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Abstract—Suppose you want to effectively search through mil-
lions of images, train an algorithm to perform image and video
object recognition, or research the complex patterns and relation-
ships that exist in our visual world. A common and essential com-
ponent for any of these tasks is a large annotated image dataset.
However, obtaining labeled image data is a complex and tedious
task that requires methods for annotating and structuring con-
tent. Therefore, we developed a comprehensive online tool and data
structure, Markup SVG, that simplifies the collection of annotated
image data by leveraging state-of-the-art image processing tech-
niques. As the core data structure of our tool, we adopt scalable
vector graphics (SVG), an extensible and versatile language built
upon XML. Given the extensibility of our framework, we are able
to encode low-level image features, high-level semantics, and fur-
ther define interactions with the data to assist the user with image
annotation. We also demonstrate the ability to merge multiple on-
line and offline datasets into our system in an effort to standardize
image collection and its data representation. Lastly, we present our
modular design; each component acts as a plug-in to our system.
We developed several novel components and algorithms to high-
light the possibilities of semi-supervised segmentation and auto-
matic annotation within our proposed framework. Further, our
modular design provides the necessary capabilities to incorporate
future image features, methods, or algorithms. Our results show
that our tool is able to greatly simplify the process of obtaining
large annotated image collections in an online collaborative plat-
form.

Index Terms—Data structures, image annotation, image pro-
cessing, image representation, scalable vector graphics (SVG).

I. INTRODUCTION

A S a 19-month-old child points at a picture of a telephone,
he exclaims, “ooh, teltone”, simultaneously executing

an object recognition and object labeling task [1]. Through
learning and experience, these tasks become effortless for
the infant’s human visual system. Yet in computer vision,
object detection and recognition remain remarkably difficult
problems. Although challenging, we can foresee a computer
system learning from multiple data sources and mimicking a
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high level of reasoning and image understanding. As shown in
the literature, by collecting more labeled training data, we can
increase the performance of supervised learning algorithms.
But collecting large and diverse annotated datasets necessary
for training these algorithms is a tedious and expensive task.
Several web-based tools and social image sharing sites—such
as LabelMe [2], Flickr [3], ALIPR [4], among others [5],
[6]—have gained popularity and success by utilizing the col-
laboration potential of the online community for collecting
annotation data. Aside from online systems, offline resources
like the Lotus Hill [7] and Caltech 101 [8] datasets contain
valuable, manually annotated data that could be used for image
understanding or image retrieval tasks. However, despite these
efforts, room for improvement exists. First, historically the
systems have taken a top-down approach, where the intended
application (e.g., collecting training data for object recognition,
or text label data for image retrieval) determines what kind of
annotation capabilities are supported. Unfortunately, we have
found that this approach, although effective in collecting high
quality data, can ultimately limit the utility of the data collected.
For example, nearly all of the existing systems and storage
formats we have encountered are uniquely designed and do not
support the sharing of each other’s data; see Fig. 1. Also, global
tags in ALIPR and Flickr limit image search to text labels,
with virtually no possibility of training object classifiers or
performing content-based image retrieval. Second, while new
and effective image processing and computer vision techniques
are being developed, they remain isolated from these annota-
tion efforts. For example, many effective general interactive
segmentation methods exist [9]–[13], as well as medical image
segmentation techniques [14]–[18] where interactivity helps
physicians use their expert knowledge to obtain object bound-
aries. If some of these methods could be effectively coupled
to online annotation systems, this could greatly improve the
quality of segmentations and the user experience. However, cur-
rently most online systems involve manual annotation, without
automated or semi-automated assist tools. A typical problem
with these manual annotations, as seen in Fig. 1(c) and (d), is
the use of straight line segments to estimate curved borders,
resulting in slight approximation errors around the boundary.

To address the aforementioned problems in existing image
annotation systems, we present a new image annotation tool,
Markup SVG, which has the ability to incorporate heteroge-
neous data and leverage state-of-the-art image processing tech-
niques to assist users in online annotation. The fundamental
component of our online annotation tool is a structured infor-
mation layer that we referred to as our image abstraction. Just
as Bentley states, “data structures are frozen algorithms” [19],
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Fig. 1. Sample images from heterogeneous sources and their visualization. (a)
Flickr has global tags and boxes. (b) ALIPR has global tags only. (c) LabelMe
is online with manually delineated regions. (d) Caltech 101 has ground truth an-
notations through Matlab. Photo (a) courtesy of Brian Talbot. Photo (b) courtesy
of Abra Kassandra.

our abstraction can be thought of as a frozen collection of image
processing algorithms that can be visualized and manipulated in
a standard web browser. For the underlying technology of our
abstraction, we adopt scalable vector graphics (SVG). SVG is an
expressive language that is built upon XML and benefits from
the extensibility and versatility associated with the XML lan-
guage. Thus, the abstraction supports the encoding of data from
all existing sources such as LabelMe, Flickr, and Lotus Hill. Fur-
ther, being a W3C (world wide web consortium) recommenda-
tion, SVG allows for interaction, visualization, and rendering in
major web browsers, naturally supporting online image viewing
and annotation.

Building upon the basic abstraction framework, we incor-
porate extensible markup modules that encode heterogeneous
image information into symbolic form (numerical or textual)
and define the interaction with such information. The motiva-
tion behind the modular approach is in our desire to design
an abstraction that can represent image information at different
levels of granularity. For example, how does one encode a rep-
resentation of an object when it is unknown a priori how many
components an object should consist of or even what the defini-
tion of an object should be? For different application purposes,
we will get different answers to this question. Our modular ap-
proach allows our abstraction to encode different types of data,
either provided by users or extracted from images using image
processing techniques. Thus, we define four classes of markup
modules: low-level image processing modules, higher level se-
mantic modules, custom dataset modules, and action modules.
First, the low-level image processing modules take a bottom-up
technique towards feature collection. For instance, region-spe-
cific features (color, texture, etc.) can be extracted and repre-
sented numerically as either feature vectors or histograms [20],
[21]. More complex features such as shape, Harris corners, SIFT
[22], and Gist [23] have motivated the creation of bags of visual
features [24], which can also be represented by our low-level
module. Additionally, new features from future algorithms can

be included by the addition of their corresponding markup mod-
ules.

