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We use open active contours to quantify cytoskeletal struc-
tures imaged by fluorescence microscopy in two and three
dimensions. We developed an interactive software tool for
segmentation, tracking, and visualization of individual
fibers. Open active contours are parametric curves that
deform to minimize the sum of an external energy derived
from the image and an internal bending and stretching
energy. The external energy generates (i) forces that attract
the contour toward the central bright line of a filament in
the image, and (ii) forces that stretch the active contour to-
ward the ends of bright ridges. Images of simulated semi-
flexible polymers with known bending and torsional
rigidity are analyzed to validate the method. We apply our
methods to quantify the conformations and dynamics of
actin in two examples: actin filaments imaged by TIRF mi-
croscopy in vitro, and actin cables in fission yeast imaged
by spinning disk confocal microscopy. VC 2010 Wiley-Liss, Inc.
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INTRODUCTION

The assembly of actin and tubulin proteins and their bac-
terial homologs into long filaments underlies important

cellular processes such as cell motility, intracellular transport,
and cell division [Dumont and Mitchison, 2009; Margolin,
2009; Pollard and Cooper, 2009]. Image analysis of fluores-
cently-labeled cytoskeletal filaments has provided insights
into the function of the cytoskeleton. Examples of such stud-

ies include measurements of actin polymerization rates using
TIRF microscopy (TIRFM) in vitro [Fujiwara et al., 2007;
Kuhn and Pollard, 2005], shapes of microtubules and actin
filaments [Kass et al., 1996; Danuser et al 2000; Janson and
Dogterom, 2004; Brangwynne et al., 2007a,b, 2008; Bicek
et al., 2007 2009], shapes of MreB bundles in E. coli [Aus-
mees et al., 2003; Chiu et al., 2008], spatial distribution of
actin stress fibers [Hayakawa et al., 2007; Hotulainen and
Lappalainen, 2006; Kumar et al., 2006], and network mor-
phology and distribution of intermediate filaments [Helmke
et al., 2001; Mickel et al., 2008; Luck et al., 2009].

Reliably extracting information on the shapes of linear ele-
ments that correspond to filaments or bundles involves two
image analysis tasks: segmentation (i.e., extracting the center-
line of filaments), and tracking (i.e., measuring motion and
deformation over time). A large body of prior work has
described algorithms that aid in detection of dynamic linear
structures in images.

In two dimensions (2D), semiautomated methods have
been used to track actin filament ends for measuring elonga-
tion rates [Kuhn and Pollard, 2005]. Automated methods
exist for tracking the tips of microtubules [Altinok et al.,
2006; Jiang et al., 2006; Saban et al., 2006; Hadjidemetriou
et al., 2008]. In Hadjidemetriou et al., [2004], the body of a
microtubule can be extracted and tracked over frames using
tangential constraints. Li et al. [2009a,b] used open active
contour models to extract filaments and proposed mecha-
nisms for handling filament intersections.

Related methods have been developed to extract linear and tu-
bular structures in 3D images. Some model-free techniques,
such as mathematical morphology [Zana and Klein, 2001],
matching filters [Hoover et al., 2000], region growth [Masutani
et al., 1998], and minimum description length [Yuan et al.,
2009] have been used with considerable success. Model-based
approaches have broader applications since they are more robust
to noise and can conveniently integrate prior knowledge; these
include particle filters [Florin et al., 2005], minimal path [Cohen
and Kimmel, 1997], level set [Law and Chung, 2009], and
snake-based methods [Sarry and Boire, 2001; Yim et al., 2001].

Several groups have made software that implements seg-
mentation of linear structures freely available. This includes
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the 3D FIRE (FIbeR Extraction) Matlab code [Stein et al.,
2008], the NeuriteTracer [Pool et al., 2008] and NeuronJ
[Meijering et al., 2004] ImageJ plugins, and more recently,
V3D-Neuron [Peng et al., 2010]. Visualization software aids
in simultaneous viewing of the raw image data superimposed
on segmented structures [Matula et al., 2009; Peng et al.,
2010].
In this work we present a new, open source, software

tool that allows segmentation and tracking of filamentous
structures in both two and three dimensions. This tool is
based on the ‘‘Stretching open active contours’’ SOACs
algorithm [Li et al., 2009a]. Active contours, or ‘‘snakes,’’
[Kass et al., 1987] are deformable parametric curves.
When placed on an image, an active contour deforms
‘‘actively’’ to minimize its associated energy. The total
energy consists of an internal energy that makes the active
contour smooth by penalizing abrupt changes in direction,
and an external energy that represents constraints from the
image data. The external energy generates forces that
attract the curve toward salient image features. Conven-
tional active contours are closed contours. In this work,
we use open curves instead, to segment and track cytos-
keletal filaments. The internal energy term remains the
same as that in the original work [Kass et al., 1987].
Observing the appearance of bright ridges at approximately
the central line of each filament, we designed two external
energy terms: (i) an intensity-based energy term that is the
lowest along the central bright ridges of the image, thus
generating forces that attract the open active contour to-
ward the centerline of a filament, and (ii) a stretching
energy term that exerts forces at the curve’s two ends and
stretches the active contour toward the ends of the fila-
ment in the image. Thus, we called these new active con-
tours SOACs.
The software tool is called JFilament (http://athena.physic-

s.lehigh.edu/jfilament/) and it is an ImageJ (http://rsbweb.nih.
gov/ij/) plug-in. JFilament allows simultaneous visualization of
2D, 3D or 4D (3D space þ 1 time) images together with
graphical curves representing segmented filaments. Users can
deform, add, delete, save, and load filament curves. The over-
view flowchart of the JFilament is illustrated in Fig. 1A. The
main page of the JFilament user interface is shown in Fig. 1B.
In addition to SOACs, JFilament includes standard ‘‘closed’’
active contours which can be used for tasks such as segmenta-
tion and tracking of cell boundaries.
In this article, we further show how JFilament can be used

to quantify static and dynamics properties of cytoskeletal fila-
ments, such as bending and torsional persistence lengths (lp
and ls, respectively), and elongation rates. First, to validate
our analysis, we generated simulated images of filaments
with known lp and ls. JFilament was used successfully to
measure these lengths. Then, we applied our methods to two
cases involving images from experiments: (i) measurements
of persistence length and elongation rate of actin filaments
imaged by TIRFM in vitro, and (ii) measurements of bend-
ing and torsional properties of fluorescently labeled actin
cables in fission yeast, imaged by confocal microscopy. We

report the first measurements of configurational statistics of
actin cables in 3D.

