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Abstract. Radiology includes using medical images for detection and diagnosis
of diseases as well as guiding further interventions. Chest X-rays are commonly
used radiological examinations to help spot thoracic abnormalities or diseases,
especially lung-related diseases. However, the reporting of chest x-rays requires
experienced radiologists who are often in shortage in many regions of the world.
In this paper, we first develop an automatic radiology report generation system.
Due to the lack of large annotated radiology report datasets and the difficulty of
evaluating the generated reports, the clinical value of such systems is often lim-
ited. To this end, we train our report generation network on the small IU Chest
X-ray dataset then transfer the learned visual features to classification networks
trained on the large ChestX-ray14 dataset and use a novel attention guided feature
fusion strategy to improve the detection performance of 14 common thoracic dis-
eases. Through learning the correspondences between different types of feature
representations, common features learned by both the report generation and the
classification model are assigned with higher attention weights and the weighted
visual features boost the performance of state-of-the-art baseline thoracic disease
classification networks without altering any learned features. Our work not only
offers a new way to evaluate the effectiveness of the learned radiology report gen-
eration network, but also proves the possibility of transferring different types of
visual representations learned on a small dataset for one task to complement fea-
tures learned on another large dataset for a different task and improve the model
performance.

1 Introduction

Deep learning has shown its strength in various types of computer vision tasks such as
classification and detection in the last decade. With the rapid development of advanced
algorithms and the availability of more annotated datasets, potential applications of
deep learning in radiology have become possible and desired by the public. Among
such applications, the report generation networks [11, 14, 26] and the disease classifica-
tion networks [23, 24, 27, 19] are two popular trends. An automated or computer-aided
radiology reporting system can provide preliminary findings to radiologists to assist
with report writing; A disease classification network can help detect potential abnor-
malities and diseases shown in the examinations. Both systems can help reduce the
workload of expert radiologists as well as make up for staff shortage.
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Current report generation methods mainly follow the encoder-decoder architecture
which has been widely used for image captioning [22, 25, 17]. In the radiology report,
the Impression and the Findings can be generated based on the interpretation of im-
ages without prior examinations or patient history, which makes the generation tasks a
perfect fit for deep learning models. Impression can be a single-sentence conclusion or
diagnosis, and findings can be a coherent paragraph containing multiple sentences that
describe the radiologist’s observations and findings regarding both normal and abnor-
mal features in the images. While the impression generation can often be handled by
an image captioning algorithm, a findings paragraph consists of multiple sentences thus
traditional captioning algorithms designed for generating single-sentence description no
longer apply. For findings generation, state-of-the-art radiology report generation mod-
els use either a hierarchical architecture [11, 14] to generate different sentences based
on different topic vectors, or a recurrent architecture [26] to generate one sentence at
a time whereby the following sentence is conditioned upon the content of its preced-
ing sentence. Combining the merits of both, we propose a modified recurrent attention
model where a succeeding sentence is generated based upon both the prior sentence
and a global topic vector encoded by the generated impression. The recurrent attention
mechanism guarantees the model to generate diverse and coherent sentences, where the
global topic vector forces the model to produce sentences supporting the conclusion or
diagnosis.

Although some accomplishments have been made in radiology report generation,
there are still several issues remaining unsolved. First, training a general and robust re-
port generation system on a small training set is impractical, as the ground truth report
provided in the training set can be biased towards the radiologist’s personal style. Even
for the same image, different radiologists can produce entirely different written reports
as they only provide information that they think might be important to the potential ref-
erees. More importantly, evaluation of the generated report is difficult. Any automatic
metrics based on the overlap between the prediction and ground truth cannot capture
the words describing negation and uncertainty and lack measurement of semantic simi-
larity, while human evaluation requires extra efforts by human experts and can be error-
prone. While the generated report learned by the decoder model can be biased towards
the training data, the learned visual features from the encoder model are expected to be
more general and robust. Otherwise they are not able to provide enough information to
the decoder model to produce diverse sentences describing different regions. Therefore,
we introduce a novel evaluation of the trained chest X-ray report generation network,
where we only take the encoder part of the model as a visual feature extractor, and trans-
fer these learned features to be used in another large chest X-ray dataset and evaluate
their performance for thoracic disease classification.