Beyond the low-level information, integrating high-level se-
mantic modules into existing image signatures raises funda-
mental questions on data structuring and organization. As noted
by [25], a low-level descriptor in and of itself cannot encode
high-level semantic information. Additionally, [26] states that
a system is also needed to integrate content features, similari-
ties methods, interaction with users, visualization of the image
database, etc. We design high-level modules that have the ability
to merge user annotations or encode high-level automated tasks
(like parent-child inferences) into our abstraction. Furthermore,
when integrating various datasets into our abstraction, low-level
and high-level information may need to be represented simulta-
neously, e.g., LabelMe polygon with user annotation. The flex-
ibility of our design naturally allows for these combinations,
greatly simplifying the design of specific dataset modules.

Given the wealth of information encoded in our abstraction,
we perceive our representation to be content aware. This aware-
ness truly differentiates us from other online annotation tools.
For example, in other tools, the main sources of confusion are
what regions the user should label, how accurately the user
should segment the object, and what labels the object should get
[2]. However, in our tool, through the combination of different
low-level, high-level, and dataset modules, we can design
agents that have the ability to intelligently assist the user in the
major aspects of image annotation, i.e., region segmentation
and annotation. These intelligent, content-aware agents make
up our final markup module, the action module.

Our innovation and contributions are twofold; first, we intro-
duce an image abstraction—a novel content encoding data struc-
ture—and comprehensively demonstrate the capabilities of our
abstraction towards supporting online image annotation. Our
proposed abstraction seamlessly organizes image features and
semantic information with methods to visualize and interact
with the data. Additionally, the abstraction serves as a standard
format that enables the collaborative annotation and sharing of
online and offline datasets from various sources. Second, we de-
velop novel methods based upon our abstraction to facilitate the
segmentation and annotation of data in a web-based annotation
tool. To our knowledge, our system is the first to incorporate
emerging web technologies and image processing algorithms
into an online annotation framework. Only through the com-
bination of our tool and abstraction are we able to accomplish
these complex assist methods online.

The remainder of this paper is organized as follows. In
Section II, we introduce the data format of our image abstrac-
tion based on SVG, and the four classes of markup modules that
we designed. In Section III, we describe our annotation tool and
its functionalities in terms of visualization and interactivity. In
Section IV, we present our results comparing our annotation
tool to other online tools in terms of the region segmentation
and annotation process on several datasets. Finally, we conclude
with discussions and future directions in Section V.

II. IMAGE ABSTRACTION

We aim to design our content-aware image abstraction to be
extensible, flexible, sharable, while being interactive and visu-
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Fig. 2. Partial SVG document (a) corresponds to only the single region highlighted in green (c). The SVG abstraction stores both the visualization information to
render the polygon in a browser as well as low-level information extracted from the raw image (b). (a) SVG encoding example. (b) Raw image. (c) ��� segmentation
module with a highlighted polygon in green.

alizable online. Given the rich capabilities of SVG, we chose
to develop our data structure using the SVG language. In this
section, we first describe the basic principles of SVG, and then
illustrate how we use SVG to construct our abstraction.

A. Scalable Vector Graphics (SVG)

The SVG standard [27] is an XML-based file format that
describes two-dimensional vector graphic shapes, images, and
text. Vector images and shapes are defined by mathematical in-
structions rather than traditional image formats based on indi-
vidual pixels. In SVG, there are several basic shape objects, in-
cluding lines, circles, paths, and polygons, which are modifi-
able by spatial transformations, alpha masks, and other effects.
These shapes can also be customized in color, fill, texture, and
stroke style. As SVG is the visualization of XML, our model is
both renderable and extensible. Further, because SVG is a W3C
recommendation, it allows for native web rendering and interac-
tivity by scripting languages such as ECMAScript (Javascript,
JScript). Robust XML query languages like XQuery, XPath, and
FLWR can be used to efficiently search through the XML Doc-
ument Object Model (DOM).

B. Markup Modules in Our Abstraction

We define our image abstraction in an SVG document that
links to an image and supports the inclusion of various markup
modules. We design these markup modules to be extensible plu-
gins that interface with our system. Each module contains all
the information necessary to visualize, interact, and utilize its
functionality. Thus, future algorithms, datasets, etc. can be in-
tegrated into our system by designing a module, without ever
having to modify our annotation tool.

We specify four classes of modules, low-level image
processing modules, high-level semantic modules, heteroge-
neous dataset modules, and action modules. The modules are
written in XML and contain the following properties/fields:

.
• The property field, “name”, is the name of the module.
• The “type” field corresponds to the type of feature

being extracted. For example in the low-level mod-
ules, we have developed several types including

, but this list
can be appended to at any time.

• The “class” types include
.

• The “hook” field is the name of the Javascript function that
will be called upon loading the selected module.

• The “Javascript” field defines the interactivity that the
module provides. For example, frequently there will be
an onclick, onmouseover, or onmouseout event associated
with the SVG elements. The functions declared in the
Javascript field will support these actions.

• The “SVG” field describes how to structure and visualize
the image features. The image features can be defined via
polygons, circles, etc. with varying size, color, and texture.

Both the Javascript and SVG can be described inline, as a link
to an external file, or as a reference to an external database table.
The high-level semantic and the action modules also contain an
additional field, dependency, since they may have dependencies
on existing loaded modules in our system; see Fig. 4.

