cases than 2D
cases because of the higher dimension of its variable space.
Similarly to [26], [13], [22], [42], our method can be
extended to handle local deformations. After the global
alignment is performed, the source shape can be fit to the
target locally by minimizing the energy function (5) using
local deformation models such as thin-plate spline (TPS)
[26] and Free-Form Deformation (FFD) [22]. The optimiza-
tion scheme remains the same, only using local deformation
parameters. To curtail the computational cost, we can adopt
a coarse-to-fine mechanism so that fewer parameters are to
be optimized using PSO at a coarser deformation level, and
then additional parameters that capture finer deformation
details can be further solved using gradient descent.

4 EXPERIMENTS

For all experiments, we set &« = 0.5, 01 = 5, and 0, = 50in (4),
andletc¢; = ¢ = 2in(6). win (6) linearly decreases from 1.0 to
0.2 in each particle’s first 40 iterations. We used 100 particles
for 2D cases and 3,000 particles for 3D. Most cases converged
within 300 iterations. On a PC workstation with an Intel E6850
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Fig. 3. Comparison between different dissimilarity metrics by aligning unstructured sparse point sets with strong outliers (source as blue “+” versus

target as red “0”). (a) The result of the proposed GM kernel. (b) The result of nearest L, distance model [3]. (c) The result of nearest Huber norm
(o =10) [186]. (d) The result of L, distance between Mixtures of Gaussian [26]. () The result of Kernel Correlation [44].

CPU, single thread, a 2D case took about 1-5 s; a 3D case took
around 60-200 s.

4.1 Empirical Evaluation of the Proposed Method

To solve a problem by minimizing an energy function, it is
important to validate that 1) the global minimum of the
energy function corresponds to the desired solution, and
2) the minimization of the energy function can recover the
global minimum point. In this section, we empirically
evaluate the proposed shape dissimilarity metric and the
modified PSO optimizer based on such two criteria and
compare them with those of some state-of-the-art methods.

4.1.1 The New Distance Model

We compared our new high-peak-fat-tail GM kernel' with
other dissimilarity metrics including nearest L, distance [3],
nearest Huber norm [16], L, distance between Mixtures of
Gaussian [26]%, and Kernel Correlation [44]°. To eliminate
the possibility that a certain distance kernel would prefer a
specific shape or point pattern, we used challenging cases of
aligning random 2D point sets with strong outliers.

Given a random 2D point set, we generate another point
set and quantify its outlier and noise strength following the
setup in [26]. The following procedures are used to generate
source point sets from a target point set: For a target set
with n points randomly spread in the range [—D, D] x
[-D, D] (n =50 and D = 100 for 2D point sets), we generate
a source set and control its degree of corruption by

1. discarding a subset of (1 — p)n points from the target
set,

2. adding uniformly distributed noise of [—¢, €] X [—¢, €]
to all points in the target set,

3. applying a similarity transformation (s, 6, t,, and t,)
to the target set (in this section, we use rigid
transformation, i.e., s = 1), and

4. adding (7 —p)n spurious, uniformly distributed
points to the target set.

Therefore, after the corruption, a source set would have a total
number of Tn points, in which only pn have corresponding
points in the target set. We quantify the strength of outliers
and noise as S, = (7 — p)/p and S,, = ¢/ D, respectively. The
average L, distance between known correspondences is

1. We set a = 0.5, 0y = 5, and oy = 50 for the GM model.

2. Since we followed the experimental setup in [26], we keep the
parameter setting in the MG method’s original code.

3. We empirically set the bandwidth of the KC method to 10 based on
experimental performance.

computed as the error measure and displayed on top of each
registered frame.

