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Abstract—Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents

of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast

based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence

scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps.

These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality

unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets,

as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently

outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also

show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based

image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous,

our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally

provides important target object region information.

Index Terms—Salient object detection, visual attention, saliency map, unsupervised segmentation, image retrieval

Ç

1 INTRODUCTION

WE, as humans, are experts at quickly and accurately
identifying the most visually noticeable foreground

object in the scene, known as salient objects, and adaptively
focus our attention on such perceived important regions. In
contrast, computationally identifying such salient object
regions [2], [3], that match the human annotators’ behaviour
when they have been asked to pick a salient object in an
image, is very challenging. Being able to automatically, effi-
ciently, and accurately estimate salient object regions, how-
ever, is highly desirable given the immediate ability to
characterise the spatial support for feature extraction, iso-
late the object from potentially confusing background, and
preferentially allocate finite computational resources for
subsequent image processing.

While essentially solving a segmentation problem, salient
object detection approaches segment only the salient fore-
ground object from the background, rather than partition an
image into regions of coherent properties as in general seg-
mentation algorithms [3]. Salient object detection models
also differ from eye fixation prediction models that predict

a few fixation points in an image rather than uniformly
highlighting the entire salient object region [3]. In practice,
salient object detection methods are commonly used as a
first step of many graphics/vision applications including
object-of-interest image segmentation [4], object recognition
[5], adaptive compression of images [6], content-aware
image editing [7], [8], image retrieval [9], [10], [11], etc.

Although extraction of salient objects in a scene is related
to accurate image segmentation and object retrieval, inter-
estingly, reliable saliency estimation is often feasible without
any actual scene understanding. Saliency, as widely
believed, is a bottom-up process that originates from visual
distinctness, rarity, or surprise and is often attributed to var-
iations in image attributes such as color, gradient, edges,
and boundaries [12]. Visual saliency, being closely related
to our perception and processing of visual stimuli, is
investigated across many disciplines including cognitive
psychology [13], [14], neurobiology [15], [16], and computer
vision [17], [18], [19]. Based on our observed reaction times
and estimated signal transmission times along biological
pathways, human attention theories hypothesize that the
human vision system processes only parts of an image in
detail, while leaving the rest nearly unprocessed. Early
work by Treisman and Gelade [20], Koch and Ullman [21],
and subsequent attention theories proposed by Itti, Wolfe
and others, suggest two stages of visual attention: a fast,
pre-attentive, bottom-up, data driven saliency extraction;
followed by a slower, task dependent, top-down, goal
driven saliency extraction.

We focus on bottom-up data driven salient object
detection using image contrast (see Fig. 1) under the
assumption that a salient object exists in an image [2].
The proposed method is simple, fast, and produces high
quality results on benchmark datasets. Motivated by the
popular belief that human cortical cells may be hard
wired to preferentially respond to high contrast stimulus
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in their receptive fields [36], we propose contrast analysis
for extracting high-resolution, full-field saliency maps
based on the following considerations:

� A global contrast based method, which separates a
large-scale object from its surroundings, is desirable
over local contrast based methods producing high
saliency values at or near object boundaries. Global
considerations enable assignment of comparable
saliency values across similar image regions, and
can uniformly highlight entire objects.

� Saliency of a region mainly depends on its contrast
with respect to its nearby regions, while contrasts to
distant regions are less significant (see also [37]).

� In man-made photographs, object are often concen-
trated towards the inner regions of the images, away
from image boundaries (see [35]).

� Saliency maps should be fast, accurate, have low
memory footprints, and easy to generate to allow
processing of large image collections, and facilitate
efficient image classification and retrieval.

We propose a histogram-based contrast method (HC) to
measure saliency. HC-maps assign pixel-wise saliency
values based simply on color separation from all other
image pixels to produce full resolution saliency maps.
We use a histogram-based approach for efficient process-
ing, while employing a smoothing procedure to reduce
quantization artifacts.

As an improvement over HC-maps, we incorporate spa-
tial relations to produce region-based contrast (RC) maps
where we first segment the input image into regions, and
then assign saliency values to them. The saliency value of a
region is then calculated using a global contrast score,
measured by the region’s contrast and spatial distances to
other regions in the image. Note that this approach better
acknowledges the relation between image segmentation
and saliency determination.

Segmenting regions of interest in still images is of great
practical importance in many computer vision and graphics
applications. Researchers have devoted significant efforts to
minimize user interaction during this process. GrabCut
[38], which iteratively optimizes the energy function and
considers both texture and edge information, has success-
fully simplified the user interaction to simply dragging a

rectangle around the desired object. We propose Saliency-
Cut, an improved iterative version of GrabCut, and combine
it with our saliency detection method to achieve superior
performance compared to state-of-the-art unsupervised
salient object extraction methods.

In order to evaluate the proposed algorithms and com-
pare with state-of-the-art alternatives, we build a database
with 10,000 pixel-accurate human-labeled ground truth
images (see also Section 6.1.1), which is an order of magni-
tude bigger than previous largest public available dataset of
its kind [33]. We have extensively evaluated our methods
on this dataset, and compared our methods with 15 state-of-
the-art saliency methods as well as with manually created
ground truth annotations. The experiments show significant
improvements over previous methods both in terms of pre-
cision and recall rates. Overall, compared with HC-maps,
RC-maps produce better precision and recall rates, but at
the cost of increased computational overheard. In our exten-
sive empirical evaluations, we observe that the unsuper-
vised segmentation results produced by our SaliencyCut
method are, in most cases, are comparable to the manually
annotated ground truths. We also demonstrate applications
of the extracted saliency maps to segmentation and sketch-
based image retrieval (SBIR).