Methods

Data: Static and Time-Lapsed Images

JFilament was designed to be used primarily for analysis of sin-
gle-color fluorescence microscopy images. Typically these are
(i) stacks of 2D images with each frame representing different
time (as with epifluorescence or TIRFM images), or (ii) 4D
stacks, with each time point represented by a 3D stack. We
assume that the 3D stacks consist of equidistant confocal mi-
croscopy planes or deconvoluted epifluorescence focal planes.

Fig. 1. (A) The flowchart of the JFilament program. (B) A snap-
shot of the graphical user interface.
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We used JFilament to analyze images of in vitro actin polymer-
ization obtained by TIRFM from Fujiwara et al. [2007] and
confocal microscopy images of actin cables in fission yeast la-
beled by GFP-CHD from Vavylonis et al. [2008].

Filament Segmentation using SOACs

To locate the bright ridges that correspond to filaments, we
used SOACs which are open active contours that minimize
the sum of an internal and external energy [Kass et al.,
1987; Li et al., 2009a]. The internal energy of SOACs favors
shorter and straighter active contours. An image-based exter-
nal energy term attracts them toward the bright ridges at the
central lines of filaments and extends them along linear ele-
ments depending on the location of the end points.
In 2D, let r(s) ¼ (x(s),y(s)), s [ [0,L] represent an open

curve parametrically (Fig. 2), where s represents arc length
along the open curve, and L is the length of the active con-
tour. In 3D, r(s) ¼ (x(s),y(s),z(s)), where s [ [0,L] . The start-
ing and the ending points of the active contour are s ¼ 0
and s ¼ L respectively. A set of N discrete sampling points ri
¼ (xi,yi), i ¼ 1,���,N , (or in 3D ri ¼ (xi,yi,zi), i ¼ 1,���,N),
is sampled from the active contour to represent it. The
points are sampled at approximately evenly spaced intervals.
The active-contour-based segmentation works by minimiz-

ing the contour’s overall energy, E, which is composed of in-
ternal energy, Eint, and external energy, Eext , i.e.,

E ¼ Eint þ Eext: (1)

The internal energy term makes the active contour smooth
by penalizing abrupt changes in direction. The external
energy term represents forces from the image data.

Internal energy term

The internal energy term, Eint, is defined similar to closed
snakes [Kass et al., 1987]:

Eint ¼
Z L

0

½ ajrsðsÞj2 þ bjrssðsÞj2� ds; (2)

where rs(s) : dr/ds and rss(s) : d2r/ds2. The first term,
|rs(s)|

2, penalizes stretching; the second term, |rss(s)|
2, penal-

izes bending.

External snake energy

The external energy, Eext, consists of two terms: an image
term, Eimg, and a stretching term, Estr:

Eext ¼ k

Z L

0

½EimgðrðsÞÞ þ kstr � EstrðrðsÞÞ� ds; (3)

where k is a constant that balances the internal and external
energy contributions, and kstr is a constant that balances the
two external energy terms, which are defined below.

We use a Gaussian-filtered image, Eimg ¼ Gk \ I , as the
image term, where Gk is the Gaussian smoothing kernel, I
denotes the original image, and * denotes the 2D or 3D fil-
tering operator [Gonzalez and Woods, 2007]. The degree of
smoothing can be adjusted in JFilament by changing param-
eter k . This term is different from the gradient magnitude
term |!Gk * I|2 commonly used in conventional segmenta-
tion methods [Kass et al., 1987 Xu and Prince, 1998]. As
shown in Fig. 3, the gradient vectors corresponding to
!Eimg point toward the center of filaments. Therefore, our
image term has the desired property of attracting the active
contour toward the central bright ridge of the filament.

The gradient vectors of the image term, !Eimg, cannot
attract the tips of the active contour to grow along the fila-
ment body. In order to give an active contour the ability to
stretch along a filament body, stretching forces are added to
tips of the active contour (s ¼ 0 and s ¼ L). The tip stretch-
ing forces point outwards along the tangent direction of the
active contour as shown in Fig. 2. The direction is �t(s) if s
¼ 0 and t(s) if s ¼ L, where tðsÞ � rsðsÞ

jrsðsÞj. The magnitude of
the stretching force is given by:

F ðrðsÞÞ ¼ ðIðrðsÞÞ � ImeanÞ=ðIf � IbÞ; (4)

where I(r(s)) denotes the pixel intensity value covered by a
certain point r(s) on the active contour, If denotes the mean
foreground (i.e. filament) intensity, Ib denotes the mean
background intensity, and Imean denotes the average intensity.
Parameters, If,Ib,Imean, are constants and they are estimated

Fig. 2. Illustration of the open active contour model, where s [
[0,L] measures contour length. Points (dots) are uniformly
sampled on the active contour. N is the total number of sampling
points on the active contour. Internal energy favors snake shrinking
and penalizes abrupt direction change along the active contour.
Stretching forces (arrows) are applied at the tips (r(0) and r(L)) and
point outward along the contour’s tangent directions. The forces are
intensity-adaptive. If the tip of the active contour is on the filament
body then the force points outward to stretch the active contour; if
the tip is in the background, the force points inward to shrink the
contour.