In Fig. 3, the source point set with outlier strength 5, = 2
and noise strength S,, = 0 is aligned to the target point set
with 50 points using rigid transformation (no scaling). To
compare only the performance of different shape dissim-
ilarity metrics and validate whether the global minimum of
each dissimilarity metric corresponds to the desired
solution, we initialize the source set’s pose to the known
ground truth pose so that it is initially correctly aligned
with the target set. We then register the point sets under
those metrics using a common local minimization method.*
The hypothesis is that, if the global optimum of a
dissimilarity metric corresponds to the desired ground
truth solution, we would observe little deviation in the
converged pose after registration under that metric from the
initial correct pose. We randomly generated over 1,000 pairs
of random point sets under rigid transformations with
outlier strength S, =2 and noise strength S5, =0, and
evaluated different distance kernels’ final alignment errors
based on those pairs. Results show that our GM kernel is
the most robust to outliers and consistently leads to the
smallest average distance error between corresponding
points among all these metrics.

4.1.2 The Modified PSO Optimizer

To evaluate the performance of the systematically “ran-
dom” PSO, we compared it with 1) a “pure” random restart
local optimizer and with 2) a local optimizer with a shape
moment-based initialization using above-mentioned ran-
dom pairs of 2D point sets. We chose the Levenberg
Marquardt (LM) optimizer from LM-ICP [16]. The gradients
of LM-ICP’s energy function with respect to transformation
parameters can be well approximated by the chain rule and
discrete gradients of the distance maps. Since we have
demonstrated that the GM kernel generates a smaller
alignment error, we abandoned the nearest Huber norm
in LM-ICP and used the GM kernel for all optimizers. We
tried to align random generated pairs of point sets under
rigid transformations using all optimizers and recorded the
number of successful alignments by each optimizer. We
measured the average distance between corresponding
points in the target and the aligned source sets, and judged
one alignment as a successful one if its resulting average
distance is less than some epsilon (we set it to 1 in this
experiment). Each optimizer’s “success rate” can then be
obtained by the number of successful alignments divided
by the number of total alignments.

4. The fminsearch function in MATLAB is used.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Iy
!
q
[0}
q

&
®

Success Rate
o
“I
Success Rate
o
s

o
@

The Modified PSO
The LM with a shape moment-based initiliazation

24
)
o
o

02 _—g_ The Modified PSO 02
Random Re-start LM
0 e 0 v 5 9
(] 2 (] 2

0.5 1 1.5 0.5 1 1.5
Outlier Strength (So) Outlier Strength (SO)

(a) (b)

Fig. 4. Comparison between the success rates of the modified PSO and
those of (a) the random restart Levenberg Marquardt and of (b) the LM
with the shape moment-based initialization, using cases of rigid
alignment of random point sets described in Section 4.1.2.

The green ellipse: target set's moments The magenta ellipse: source set's moments

Remaining target points
© Added outlier points
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Fig. 5. lllustration of the sensitivity of the covariance to outliers. A point
set’s covariance matrix is illustrated by an ellipse. The center of the
ellipse denotes the point set’'s mean, the directions of the ellipse’s axes
denote its covariance matrix’s eigenvectors, and the lengths of the two
axes are proportional to its covariance matrix’s eigenvalues. (a) The
target set (shown as red “0”). (b) The source set (obtained by removing
50 percent of the target points and adding six outlier points; the
remaining target points and the added outlier points are shown in red
and blue, respectively).

For the “pure” random restart LM, we generated 1,000
pairs of random point sets under every outlier strength level
and tried to align them using both optimizers. However, the
random restart LM does not have a convergence criterion. To
make a fair comparison, for each alignment case, we record
the processing time of the modified PSO once it terminates
according to its convergence criterion and simply let the
random restart LM run for the same amount of time.
Statistics (Fig. 4a) shows that even when the outlier strength
level is low, for the same processing time, random restart LM
only has a success rate around 50 percent. As the outlier

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. X, XXXXXXX 2011
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Fig. 6. One example of a pair of random point sets with line-form outliers.
(a) The target point set. (b) The source point set (remaining points and
added outlier points are shown in red and blue, respectively).

strength increases, the performance of random restart LM
further degenerates. In contrast, our modified PSO consis-
tently keeps a high success rate above 95 percent. This
comparison demonstrated that the systematically rando-
mized PSO performs more robustly than the “pure” random
LM optimizer within the same running time.