Traditional transfer learning benefits from training with a large-scale dataset then
transferring the learned knowledge or model weights to another dataset that is typically
much smaller for better initialization and faster convergence. However, transfers from
a small dataset to a large dataset with cross-task generalization are under-investigated,
but such transfers have great research and clinical value since some annotations like
complete radiology reports are expensive to obtain due to the difficulty of labeling or
privacy concerns. In this work, taking the learned image encoder from the report gen-
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eration model, we apply the extracted visual features to another chest X-ray dataset for
disease classification. We combine the features from the report generator and the fea-
tures extracted by a well-trained disease classification network to form an attention map,
where common features learned by both networks are emphasized with higher weights.
Then we apply the attention map to the original feature learned by the classification
network and re-train the transition layer for new predictions. The transferred visual fea-
tures along with the attention guided feature fusion shows considerable improvements
over a baseline classification network, and even achieve further improvements over the
state-of-the-art CheXNet [19] without changing any visual features. Our work not only
offers a new way to evaluate the effectiveness of learned radiology report generation
network, but also proves the possibility of transferring different types of visual repre-
sentation learned on a small dataset for one task to complement features learned on
another large dataset for a different task and improve the model performance.

2 Related Work
Radiology Report Generation. As a joint application of Computer Vision (CV) and
Nature Language Processing (NLP) in healthcare, the automatic radiology report gener-
ation task has recently attracted considerable attention. Following the encoder-decoder
architecture and attention mechanism in image captioning [22, 25, 17], several report
generation works have been proposed. To generate long and coherent reports, previous
works [11, 14] use a hierarchical architecture [13, 1] to generate a sequence of encoded
topic vectors, then each sentence in the report is generated conditioned on the topic
vector; Xue et al. [26] utilizes a recurrent attention model and brings the contextual
information into the loop when predicting next words and sentences. Li et al. [14] com-
bines a retrieval module and a generation module to either select a phrase from the
template database or generate a new sentence. However, such models still suffer from
the bias of training set, and automatic evaluation cannot capture the words describing
negation and uncertainty in the predicted report. Taking the merits of previous meth-
ods, we modify the recurrent attention model [26] and introduce a global topic vector
to guide the generation of findings. Instead of only evaluating the predicted report, we
transfer the learned visual features to the ChestX-ray14 dataset and use an attention
guided feature fusion scheme to help improve the disease classification performance.

Thoracic Disease Classification. Wang et al. [23] introduced the ChestX-ray14 dataset
which is currently the largest public repository of radiographs. They also reported a
weakly supervised multi-label thoracic disease classification and localization frame-
work in their paper. Yao et al. [27] leveraged inter-dependencies among different pathol-
ogy labels in chest X-rays via LSTMs to improve the disease classification performance.
In [19], state-of-the-art disease classification result is reported using a DenseNet-121 [10]
backbone; their trained model gets impressive results and exceeds the average radiolo-
gist performance on the pneumonia detection task.

A different approach for thoracic disease classification trains the model with multi-
ple tasks to improve classification result. Li et al. [15] presents a unified network that
simultaneously improves classification and localization with the help of extra bounding
boxes indicating disease location. Wang et al. [24] uses a CNN-RNN model to generate
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a radiology report and encodes the generated report directly to improve the classifica-
tion result. Different from our model, their report generation and classification models
are trained on the same dataset where the ground truth disease labels and reports are in-
herently correlated since the labels are text-mined from the original report. Since there
is no large dataset with annotated radiology report available to the public, it is hard to
extend their framework to other domains and tasks.