Fig. 3. TIRFM image of a single actin filament and illustration
of the gradient field of our image term, Eimg5 Gk * I . The gra-
dient vectors point toward the center of the filament. Therefore, the
image term attracts the active contour toward the central line of the
filament.
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using foreground and background training samples before seg-
mentation. When the intensity at the snake tip is greater than
Imean the force will stretch the snake. If the tip is located at a
region of lower intensity than Imean, the force causes the active
contour to shrink. Given the stretching force definition, we
have the gradient field of the stretching energy term as:

rEstrðrðsÞÞ ¼
�F ðrðsÞÞ tðsÞ s ¼ 0;
F ðrðsÞÞ tðsÞ s ¼ L;

0 otherwise:

8<
: (5)

Active contour deformation

An open active contour deforms and stretches under the
influence of forces generated by the above internal and exter-
nal energy terms. Similarly to Kass et al. [1987], the energy
function of our new SOAC model is minimized using the
Euler method. Since the active contour is represented by a
set of discrete points, its overall energy E can be approxi-
mated by a sum of energies at these points:

~E ¼
XN
i¼1

~EintðiÞ þ ~EextðiÞ; (6)

where ~EintðiÞ and ~EextðiÞ denote the internal and external
energy at the ith point of the active contour, respectively. The
derivatives of ~EintðiÞ and ~EextðiÞ can be calculated with finite
differences in 2D or 3D. Euler’s method is used to derive the
dynamics of the active contour. Therefore we minimize the
energy function (6) by iteratively solving for the coordinates of
all points and following the model evolution equations:

xn ¼ ðA þ cIÞ�1ðcxn�1 � @ ~Eextðxn�1; yn�1Þ=@xÞ; (7)

yn ¼ ðA þ cIÞ�1ðcyn�1 � @ ~Eextðxn�1; yn�1Þ=@yÞ; (8)

in 2D, and,

xn ¼ ðA þ cIÞ�1ðcxn�1 � @ ~Eextðxn�1; yn�1; zn�1Þ=@xÞ; (9)

yn ¼ ðA þ cIÞ�1ðcyn�1 � @ ~Eextðxn�1; yn�1; zn�1Þ=@yÞ;
(10)

zn ¼ ðA þ cIÞ�1ðczn�1 � @ ~Eextðxn�1; yn�1; zn�1Þ=@zÞ: (11)
in 3D. In the equations, A is a strictly penta-diagonal
banded matrix created based on a and b (Eq. 2) and encodes
the derivatives of internal energy for every point. I is the
identity matrix, x, y, and z are the vectors representing the
sets of x , y, and z coordinates, c is the step size in Euler’s
method, and the subscript n denotes the iteration number.
Using the above optimization method, an open active con-

tour can efficiently deform to desired filament central line loca-
tions. During its deformation, the active contour is resampled
every few iterations, maintaining the distance between adjacent
sampling points at a fixed interval Dssnake. Thus as the active
contour grows longer, the number of sampling points increases,
enabling the active contour to elongate. An example of the de-
formation process of our active contour model is shown in
Fig. 4A. Note that although the initialization is far away from
the actual filament location (Fig. 4A, i), the active contour is

able to correctly recover the filament central ridges (Fig. 4A,
iv). In JFilament, the user is able to pick the desired number
of iterations that are sufficient to ensure convergence.

User interaction and manual editing

We have included manual controls that increase throughput
and segmentation accuracy. In addition to initialization, the
ends of active contours can also be trimmed or stretched and
the middle of filaments can be cropped. These simple modi-
fications enable more accurate results by allowing the user to
solve the difficulties caused by intersections or variations in
intensity that are hard to predict and automate. The user can
define 3D points by clicking on cross-section planes.

Filament Tracking using SOACs

An active contour can be added and initialized manually at any
time point k of a 2D or 3D image sequence. The converged
snake of the kth time point is used to initialize the active contour
for time point k þ 1. Thus, the active contour can adapt by
growing or shrinking, following the growth or shrinkage of the
filament in the image over time. An example is shown in Fig. 4B
and 4C where the red curve denotes the active contour com-
puted based on a filament in the first frame. The green curve
represents the active contour computed for the same filament in
the fourth frame. Image sequences may often show drift, i.e.
translation, between contiguous frames [Kuhn and Pollard,
2005]. Our algorithm is robust to mild frame drift and filament
shape changes since the snake is allowed to re-equilibrate along
the shifted images. An example of this is shown in Fig. 4C.

Visualization

Visualization and user interactions in 3D are more challenging
than those in 2D. We used Java3D for simultaneous visualiza-
tion of 3D images and segmentation results represented by
active contours. Figure 4D shows an example. The active con-
tour, representing the segmented filament is shown on top of a
3D volume view (panel 4D, i). Another window shows the
position of the active contour with respect to cross sections of
the image with the yz, zx, and xy planes; the three planes can
be moved along the x , y, and z axes (panel 4D, ii). The visual-
ization platform supports rendering of 4D images.

Curve properties

The parametric equation of a 3D snake curve, r(s), can be
used to evaluate the set of three Frenet–Serret orthonormal
vectors, namely the tangent (t), normal (n), and binormal
(b) vectors at position s [Jose and Saletan, 1998], see Fig. 5:

t ¼ dr

ds
(12)

n ¼ 1

jd t=dsj
d t

ds
(13)

b ¼ t � n: (14)

The curvature, j , and torsion, s , are determined by the
rates of change of the tangent vector and binormal vector
with respect to the arc length:
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j ¼ d t

ds

����
����; s ¼ db

ds

����
����: (15)

Curvature represents the rate at which the curve deviates
from a straight line on a plane. Torsion represents the rate at

which the curve goes out of a plane. A 2D curve has zero
torsion (constant binormal vector).