2 RELATED WORK

Our work belongs to the active research field of visual atten-
tion modeling, for which a comprehensive discussion is
beyond the scope of this paper. We refer readers to recent
survey papers for a detailed discussion of 65 models [12], as
well as quantitative analysis of different methods in the two
major research directions: fixation prediction [39], [40] and
salient object detection [3].

We focus on relevant literature targeting pre-attentive
bottom-up saliency region detection, which are biologi-
cally motivated, or purely computational, or involve both
aspects. Such methods utilize low-level processing to
determine the contrast of image regions to their sur-
roundings, and use feature attributes such as intensity,
color, and edges [33]. We broadly classify the algorithms
into local and global schemes. Note that the classification
is not strict as some of the research efforts can be listed
under both categories.

Local contrast based methods investigate the rarity of
image regions with respect to (small) local neighborhoods.
Based on the highly influential biologically inspired early
representation model introduced by Koch and Ullman [21],
Itti et al. [17] define image saliency using central-sur-
rounded differences across multi-scale image features. Ma
and Zhang [41] propose an alternate local contrast analysis
for generating saliency maps, which is then extended using
a fuzzy growth model. Harel et al. [42] propose a bottom-up
visual saliency model to normalize the feature maps of Itti
et al. to highlight conspicuous parts and permit combina-
tion with other importance maps. The model is simple, bio-
logically plausible, and easy to parallelize. Liu et al. [2] find
multi-scale contrast by linearly combining contrast in a
Gaussian image pyramid. More recently, Goferman et al.
[32] simultaneously model local low-level clues, global
considerations, visual organization rules, and high-level

Fig. 1. Given an input image (top), a global contrast analysis is used to
compute a high resolution saliency map (middle), which can be used
to produce an unsupervised segmentation mask (bottom) for an object
of interest.
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features to highlight salient objects along with their con-
texts. Such methods using local contrast tend to produce
higher saliency values near edges instead of uniformly
highlighting salient objects (see Fig. 2). Note that Reinagel
and Zador [37] observe that humans tend to focus attention
in image regions with high spatial contrast and local vari-
ance in pixel correlation.

Global contrast based methods evaluate saliency of an
image region using its contrast with respect to the entire
image. Zhai and Shah [34] define pixel-level saliency based
on a pixel’s contrast to all other pixels. However, for effi-
ciency they use only luminance information, thus ignoring
distinctiveness clues in other channels. Achanta et al. [33]
propose a frequency tuned method that directly defines
pixel saliency using a pixel’s color difference from the aver-
age image color. The elegant approach, however, only con-
siders first order average color, which can be insufficient to
analyze complex variations common in natural images. In
Figs. 9 and 12, we show qualitative and quantitative weak-
nesses of such approaches. Furthermore, these methods
ignore spatial relationships across image parts, which can
be critical for reliable and coherent saliency detection (see
Section 6).

Saliency maps are widely employed for unsupervised
object segmentation: Ma and Zhang [41] find rectangular
salient regions by fuzzy region growing on their saliency
maps. Ko and Nam [43] select salient regions using a sup-
port vector machine trained on image segment features,
and then cluster these regions to extract salient objects. Han
et al. [44] model color, texture, and edge features in a Mar-
kov random field framework to grow salient object regions
from seed values in the saliency maps. More recently,
Achanta et al. [33] average saliency values within image
segments produced by mean-shift segmentation, and then
find salient objects via adaptive thresholding. We propose a
different approach that extends GrabCut [38] method and
automatically initialize it using our saliency detection meth-
ods. Experiments on our 10;000 images dataset (see Section
6.1.1) demonstrate the significant advantages of our method
compared to other state-of-the-art methods.

Subsequent to our preliminary results [1], Jiang et al. [35]
propose a comparable method also making use of region
level contrast to model image saliency. In the segmentation
step, their method also expands and shrinks the initial tri-
map and iteratively applies graphcut and histogram
appearance model. Since GrabCut is an iterative process of

using graphcut and GMM appearance mode, the two seg-
mentation methods share a strong similarity. Compared to
the CB method [35], experimental results show that our RC
salient object region detection and segmentation is more
accurate (Figs. 12a, 12c), 20� faster (Fig. 7), and more robust
to center-bias (CB) (Fig. 12b).

3 HISTOGRAM BASED CONTRAST

Our biological vision system is highly sensitive to contrast
in visual signal. Based on this observation, we propose a
histogram-based contrast method to define saliency values
for image pixels using color statistics of the input image.
Specifically, the saliency of a pixel is defined using its color
contrast to all other pixels in the image, i.e., the saliency
value of a pixel Ik in image I is,

SðIkÞ ¼
X

8Ii2I
DðIk; IiÞ; (1)

whereDðIk; IiÞ is the color distance metric between pixels Ik
and Ii in the L�a�b�space for perceptual accuracy. (1) can be
expanded by pixel order as,

SðIkÞ ¼ DðIk; I1Þ þDðIk; I2Þ þ � � � þDðIk; INÞ; (2)

where N is the number of pixels in image I. It is easy to see
that pixels with the same color have the same saliency
under this definition, since the measure is oblivious to spa-
tial relations. Thus, rearranging (2) such that the terms with
the same color value cj are grouped together, we get
saliency value for each color as,

SðIkÞ ¼ SðclÞ ¼
Xn

j¼1

fjDðcl; cjÞ; (3)

where cl is the color value of pixel Ik, n is the number of
distinct pixel colors, and fj is the probability of pixel color
cj in image I.