Transfer Learning for Medical Imaging. While multi-task learning can benefit from
sharing features between different tasks to get more general features, transfer learning
can leverage the learned features from a source domain to improve the performance in
a target domain. Traditional transfer learning use knowledge or model weights learned
from tasks for which a large amount of annotated data is available in tasks where only
a limited amount of labeled data is available. The large dataset can help generalize
the model as training on small datasets can lead to overfitting. Transfer learning has
been widely adopted in deep learning such as initializing models with weights pre-
trained on ImageNet [4] and has shown performance improvements for medical image
classification [20, 9].

However, in medical applications, the amount of labeled data is typically low so
using features learned from other medical domains directly is often impractical. To
evaluate the visual features learned by our report generator and explore the possibility
of transferring visual features learned from a small set to a larger set and improving
the cross-task generalization, we propose an attention based feature fusion scheme to
modify the already trained classification model. Instead of averaging features in all re-
gions as average pooling in standard models [7, 10], our transfer learning model assigns
more weights to the features coexisting in both original feature space and transferred
feature space through an attention guided feature fusion mechanism. In this way, fea-
tures learned in a small set can also help generalize the model for another domain or
task.

3 Methodology

3.1 Radiology Report Generator

In our report generation model, the estimated probability of generating the i-th sentence
with length T is

P̂(Si = w1, w2, ...wT |V, I; θ) =

P(S1|V, I)
i−1∏
j=2

P(Sj |V, I, Sj−1)P(w1|V, I, Si−1)
T∏
t=2

P(wt|V, I, Si−1, w1, ...wt−1) .
(1)

where V is the given frontal view image, I is the impression topic and θ is the model
parameter (we omit the θ in the right hand side), Si represents the i-th sentence and wt

is the t-th token in the i-th sentence. In other words, each succeeding sentence is condi-
tioned upon multimodal inputs including its preceding sentence, the global impression
topic and the original image.
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Fig. 1. The architecture of our model. Lower part is the proposed generative model for radiology
reports. Upper part is the attention guided feature fusion model for improved thoracic disease
classification. Best viewed in color.

The training is done by Maximum Log-likelihood Estimate (MLE) and minimizing
the cross entropy loss as

θ∗ = argmax
θ

L∑
i=1

log P̂(Si = Gi|V, I; θ) , (2)

where Gi is the ground truth for the i-th sentence in the findings paragraph.
The overall architecture of our framework that takes frontal image views as input

and generates a radiology report with impression and findings is shown in the lower part
of Fig. 1. The report generator first takes the frontal view image as input and generates
an impression sentence via a CNN-RNN model, then a Bi-directional Long Short-Term
Memory (Bi-LSTM) [6] with mean-pooling over the sequence length is used as a topic
encoder to produce a global topic vector. The generation of the first sentence in the
findings paragraph is conditioned upon both the image input and the topic vector. Then
the decoder model recurrently takes the multimodal inputs of visual features from the
image encoder, semantic representation of the preceding sentence from the sentence
encoder, and the global topic vector of the impression from the topic encoder and gen-
erates the next sentence. The report decoding model can be regarded as a combination
of the hierarchical model and the recurrent model. More details are shown in the fol-
lowing subsections.

Image Encoder. Similar to [26], a Convolutional Neural Network (CNN) based image
encoder is first applied to extract both global and regional visual features from the input
images. To get a better initialization, the image encoder is built upon the pre-trained
ResNet-152 [7] network pre-trained on ImageNet [4]. We resize the input images to
224×224 to be consistent with the pre-trained ResNet-152 image encoder. To get a bet-
ter attention map, the local feature matrix f ∈ R2048×49 (reshaped from 2048× 7× 7)
is extracted from the last convolution layer of ResNet-152. Each column of f is one re-
gional feature vector. Thus each image has k = 49 sub-regions. Meanwhile, we extract
the global feature vector f ∈ R2048 from the last average pooling layer of ResNet-152.
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The image encoder is fine tuned on the frontal view chest X-rays so that the learned
visual features can be transferred to another classification task.