For the LM with a shape moment-based initialization, we
find the initialization by calculating the 2D point set’s first
moment (mean) for initial translation and its second-order
moment (covariance) for initial rotation (and scale if the
similarity transformation model is used). Without any
outliers and noise, this strategy directly initializes the
source point set to the correct pose. However, initial rotation
and scale obtained from covariance are sensitive to even a
small number of outliers. In Fig. 5, we show one example of
how covariance fails to initialize the correct rotation and
scale. In Fig. 5a, a target point set is shown as red “0” and its
mean and covariance matrix are illustrated by a green
ellipse. The center of the ellipse denotes the point set’s
mean, the directions of the ellipse’s axes denote its
covariance matrix’s eigenvectors, and the lengths of the
two axes are proportional to its covariance matrix’s
eigenvalues. In Fig. 5b, the source point set is obtained by
1) removing 50 percent of target points (the remaining
points are shown as red “0”) and 2) adding six outlier points
(shown as blue “0”). The magenta ellipse illustrates the
covariance matrix of the source set and is largely different
from the green ellipse of the target set in rotation and scale.
We did a further experiment comparing the PSO with
random initilization and the LM with the shape moment-
based initialization. At each outlier strength level, we

Fig. 7. Similarity alignment results. (a) Initial poses (source in blue versus target in red). (b) Alignment results.
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Fig. 8. Comparison between similarity and affine transformation.
(a) Initial poses. (b) Results of similarity alignment. (c) Results of affine
alignment.

generated 1,000 pairs of random point sets with line-form
outliers and used them to perform the comparison. One pair
of this kind of random point sets is shown in Fig. 6. This
type of outliers is possible in real scenarios (e.g., range data
in Section 4.6.2). Statistics of this comparison shown in
Fig. 4b demonstrate that, as the outlier strength level rises,
the success rate of LM with the shape moment-based
initialization quickly drops to be less than 5 percent, while
our PSO optimizer keeps a success rate around 90 percent.

(a) (b) (c) (d)

4.2 Similarity and Affine Alignment of 2D Shapes
We used some shapes from the SIID shape database [40] to
perform experiments of 2D similarity and affine shape
alignment (Figs. 7 and 8). Source and target shapes in Fig. 7
differ in parts, and initial poses of the sources shapes vary
in a broad range. Despite such difficulties, the results show
that the energy function always converges to the global
optimum through our modified PSO. Fig. 8 illustrates the
difference between alignment results using similarity and
affine transformations.

4.3 Alignment of Shapes with Strong Outliers and
Comparison with State-of-the-Art Algorithms

In practical applications, shapes as clear and sharp as those in
Fig. 7 are usually difficult to obtain because of complex
backgrounds surrounding interested objects. Thus, extracted
shapes may contain spurious contours or missing parts,
which can significantly affect alignment results. Some state-
of-the-art algorithms [13], [22], [34], [54] have difficulties in
handling such shape registration problems with strong
outliers. Because our method integrates outlier-resistant
mechanisms based on the high-peak-fat-tail GM model and
looks for the global optimum, it is well suited to solve this
challenging problem. In our experiment, we used “clear”
shapes as source shapes and aligned them to shapes with
strong artificial outliers. In Fig. 9, artificial outliers “airplane”

(e) () (9) (h)

Fig. 9. Alignment results of “hand” shapes with strong outliers. (a) Target shapes. (b) Source shapes. (c) Initial poses (source in blue and target in
red). (d) Alignment results by the proposed method. (e) Alignment results by ICP with distance threshold [54]. (f) Alignment results by Distance
Functions (DF)-based method [34]. (g) Alignment results by MI-based method [22]. (h) Alignment results by VDF-based method [13].

(@) (b) ©

@) (f) )

Fig. 10. Alignment of pairs of images through aligning their edge maps. (First row) CT/PET image alignment, and (second row) synthetic MRl image
[8] alignment. (a) The target image. (b) Edges extracted from (a). (c) The source image. (d) Edges extracted from (c). (e) Initial poses. (f) Edge shape
alignment results. (g) Source-target alternate checkerboard display based on the results in (f).
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(©) (d)

Fig. 11. Alignment between contour shapes and gradient maps. (a) Edges of (3)c extracted by Canny detector using MATLAB default parameters.
(b) Edges of (4)c extracted by Canny detector using MATLAB default parameters. (c) Original images. (d) Gradient maps of (c) as source shapes.