The shapes of snakes extracted from the image can be
used to describe the statistical properties of an ensemble of
curves that represent filaments or bundles. Such quantities

Fig. 4. Examples of segmentation and tracking of linear structures in 2D and 3D. In (A)–(C) units are in pixels. A: Examples of seg-
mentation of an actin filament in a TIRFM image. (i) Initialization of the active contour away from the central line of the filament. (ii)–(iv)
The active contour after 20, 40, and 80 iterations of deformation. B: Images of actin filament polymerization over time using TIRFM. Pan-
els (i)–(iv) correspond to frames 1, 4, 9 and 13. The growth occurs primarily at the barbed end. C: Illustration of tracking filament growth
in panel B using SOACs. Red, green, cyan, and purple curves show SOACs for frames 1, 4, 9, and 13. Frame drift and filament shape
changes can be observed; SOACs can adapt to these changes. D: Illustration of 3D views together with filament segmentation results. The
images show a fission yeast cdc25-22 cell expressing GFP-CHD that marks actin cables and actin patches [Vavylonis et al., 2008]. (i) 3D vol-
ume view and active contour of a segmented actin cable. (ii) Image of an active contour together with x,y and z cross-sections of the image.
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include the probability distributions of curvature and torsion.
Other statistical quantities are the tangent and binormal cor-
relations. The tangent correlation function is defined as the
ensemble average of the product of tangent vectors separated
by a distance Ds:

hcos hðDsÞi ¼ htðs þ DsÞ � tðsÞi: (16)

Here, hi represents the average over all filaments and over
all s along each filament. Similarly, the binormal correlation
function is defined as the ensemble average of the product
between binormal vectors separated by a distance Ds:

hcos/ðDsÞi ¼ hbðs þ DsÞ � bðsÞi: (17)

The tangent correlation function measures how fast a
curve changes orientation while the binormal correlation
function measures how fast the curve goes out of a plane.

Simulated Semiflexible Filaments

Filament model

For testing purposes, we constructed simulated images of
equilibrium semiflexible polymers (worm-like chains, WLCs)
in 2D and 3D described by the following Hamiltonian:

H ¼ Hbending þHtorsion

¼ b

2

Z
ds jðsÞ½ �2þ bs

2

Z
ds sðsÞ½ �2; ð18Þ

where b is the bending rigidity and bs is the torsional rigid-
ity. The last term representing torsion is absent in 2D. In
3D, this model represents a chain with uniform bending and
torsional rigidity but no coupling between bending and tor-
sion. In general, the energetics of biopolymers involve
coupled bending, torsion and twist [Marko and Siggia,
1994]. Equation 18 does not include filament twist which is
a property that is not captured by SOACs. Even though H is
not the most general Hamiltonian to describe WLCs, it is
useful as a model for validation since its equilibrium proper-
ties are known and easy to simulate.
In the model of Eq. 18, the tangent correlation function

decays exponentially and is given by [Landau and Lifshitz, 1980]

htðs þ DsÞ � tðsÞi ¼ exp �ðd � 1ÞDs
2lp

� �
; (19)

where d is dimensionality and lp ¼ b/kBT is the persistence
length. Similarly, the binormal correlation function is given
by [Giomi and Mahadevan, 2010]

hbðs þ DsÞ � bðsÞi ¼ exp � Ds
2ls

� �
; (20)

where ls ¼ bs/kBT is the torsional persistence length.
The curvature distribution P(j), the probability density

for observing a value of curvature between j and j þ dj ,
depends on the dimension [Rappaport et al., 2008]:

P2DðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2lpDsc
p

r
exp �lpDscj

2=2
� �

; 2D (21)

P3DðjÞ ¼ lpDscj exp �lpDscj
2=2

� �
; 3D (22)

where Dsc is the length between sampling points along the
curve that are used to calculate the curvature. In the model
of Eq. 18 where there is no coupling between bending and
torsion, the torsion is distributed as exp{�Htorsion/kBT}.
Thus, the probability density for obtaining a value of torsion
between s and s þ ds is

PðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2lsDsc
p

r
exp �lsDscs

2=2
� �

: (23)

In addition to using correlation functions and curvature/
torsion distributions, the properties of semiflexible filaments
can also be studied by Fourier analysis. For a 2D curve, the
amplitude of the nth Fourier mode is an �ffiffiffiffiffiffiffiffi

2=L
p R L

0 ds hðsÞ cosðnps=LÞ, where y(s) is the tangent angle
at position s . When a 2D curve representing an equilibrium
semiflexible polymer is measured with mean square point
localization error e2, the mean square Fourier amplitudes sat-
isfy [Gittes et al., 1993]:

ha2ni ¼
1

lp

L

np

� �2

þ 4e2

L
1þ ðN � 1Þ sin np

2N

h i
; (21)

where N is the number of sample points along the curve. The
persistence length lp can be evaluated by fitting to Eq. 21.

Generation of images of filaments

Trajectories of 2D semiflexible filaments were generated
using a walk of constant step size d. An angle y between the
displacement vectors of successive steps was chosen from a
Gaussian distribution centered at y ¼ 0 and variance ry .
The variance and the step size determine the persistence
length of the filament. Expanding Eq. 16 and 19 for small y
and Ds, respectively, one has 1 �hy2i/2 ^ 1 �d/2lp. Thus,
the persistence length is [Rappaport et al., 2008]:

lp ¼ d=r2
h: (25)

The statistics of the resulting angular distributions are
identical to those of a 2D WLC down to the level of a single

Fig. 5. A cartoon showing a filament and sets of Frenet-Serret
orthonormal vectors (tangent, t; normal, n; binormal b; see Eq.
14) at points i and j along the filament. The vector drawings at
the bottom right show the angle between tangent vectors and the
angle between binormal vectors at points i and j, respectively. Aver-
aging over such angles is used in the calculation of the tangent and
binormal correlation functions.
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step of the walk. Images were generated by convoluting the
trajectory of the walk with a Gaussian kernel.
Simulated images of filaments in 3D were generated similarly

to 2D. The angle y between successive displacement vectors was
drawn from the distribution �yexp(�y2/2r2

h) [Rappaport
et al., 2008], with y positive or negative. The torsional angle /
describing the rotation of the plane defined by two successive
steps was chosen from a Gaussian distribution centered at / ¼
0 with variance r/ . Expanding Eq. 16 and 19, one has 1
�hy2i/2^ 1 �d /lp. Using hy2i ¼ 2r2

h, we find:

lp ¼ d=r2
h; ls ¼ d=r2

/: (26)

The second of Eq. 26 follows similarly from Eq. (17) and
(20). The generated trajectories obey the statistics of Eq. 18
down to a single step of the walk. Images were generated by
convoluting the trajectory of the walk with a Gaussian which
is 3 times wider along the direction in between z-slices,
mimicking an experimental point spread function (PSF) of a
confocal microscope.