Report Decoder. The decoder network is responsible for generating both the impres-
sion and the findings paragraph. The impression decoder first takes the global visual
features learned by the image encoder as input and a single layer Long Short-Term
Memory (LSTM) [8] is used for sentence decoding. Following [2] , we adopt a Bi-
LSTM that reads the generated impression in two opposite directions along with a mean
pooling over each dimension of the hidden units to get a global topic vector. The sen-
tence decoder takes regional visual features and the topic vector to generate the first
sentence. After that, each sentence is generated by taking regional visual features, the
previously generated sentence and the topic vector as a multimodal input. The sentence
decoder is a stacked 2-layer LSTM. All hidden and embedding dimensions are fixed
to 512 for all of the LSTM models discussed herein. Both regional and global visual
features are converted into channel dimension 512 to match the embedding size before
being fed into any LSTMs. The regional visual features are converted as input to the
sentence decoder. The global topic vector is used as the initialization of the sentence
decoder, while the learned encoding of the preceding sentence is combined with the vi-
sual representations to generate an attention map. The attention weights for the regional
visual features are computed as follows:

a = Watt((v; s1
k)) + batt , (3)

where v ∈ R512×49 are the regional visual features learned by the image encoder,
s ∈ R512×1 represents the encoding of the preceding sentence, 1k ∈ R1×49 is a vector
with all ones. v and s1k are concatenated along the embedding dimension as the input
to the attention network. Watt ∈ R1×1024, and batt ∈ R1×49 are parameters of the
attention network. Then the weights are normalized over all regions to get the attention
distribution and applied to the original visual representation as:

vatt =

k∑
i=1

exp(ai)∑
i exp(ai)

vi , (4)

where i refers to the i-th region in the regional visual representation.
The generation process is repeated until an empty sentence is generated or a max-

imum number of sentences is reached, which indicates the end of the paragraph. Our
model combines the recurrent and hierarchical architecture in the decoder network.
While the recurrent attention mechanism forces the model to focus on different regions
of the input image to generate more diverse sentences and keep intra-paragraph coher-
ence, the global topic vector adds an additional constraint so that the generated sen-
tences can support the theme of the entire report. An example of the generated report
by our report generator is shown in Fig. 2.

Our proposed report generator is trained by the Adam optimizer [12]. The initial
learning rate is set to be 1e-4, and learning rate decay is 0.5 for every 5 epochs. The
batchsize is 32 for training. During inference, the greedy search is adopted for generat-
ing words and sentences in every timestep. The maximum number of sentences is set to
be 7. Although the impression decoder and the findings decoder can be trained jointly,
we separate the training process to get more diverse results. The final model transferred
to the classification model for feature fusion is trained on all training data. Although
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Original ReportPredicted ReportInput Image
Findings: The cardiac contours are normal. The 
lungs are clear. There is no pleural effusion or 
pneumothorax. There is no focal air space opacity 
to suggest a pneumonia.  Degenerative changes 
of the thoracic spine.
Impression: No acute cardiopulmonary finding.

Findings: Heart size and mediastinal contour 
normal. Lungs are clear. Pulmonary vascularity 
normal. No pleural effusions or pneumothoraces. 
Minimal degenerative changes thoracic spine.

Impression: No acute cardiopulmonary process.

Fig. 2. An example report generated by our model in comparison with the original written report
provided by the radiologist. The notable words in bold font in the findings indicate that our model
is capable of capturing some of the abnormalities in the input image.

the generated report can be biased towards the training data, we believe that the learned
visual features should be more general than the semantic features and can be transferred
to other domains.