When loading a module, our SVG abstraction will create a
new group element, . The group element is a container con-
struct that associates elements together. Because the group el-
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Fig. 3. Creation of the possible segmentations and features stored in our image abstraction’s low-level modules for image (a). (b), (c), and (d) represent the varying
granularities of segmentation where each region on each layer has associated color, texture, shape, etc. information encoded with it. (e), (f), and (g) display different
image processing algorithms supported. (h) displays SIFT features that can be encoded into our abstraction. (a) Original. (b) ���, 1st segmentation. (c) ���, 2nd
segmentation. (d) ���, 3rd segmentation. (e) Mean Shift [28], ������� � 	
�. (f) Normalized Cut [29]. (g) Concept Occur. Vector [30]. (h) SIFT [22].

ement can also contain other nested group elements to an arbi-
trary depth, we can utilize these nodes to hierarchically group
different layers. Thus, loading a module involves the following
steps: appending a , group element, to the DOM with the
name, type, class as attributes, then appending the SVG field
contents to the group. Next, the annotation tool adds an eventlis-
tener callback function for the hook and finally, dynamically
loads the Javascript field contents into memory.

1) Low-Level Image Processing Module: Our low-level
image processing techniques are completely automatic
methods that extract image features from the raw image. We
preprocess the images and store the result in low-level
modules. The easiest way to describe these modules
is through several illustrations. In the case of the
gPb-owt-ucm [31] segmentation method (abbreviated gPb)
[Fig. 3(b)–(d)], an example of our module properties could be
' ' ' ' ' ' ' ' .

Contained in the gPb SVG field, we store region boundary
information as a point set in the SVG element.
Next, we extend the basic instance of the to
incorporate the region-specific features extracted from the raw
image by adding elements to our polygon. In general,
low-level features or MPEG-7 content descriptors extracted
from the raw image can be represented here as an element in
alphanumeric form. For example, the , , ,
elements would encode the area and centroid coordinates of
the region. Additionally, for each region we collect

color histogram, mean color, and responses of Gabor
filters [32] of three scales and four orientations for a total of 12
texture histograms. From the shape information, we also
encode eccentricity and indexable shape features. We explored
Shape Context descriptors [33] and Curvature Scale Space
[34] representations, but chose a modified Chord-based
shape histogram [35] for faster indexing, and additional
robustness on smaller regions with fewer polygon points. Our
modifications use the principal eigenvector as our chord and
compute the point density graph normalized around this chord.
These features can be seen in our SVG example in Fig. 2(a).

Fig. 4. Markup module properties. Any number of modules can be incorpo-
rated in our SVG abstraction. The ������� field is only for high-level or
action modules.

For greater simplicity and because the SVG standard allows
for the inclusion of foreign namespaces and private data, we
chose to directly append to the XML.

Fig. 3 illustrates the results of different segmentation and fea-
ture extraction modules that can be stored in our model. In re-
gards to segmentation, our flexible framework allows the en-
coding of not only several layers [Fig. 3(b)–(d)] of segmenta-
tion detail, but also of completely different segmentation tech-
niques [28], [29] [Fig. 3(e) and (f)]. Alternatively, we could have
chosen to encode edge information from Sobel or Prewitt con-
volutions, block segmentations as seen in Fig. 3(g) [30], or more
advanced image features, such as SIFT features [22] [Fig. 3(h)].
This encoding stores SIFT histograms in the SVG, visualized by

elements.
2) High-Level Semantic Modules: When dealing with user

input or semantic concepts, we employ our high-level semantic
modules. These modules belong to the class, , and
have a new extendable set of types, .
Additionally, this class includes a dependency field to ensure
proper functionality.
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Fig. 5. Several examples of high-level semantic modules that have been designed for our abstraction. In (a), the manual selection module functionality enables
the clicking of points around the object. In (b), the region label module allows for the semantic annotation of predefined regions. In this case, the labels are added
to a gPb segmentation. (a) Manual selection module. (b) Region label module. (c) Parent-child inference module.

As further explanation, we illustrate the design of several
high-level semantic modules. For our first example, we design
a module called the manual selection module, that can manu-
ally delineate regions within an image; see Fig. 5(a). The user
clicks around an object, and the interaction and resulting re-
gion boundary is encoded as a polygon in the SVG document.
This module is primarily Javascript centered, defining onclick
methods and appending child elements to its SVG description.

A more complex example is the region annotation module
that can be seen in Fig. 5(b). This is the first module we en-
counter that has a dependency requirement. For this module to
work properly, it requires one of the level:types to be present,
(highlevel:manual) or (lowlevel:segmentation). The reason for
this dependency is because this module assigns labels to dif-
ferent regions, where the regions could be obtained from a low-
level automated segmentation module or a high-level manual re-
gion selection module. For the labels, we encode an , ,
and semantics (derived from the SVG group element).

• The element maintains a list of key words that can
be associated with either human or machine classification
labels for that region.

• The description element is provided for a more nat-
ural language annotation or to convey other characteristics
of a region not suitable for a keyword element.

Also defined in the module is the capability of composite re-
gion labeling. A user can create a composite region by merging
several regions together (again by defining onclick functions).
After merging, a new composite region (consisting of a list of
its region components) is created and can be saved in the SVG
document.