Results

In this section we demonstrate how JFilament can be used to
quantify static and dynamics properties of cytoskeletal fila-
ments. We start by validating our analysis using simulated
images of semiflexible polymers of known properties.

Validation using Simulated 2D Semiflexible
Polymers

We generated simulated images of 2DWLCs using walks of step
size d ¼ 1/20 pixel and total length 170 pixels, as described in
the Methods section. The persistence length of these chains was
varied by changing the parameter ry, see Eq. 25. The resulting
trajectories were convoluted with a 2D Gaussian of variance 1
pixel to generate images such as those in Fig. 6A.

We used JFilament to generate active contours that
adapted to the bright ridges of the simulated image. The dis-
tance between successive points on the snake was set to
Dssnake ¼ 1 pixel. The other parameters of the snakes (such
as a, b and c, see Methods section) were adjusted manually
until good agreement was achieved by visual inspection. The
parametric curves of the snakes were then used to calculate
the tangent correlation function, curvature distribution and
amplitudes of Fourier modes (see Figs. 6B, 6C, and 6D).

Figure 6B shows the tangent correlation function for three
different values of the WLC persistence length. After fitting
to single exponentials, see Eq. 19, we were able to obtain
estimates of the persistence length that were within 10% of
the value of the intrinsic persistence length of the WLCs.
Fits to Fourier amplitudes in Fig. 6D, using Eq. 24, give
similar estimates for the persistence length, see Table I.

We found that the curvature distribution can also provide
a good estimate of the persistence length, but this requires
caution, as discussed in Bicek et al. [2007]. Figure 6C shows
the curvature distribution for the same snakes as those used

Fig. 6. Analysis on 2D simulated filaments with known persistence lengths (lp 5 500, 222, and 125 pixels) and total length L 5170
pixels. The coarse-graining length is Dsc ¼Dssnake ¼ 1 pixel and 40 filaments were used. A: Typical image with lp ¼ 125 pixels. B: Plot of
tangent correlations and fits to a single exponential. Error bars indicate standard deviation of individual measurements. The values of the
extracted persistence length are shown on the panel. These values are close to the intrinsic persistence lengths of the WLCs. C: Plot of cur-
vature distribution and Gaussian fits (cf. Eq. 21). The measured persistence lengths shown on the plot are much longer than the intrinsic
persistence length of the WLCs (see main text for discussion). D: Plots of mean square amplitude of Fourier modes versus mode number for
intrinsic persistence length 500, 222, and 125 in panels (i)–(iii), respectively. Continuous lines are fits to Eq. 24; the corresponding values of
lp and e are shown in the panels. The dashed line in panel (i) shows the results of Eq. 24 using lp ¼ 500 and e ¼ 0.14 (see main text).
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in Figs. 6B, and 6D. In this panel, a value for the curvature
was calculated from each triplet of successive points of the
snake; on average, the successive points were separated by
distance Dsc ¼ Dssnake. The resulting curvature distributions
follow Gaussian profiles, as expected from Eq. 21. However,
fitting these curves to Eq. 21 results in a predicted persist-
ence length which is an order of magnitude higher than the
intrinsic persistence length of the WLC.
The problem with the values obtained in Fig. 6B is that

they reflect the bending stiffness of the active contour, in
addition to that of the WLC. Because of our choice of snake
parameters, locally, i.e. on scales of order a pixel, the snake

appears stiffer than the WLC. This behavior is also evident in
downward trend of ha2ni in Fig. 6D at mode numbers n �30:
the data deviate from the expected scaling of slope �2 and lie
below the fit of Equation 24. This deviation indicates a stiffen-
ing of the snake on short scales. Consistently, the slope of the
tangent correlation function at s ¼ 1 pixel in Fig. 6B is some-
what smaller than the slope at s ¼ 20, implying larger persist-
ence length at small distances. However, since the relative
decay of the tangent correlation over small distances is small,
the exponential fit is dominated by the decay of the tangent
correlation over distances much longer than a pixel; thus the
correct persistence length is recovered by the exponential fit.

It is useful to compare the results of Fig. 6D to the
method of Brangwynne et al. [2007a] who used a combina-
tion of thresholding and thinning to achieve an accuracy of
pixel localization e ¼ 0.14 pixels. The dashed line in Fig.
6D(i) shows the predicted Fourier amplitudes using lp ¼
500 (the intrinsic persistence length) and e ¼ 0.14 . This
noise level in pixel localization causes a plateau of ha2ni at n
� 20. The noise plateau for SOACs, by contrast, is reached
at n � 50. Thus SOACs achieve very low noise in pixel
localization, e ¼ 0.02 pixels, at the expense of snake stiffen-
ing. For the particular example in the figure, both methods
would give equally good results for lp as they are approxi-
mately equally accurate for n < 20 and exhibit deviations
from a line of slope �2 for n > 20.