(e) Initial poses (source in blue versus target in red). (f) Alignment results.

and “grids” are added to “hand” shapes to create challenging
target shapes. For this “hand” shape alignment problem, we
compared the registration performance of our method with
those in [13], [22], [34], [54]°. In the cases of Fig. 9, energy
functions would have multiple local optima no matter which
shape registration method is used. Finding the global
optimum is impossible for methods using local optimizers
unless an initial value close enough to the global optimum is
given. In contrast, even with initial poses far away from
global optima, our method successfully found the best
transformation parameters because of PSO’s strong ability
to systematically and efficiently search in a broad space to

5. We implemented the methods according to the original papers.

find the global optimum. Other algorithms [13], [22], [34],
[54] often got stuck at local optima (Figs. 9e, 9f, 9g, and 9h).

4.4 Alignment of Edge Maps from Images

Shapes represented by edges were also used to evaluate the
robustness of our algorithm. Many other shape representa-
tions [31], [38], [42] are only able to represent closed shape
contours and therefore would have difficulty correctly
representing edge shapes because of the existence of
crossings and outliers. In our method, an edge map can
directly be used as the “gray-scale” image representation of
the source shape, and the GM distance transform is applied
to the target shape. Fig. 10 shows two examples of aligning
images through aligning edge maps extracted from them
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Fig. 12. Similarity alignment results of 2D unstructured point sets (source as blue “+”s versus target as red “0”s). (First row) Initial poses and (second
row) alignment results. (a) Alignment of point sets without outliers and noise (S, = 0, .S, = 0). (b) and (c) Alignment of point sets with outliers (p = 0.5,
T=1.5,5,=2.0,and S, =0). (d) Alignment of point sets with outliers and noise (p = 0.5, 7 = 1.5, S, = 2.0, and S,, = 2%).

TABLE 1
Empirical Convergence Ranges of the Proposed and MG [26] Methods in the 2D Unstructured Sparse Point Set Registration Tasks

Method Outlier and noise level

(scalexrotation angle X translation in z and y directions)

Empirical convergence range

MG method [26] | S, =0,5, =0

[1,1] x [~120°,120°] x [—40,40] x [—40,40] [26]

S0 =0,5.=10

Proposed method | S, =2, 5, =0

S0 =2,5, =2%

[0.667,1.5] x [—180°, 180°] x [—80,80] x [—80, 80]
[0.75,1.333] x [—180°,180°] x [—40,40] x [—40, 40]

[0.8,1.25] x [—180°,180°] x [—40,40] x [—40, 40]

using our shape alignment algorithm. The first example
(Fig. 10, first row) aligns a pair of CT/PET images. The
second example (Fig. 10, second row) aligns a synthetic T2
MRI image with a T1 MRI image (from image source [8]).
Our alignment method generated satisfactory results which
indicate the potential extension of our method to image
registration.

4.5 Alignment of Generalized Shapes

Extracting edges from images is a difficult task because the
choice of extraction algorithm parameters has a large effect
on extracted shapes. In Figs. 11a and 11b, we show the edge
maps of Figs. 11(3)c and 11(4)c, respectively, using Canny
edge detector with default parameter settings in MATLAB’s
implementation. Using such edge maps as shapes with very
strong outliers, our algorithm (Section 4.4) failed to
correctly align them to a template hand shape. To
circumvent the difficulties caused by inappropriate edge
extraction parameters or algorithms, our method is capable
of directly using gradient maps as source shape images
because of the natural characteristics of its gray-scale
image-based shape representation. In Figs. 11(1) and
11(2), we demonstrate simple alignment cases where hands
are on white backgrounds, gradient maps are used as

source shapes, and the GM distance transform of a hand
template as the target shape. Cases in Figs. 11(3) and 11(4)
are more challenging and closer to real applications where
the background is a phone book with complex texture; our
method successfully aligned the hand template shape to
hands in these noisy images. So far we have only tested
gradient maps as source shape images. However, other
gray-scale images such as discretized line drawings or
pencil drawings may also be considered as candidate shape
images for alignment.