3.1 Histogram Based Speed Up

Naively evaluating the saliency value for each image pixel
using (1) takes OðN2Þ time, which is computationally too
expensive even for medium sized images. The equivalent

representation in (3), however, takes OðNÞ þOðn2Þ time,
implying that computational efficiency can be improved to

OðNÞ if Oðn2Þ � OðNÞ. Thus, the key to speed up is to

Fig. 2. Saliency maps computed by different state-of-the-art methods (b-p), and with our proposed HC (q) and RC methods (r). Most results highlight
edges, or are of low resolution. See also Fig. 9 and our project webpage.
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reduce the number of pixel colors in the image. However,

the true-color space contains 2563 possible colors, which is
typically larger than the number of image pixels.

Zhai and Shah [34] reduce the number of colors, n, by

only using luminance. In this way, n2 ¼ 2562 (typically

2562 � N). The method, however, ignores distinctiveness
of color information. In this work, we use the full color
space instead of luminance only. To reduce the number of
colors needed to consider, we first quantize each color chan-
nel to have 12 different values, which reduces the number

of colors to 123 ¼ 1728. Considering that color in a natural
image typically covers only a small portion of the full color
space, we further reduce the number of colors by ignoring
less frequently occurring colors. By choosing more fre-
quently occurring colors and ensuring these colors cover
the colors of more than 95 percent of the image pixels, we
typically are left with around n ¼ 85 colors (see Section 6
for experimental details). The colors of the remaining pixels,
which comprise fewer than 5 percent of the image pixels,
are replaced by the closest colors in the histogram. A typical
example of such quantization is shown in Fig. 3. Note that
due to efficiency considerations we select the simple histo-
gram based quantization instead of optimizing for an image
specific color palette.

3.2 Color Space Smoothing

Although we can efficiently compute color contrast by
building a compact color histogram using color quantiza-
tion and choosing more frequent colors, the quantization
itself may introduce artifacts. Some similar colors may be
quantized to different values. In order to reduce noisy
saliency results caused by such randomness, we use a
smoothing procedure to refine the saliency value for each
color. We replace the saliency value of each color by the
weighted average of the saliency values of similar colors.
This is actually a smoothing process in the color feature
space. We choose m ¼ n=4 nearest colors to refine the
saliency value of color c by,

S0ðcÞ ¼ 1

ðm� 1ÞT
Xm

i¼1

ðT �Dðc; ciÞÞSðciÞ; (4)

where T ¼ Pm
i¼1 Dðc; ciÞ is the sum of distances between

color c and itsm nearest neighbors ci, and the normalization
factor comes from

Pm
i¼1ðT �Dðc; ciÞÞ ¼ ðm� 1ÞT: Note that

we use a linearly-varying smoothing weight ðT �Dðc; ciÞÞ to
assign larger weights to colors closer to c in the color feature
space. In our experiments, we found that such linearly-vary-
ing weights are better than Gaussian weights, which fall off
too sharply. Fig. 4 shows the typical effect of color space

smoothing with the corresponding histograms sorted by
decreasing saliency values. Note that similar histogram bins
are closer to each other after such smoothing, indicating that
similar colors is more likely to be assigned similar saliency
values, thus reducing quantization artifacts (see Fig. 12).

3.3 Implementation Details

To quantize the color space into 123 different colors, we uni-
formly divide each color channel into 12 levels. While the
quantization of colors is performed in the RGB color space,
we measure color differences in the L�a�b�color space given
its perceptual accuracy. We do not, however, perform quan-
tization directly in the L�a�b�color space since not all colors
in the range L� 2 ½0; 100	, and a�; b� 2 ½�127; 127	 necessarily
correspond to real colors. Experimentally we observed
worse quantization artifacts using direct L�a�b�color space
quantization. Best results were obtained by quantization in
the RGB space while measuring distance in the L�a�b�color
space, as opposed to performing both quantization and
distance calculation in a single color space, either RGB or
L�a�b�.

4 REGION BASED CONTRAST

Humans pay more attention to image regions with high
contrast to their surroundings [46]. Besides contrast, spa-
tial relationships are important in human attention. High
contrast to ones surrounding regions is usually stronger
evidence for saliency of a region than comparable contrast
to far-away regions. Since directly introducing spatial
relationships when computing pixel-level contrast is
computationally expensive, we introduce a contrast anal-
ysis method, region contrast (RC), so as to integrate spatial
relationships into region-level contrast computation. In
RC, we first segment the input image into regions, then
compute color contrast at the region level, and finally
define saliency for each region as the weighted sum of
the region’s contrasts to all other regions in the image.
The weights are set according to the spatial distances
with farther regions being assigned smaller weights.