Table I. Table Showing Agreement Between
Intrinsic and Measured Persistence Length of

Simulated 2D Worm-Like Chains (units:
pixels)

lp (WLC) lp (tangent correlation) lp (Fourier)

ry ¼ 0.01 500 540 525

ry ¼ 0.015 220 240 253

ry ¼ 0.02 125 140 110

The intrinsic persistence length was varied by changing parameter ry.
The measured persistence length was extracted from fits to the tangent
correlation function and mean square Fourier amplitudes in Fig. 6.

Fig. 7. Coarse graining analysis of curvature reveals the true rigidity of WLCs. The calculations use WLCs with lp 5 500 pixels (n 5
40 filaments). A: Schematic of coarse graining. The black dots represent the sampling points of the active contour that are separated by
Dssnake . Without coarse-graining, the coordinates of i � 1,i, and i þ 1 are used to calculate the tangent vectors and curvature. With coarse-
graining, Dsc ¼ 2 in this example, sites k � 1,k , and k þ 1 are used instead. B: The tangent correlations are weakly dependent on coarse
graining length Dsc and follow single exponential decay (solid line). Error bars indicate standard deviation of individual measurements. C:
Plot of curvature distributions for different coarse-graining lengths Dsc. The widths depend on Dsc , as expected from Equation (21). In
addition to this change, the value of the extracted persistence lengths (shown in the panel) change with Dsc as well. D: Measured persistence
lengths as a function of Dsc calculated from the tangent correlation (circles) and curvature distribution (squares) as compared to the
intrinsic persistence length of WLCs (triangles). The accuracy of estimates of persistence length using the curvature distribution increases
with increasing Dsc.
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Figure 7 shows how a coarse graining analysis can be used
to extract the true persistence length of the simulated fila-
ments from the curvature distribution. A cartoon of a con-
tour is depicted in Fig. 7A. The distance between the dots in
Fig. 7A is the distance between sampling points of the con-
tour in JFilament, Dssnake. For Dsc ¼ Dssnake the curvature at
the ith site is calculated from three successive points along
the snake i þ 1,i, and i þ 1, as in Fig. 6C. Figure 7A, illus-
trates how the curvature at the kth site can be obtained from
points k � 1,k, and k þ 1 . In this particular example the
coarse graining length is Dsc ¼ 2Dssnake .
We found that the value of the persistence length extracted

from the curvature distribution depends strongly on the value of
Dsc. Figure 7C shows that with increasing Dsc , the distribution
narrows, as expected from Eq. 21. In addition to this trend, the
value of the measured persistence length after fitting changes as
well. Figure 7D shows that the extracted lp decreases with increas-
ing Dsc and approaches the intrinsic value of lp around Dsc ¼ 20
pixels. Thus, as Dsc becomes larger, the curvature distribution
becomes independent of the local snake rigidity and eventually
measures the true persistence length of the filament in the image.

Since the tangent correlation function already describes
correlations over many scales, its shape is less sensitive to our
choice of Dsc, see Figs. 7B and 7D. For all Dsc, the tangent
correlation function can be fit with exponentials of identical
persistence length.

Validation Using Simulated 3D Semiflexible
Polymers

We tested JFilament’s performance in 3D using simulated
images of WLCs, similarly to 2D. The simulated WLCs had
lp ¼ ls ¼ 500 pixels, obtained using ry ¼r/ ¼ 0.01 and step
size d ¼ 1/20 pixels as described in Methods (see Eq. 26). 3D
image stacks were generated by convoluting the trajectories of
the WLCs with a Gaussian distribution of variance 1 and 3
pixels in the xy and z directions, respectively (see Fig. 8A).
This mimics the anisotropy in the PSF in confocal microscopy
experiments [Meijering et al., 2006]. The spacing between
images along the z direction was 1 xy pixel. JFilament was sub-
sequently used to trace WLCs using a sampling interval Dssnake
¼ 1 pixel. We then used the shapes of the snakes to calculate

Fig. 8. Analysis of simulated images of 3D filaments with known bending and torsional persistence lengths (lp 5 ls 5 500 pixels)
demonstrates the validity of SOACs. Measured values from fits are shown in the panels. In all cases, these values are within 10% of the
intrinsic values (see also Table II). Coarse-graining length is Dsc ¼ 20 pixels and n ¼ 40 filaments. Error bars indicate standard deviation of
individual measurements. A: Typical simulated 3D image. B: The tangent correlation function and exponential fit. C: Curvature distribution
and fit to Eq. 22. D: Binormal correlation and exponential fit. E: Torsion distribution and Gaussian fit.
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the tangent correlation, curvature distribution, binormal corre-
lation, and torsion distributions in Fig. 8.
We found that, similarly to the 2D case, an exponential fit to

the tangent correlation function (Fig. 8B) provides a good esti-
mate of the bending persistence length. Our estimate of lp ¼
530 pixels from the fit is close to the actual value (see Table II).
This value was very weakly dependent on coarse-graining.
Coarse-graining is however required in order to extract the cor-
rect lp from the curvature distribution, similarly to 2D. We
found that Dsc ¼ 20 pixels is adequate: using this value in Fig.
8C, a fit to Eq. 22 gives lp ¼ 540 pixels, close to the actual value.
The calculated binormal correlation function and the tor-

sion distribution, Figs. 8D and 8E, agree with the expecta-
tions of the WLC model (cf., Eqs. 20 and 23). The
measured torsional persistence lengths, ls ¼ 510 pixels
(binormal) and ls ¼ 540 pixels (torsion), are within 10% of
the intrinsic value (see Table II). We found that the binormal
correlation function is not sensitive to the choice of coarse-
graining length Dsc while for torsion distribution, Dsc ¼ 20
pixels is sufficient to obtain a good fit to a Gaussian profile
and to produce the correct torsional persistence length.
In conclusion, similarly to the 2D case, the persistence

lengths extracted by curvature and torsion distributions are
influenced by local properties such as the rigidity of the
active contours. This dependence is eliminated by coarse
graining. In contrast, the tangent and binormal correlation
functions are less sensitive to the degree of coarse graining.