3.2 Thoracic Disease Classifier and Attention Guided Feature Fusion

The basic thoracic disease classification network is a CNN that takes frontal view ra-
diographs as input and generates multiple disease labels. We first train two different
baseline classification models to get the visual features. We start from the ResNet-18
model and later move to the DenseNet-121 model with more layers. For the ResNet
baseline, the final fully connected layer is replaced with one that has 14 outputs for 14
disease categories, after which we apply a sigmoid nonlinearity as in [19]. The training
is done by minimizing the binary cross entropy loss. The weights of the network are
initialized with weights from models pre-trained on ImageNet [4]. We pick the model
with the lowest validation loss as the final model. After the training is completed, we
discard the transition block including the final pooling layer, the final fully connected
layer and the sigmoid nonlinearity to keep only the local visual features. Then, we run
the image encoder of our report generator on the classification dataset. The extracted
local visual features serve as a high-level linguistic abstract of the input images here.
Both the local visual features from the classification network and the report generation
network with k = 49 sub-regions are then fed into the feature attention module. The
feature attention module can be interpreted as:

a
′
= W

′
att((v

r;vc)) + b
′
att , (5)

where vr are the regional visual features from the report generator, vc are the visual
features from the original classification network. vr and vc are concatenated along the
channel/embedding dimension as the input to the feature attention network. Watt and
batt are parameters of the attention network. Then the modified visual representation is
computed as:

vcatt =

k∑
i=1

exp(a
′
i)∑

i exp(a
′
i)
vci , (6)

where i refers to the i-th region in the regional visual representation. The detailed pro-
cess is shown in the upper part of Fig. 1. Local features from the image encoder and the
classification model are concatenated and fed into the feature attention module. After
calculating an attention map over all regions, we apply the attention weights to the orig-
inal visual features learned from the classification network. We fix the visual features
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and re-train the transition block to get a new classification prediction. While visual fea-
tures remain unchanged, the feature attention module can discover the correspondences
between features trained on two separate domains and tasks, and emphasize more on the
features that coexist in both representations. We replace the average pooling operation
in the original classification model with learned attention weights for feature fusion.
Compared with average pooling, the attention guided feature fusion can achieve better
generalization and get potentially higher classification accuracy without re-training the
feature extraction model or changing any learned visual features.

To better illustrate the strength of our feature attention module, we also apply
the attention guided feature fusion on the state-of-the-art CheXNet [19] which uses a
DenseNet-121 backbone model. The training process is similar to the ResNet-18 base-
line model; the only difference is that the output channel dimension in DenseNet-121
is 1024 while it is 512 in ResNet-18. Since the CheXNet is the state-of-the-art model
and already gets very high accuracy on the ChestX-ray14 [23] dataset, it is hard to
get further improvements. We did experiments that performed a naive concatenation
of the two feature representations, but failed to get any significant improvements over
the original classification model. Using our attention guided feature fusion mechanism,
however, we are able to achieve improvements (as shown in Table 2) with the help of
visual features learned on a small report generation dataset and thus demonstrate the
effectiveness of our model. More details are explained in Section 4.

4 Experiments

Our report generator is trained on the Indiana University Chest X-Ray Collection [3].
The IU X-ray dataset contains 3,955 radiology reports from 2 large hospital systems
within the Indiana Network for Patient Care database, and 7,470 associated chest X-
rays from the hospitals picture archiving systems. Each report is associated with a pair
of images which are the frontal and lateral views, and contains comparison, indication,
findings, and impression sections. Since the transferred visual features will be utilized
in the ChestX-ray14 dataset containing only frontal view X-rays, we further filter out
reports without frontal view images or without complete sections of findings and im-
pression, resulting in 3,331 reports with associated frontal view images.

For data preprocessing, we tokenize and lowercase all the words that appear more
than twice in the findings and impression sections of all reports and obtain 1,357 unique
words. To mitigate the small size of the dataset and generalize our model, dropout of 0.2
is added in both the encoder and decoder networks. Moreover, considering that images
in the IU X-ray and ChestX-ray14 datasets can look different, we further resize the
original input images to size 256× 256 then randomly crop them to size 224× 224 and
randomly change the brightness, contrast and saturation of input images with rate 0.1 for
data augmentation. All images are normalized based on the mean and standard deviation
of images in the ImageNet training set. To provide some insights to the performance of
our report generator, we report BLEU [18], METEOR [5], ROUGE [16] and CIDEr [21]
scores as for image captioning tasks and in previous works [11, 14, 26]. The automatic
evaluation results reported in Table. 1 are done on the test set with 300 randomly picked
reports. We tokenize and lowercase all words in both the predicted report and the ground
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Table 1. Evaluation of generated reports on our test set using BLEU, METEOR, ROUGE and
CIDEr metrics. For findings generation, we compare our model with two baseline models [26,
14]. We also provide a comparison with one baseline model [26] for the impression and findings
generation.