4.1 Region Contrast by Histogram Comparison

We first segment the input image into regions using a
graph-based image segmentation method [45]. Then we
build the color histogram for each region as in Section 3. For
a region rk, we compute its saliency value by measuring its
color contrast to all other regions in the image,

SðrkÞ ¼
X

rk 6¼ri

wðriÞDrðrk; riÞ; (5)

where wðriÞ is the weight of region ri and Drð�; �Þ is the color
distance metric between the two regions. We weight the

Fig. 3. Given an input image (left), we compute its color histogram (mid-
dle). Corresponding histogram bin colors are shown in the lower bar.
The quantized image (right) uses only 43 histogram bin colors and still
retains sufficient visual quality for saliency detection.

Fig. 4. Saliency of each color before (left) and after (right) color space
smoothing. Corresponding saliency maps are shown in the respective
insets.
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distances by the number of pixels in ri as wðriÞ to emphasize
color contrast to bigger regions. The color distance between
two regions r1 and r2 is,

Drðr1; r2Þ ¼
Xn1

i¼1

Xn2

j¼1

fðc1;iÞfðc2;jÞDðc1;i; c2;jÞ; (6)

where fðck;iÞ is the probability of the i-th color ck;i among all
nk colors in the kth region rk, k ¼ f1; 2g. Note that we use
the probability of a color in the probability density function
(i.e., normalized color histogram) of the region as the weight
for this color to further emphasize the color differences
between dominant colors.

Storing and calculating the regular matrix format histo-
gram for each region is inefficient since each region typi-
cally contains a small number of colors in the color
histogram of the whole image. Instead, we use a sparse his-
togram representation for efficient computation.

4.2 Spatially Weighted Region Contrast

We further incorporate spatial information by introducing a
spatial weighting term in (5) to increase the effects of closer
regions and decrease the effects of farther regions. Specifi-
cally, for any region rk, the spatially weighted region con-
trast based saliency is:

SðrkÞ ¼ wsðrkÞ
X

rk 6¼ri

e
Dsðrk;riÞ

�s2s wðriÞDrðrk; riÞ; (7)

where Dsðrk; riÞ is the spatial distance between regions rk
and ri, ss controls the strength of spatial distance weighting,
wðriÞ is the weight of region ri defined by the number of pix-
els in ri, and wsðrkÞ is a spatial prior weighting term similar

to center bias (CB[35]). We use wsðrkÞ ¼ expð�9d2kÞ, where
dk is the average distance between pixels in region rk and
the center of the image, with pixel coordinates normalized
to ½0; 1	. Thus, wsðrkÞ gives a high value if region rk is close
to the center of the image and it gives a low value if the
region is a border region away from the center. For ss,
larger values of ss reduce the effect of spatial weighting so
that contrast to farther regions would contribute more to
the saliency of the current region. The spatial distance
between two regions is defined as the Euclidean distance
between their centroids. In our implementation, we use

s2
s ¼ 0:4with pixel coordinates normalized to ½0; 1	.

4.3 Further Improvement of RC Saliency Maps

We further refine our RC saliency maps in two steps. First,
we use the spatial prior to explicitly estimate the non-salient
(background) region. Second, we apply the color space
smoothing as described in Section 3.2.

We observe that regions with long borders overlapping
with image borders are typically non-salient background
regions, which we call border regions. We incorporate them
as another spatial prior (wsð�Þ in (7)) to detect non-salient
regions. In our implementation, we normalize the number
of pixels located in the 15 pixel-wide image-border area by
the region size, and consider regions with this value higher
than a threshold to be border regions. In practice, this hard
constraint improves both the saliency maps as well as the
convergence speed of SaliencyCut (Section 5) by improving
the initial condition. Our border region estimation aims at
high precision, rather than high recall. A strict fixed thresh-
old, which on average corresponds to 2 percent miss alarm
rate in our dataset, is chosen to detect border regions.

In order to uniformly highlight the entire saliency region
of the image, we get the average saliency of each color in
the color histogram and adopt the color space smoothing
(Section 3.2) to improve our RC saliency map. After smooth-
ing, some border region pixels may get non-zero saliency
values. We reset the saliency of border region to zero and
re-estimate the saliency of each region as the average
saliency value of its corresponding pixels. Since initial RC
maps are typically more uniformly highlighted compared
to HC saliency maps without color space smoothing, we
typically choose smaller number of nearest colors
(m ¼ n=10 in this part). Fig. 5f demonstrates such an exam-
ple. The jumping man region is more uniformly highlighted
compared to Fig. 5e.

5 SALIENCYCUT: AUTOMATIC SALIENT REGION

EXTRACTION

In a highly influential work, GrabCut [38] made critical
changes to the graphcut formulation to allow processing of
noisy initialization. This enabled users to roughly annotate
(e.g., using a rectangle) a region of interest, and then use
GrabCut to extract a precise image mask. Using our esti-
mated saliency masks, we remove even the need for user
annotated rectangular regions. In this section, we introduce
SaliencyCut, which uses the computed saliency map to assist
in automatic salient object segmentation. This immediately

Fig. 5. Region based contrast computation: (a) input image, (b) image regions generated by Felzenszwalb and Huttenlocher’s segmentation method
[45], (c) region contrast without distance weighting and spatial prior ((5)), (d) region contrast with distance weighting, (e) region contrast further con-
sidering spatial prior ((7)), (f) region contrast after improvement by border region estimation and color space smoothing, (g) using our SaliencyCut
(Section 5), we get a high quality cut that is comparable to human labeled ground truth.
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enables automatic analysis of large internet image repo-
sitories. Specifically, we make two enhancements to Grab-
Cut [38]: “iterative refine” and “adaptive fitting”, which
together handle considerably more noisy initializations.
Thanks to the robustness of the new approach, we are able
to automatically initialize the segmentation according to the
detected saliency map.