Measurements of Actin Filaments in a TIRFM
Elongation Assay

Having validated our methods using simulated 2D and 3D
polymers, we now demonstrate the application of JFilament
to experimental data. First we analyze the conformations
of purified actin in a TIRFM polymerization experiment of
4 lM Mg-ADP-actin in the presence of 15 mM inorganic
phosphate Pi [Fujiwara et al., 2007].

Selecting filaments from a single frame in the movie, we
calculated the tangent correlation function and curvature dis-
tribution, after coarse graining to Dsc ¼ 8 pixels (see Fig. 9).
We found that the tangent correlation function fits to a sin-
gle exponential with a persistence length lp ¼ 9lm. The ex-
ponential shape is consistent with the statistics of
equilibrium 2D semiflexible polymers, even though these fila-
ments are not in strict equilibrium as they grow over time and
attach to pivot points on the glass surface. The curvature dis-
tribution is well approximated by a Gaussian, also consistent
with equilibrium statistics. A fit to the equilibrium WLC
model [Eq. 21] leads to lp ¼ 10lm. Both these values of lp are
consistent with prior measurements of persistence length of
native actin filaments (without phalloidin) [Isambert et al.,
1995; McCullough et al., 2008]. The value of lp does not
change appreciably upon further coarse-graining, indicating
that it is not influenced by image noise or snake stiffness.

Since active contours stretch, JFilament can also be used
to measure filament elongation rates. We calculated the rate
using j ¼ hL(t þDt) � L(t)i/Dt, where L is length and hi
denotes averaging over different times and different fila-
ments. We found j ¼ 11 6 0.5 monomers/s, consistent with
the value reported in Fujiwara et al. [2007]. Since the
pointed end polymerizes much slower than the barbed end,
this rate is mostly due to the barbed end.

Measurements of Actin Cables in Fission Yeast
Imaged by Confocal Microscopy

As a second example of an application to experiments, we
used images of fission yeast expressing Calponin Homology
domain fused to GFP (GFP-CHD) obtained by Jian-Qiu
Wu in Vavylonis et al., [2008], Fig. 4D. GFP-CHD binds to

Table II. The Bending (lp) and Torsional (ls)
Persistence Lengths as Extracted from the
Analysis (see Fig. 8) Agree Well with Those

of the Simulated WLC

lp (pixel) ls (pixel)

WLC 500 500

Tangent correlation 530 –

Curvature distribution 540 –

Binormal correlation – 510

Torsion distribution – 540

Fig. 9. Analysis of actin filaments in a frame of a TIRFM movie from Fujiwara et al. [2007] (4 lM ADP-Pi -actin with 15 mM Pi),
see Fig. 4A. Images of 30% Alexa green-labeled actin were captured by an ORCA-ER camera (Hamamatsu Corporation, Hamamatsu,
Japan). The exposure time was 500ms and the pixel size 0.17 lm. We used Dsc ¼ 1.3 lm, n ¼20 filaments. A: Plot of tangent correlation
function. Error bars indicate standard deviation of individual measurements. A fit to a single exponential gives persistence length 9 lm. B:
Plot of curvature distribution. A Gaussian fit gives persistence length 10 lm.

n 702 Smith et al. CYTOSKELETON



the sides of actin filaments and labels actin cables and actin
patches. We used confocal microscopy images of strain
JW1311 obtained with 45 nm/pixel along the xy plane and
125 nm between z slices. These cells are longer than normal
fission yeast because they are cdc25-22 cells arrested in the
G2 phase so they keep elongating without entering mitosis.
We analyzed cables that have a clear trajectory across the

cell, as in Fig. 4D. Figure 10A shows that the tangent corre-
lation function can be described by a double exponential
with two length scales: l1 ¼ 2 lm and l2 ¼ 1 mm. Thus,
while l1 is less than the persistence length of single actin fila-
ments [Isambert et al., 1995; McCullough et al., 2008], l2 is
of order the persistence length of microtubules [Gittes et al.,
1993]. The curvature distribution in Fig. 10B changes upon
coarse-graining and does not follow a distribution similar to
that of Fig. 8C. For Dsc ¼ 0.9 lm, the distribution appears
to approach an exponential, exp(�aj), with a ¼ 0.25 lm.
Similarly to the tangent correlation function, the fit of the

binormal correlation function to a double exponential gives a
pair of short and long scales with similar values: l1 ¼ 0.5
lm and l2 ¼ 1 mm (see Fig. 10C). Here, l1 is less reliable as
a numerical value since it is of order the width of the PSF in
the z direction and Dsc. Similarly to the curvature distribu-
tion, the shape of the torsion distribution depends on the
degree of coarse-graining, see Fig. 10D.
The above analysis shows that the conformations of actin

cables are richer than those of 3D semiflexible polymers.
The small value of l1 could be due to deformations on short

scales such as motor pulling or buckling [Brangwynne et al.,
2008; Bicek et al., 2009], interaction of cables with patches
[Huckaba et al., 2004], fixed fluctuations that occur during
actin cable assembly at the tips of the cell [Brangwynne
et al., 2007b; Wang and Vavylonis, 2008]. The large value
of l2 could reflect the stiffness of the bundles and the fact
that the actin cables are confined within a rigid tube, i.e. the
whole cell [Wagner et al., 2007]. The existence of different
scales generates curvature and torsion distributions whose
shape depends on the extent of coarse-graining. These data
motivate future work with yeast mutants that will shed light
on the origin of the observed statistics.

DISCUSSION

We presented a tool for segmentation of cytoskeletal fila-
ments in images based on the SOACs method. The software
allows both automated segmentation and tracking of the
images as well as full manual controls, such as trimming,
stretching, and cropping parts of the active contours, to
obtain accurate results. Properties such as length changes and
curvature can be easily extracted from the coordinates of the
active contour.