4.6 Alignment of 2D Point Sets

4.6.1 Unstructured Sparse Point Sets

To validate our algorithm on registering unstructured
sparse 2D point sets, we followed the experimental setup
of [26] and compared the performance of our algorithm
with that of two other point registration methods, the
Mixtures of Gaussian [26] and Kernel Correlation (KC) [44]
methods. The code for the MG® and KC’ methods is
available at their authors” websites.

6. http:/ /gmmreg.googlecode.com/svn/trunk/.
7. http:/ /www.cs.cmu.edu/~ytsin/KCReg/.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. X, XXXXXXX 2011
r=1 p=1 100 100
" |-~ Our method " [-&-our method 150 \k . . 150 \\’\_'_ e ;_ &
£ ~#-MG method % || ~#MG method - - v pr N gt
315 -©-KC method a6 -©-KC method 200 . oy, | 200} 3 3
g 10 g 4 250 o :(" 1 250 :' s\.{"“
§ § e Ve ., k' ,
E . EZ 300 ':o-ﬁ '." 1 300" NE w
= = Ho X
350 . * 1 350"
d 0.9 0.8 07 06 05 i | 100 200 300 400 100 200 300 400
P T
100/~ g v 100 -
(a) (b) \} e
150 s 8 . 150 \"_,,.v
Fig. 13. Comparison between the proposed, MG [26] and KC [44] 2 . 9 TN <f"' :
methods. The mean of 50 average distances upon convergence at each 280 ¢ \c\( 200 &
outlier level versus varying p or 7. (@) 7=1,p€[0.5,1]. (b) p=1, 300 &2 § NN w0 S 0
TE [1,15] 4 i A . .
350 o 4 350
100 200 300 400 100 200 300 400
First, we performed similarity alignment experiments on
pairs of random point sets without noise and outliers. The (@) (b)

source point set is a randomly transformed version of the
target point set. Fig. 12a shows one example registration
result. The target point set contains 50 points (red “0”s)
randomly spread in a region [—100,100] x [-100, 100]. And
the source point set (blue “+”s) is a transformed version of
the target, after a 180 degree rotation and 1.5 scaling. Next,
we also did experiments in the presence of noise and
outliers following the setup mentioned in Section 4.1.1.
Again, S, = (1 — p)/p and S,, = ¢/ D quantify the strength of
outliers and noise, respectively, and the average L, distance
between known correspondences is computed as the error
measure and displayed on top of each registered frame
(Figs. 12b, 12¢, and 12d). We did extensive experiments to

avgDist = 0.26992

Fig. 15. Two examples of rigid alignment of 2D range scan point sets.
(First row) Initial poses. (Second row) Alignment results. (a) Example 1.
(b) Example 2.

obtain empirical convergence ranges for 2D unstructured
sparse point set registration (Table 1).

We compared our method with two state-of-the-art point
registration methods, the MG [26] and KC [44] methods
with parameter settings mentioned in Section 4.1.1. The
comparison was done using rigid transformation (no
scaling). At each outlier or noise strength level, we
generated 50 pairs of target and corrupted source sets. For
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Fig. 14. Examples of alignment of 2D random point sets using the proposed, MG [26], and KC [44] methods under rigid transformation (source as
blue “+”s versus target as red “0”s). (First row) Alignment of point sets without outliers and noise (S, = 0 and .S,, = 0). (Second row) Alignment of
point sets with outliers (p = 0.5, 7 = 1.5, S, = 2.0, and S,, = 0). (Third row) Alignment of point sets with outliers and noise (p = 0.5, 7 = 1.5, and
S, = 2.0, S, = 2%). (a) Initial poses. (b) Results by the proposed method. (c) Results by the MG [26] method. (d) Results by the KC [44] method.
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Fig. 16. Similarity alignment results of 3D unstructured sparse point sets. (First row) Initial poses (source as blue “+’s versus target as red “0”s).
(Second row) Registration results. (a) Registration of point sets without outliers and noise (S, = 0 and S,, = 0). (b) and (c) Registration of point sets
with outliers (p = 0.5, 7 = 1.5, S, = 2.0, and S,, = 0). (d) Registration of point sets with outliers and noise (p = 0.5, 7 = 1.5, S, = 2.0, and S,, = 2%).