Building on the composite region idea further, we developed
another high-level parent-child inference module that has the
dependency of (highlevel:label), (lowlevel:segmentation) as
seen in Fig. 5(c). From the component list of a merged region,

, e.g., the “dinosaur” region in Fig. 5(b), we notice the region
is composed of the union of several, , labeled regions,
and unlabeled regions, or

(1)

These internal regions, and , can further be composed of
the union of other, smaller segmentation regions. Thus, we

can make parent/child inferences based on the components
that comprise . For example, in Fig. 5(c), an analysis of
the right foot region returns its high- and low-level descriptor
information, but also ascertains that this region, the dinosaur’s
right foot, is a child node on the parent node, the dinosaur’s
right leg. Reversing our logic and looking at the parent/child
relationships in a top-down perspective, we can also infer a
statistical model regarding the children of a dinosaur. Meaning,
from a database with sufficient training data, our system can
reason that a dinosaur is typically composed of a head, body,
tail, right arm, etc.

3) Heterogeneous Dataset Modules: One of the key benefits
of our system is the flexibility to immediately incorporate
the results of other datasets and annotations. If we were to
generalize annotation systems, the data are represented by a
region/bounding box plus user tag. However, the representa-
tion of these results varies greatly, e.g., image bitmaps, XML
definitions, and Matlab data structures, from system to system.
On close examination of virtually all of the datasets we have
encountered, we find that their inclusion can simply be defined
as a mapping from heterogeneous data to two of our existing
high-level modules, the manual selection module and region
annotation module. The mapping function from these datasets
to our abstraction modules is a preprocessing step that typically
involves a Matlab CGI script or PHP XML parsing script. For
example, we create an XML mapping for the LabelMe and
Lotus Hill datasets to transform their XML region definitions
(//region/pt/x,//region/pt/y) to our SVG polygon points. The
XML names (//object/name) are mapped to the SVG
elements. In the Caltech 101 dataset, we create a Matlab CGI
script that maps the Matlab object data structure to our SVG
polygon points. For the Flickr annotations, we create a PHP
script that utilizes the Flickr API to pull XML bounding boxes
and Flickr notes from the web and transform this data to SVG
polygons and title elements. A visualization of some of our
results can be seen later in our results section, Fig. 12.

4) Action Modules: Given the wealth of information that can
be collected by our modules, it becomes evident that our abstrac-
tion has the property of content-awareness. Our abstraction no
longer sees only individual pixels, but rather sees objects, edges,
groupings, labels, etc. Utilizing this knowledge, we can design
interesting content-aware action modules to assist in the anno-
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Fig. 6. Example of our segmentation action module 1 using active contours on the bounding boxes obtained from Flickr. The active contour in this example
uses the equal weight edge information from the gPb and Mean Shift segmentation results and assigns the manually obtained box contour zero weight. (a) Flickr
bounding boxes. (b) Intermediate active contours. (c) Final segmentation result.

tation process. Specifically, we target the main tasks in the an-
notation process, namely, segmenting regions to annotate, and
giving these labels relevant annotations.

Segmentation Assist Action Module 1: In the case where
we are manually delineating boundaries or importing manual/
bounding box data from other sources into our system, we often
would like to correct the segmentation results to create a tighter
more accurate boundary. We introduce a segmentation assist
module based on an active contour model [11] to automate this
task. The active contour model is a parametric curve,

, , that deforms to minimize its total en-
ergy

(2)

where and are parameters that control the weighting of the
active contour’s internal energy terms related to curve tension
and rigidity; defines the external energy of the contour
derived from image information.

This action module has a dependency on either a
(lowlevel:edge), or (lowlevel:segmentation) module. Con-
tent information from a low-level module, either edges or
region boundaries, can be utilized in defining the active con-
tour’s external energy function . For example, if we had a
gPb segmentation and a Sobel edge module, we could define
our in a discrete formulation as

(3)
where represents the edge or object boundary de-
scribed by the specified module (method), and
represents the distance transform of this edge information. The

edge information typically comes from the original
manually delineated edges input by the user. This exists for
situations where the user is able to infer a boundary where the
low-level methods cannot. The weights, , are user defined
weights between 0 and 1 that specify the confidence the user
has in the edge boundaries of that specific module. In LabelMe
data, the manual delineation is probably close to an edge so
the would have a nonzero weight; however, in Flickr
data, the manual delineation is only a bounding box. Thus, the

weight of should be set to zero. In general, we can
define the as

(4)

where is the total number of supported contour modules. Fig. 6
demonstrates our segmentation assist module on a Flickr an-
notation bounding box. Similarly, in an interactive setting, the
user can delineate a rough segmentation by manually clicking
a sparse set of points around the boundary. This initial process
is similar to the manual segmentation; however, upon closing
this rough boundary, our active contour method will evolve the
boundary to fit the edges in the image.

Segmentation Assist Action Module 2: We develop a com-
plementary segmentation assist module based upon an interac-
tive conditional random field (CRF) [36] Graph Cuts [10], [15]
method. Particularly, we are interested in developing our algo-
rithm on top of an automatic segmentation method that par-
titions an image into small coherent groups, e.g., superpixels
[37], [38]. Therefore, this module is dependent upon the exis-
tence of a (lowlevel:segmentation) module. Consider the set of
superpixels, , and a neighborhood system, , of unordered
neighboring pairs . We map our superpixels to an undi-
rected graph , where are the graph nodes corre-
sponding to our , and are the undirected edges that con-
nect these nodes, and we add two more terminal nodes, , ,
the source (foreground) and sink (background). Let be the bi-
nary label , assigned to a superpixel in , where
indicates the superpixel belongs to the foreground and
indicates the superpixel belongs to the background. Then, let

be the binary vector that assigns a label to all
superpixels in . We aim to minimize the energy function

(5)

where

if
otherwise

(6)

where represents the region properties, or the costs as-
sociated with labeling a superpixel to the foreground or back-
ground label , and represents the boundary proper-
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Fig. 7. Example of our segmentation assist action module 2 using superpixels on a Caltech 101 image. In figure (b), the green bounding box and foreground seeds
outlined in red are selected by the user. The superpixels outlined in gray intersect the bounding box, creating our background seeds. The final region of interest
(ROI) highlighted in red in (c) is obtained from the min-cut between foreground and background. (a) Caltech 101 image. (b) Superpixel ��� segmentation. (c)
Final segmentation ROI.

ties, or costs associated with assigning differing labels to neigh-
boring superpixels, .