5.1 Algorithm Initialization

Instead of manually selecting a rectangular region to initial-
ize the process, as in classical GrabCut, we automatically
initialize using a segmentation obtained by binarizing the
saliency map using a fixed threshold Tb. Similar to GrabCut,
we use incomplete trimap for the initialization. For image
pixels with saliency value bigger than Tb, the largest con-
nected region is considered as initial candidate region of the
most dominate salient object. This candidate region is
labeled as unknown part of the trimap, while other regions
are labeled as background. Note that we do not initialize
any hard foreground labeling. These unknown regions are
initially used to train foreground color models thus helps
the algorithm to identify the foreground pixels.

Since the initial background regions are retained while
other regions may be changed during the GrabCut optimi-
zation, we give preference to confident background labels
in the trimaps. Thus we initialize the GrabCut algorithm
using threshold given high recall of potential foreground
region and let the iterative optimization process to increase
its precision. In our experiments, the threshold is chosen
empirically to be the threshold that gives 95 percent recall
rate in our fixed thresholding experiments (see Section 6.2).
When initialized using RC saliency maps, we use Tb ¼ 70
with saliency values normalized to ½0; 255	.

5.2 Segmentation by Iterative Fitting

Once initialized, we iteratively run GrabCut [38] to improve
the SaliencyCut result (maximum of four iterations in our
experiments). After each iteration, we use dilation and

erosion operations on the current segmentation result to get
a new trimap for the next GrabCut iteration. As shown in
Figs. 6c and 6d, the region outside the dilated region is set
to background, the region inside the eroded region is set to
foreground, and the remaining areas are set to unknown in
the trimap. GrabCut, which by itself is an iterative process
using Gaussian mixture models and graph-cut [47], helps to
refine salient object regions at each step.

Different from one-pass GrabCut or the even simpler
graph cut based saliency segmentation [48], the new
scheme in SaliencyCut iteratively refines the initial salient
regions. Such an iterative design is important to handle
noisy initializations supplied by the saliency detection
algorithm rather than human annotations. In case of
incorrect initialization as shown in flower example in
Fig. 6b, the initial background region incorrectly contains
foreground object(s). Although we can still get a segmen-
tation result containing many parts of the flower using
GrabCut, the remaining flowers in the initial background
region would never be correctly extracted using GrabCut
since the background gets a hard labeling. One may con-
sider relaxing the hard constrain of GrabCut to solve this
problem. However, experimental results show this would
make the method not stable, often producing results con-
taining all foreground or all background.

We iteratively refine the initial segmentation and adap-
tively change the initial condition to fit with newly seg-
mented salient region. The adaptive fitting is based on an
important observation: regions closer to an initial salient
object region are more likely to be part of that salient object
than far-away regions. Thus, our new initialization enables
GrabCut to include nearby salient regions, and exclude
non-salient regions according to color feature dissimilarity.
After each GrabCut iteration, SaliencyCut incorporates the
constraints given by the newly obtained trimap, and train a
better appearance model according to previous results.

Fig. 6 shows three examples. In the flower example, Sali-
encyCut successfully expanded the initial salient regions
(obtained directly from the saliency map) and converged to

Fig. 6. Demonstration of SaliencyCut: (a) original image, (b) initial segmentation by fixed thresholding the saliency map, (c) trimap after first iteration,
(d) trimap after second iteration, (e) final segmentation, and (f) manually labeled ground truth. In the segmented images (e), blue is foreground, gray
is background, while in the trimaps (b–d), foreground is red, background is green, and unknown regions are left unchanged.
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an accurate segmentation result. In the excavator and teapot
examples, unwanted regions are correctly excluded during
GrabCut iterations. The intermediate steps show how Sali-
encyCut successfully extracted the object regions of interest
in these challenging examples. A comprehensive quantita-
tive evaluation of different saliency segmentation methods
is presented in Section 6.3.

6 EXPERIMENTAL COMPARISONS

In this work, we extensively evaluated our saliency detec-
tion method on three different types of benchmark datasets,
and compared it against 15 alternate methods—SR[30], IT
[17], IM [23], SUN [27], AC [31], SeR [26], AIM [22], GB [29],
LC [34], CA [32], FT [33], SWD [28], SEG [25], MSS [24], LP
[49] and CB [35], respectively. Following [33], we selected
these methods according to: number of citations (IT, SR,
SUN, AIM and FT), recency (SeR, MSS, SEG, IM, CA and
SWD), variety (IT is biologically-motivated, LC is purely
computational, GB and LP are hybrid, SR works in the fre-
quency domain, AC and FT output full resolution saliency
maps), and being related to our approach (LC and CB).

Fig. 7 compares the average time taken by each method
on a Dual Core 2.6 GHz machine with 2 GB RAM. Our algo-
rithms, HC and RC, are implemented in C++. For the other
methods namely IT, AIM, IM, MSS, SEG, SeR, SUN, GB, SR,
AC, CA, FT and CB, we used the authors’ implementations,
while for LC, we implemented the algorithm in C++ since
we failed to obtain the authors’ implementation. For typical
natural images, our HC method runs in OðNÞ, which is suf-
ficient for real-time applications. In contrast, our RC variant
is slower as it requires image segmentation [45], but produ-
ces superior quality saliency maps.