Compared to other implementations that segment linear
structures, the SOACs have the advantage of using paramet-
ric curves of fixed topology to represent filaments, and they
are particularly good at preserving topology at intersections
and growing over faint elements that are otherwise hard to

Fig. 10. Analysis of actin cables in a fission yeast cell expressing GFP-CHD, average of 40 cables (see Fig. 4D and main text). Error
bars indicate standard deviation of individual measurements. A: The tangent correlation function using Dsc ¼ 0.9 lm. Fit to a double expo-
nential (continuous line) leads to length scales l1 ¼ 2lm and l2 ¼ 1 mm. B: Plot of the curvature distribution for different Dsc. C: Plot of
the binormal correlation function using Dsc ¼ 0.9 lm. Fit to a double exponential leads to l1 ¼ 0.5 lm and l2 ¼ 1 mm. D: Plot of the tor-
sion distribution for different Dsc . A power law fit (exponent � 2.4) is shown for Dsc ¼ 0.9lm.
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detect. Many previous methods such as point-and-click, skel-
etonization by thresholding, level-set and MRF-based meth-
ods [Li, 1995; Danuser et al., 2000; Bicek et al., 2007;
Brangwynne et al., 2007a; Cremers et al., 2007; Stein et al.,
2008] produce pixel-wise segmentation results; the curve has
to be reconstructed in a separate step and this may be prob-
lematic in noisy images or in images involving complex fea-
tures. Active contours, however, are continuous curves by
construction. They naturally deform and align with the cen-
tral bridge ridges of filaments, are robust to noise, and can
capture dynamical features such as deformation and elonga-
tion. User-interaction and the ability to change the properties
of active contours through a few basic set of parameter values
allows the analysis of images of varying complexity in 2D
and 3D. While in its present form our method does not
describe network structures, such an extension is possible.
Strategies can also be introduced to handle crossed fila-
ments—for instance, in Li et al., [2009a], we proposed two
strategies, greater tip stiffness and tip ’’jump’’ to solve the fil-
ament intersection problem using SOACs.
We further showed how the traces of the SOACs can be

used to measure the intrinsic properties of semiflexible poly-
mers with high accuracy. We argued that care has to be
exerted when analyzing features that rely on accurate meas-
urements at the scale of order one pixel or of order the width
of the PSF. Noise, intrinsic snake stiffness, PSF anisotropy
may influence quantities that depend on precise local con-
tour shape. One example was the distribution of curvature:
for stiff filaments, the average curvature is small so it can be
influenced by these factors. Depending on the particular
case, a careful analysis, such as the coarse-graning analysis of
Fig. 7, may be required [Gittes et al., 1993; Janson and
Dogterom, 2004; Bicek et al., 2007; Brangwynne et al.,
2007a;]. Similarly, the physical significance of quantities such
as torsional and bending persistence lengths may depend on
the system in consideration: bending, torsion and twist are
generally coupled. JFilament provides a means to extract
quantitiative information in order to examine, for example,
correlations between bending and torsion. Such measure-
ments could help clarify the biophysical properties of cytos-
keletal filaments and bundles of filaments.
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Mecke K, Fabry B, Schröder-Turk GE. 2008. Robust pore size analysis of
filamentous networks from three-dimensional confocal microscopy. Biophys
J 95:6072–6080.

Peng H, Ruan Z, Long F, Simpson JH, Myers EW. 2010. V3D enables real-
time 3D visualization and quantitative analysis of large-scale biological image
data sets. Nature Biotechnology 28:348–353.

Pollard TD, Cooper JA. 2009. Actin, a central player in cell shape and
movement. Science 326:1208–1212.

Pool M, Thiemann J, Bar-Or A, Fournier AE. 2008. Neuritetracer: a novel
ImageJ plugin for automated quantification of neurite outgrowth. J Neurosci
Methods 168:134–139.

Rappaport SM, Medalion S, Rabin Y. 2008. Curvature distribution of
worm-like chains in two and three dimensions. arXiv:08013183.

Saban M, Altinok A, Peck A, Kenney C, Feinstein S, Wilson L, Rose K,
Manjunath B. 2006. Automated tracking and modeling of microtubule dy-
namics. Proceedings of IEEE International Symposium on Biomedical Imag-
ing, p 1032–1035.

Sarry L, Boire JY. 2001. Three-dimensional tracking of coronary arteries
from biplane angiographic sequences using parametrically deformable mod-
els. IEEE Trans Med Imaging 20:1341–1351.

Stein AM, Vader DA, Jawerth LM, Weitz DA, Sander LM. 2008. An algo-
rithm for extracting the network geometry of three-dimensional collagen
gels. J Microsc 232:463–475.

Vavylonis D, Wu JQ, Hao S, O’Shaughnessy B, Pollard TD. 2008. Assem-
bly mechanism of the contractile ring for cytokinesis by fission yeast. Science
319:97–100.

Wagner F, Latanzi G, Frey E. 2007. Conformations of confined biopoly-
mers. Phys Rev E 75:050902(R).

Wang H, Vavylonis D. 2008. Model of For3p-mediated actin cable assembly
in fission yeast. PLoS ONE 3: e4078.

Xu C, Prince JL. 1998. Snakes, shapes, and gradient vector flow. IEEE Trans
Image Process 7:359–369.

Yim PJ, Cebral JJ, Mullick R, Marcos HB, Choyke PL. 2001. Vessel surface
reconstruction with a tubular deformable model. IEEE Trans Med Imaging
20:1411–1421.

Yuan X, Trachtenberg J, Potter SM, Roysam B. 2009. MDL constrained 3-
D grayscale skeletonization algorithm for automated extraction of dendrites
and spines from fluorescence confocal Images. J Neuroinformatics 7:
213–232.

Zana F, Klein JC. 2001. Segmentation of vessel-like patterns using mathe-
matical morphology and curvature evaluation. IEEE Trans Image Process 10:
1010–1019.

CYTOSKELETON Tracking Cytoskeletal Filaments 705 n