Our formulation resembles [15] and [37], but additionally in-
cludes a novel pairwise edge term, . But in order
to use this term, we need to know a region’s neighbors and
shared border length between neighbors. The neighboring re-
gions and border lengths can be obtained by computing the gray
level co-occurrence matrix (GLCM) [39]. Although typically
used for texture analysis, the GLCM with a symmetric offset
of 1 pixel in all directions on the labeled connected components
of our segmentation efficiently computes superpixel neighbors.
The indices of the nonzero entries in the matrix (off the di-
agonal) identify the neighbors, and the values of these entries
specify the border length. As our abstraction is easily extend-
able, we are able to store these additional features (neighboring
regions and border length) into our encoding. The superpixel
regions are uniquely numbered and a neighbor list is generated
and stored within the element. This list defines .

Previously included with our region segmentation abstraction
are the color histograms whose distance between re-
gions and can be computed via the measure

(7)

where and represent the histograms of and , respec-
tively, and is the number of bins in the histogram. With our
neighborhood list and region distance measure, we can compute

based upon a CRF formulation

(8)

where represents the different color channels, rep-
resents the neighbor border length, and is the
Euclidean distance between the centroid points of the regions.
The exponential term encourages region coherency while
the term acts as a regularizing component,
penalizing isolated regions and superpixel neighbors whose
centroids are large distances from each other. The effect of
this term is illustrated in Fig. 8. The term is a user-defined
parameter that we set to 1/2.

Fig. 8. Superpixel graph displaying the weights of our regularizing term,
� ����	��
 ��, visualized in SVG. The red lines indicate superpixel
neighbors that belong to the same class whereas the green lines indicate
neighbors that belong to different classes. In this example for the airplane class,
our regularizing term maintained an average intra-class weight of 2.51, while
inter-class links between the airplane and sky had an average weight of 1.32.

As previously mentioned, our region term, , represents
the cost of assigning label to superpixel . For each super-
pixel, we encode its bounding box information in our SVG ab-
straction. Then, the user indicates a region of interest on the
image by interactively placing an SVG rectangle bounding box.
By computing the bounding box intersection between the user
rectangle and superpixel bounding boxes, we can discriminate
between the superpixels that lie outside the user’s rectangle, in-
tersect the rectangle, and are fully enclosed by the rectangle.
The goal of our segmentation method is to assign a label, ,
to all superpixels fully enclosed within the user-provided rec-
tangle that minimizes the total energy. To initialize our algo-
rithm, we use the superpixels that intersect the user rectangle as
our background seeds and use several of the fully enclosed su-
perpixels interactively selected by the user as our foreground
seeds. In the beginning, all fully enclosed nodes have equal
weight to and , but after our initialization procedure, we
set our to if the superpixel belongs to
the source or if the superpixel is assigned to the sink.
From this formulation, the minimum energy cut is computed by
a max-flow/min-cut algorithm [15] as shown in Fig. 7.

Annotation Assist Action Module: With training through
existing annotated regions in our database, our system has the
ability to suggest annotations to the user with our annotation
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assist action module. This module has the dependencies of
(lowlevel:segmentation), or (highlevel:label).

Given the low-level features collected by a segmenta-
tion module like color, shape, texture, size, and location
(full list described in Section II-BI), we can estimate a
probability that a given region, , is assigned to a certain
classification label. If we consider low-level features in
a vector , and have a possible of
classes to choose from, where the classes are defined as

, we can compute a likelihood or confidence
score of having classification by

(9)

Here, is the number of exemplar regions in category, , and
are the low-level features in the exemplar region, . The func-

tion, computes the distance between the low-level
feature vectors, and . This function will vary according to
the specific feature being evaluated. For example, when evalu-
ating the difference between two histograms like color or texture
histograms, the difference is computed by a measurement. If
the pixel feature being computed is a scalar value (eccentricity,
image moment, etc.), the distance measurement is a differ-
ence. All distance measurements derived from features in the
feature vector are normalized so that they contribute equally
to the total distance, . At smaller distances, there is
a higher similarity between the two regions and thus a higher
probability of them belonging to a certain class.

Furthermore, we can improve on (9) if we leverage more in-
formation to estimate the class probability of a region by in-
cluding data from our high-level semantic label module. The
majority of our annotations occur in an image where some re-
gions have already been labeled. Thus, when considering a new
region to be annotated, we can exercise the existing annotated
regions, , in a novel Bayesian formula-
tion, and estimate the probability of each class given the new
region’s low-level features , and information about the anno-
tated regions

(10)

We can rearrange the term, , and obtain

(11)

We can drop the term to obtain our final probability
equation

(12)

We can compute by utilizing our above score equation
defined in (9)

(13)

The probability, , is

(14)

Fig. 9. Illustration of our automatic annotation module. In step 1, the user
chooses a segmentation module or manual module to visualize. In step 2, the
user can select a region or combination of regions to annotate. In step 3, the user
can preview the selected region and elect to annotate that region. In step 4, the
user can either provide a label or ask our annotation assist module to compute
the most probable label for that region. In step 5, we overlay the top three prob-
abilities calculated for the region and suggest the maximum likelihood label,
“swan”.

where the joint probability, , can be computed via a
search through our dataset for the number of co-occurrences.
We then choose

(15)

as our final region classification/annotation label, to be sug-
gested to the user. In Fig. 9, we illustrate how and where this
module can be used in our annotation tool.