each pair, we used the proposed, MG and KC methods for
registration and computed the resulting average distance
between known correspondences. Results show that when
outlier and noise levels are low, both the MG and KC
methods register two sets accurately. But as the outlier and
noise levels rose, our method performed more robustly than
the MG and KC methods (Figs. 13 and 14).

4.6.2 Real Laser Scan Point Sets

Following the experimental setup in [44], we also used a set
of 2D range data acquired by a SICK LMS 221 laser scanner
[47] for performance evaluation. This data set consists of
3,715 scans acquired during an 18 min vehicle travel. We
used every scan and the scan 30 time steps after it as the
target and source point sets, respectively. Therefore, we
were able to obtain 3,685 pairs of point sets for alignment.
Alignment results generated by our method on those pairs
were manually evaluated as either satisfactory or unsatis-
factory. All except 358 alignments were evaluated as
satisfactory. Two examples of the alignment experiments
are shown in Fig. 15.

4.7 Similarity Alignment of 3D Point Sets

4.7.1 Unstructured Sparse Point Sets

Experiments similar to those with 2D unstructured sparse
point sets were done on 3D point sets. For 3D point sets, the
number of points n = 100 and the range of points D = 50.
Four examples of 3D unstructured point set alignment
under different S, and S, settings are shown in Fig. 16.
Empirical convergence ranges show the robustness of our
algorithm for registration of 3D point sets (Table 2).

4.7.2 Real Laser Scan Point Sets

For performance evaluation, we followed the experimental
setup in [37]. One thousand points were randomly chosen
from the 3D “bunny” model [45]. We then generated
translation = [t,,t,,t.] from a normal distribution with
each component having a standard deviation of 70; this
value of standard deviation is chosen based on the range of
the target set ([—126,127] x [—125,125] x [—98,98]). The
rotation angle 0 is generated randomly along the z-axis,
from a normal distribution A(0, (/3)*). The scaling factor
is chosen randomly from a uniform distribution #/(0.7,1.3).
Before the transformation is applied to the target set, a

TABLE 2
Empirical Convergence Ranges of the Proposed Method in the 3D Unstructured Sparse Point Set Registration Tasks

Outlier and noise level

Empirical convergence range

(scale xrotation anglexrotation axis X translation in z, y, and z directions)

Sy =0,8,=0
& —9.8, =0

Ss=2,8, =2%

[0.667,1.5] x [—180°,180°]x all possible axes x[—40,40] x [—40,40] x [—40,40]
[0.8,1.25] x [—180°,180°]x all possible axes x[—20,20] x [—20,20] x [—20, 20]

[0.8,1.25] x [—180°,180°]x all possible axes x[—20,20] x [—20,20] x [—20, 20]
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(a) (b) ()

(a) (b) ()

Fig. 17. Testing the robustness of the proposed method to noise and
initialization with the 3D “bunny” model (source in red, target in blue, and
noise points in black). Note that not all noise points are shown in the
figure because of viewport cropping. (First row) Initial poses, and
(second row) alignment results. (a) 5 percent Gaussian zero mean noise
points. (b) 20 percent Gaussian zero mean noise points. (c) 35 percent
Gaussian zero mean noise points.

certain percentage of points is replaced with zero-mean
Gaussian noise A(0,60?). We consider three noise levels,
with 5, 20, and 35 percent of the points replaced,
respectively. We performed 100 experiments at each noise
level. Three example alignments are shown in Fig. 17. The
statistics of errors with respect to ground truth are given in
Table 3.