Data Method BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr

Findings
Recurrent-Attn [26] 0.441 0.320 0.231 0.181 0.220 0.366 0.243
HRGR-Agent [14] 0.438 0.298 0.208 0.151 - 0.322 0.343

Ours 0.477 0.332 0.243 0.189 0.223 0.380 0.320

Findings + Recurrent-Attn [26] 0.465 0.332 0.244 0.190 0.224 0.480 0.495
Impression Ours 0.489 0.340 0.252 0.195 0.230 0.478 0.565

truth report, and all punctuation are considered as independent tokens. We compare with
baseline model [26] on both the findings generation and the combination of findings
and impression. The result of [14] is from the original paper and they use different
train/test split only for findings generation; baseline model of [26] is re-trained using
our train/test split with only frontal view radiographs. During the evaluation, we observe
that higher scores do not necessarily indicate better generation performance and reports
with more sentences describing normal findings typically get higher scores but may
miss more crucial abnormalities. The combination results of findings and impression
always get higher scores since most impression sentences are normal such as “no acute
cardiopulmonary findings”. Due to the small size of the training dataset and the nature
of the radiology report generation problem, we believe that metrics designed for image
captioning are not appropriate evaluations for report generation, as they cannot capture
the words describing negation and uncertainty in the report. Even for the CIDEr [21]
which has shown a better correlation with human judgments than other metrics for
captioning tasks, it is based on term frequency-inverse document frequency (TF-IDF).
However, the corpus of radiology reports is very different from other text corpora so
CIDEr may not work as well as in other tasks. Thus, our goal is not to evaluate our
model with these metrics and compare directly with other models. Rather, the results
are only illustrated to show that our report generation model is among the state-of-
the-arts and should be able to learn meaningful features by the image encoder. The
learned visual features are formally evaluated on the ChestX-ray14 dataset via feature
transferring and feature fusion.

ChestX-ray14 [23] is currently the largest public repository of radiographs con-
taining 112,120 frontal view chest X-rays of 30,805 unique patients. Each image is
annotated with up to 14 different thoracic pathology labels text-mined from the associ-
ated report. The labels are expected to have accuracy higher than 90%. The dataset is
randomly split into training (70%), validation (10%), and test (20%) sets as in previous
work on ChestX-ray14 [23, 27, 19]. The data preprocessing is the same as in the report
generation model, including the random crop and color jitter for data augmentation and
consistent with the training of the report generator. Training of both classification mod-
els and the feature fusion are done via the Adam optimizer [12] and minimizing the
binary cross entropy (BCE) loss. The initial learning rate is also set to be 1e-4, and
learning rate decay is 0.5 every time the validation loss has not been decreased for 5
epochs. The batchsize is 32 for training. We first train two baseline classification net-
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Table 2. Comparison of AUCs of ROC curve for classification of 14 disease categories in ChestX-
ray14 test set. R18 and D121 represent the ResNet-18 and the DenseNet-121 baseline models,
respectively. TF denotes the model with transferred features and attention guided feature fusion.
Note that the state-of-the-art baseline model of CheXNet [19] with DenseNet-121 backbone is
re-implemented and re-trained since we use different data preprocessing.