III. ANNOTATION TOOL OVERVIEW

In this section, we describe our online annotation tool and the
functionality provided by our system in terms of visualization
and interactivity.

A. Visualization

Because of the visualization support of SVG in all of the
major web browsers (Firefox, Safari, Chrome, IE 9), our an-
notation system is built as a web-based tool using standard web
technologies such as HTML, CSS, AJAX, and PHP. The visual-
ization of the different SVG elements is handled adeptly by the
SVG elements and their associated attributes. As an example,
the SVG elements can be controlled through different color and
opacity effects as shown in Fig. 11. The user interface of our
tool is shown in Fig. 10, which provides an area for displaying
an image, positioning and scaling controls, opacity and color
controls, and an information window. Using transformation ma-
trices, any element (e.g., an image, polygon, line, etc.) can be
translated, rotated, or scaled as shown in our UI. Loading our
markup modules to the annotation tool enables additional func-
tionality. When enabled for a certain image, the modules ap-
pear on the left-hand side of an image. To the right of the image
exists the information panel. This panel is controlled by the
specific Javascript definitions contained in the loaded markup
module. Our abstraction provides access to this panel, enabling
the markup modules to display text, or even append elements
such as buttons or interactive elements.

B. Interactivity

Similar to the visualization effects, interactivity is added
using Javascript and manipulating the XML DOM. The basic
interactivity provided by the annotation tool is simply an
interface to the modules and datasets. For image modules, we
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Fig. 10. Annotation tool user interface in the Firefox 3.0 web browser for various modules and datasets. The image shown utilizes the Flickr dataset module and
displays the bounding boxes on the image and user provided tags in the information window. Our interface allows for the scaling/rotation of an image, interaction
with loaded markup modules, and navigation through various datasets. Photo courtesy of Jon Clay.

provide access to the transformation matrix, and since SVG
consists of vector objects, scaling or rotating these objects
does not result in pixelation artifacts. Modifying the DOM on
the fly, we can easily implement control boxes/tabs around an
image frame to allow dragging, rotating, zooming, switching to
different views, and so on. For our datasets, our tool provides
easy access and navigation via thumbnails (scaled SVG images)
with page-up and page-down controls; see Fig. 10.

When interfacing with an image abstraction in an SVG doc-
ument, our annotation tool reads the “Javascript” field of the
loaded modules. This allows a module to define interactions
associated with that module, independent of the functionality
of our tool. This flexibility enables new functions through our
modular design.

IV. RESULTS

In our experiments, we evaluated how effectively our tool
could be used to collect annotation data from the general pop-
ulation. We were interested in several factors, including how
easy is our tool to use, how satisfied are the users with their
segmentation result, how much training is necessary to utilize
the different methods available in our tool, and does our tool
more efficiently collect data over the current state-of-the-art. For
these experiments, we imported annotation data from Flickr, La-
belMe, Lotus Hill, and the Caltech 101 datasets and created their
SVG abstractions; see Fig. 12. We also created SVG abstrac-
tions and collected annotations for two previously unannotated
datasets, ETHZ Shape [40] and Corel 1K (WANG database).

For all datasets, we encode four low-level automatic segmen-
tation modules—three levels of detail from gPb and one from
Mean Shift. We enable the high-level manual region selection
module and the region label annotation module. We also enable
two action modules, the superpixel segmentation assist and an-
notation assist. Additionally, the active contour assist module is

enabled in our first segmentation user study. The abstraction’s
modules linked their SVG documents to a MySQL database for
fast indexing and storage, and the SVG abstraction is parsed via
XPath and XQuery.

Next, we present results from various region segmentation
and annotation experiments.

A. Region Segmentation User Study 1

In our first segmentation study, we utilized the crowd-
sourcing tool, Amazon Mechanical Turk, to evaluate four of
our segmentation methods. The four methods were a basic
manual segmentation method, an active contour segmentation
module (assist action module 1), a region annotation module
with composite region grouping capabilities (described in
Section II-BII), and a superpixel segmentation module (assist
action module 2). We were interested in how long it would take
for a worker to be trained on how to use a particular segmenta-
tion method. We assigned each segmentation method its own
task, and for each of the tasks, we asked 30 unique workers
to read instructions on how to use our tool. The instructions
consisted of 3–5 steps with illustrative examples. To ensure
the quality of the user response, at the end, the user is required
to use our tool to segment a specific image that could only
be segmented properly if the worker fully comprehended how
to use the segmentation method. We collected data from 62
unique workers across all 120 tasks (an average of 1.94 tasks
per worker) and recorded their responses to three questions.
First, how long did it take the user to read and fully understand
the instructions on how to use our tool. Second, on a scale of
1–7 , the user
rated how satisfied they were with the final object outline.
Third, on a scale of 1–7

, the user rated how easy it was to use our
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Fig. 11. Different visualizations encoded in the SVG abstraction. In (a), we demonstrate the raw image to the high-level semantics. In (b), we illustrate different
opacity levels. In (c), we alter the polygon fill information (a) Raw, segmentation, semantic module. (b) 25%, 60%, 100% opacity. (c) Average, Jet, ROI color.

Fig. 12. Resulting encodings of a (a) Flickr image, (b) Lotus Hill boundary,
(c) LabelMe polygon, and (d) Caltech 101 ground truth, into our annotation
tool using our dataset modules. Photo (a) courtesy of Jason Idzerda.

tool to obtain the object outline. Workers also had the option of
leaving general comments about our tool.