TABLE 3
3D Laser Scan Point Set Alignment Results: Mean (u),
Standard Deviation (o), and Maximum (Max) of Errors
(Compared to Ground Truth) in Recovering the Scaling Factor s,
Rotation Axis &, Rotation Angle #, and Translation ¢ at Each
Noise Level (with 100 Experiments per Noise Level)

Noise Level 5% 20% 35%
= 0.00165 = 0.00431 u=0.0122
As o =0.00112 o =0.00251 o =0.0132
max = 0.00382 | max = 0.00836 | max = 0.0798
u = 0.00258 p=0.00900 | u=0.00893
IAR| o =0.00127 o =0.0113 o = 0.00845
max = 0.00549 | max = 0.0580 | max = 0.0340
u=0.124° w=0.182° u=0.394°
Al o = 0.0986° o = 0.155° o =1.10°
max = 0.324° max = 0.669° max = 6.10°
u=0.670 n=0.951 uw=1.20
llAg] o =0274 o=10.710 o =0.705
max = 1.25 max = 2.92 max = 2.70

Fig. 18. Real people’s face models [50] used in 3D surface registration.
(a) The male target face model. (b) and (c) Faces of another male
subject (as source surface). (d) and (e) Faces of a female subject (as
source surface).

4.8 Similarity Alignment of 3D Surfaces

We also did experiments on 3D surface registration. A
male’s face (Fig. 18a) is used as the target surface and two
other people’s faces with different facial expressions
(smiling and neutral) are aligned to it (Figs. 18b, 18c, 18d,
and 18e) [50]. One can see that the source surfaces are
greatly different from the target surface model. Fig. 19
shows four examples of this experiment. Our method
successfully recovered the optimal transformation even
when the initialization was far from the correct pose.

5 CONCLUSIONS AND DISCUSSIONS

In this paper, we present a novel shape alignment method.
Flexible gray-scale “images” and GM “distance” maps were
proposed to represent source and target shapes, respec-
tively. Gray-scale “images” for source shapes can represent

(@) (b) (©

Fig. 19. 3D surface alignment experiments. (1) Alignment of models in
Figs. 18a and 18b. (2) Alignment of models in Figs. 18a and 18c.
(3) Alignment of models in Figs. 18a and 18d. (4) Alignment of models in
Fig. 18a and Fig. 18e. (a) Initial poses (source in blue versus target in
red). (b) Alignment results (front view). (c) Alignment results (side view).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI ET AL.: APPROXIMATELY GLOBAL OPTIMIZATION FOR ROBUST ALIGNMENT OF GENERALIZED SHAPES 15

shapes with arbitrary dimension and topology, including
continuous contours, unstructured sparse point sets, edge
maps, and even gradient maps. GM “distance” maps are
precomputed by the novel two-component GM distance
transform, which provides a more robust dissimilarity
metric for shapes. Because of the high efficiency of our
new energy function, a global optimum estimation algo-
rithm, the Particle Swarm Optimization, was introduced to
optimize the energy function. Several additional strategies
were used to modify the original PSO so as to provide a
convergence criterion and prevent the optimization from
stopping prematurely. The proposed method showed its
robustness and effectiveness in solving various challenging
registration cases using generalized shape data.

In the end, some limitations of the proposed method
should be discussed. Similarly to the MG [26] and the KC
[44] methods, the setting of parameters (i.e., o1 and ov) for
our two-component Gaussian Mixture distance model is
still an open issue and may affect the performance of the
alignment, although in our experiments it is observed that
the performance of our method is less sensitive than the
MG and KC methods to parameter settings. Our current
modified PSO does not utilize gradient information of the
energy function even if the outlier level is low. Some PSO
variants incorporated gradient information into the origi-
nal PSO framework and reported acceleration on the
convergence speed of the optimization process. The
gradients of our energy function can be well approximated
by the chain rule and discrete gradients of distance maps.
Although the convergence and stability of the standard
PSO have been theoretically studied in [7], further analysis
of the convergence properties of our modified PSO
(theoretical convergence guarantee, convergence with
respect to the number of swarm particles, etc.) is necessary
since the modified PSO has more complex behaviors
because it reinitializes inactive particles.
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