The true effectiveness of a saliency detection method
depends on the applications [33]. We evaluated our method
on three core computer vision and graphics applications,
namely salient region segmentation by fixed thresholding,
object of interest image segmentation, and sketch based
image retrieval.

6.1 Benchmark Datasets for Saliency Detection

6.1.1 Images with Unambiguous Salient Objects

Similar to existing salient object region detection methods
[2], [24], [33], [35], we first evaluate our methods on images
with unambiguous salient object. The largest dataset of this
kind is provided by Liu et al. [2]. This dataset contains
20,000+ images (mostly at 400� 300 resolution), with
bounding box labeling by 3-9 users. These images are
selected from an initial set of 130,099 images, such that each
image contains a clear, unambiguous object of interest.
Since objects can still be recognized at low resolution, the
dataset has limited scale and location variations of salient
objects, i.e., implicitly the images have scale and location
priors (Flickr like).

Although an invaluable recourse to evaluate saliency
detection algorithms, the database with the marked bound-
ing boxes, however, is often too coarse for fine grained eval-
uation as observed by Wang and Li [50], and Achanta et al.
[33]. In order to do more extensive and accurate evaluation,
we randomly selected 10,000 images with consistent
bounding box labeling in MSRA database provided by Liu
et al. [2] and the consistent measure is the same as choosing
image dataset B in their paper. As shown in Fig. 8, we accu-
rately marked pixels in salient object regions. We call this
dataset MSRA10K because it contains 10,000 images with
pixel-level saliency labeling (publicly available on our project
page). Our dataset is 10 times bigger than what was previ-
ously the largest public available database of its kind [33].
In our experiments, we find that saliency detection methods
using pixel level contrast (FT, HC, LC, MSS) do not scale
well on this lager benchmark (see Fig. 12a), suggesting the
importance of region level analysis.

6.1.2 Randomly-Selected Internet Images

While state-of-the-art methods consistently produce excel-
lent results when evaluated using the traditional benchmark
dataset [33] (see Fig. 12c), ordinary users often report less
satisfactory experiences when using their own images. This
encourage us to think about two questions: ‘How would
these methods deal with random internet images?’ and
‘When can we trust the results of these methods?’ To better
explore these issues, we evaluated salient object segmenta-
tion methods on a dataset with randomly-selected internet
images [51]. This benchmark dataset, namely THUR15K
[51], contains about 3,000 images downloaded from http://
www.flickr.com/Flickr for each of the five keywords:
“butterfly,” “coffee mug,” “dog jump,” “giraffe,” and
“plane.” Salient regions in THUR15K images are marked at
pixel accuracy. Note that not every image in the THUR15K
dataset contains a salient region label, as some images
do not have any salient object region. Besides saliency

Fig. 7. Average time taken to compute a saliency map for images in the MSRA10K database (most have resolution 400� 300). We use parallel com-
puting environment for all Matlab functions for efficient computation.

Fig. 8. Ground truth examples: (first row) original images with ground
truth rectangles from [2], (second row) our ground truth, which have
more precisely marked important regions at pixel level accuracy.
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detection, this dataset can also be used to evaluate the
performance of sketch based image retrieval.

6.1.3 Human Fixation Dataset

While our algorithm targets salient object detection, it is also
interesting to test its performance on human fixation predic-
tion benchmarks. We use the most widely adopted human
fixation benchmark [49] for such evaluation.

6.2 Segmentation by Fixed Thresholding

The simplest way to get a binary segmentation of salient
objects is to threshold the saliency map with a threshold
Tf 2 ½0; 255	. To reliably compare how well various saliency
detection methods highlight salient regions in images, we
vary the threshold Tf from 0 to 255. Fig. 12a shows the
resulting precision vs. recall curves. Typical qualitative
comparison of saliency maps obtained by the various meth-
ods are presented in Figs. 2 and 9.

Unlike most other methods, both the CB method and our
RC method use the center location prior of the man-made
photographs. However, for a fair comparison, Fig. 12b
shows comparisons while disabling such a location prior.
Specifically, RC1 shows the effect disabling the center loca-
tion weighting ((7)) of RC method, while RC2 shows the
effect of further disabling border region estimation (Section
4.3). Other methods in Fig. 12b also improve when we use

the same segmentation, as used in RC, to average saliency
values within each segment and re-normalize to ½0; 255	 by
uniform scaling. Note that many of these methods aim to
predict human eye movements rather than perform salient
object segmentation, as is our focus.