As expected, the training time for simple methods like the
manual annotation method took the least amount of time. On av-
erage, it took 1.89 min for users to fully understand how to use
manual annotation methods. However, surprisingly, our other
more complex methods did not require much more training.
The active contour module took 2.35 min, the region annota-
tion module with composite region grouping took 2.05 min, and
the superpixel module took 2.34 min. In terms of computational
time for each method, naturally the manual method has no com-
putational load, the active contour method takes approximately
1–2 s to compute 30 deformation iterations, and the superpixel
method takes less than 1 s to perform the maxflow/mincut oper-
ation. The region annotation method has no associated computa-
tion time, but does require an automatic preprocessing segmen-
tation. We describe how to alleviate some of the preprocessing
computations in real-time upload situations in Section IV-D.

In terms of satisfaction and ease of use with each method,
we present the mean and standard deviation in Fig. 13. From
our results, the manual method is least favored both in satis-
faction with the end outline and ease of use. Generally, users
preferred our region annotation module over all other methods;
however, we note that this module is dependent on the correct-
ness of the low-level segmentation results, and does not have

Fig. 13. Satisfaction (s) and Ease of use (e) responses for each of our segmen-
tation methods obtained through Amazon Mechanical Turk. The graph shows
the average response as well as the standard deviation across 30 unique users
for each tool.

the flexibility of our other assist modules. Also, the feedback
we obtained through general comments were overwhelmingly
positive, further validating the usefulness of our segmentation
methods.

B. Region Segmentation User Study 2

In our second user study, we performed an in-depth experi-
ment measuring the usability of our system versus the state-of-
the-art LabelMe system in terms of clicks, time, segmentation
accuracy satisfaction, and ease of use. For this experiment, we
randomly chose 75 images from the Caltech 101 dataset from 15
categories, including dolphins, pianos, laptops, staplers, etc. We
recruited 11 users (6 females, 5 males) of varying educational
backgrounds, none of whom had any experience with computer
vision algorithms, nor had any experience with either our tool or
the LabelMe tool. First, we trained them on our interface as well
as LabelMe’s interface. Then, we compared the total number of
clicks it took the users to segment the object of interest from the
image and report them in Fig. 14(a). For our system, Markup
SVG, and LabelMe, we report the average number of clicks
across all subjects. We also report the number of clicks from
the original Caltech 101 images, but since there is no interface
for the Caltech 101 dataset, we report the number of vertices on
their ground truth polygon as the number of user clicks needed
to manually delineate the ground truth segmentation.
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Fig. 14. (a) Click comparison, (b) time(secs.), (c) segmentation accuracy satisfaction, and (d) ease of use results on our user study between Markup SVG, LabelMe,
and Caltech 101 (only click comparison) in 15 different object categories averaged on 11 different users.

Next, we timed the users from the time they first load the
image to the time they complete an object segmentation in both
our system and the LabelMe system. The results are presented in
Fig.14(b).Finally,aftersegmenting theregion,weaskedtheusers
to evaluate the segmentation boundary accuracy and rate their
experience in terms of ease of use to achieve this boundary. The
satisfaction and ease of use results were recorded on a scale from
1 to 7 and

, respectively,
and the user responses are presented in Fig. 14(c) and (d).

From our results, we notice several interesting trends similar
to our first segmentation study. First, as anticipated, our system
significantly reduces the number of clicks necessary to delineate
the boundary when compared to manual methods, LabelMe and
Caltech 101. We also see the ease of use of the Markup SVG
system is significantly higher than manual methods. Second,
we see that in LabelMe, the time and number of clicks required
to segment objects is proportional to the complexity of the
boundary. For example, when segmenting a complex object
like a piano or gramophone, the users time increases and ease

of use decreases. On the other hand, the users in our annotation
tool were less affected by the complexity of the object and were
able to consistently maintain a faster time and lower number of
clicks. Third, we see the users are generally more satisfied with
our computer assisted segmentation results than their manual
attempts, especially when dealing with high curvature objects.
We attribute this improvement to a manual approximation error
akin to a discrete method approximating a continuous function.
Since the manual methods use straight lines between vertices,
the user would need to click numerous times in order to fit
lines around curves. This issue became more apparent in the
discrepancy between the number of clicks performed by the
users on the LabelMe tool versus the Caltech 101 dataset. We
originally hypothesized that the regions created by these two
systems should be roughly equivalent. However, after visual-
izing the results of the Caltech 101 dataset, it appears that the
ground truth also suffers from the same approximation errors
that appeared in the LabelMe segmentation results. However,
utilizing our framework and computer-aided methods, we are
able to address this issue. As an example, we can use our
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Fig. 15. Ground truth polygon from the Caltech 101 dataset in (a). Refined
ground truth by using Markup SVG and our active contour segmentation module
in (b). Our system is able to assist in the curvature issues seen in manually cre-
ated ground truth datasets.

active contour segmentation assist module to refine the existing
boundary of the Caltech 101 images to better fit the object
boundary as seen in Fig. 15.

C. Annotation Assist Results

For evaluating our annotation assist results, we performed
experiments on the ETHZ shape database and the Wang data-
base. The ETHZ shape database was collected by [40] and
consists of five shape categories, apple logos, bottles, giraffes,
mugs, and swans. This database has a total of 255 images with
varying scales and object locations. The WANG database is
a 1000 image subset of the Corel stock photo database that
consists of 10 category classifications with 100 images in each
category.

For our first experiment, we recruited several volunteers to
annotate the images in the WANG dataset online using our
Markup SVG tool. These volunteers were given the freedom to
annotate whatever objects they wanted and use whatever labels
they choose. After analyzing their annotations, we found four
categories that had an adequate number of exemplars in our
database (greater than 30), mountains, elephants, flowers, and
horses. From each of these categories, we randomly selected
25 unlabeled objects for a total of 100 and had our system
automatically annotate these regions. We tested the annotation
of the regions using three different methods, one using basic
low-level features ( color histograms and eccentricity),
another using the same features but adding texture and shape
matching features, and finally a high-level Bayesian matching
using prior image annotations within the same image to adjust
the probability as described in (15). We provide the accuracy
results in Fig. 16.