Pathology [23] [24] [27] [15] R18 R18-TF D121[19]∗ D121-TF
Atelectasis 0.716 0.732 0.772 0.80 0.797 0.819 0.814 0.822

Cardiomegaly 0.807 0.844 0.904 0.81 0.895 0.884 0.902 0.892
Effusion 0.784 0.793 0.859 0.87 0.874 0.875 0.878 0.881

Infiltration 0.609 0.666 0.695 0.70 0.694 0.709 0.706 0.710
Mass 0.706 0.725 0.792 0.83 0.817 0.813 0.838 0.841

Nodule 0.671 0.685 0.717 0.75 0.732 0.789 0.782 0.794
Pneumonia 0.633 0.72 0.713 0.67 0.766 0.770 0.774 0.767

Pneumothorax 0.806 0.847 0.841 0.87 0.857 0.852 0.845 0.870
Consolidation 0.708 0.701 0.788 0.80 0.795 0.810 0.806 0.813

Edema 0.835 0.829 0.882 0.88 0.89 0.898 0.895 0.898
Emphysema 0.815 0.865 0.829 0.91 0.883 0.905 0.910 0.922

Fibrosis 0.769 0.796 0.767 0.78 0.821 0.844 0.838 0.851
Pleural Thickening 0.708 0.735 0.79 0.772 0.763 0.780 0.779 0.788

Hernia 0.767 0.876 0.914 0.77 0.923 0.929 0.951 0.946
Average 0.738 0.772 0.802 0.80 0.822 0.834 0.837 0.842

works: ResNet-18 [7] and CheXNet [19] using a DenseNet-121 [10] backbone, then
evaluate the disease classification performance of the feature fusion, using the area un-
der ROC curve (AUC) score for 14 different diseases. During feature fusion, all visual
features learned by the image encoder of report generator and by the original classifi-
cation model are fixed to ensure the improvements are not from the re-training of the
model. Table 2 illustrates the per-class and average AUCs comparison of 14 diseases on
the test set. Unlike [19], random horizontal flipping is not implemented as we believe
the input frontal view chest X-rays are not symmetrical (e.g., cardiac abnormalities al-
ways appear in the left side of the chest) and it is not reasonable to flip the input images.
For baseline classification models, we change the last fully connected layer accordingly
to fit the number of categories which is 14 for the ChestX-ray14 dataset.

As we can see in Table 2, the ResNet-18 model with transferred features and at-
tention guided feature fusion outperforms the baseline ResNet-18 classification model
considerably on almost all diseases except for Mass. Remind that we do not re-train any
of the visual features learned by the original classification network and the performance
boost comes from better utilization of the learned features. To better illustrate the effec-
tiveness of feature transferring and the attention guided feature fusion, we also apply
our model to the state-of-the-art CheXNet [19]. With different data preprocessing, we
re-train the CheXNet with a DenseNet-121 backbone as a baseline model. After feature
fusion, we observe clear improvements on 12 diseases except for Cardiomegaly and
Hernia, without altering any visual features learned by the original CheXNet. More-
over, our DenseNet-121 model with transferred features achieves highest AUC scores
on 11 out of 14 classes, and has the highest average AUC score among all methods.
The experimental results show that the image encoder in the report generator indeed
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learned meaningful features during training, and the attention guided feature fusion is
capable of improving the classification result through a better utilization of features and
an emphasis on features that generalize across tasks.

5 Conclusion

In summary, we have proposed an improved recurrent attention model for radiology
report generation along with an attention guided feature transfer and feature fusion
model for thoracic disease classification. The report generation model is first trained
on a small chest X-ray dataset with written reports provided by radiologists, then the
learned visual representations including some high-level abstract of the input radio-
graphs are transferred to a larger chest X-ray dataset with multiple disease labels. The
features are combined under the guidance of a feature attention module. After apply-
ing the attention weights to the features extracted by the original classification model,
we successfully improve the disease classification result without changing any visual
features on the state-of-the-art baseline classification network. The experimental results
on ChestX-ray14 dataset demonstrate that the proposed transferring of visual represen-
tations learned for different tasks on different datasets and the attention guided feature
fusion can improve the model performance even on a large dataset. We believe that,
by utilizing feature representations from different domains or tasks in a complemen-
tary manner, such feature transfer and fusion models have great potential and can be
extended to other medical imaging applications where training data are limited so as to
generalize the original model and enhance performance.
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