The precision and recall curves clearly show that our RC
method outperforms the other methods. We observe a
significant loss in precision Fig. 12b for the CB method
(which has best performance in the benchmark paper [3])
indicating that the method heavily relies on location prior.
The extremities of the precision vs. recall curve are interest-
ing: At maximum recall where Tf ¼ 0, all pixels are retained
as positives, i.e., considered to be foreground, so all the
methods have the same precision and recall values; preci-
sion 0:22 and recall 1:0 at this point indicate that, on aver-
age, there are 22 percent image pixels belonging to the
ground truth salient regions. At the other end, the minimum
recall values of our RC method are higher than those of the
other methods, because the saliency maps computed by our
RC method are smoother and contain more pixels with the
saliency value 255. Our HC method also has better precision
and recall compared to methods with similar computational
efficiency (SR, FT, and LC). After comparison of a large
number of saliency detection models, Borji et al. [3] pro-
posed a combined model and show that integration of the
few best models (with the initial version of our method as
one of them) outperforms all models. We believe that the

Fig. 9. Visual comparison of saliency maps. (a) original images, saliency maps produced using (b) Zhai and Shah [34], (c) Goferman et al. [32], (d)
Achanta et al. [33], (e) our HC and (f) RC methods, and (g) SaliencyCut. Our methods generate uniformly highlighted salient regions (see our project
webpage for all results on the full benchmark dataset).
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combined model of [3] will further benefit from perfor-
mance improvement due to our method.

As also observed in the survey papers [3], [12], [39], [40],
center-bias naturally exists in human captured photos. Judd
et al. [49] further found that a simple Gaussian blob per-
forms better than many saliency detection methods when
evaluated in famous eye fixation dataset. We experimen-
tally find that such simple Gaussian blob, represented by
‘Gau’ in Figs. 12a and 12c, also performs better than many
existing models for saliency region detection task. However,
in the absence of explicit information, we prefer not to use
such a strong prior that can potentially produce biased
results, e.g., in automated imaging systems. When disabling
the center bias term, our method still produces better results
than other alternatives Fig. 12b.

In the context of fixation prediction, the CA [32] and
LP[49]methods report the best performance. Although it
avoids the heavy learning for combining multi-saliency
models and object detectors, the CA method still needs
about 1 min to calculate a saliency map even for small
images. Figs. 11 and 7 shows that our method, although
initially designed for saliency region detection, has only
slightly lower performance to state-of-the-art methods for
predicting human fixation points, while being 200+ times
more efficient. Readers can refer to [32], [40], [49] for
more comparisons. Notice that the good performance of
our RC method for predicting eye fixation points shown
in Fig. 11 is achieved by disabling the term encouraging
similar appearance region receive similar saliency value,
thus improves human fixation point prediction as
demonstrated in Fig. 10. Although disabling the process
explained in Section 4.3 improves eye fixation prediction
performance, we argue that uniformly highlighting the
entire object region is better in many applications,
including content aware image resizing [7], non-photore-
alist rendering [1], adaptive image compression [6], and
image mosaic [32]. Thus, although their own method [32]
achieves best performance on eye fixation dataset [49],
Margolin et al. [52] still choose to integrate our RC
saliency maps to achieve better effects for various of
image manipulation applications.

6.3 Object of Interest Image Segmentation

To objectively evaluate our new SaliencyCut method using
our RC-map as initialization, we compare our results with
results obtained by other state-of-the-art methods for
object of interest segmentation, i.e., FT [33], SEG [25],
GrabCut [38] (initialized using five pixel wide image
boundary), and CB[35] (best parameters are selected for
these methods). Average precision, recall, and F -Measure
are compared against the entire ground-truth database
[33], with the F -Measure defined as:

Fb ¼ ð1þ b2ÞPrecision�Recall

b2 � PrecisionþRecall
: (8)

We use b2 ¼ 0:3 as in Achanta et al. [33] to weigh precision
more than recall. As can be seen from the comparison (see
Fig. 12c), SaliencyCut using our RC saliency maps signi-
ficantly outperforms other methods. As discussed by Liu
et al. [2], recall rate is not as important as precision for
attention detection. For example, a 100 percent recall rate
can be achieved by simply selecting the whole image. Our
approach reduced 57:2, 50:9, 46:5, and 23:7 percent overall
error rates on F-measure, compared with FT [33], SEG [25],
GrabCut [38], and CB [35], respectively when evaluated
using large accurate dataset (MSRA10K). Besides producing
higher F-Measure and robustness to location prior, our Sali-
encyCut is about 60 times faster (see Fig. 14) compared to
CB [35]. Although several new methods [53], [54] have been
developed since the initial version of this work [1], to the
best of our knowledge, our salient object segmentation
results are still the best results reported on the most widely
used benchmark [33].

Although producing quite promising results for simple
images as evaluated in Fig. 12, evaluation results for ran-
domly-selected internet images Fig. 13 shows that there is
still a need to develop more robust methods. For both data-
sets, our SaliencyCut’s performance is the best.

6.4 Sketch Based Image Retrieval

Outline sketches are typically easier and faster for users to
generate than a complete color description of the desired
image. Sketch based image retrieval techniques become
vital for users to leverage the increasing volumes of avail-
able image database. A large majority of potential users fail
to precisely express fine details in their drawings. Thus
most SBIR systems, which employ global descriptors, are
unsatisfactory as they are unreliable under affine variations.
To overcome such drawbacks, Eitz et al. [56], [57] use local
descriptors to achieve state-of-the-art retrieval performance.
The success of their methods is mainly attributed to transla-
tion invariance of local descriptors while using large local
feature size (in the order of 20-25 percent of the image’s
diagonal) to still retain large scale characteristics. However,
for such large window sizes, there is simply not much space
left for translating the sketch, thus limiting the translation
invariance. SBIR still suffers from relatively low accuracy
thus restricting its commercial potential.