Next, we manually annotated the shape regions in the 255 im-
ages contained in the ETHZ dataset using our high-level region
annotation module. We then performed a leave-one-out auto-
matic annotation experiment using our annotation assist module
in each of the five categories. For this automatic annotation ex-
periment, we selected one region in each of the 255 images and
then classified the region based upon the maximum likelihood
score obtained from (9). The score is calculated based upon the
low-level feature comparison between the current selected re-
gion and the manually annotated regions (the exemplar regions).
For this experiment, we use the low-level features, color
histograms and texture histograms with distance measure,
eccentricity, total area, and centroid positions with distance,
and shape histograms with Kullback-Leibler divergence. Fig. 16

Fig. 16. Automatic annotation accuracy (%) for the ETHZ and WANG data-
base. The WANG results use color/eccentricty, then shape/texture along with
color/eccentricty, and finally a Bayesian formulation. The ETHZ dataset speci-
fies one relevant object per image and so only the color/eccentricty/shape/texture
results are reported.

shows a comparison of the accuracy of our annotation assist
module in obtaining automatically the correct region annotation.

D. Note on Scalability and Preprocessing

As the number of low-level modules imported into our image
abstraction increases, naturally the size of the SVG encoding
will also follow. On extremely large datasets, the size of the
SVG encodings can become increasingly unwieldy. For scal-
ability reasons, we develop an SVG compression technique to
manage the size of the SVG file based on the observation that
storing the polygon point set attribute from our segmentation
modules typically takes more than 50% of the total encoding
space. Thus, we use a polynomial fitting technique to reduce
the number of points stored in our abstraction when the points
do not deviate beyond a certian epsilon, , from the polynomial
line. For the ETHZ database with four segmentation modules,
we encode a total of 44 105 regions. With no compression, the
SVG documents occupy 83.9 MB of space, an average of 329
k per encoding. With an of 2 pixels, we can reduce the total
space to 34.6 MB. The uncompressed bitmap size of the raw im-
ages is 80.7 MB. For the WANG database and four segmentation
modules, we create 271 007 regions in our abstraction. With no
compression, the SVG documents occupy 473.8 MB of space,
an average of 473 k per encoding. With an of 2 pixels, we can
reduce the total space to 209.1 MB. The uncompressed bitmap
size of the raw images is 378.1 MB.

Also, many of our methods require preprocessing (e.g., auto-
matic segmentation, feature extraction) which can affect the on-
line user experience when uploading new images. To alleviate
this issue, we have converted many of our preprocessing algo-
rithms to perform on CUDA, the NVIDIA GPU architecture. We
have developed or implemented numerous automatic segmen-
tation algorithms, including Damascene [41] (the gPb CUDA
implementation), Meanshift [42], and Deterministic Annealing
[42]. Thus, on our server equipped with an NVIDIA GTX 285,
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Fig. 17. Limitation of automatic methods when dealing with complex objects.
In (a), we show the ground truth polygon from the Caltech 101 dataset. In (b),
we show our assisted result using our active contour assist module. In (c), we
use a manual method to segment the tree.

the preprocessing time is typically reduced two orders of mag-
nitude, from several minutes to several seconds.

V. DISCUSSION AND CONCLUSION

Limitations: In some cases, our segmentation assist mod-
ules are not helpful enough when the low-level methods, e.g.,
automatic segmentation algorithms, fail to provide enough rele-
vant information. Occasionally, this is the case when an object is
occluded or extremely complicated as seen in Fig. 17. For these
cases, manual methods are still necessary to achieve a better seg-
mentation. Our manual markup module is designed to address
these cases; however, time is usually spent by the user testing
assisted methods before realizing that the manual method is the
best approach for the specific object. In our user study, partic-
ipants reacted in this manner for approximately 3 (out of 75)
images. In the event of object occlusion, the low-level informa-
tion is insufficient for assisting the user in the segmentation and
annotation task. If the complete shape is desired for an occluded
object, manual methods would again be the best approach.

Discussion: Given global or generated tags from online
systems like ALIPR, Flickr, and others [43], we plan on de-
veloping additional action modules that can map image tags to
specific regions. Other interesting modules could utilize geo-
graphic information to analyze images, similar to the method
in Kennedy et al. [44] and Hayes and Efros [45]. For handling
the synonymy of annotations and building our semantic rela-
tionships between regions, we have been experimenting with
WordNet [46], Resource Description Framework (RDF), and
Web Ontology Language (OWL). These ontology languages are
also XML based and thus fully compatible with our tool. An-
other very interesting direction where we see great potential is in
video annotation and non-photo realistic rendering techniques
using our SVG abstraction. Further, we plan on encoding dif-
ferent user interactions—type, time stamp, speed, number of it-
erations—to assist in user intention modeling. Our framework
and web-based tool enable a community of users or experts to
collaboratively annotate images in a large repository. Thus, we
also plan on creating a module API that allows users to indepen-
dently create different modules that can plug into our annotation
tool.

In conclusion, we present a content-aware image abstraction
based on SVG and an annotation tool for efficient and accurate
image annotation. We present four markup modules, low-level,

high-level, heterogeneous data, and action modules. Our ab-
straction organizes a set of markup modules in an open, exten-
sible framework. Our action modules are able to leverage a com-
bination of low-level and high-level module outputs to assist the
user in the major aspects of image annotation including seg-
mentation and annotation. Our system exploits the well-known
advantages of SVG and XML such as visualization, flexibility,
and interoperability with existing technologies. Additionally,
our system can be interacted with in a standard web browser
and manipulated using any major query languages build around
XML. Finally, we demonstrate the effectiveness of our abstrac-
tion on multiple benchmark datasets in efficiency, annotation
accuracy, satisfaction, and ease of use.
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