Matching object shapes with clean background, however,
is a relatively mature field. Even for the very challenging
MPEG-7 dataset, state-of-the-art methods can achieve
91:61 percent retrieval rates [58]. Classical shape methods
such as shape contexts (SC) [55] and Chamfer Matching [59]
are mostly successful when dealing with limited back-
ground clutter. Selecting clean object outlines without influ-
ence from irrelevant image edges has great potential to
improve current SBIR systems. Based on the observation
that good results cannot be achieved without selection of

Fig. 10. From left to right, we show source image, ground truth eye fixa-
tion map by human observer, our RC result with the term encouraging
similar appearance region receive similar saliency (Section 4.3) dis-
abled, and result by our full RC method.

Fig. 11. Comparison on human fixation dataset [49].
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segments, Bai et al. [60] use a shape band model to coarsely
select candidate of edge segments while using shape context
distance to decide the optimal matching. However, the
shape band model requires user sketch for further detection
thus does not allow preprocessing. It needs a few minutes
to process a single image making it unsuited for real-time
image retrieval applications.

Our SaliencyCut algorithm provides another possibility
for automatically finding the outlines of object of interest on

large scale image datasets. After such preprocessing, it
becomes possible to make use of proven shape matching
algorithms. We simply rank the images by SC [55] distance
between their salient region outlines and user input
sketches and compare with a state-of-the-art SBIR method
using SHoG [56].

Experiments indicate that although our SaliencyCut
method may produce less optimal results for noisy internet
images, the shape matching method is very efficient in

Fig. 12. Statistical comparison results of (a) different saliency detection methods, (b) their variants, and (c) object of interest region segmentation
methods, using largest public available dataset (i) and (ii) our MSRA10K dataset.
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selecting those well segmented results. A quantitative
evaluation in our THUR15K dataset is shown in Fig. 16.
One can see that our retrieval method is more effective than
SHoG in terms of selecting user-desired candidates. Sample
qualitative results are shown in Fig. 15. Compared with
SHoG, our method gives results that are more relevant to
user input sketches. Moreover, our method produces the
precise boundary of the desired object, which makes it
possible to reuse these segmented image components in
many applications. Note that the extracted salient region
features are complementary to other features like color, tex-
ture, and local edges.

7 DISCUSSION

We presented global contrast based saliency computation
methods, namely histogram based contrast and spatial infor-
mation-enhanced region based contrast. While the HC
method is fast and generates results with fine details, the RC
method generates spatially coherent high quality saliency
maps at the cost of reduced computational efficiency. Based
on the proposed saliency detection method, we introduced a
novel unsupervised segmentation algorithm, namely Salien-
cyCut, to automatically segment the most salient object in
an image, without requiring expensive training data. The
proposed methods were evaluated on several large scale

publicly available benchmarks. The experimental results
show that our methods consistently outperform other state-
of-the-art methods in terms of precision and recall, while still
being simple, fast, and efficient. For noisy internet images,
although our saliency detection and segmentation methods
cannot guarantee robust performance on individual images,
their efficiency and simplicity makes it possible to automati-
cally process a large number of images, which can then be
further filtered for reliability and accuracy.

Limitations. Our methods aim at finding the most salient
object in an image. It might produce sub-optimal results for
images with multiple objects (e.g., Fig. 17), especially if the
objects occlude each other (e.g., PASCAL VOC images [61]),
for which even specialized object detectors fail to reliably
generate good results for most object classes. Rather than
making hard decisions early on, proposing some candidate
object regions [62], [63], [64] can be useful for those applica-
tions requiring high detection rate, e.g., object detection in
cluttered scenes.

Future work.We further discuss possible applications and
extensions by highlighting a few of the many exciting works
using the preliminary version of our work:

� The ability to generate high quality saliency maps is
essential for many applications including content-
aware image manipulation, [66], [67], non-photoreal-
ist rendering [68], [69], image scene analysis [70],
[71], [72] adaptive compression [73], forgery detec-
tion [74], [75], etc.

� Unsupervised segmentation of the entire salient
object, without extensive training data annotation,

Fig. 14. Comparison of average time taken for different saliency seg-
mentation methods. Segmentation results for MSRA10K dataset are
available via our project page.

Fig. 13. Comparison of average Fb for different saliency segmentation
methods: FT [33], SEG [25], and ours, on THUR15K dataset [51].

Fig. 15. Sketch based image comparison: first row shows images downloaded from Flickr using keyword ‘giraffe’, second row shows our retrieval
results obtained by comparing user input sketch with SaliencyCut result using shape context measure [55]; third row shows corresponding sketch
based retrieval results using SHoG [56].

Fig. 16. True positive ratios (TPR) among top 50 and 100 retrieval results. Results for SHOG are supplied by original authors. An image is considered
as true positive if it contains a target object specified by the keywords.
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naturally benefits applications like auto-cropping
[52], scene classification [76], semantic manipulation
[77], [78], [79], and data-driven image synthesis
[80], [81].

� A tool to retrieve internet images and get precise
object of interest regions is powerful to explore this
big data for image composition [82], semantic colori-
zation [83], information discovery [84], [85], image
retrieval [86], [87], [88], etc.

� The proposed saliency measure has already been
used to produce state-of-the-art results on cosegmen-
tation benchmarks without using cosegmentation
[89], or simultaneously analyze multiple images for
better salient object extraction [51], [90].
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