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A B S T R A C T

Cervical cancer is one of the most common types of cancer in women worldwide. Most deaths due to the disease
occur in less developed areas of the world. In this work, we introduce a new image dataset along with expert
annotated diagnoses for evaluating image-based cervical disease classification algorithms. A large number of
Cervigram® images are selected from a database provided by the US National Cancer Institute. For each image,
we extract three complementary pyramid features: Pyramid histogram in L*A*B* color space (PLAB), Pyramid
Histogram of Oriented Gradients (PHOG), and Pyramid histogram of Local Binary Patterns (PLBP). Other than
hand-crafted pyramid features, we investigate the performance of convolutional neural network (CNN) features
for cervical disease classification. Our experimental results demonstrate the effectiveness of both our hand-
crafted and our deep features. We intend to release this multi-feature dataset and our extensive evaluations
using seven classic classifiers can serve as the baseline.

1. Introduction

Cervical cancer ranks as the second most common type of cancer in
women aged 15–44 years worldwide [1]. Over 80% of deaths due to the
disease occur in less developed regions of the world [1]. Therefore,
there is a need for lower cost and more automated screening methods
for early detection of cervical cancer, especially those applicable in low-
resource regions. Screening procedures can help prevent cervical
cancer by detecting cervical intraepithelial neoplasia (CIN), which is
the potentially precancerous change and abnormal growth of squamous
cells on the surface of the cervix. According to the World Health
Organization (WHO) [1], CIN is divided into three grades: CIN1 (mild),
CIN2 (moderate), and CIN3 (severe). Lesions in CIN2/3+ require
treatment, whereas mild dysplasia in CIN1 only needs conservative
observation because it will typically be cleared by an immune response
in one year. Thus, in clinical practice one important goal of screening is
to differentiate CIN1 from CIN2/3 or cancer (denoted as CIN2/3+ [2]).

Widely used cervical cancer screening methods today include Pap
tests, HPV tests, and visual examination. Pap tests involve collecting a
small sample of cells from the cervix and need a laboratory and trained
personnel to examine these samples under a microscope for squamous

and glandular intraepithelial lesions (SIL). Also Pap tests suffer from
low sensitivity in detecting CIN 2/3+ [3]. HPV tests are DNA tests
which detect human papillomavirus (HPV) strains associated with
cervical cancer. The sensitivity of HPV tests in detecting CIN 2/3+
lesions varies greatly [3]. Colposcopy is a visual diagnostic procedure
that often involves taking a biopsy. Digital cervicography, a non-
invasive visual examination method that takes a photograph of the
cervix (called a Cervigram®) after the application of 5% acetic acid to the
cervix epithelium, has great potential to be a primary or adjunctive
screening tool in developing countries because of its low cost and
accessibility in resource-poor regions. However, one concern with
cervicography is that its overall effectiveness has been questioned by
reports of poor correlation between visual lesion recognition and high-
grade disease, as well as disagreement among experts when grading
visual findings. To address this concern and investigate the feasibility
of using images as a screening method for cervical cancer, we
conjecture that computer algorithms can be developed to improve the
accuracy in grading lesions using visual (and image) information. This
conjecture is inspired and encouraged by recent successes in computer-
assisted Pap tests such as the ThinPrep Imaging System (TIS) [4],
FocalPoint [5], and the work by Zhang et al. [6]; these computer-
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assisted Pap tests apply multi-feature Pap smear image classification
using support vector machines (SVM) and other machine learning
algorithms, and they have been shown to be statistically more sensitive
than manual methods with equivalent specificity.

In this work, we describe our efforts in building a dataset of
multiple features extracted from Cervigram images along with patient
diagnosis ground truth for evaluating image-based cervical disease
classification algorithms. First, we design a new type of pyramid
features. From each image, we extract three complementary pyramid
features: Pyramid histogram in L*A*B* color space (PLAB), Pyramid
Histogram of Oriented Gradients (PHOG), and Pyramid histogram of
Local Binary Patterns (PLBP). Second, besides hand-crafted pyramid
features, we investigate the performance of convolutional neuron
network (CNN) features for cervical disease classification. Third, on
this multi-feature dataset, we also present some baseline results of
applying different classic machine-learning algorithms (e.g., SVM,
random forest) to differentiate patient visits that are high-risk from
those visits that are low-risk. We train binary classifiers to separate
CIN1/Normal and CIN2/3+ images. All the classifiers are trained and
tested on the same dataset, with a uniform parameter optimization
strategy. They are then compared by ROC curves and other evaluation
measures. On the same dataset, our lower-cost image-based classifiers
can perform comparably or better than human interpretation on other
traditional screening results, such as Pap tests and HPV tests.

2. Related work

Several computer-assisted Pap tests have been approved by United
States Food and Drug Administration (USFDA), such as ThinPrep
Imaging System (TIS) [4] and FocalPoint [5]. These methods were
shown to be statistically more sensitive than manual methods with
equivalent specificity. Encouraged by these developments, a data-
driven algorithm [2] was developed for automated cancer diagnosis
via analyzing Cervigram images. In contrast to Pap tests [4,5],
Cervigrams are images captured by the non-invasive and low cost
digital cervicography. To further improve the classification perfor-
mance, Song et al. [7] combined the Cervigram information with other
clinical test results such as Pap and HPV; however, these other clinical
tests require additional resources that may not be available in resource-
poor areas of the world.

The choice of feature descriptors is one of the most important
factors for image segmentation and classification. Several types of
features [2,7–10] have been proposed to encode Cervigram informa-
tion. Li et al. [8] identified acetowhite regions by analyzing local color
features. Zimmerman et al. [9] detected specularities in Cervigrams by
utilizing image intensity, saturation, and gradient information. In the
work by Ji et al. [10], texture features were used to recognize important
vascular patterns in Cervigrams. In [2,7], the authors combined the
pyramid histogram of oriented gradients (PHOG) and the pyramid
color histogram in L*A*B space (PLAB) features to perform region of
interest (ROI) segmentation and CIN classification.

In addition to feature descriptors, classifiers also have great

influence on the performance of a machine-learning based classifica-
tion method. Neural networks, support vector machines (SVM), k-
Nearest Neighbors (KNN), linear discriminant analysis (LDA), and
decision trees are commonly used for studying cervical cancer [11].
Kim et al. [2] applied a linear SVM to classify Cervigrams into CIN1/
normal or CIN2/3+, while Song et al. [7] utilized KNN coupled with a
majority voting algorithm to perform the CIN classification. Zhang
et al. [12] proposed a discriminative sparse representation for tissue
classification in Cervigrams. In the work by Lee et al. [13], the authors
developed a system which integrates multiple classifiers including
neural network classifiers, statistical binary decision tree classifiers,
and a hybrid classifier.

3. An image data set with multiple features for CIN
classification

Here we introduce a dataset for image-based CIN classification,
built from a large medical data archive collected by the National Cancer
Institute (NCI) in the Guanacaste project [14]. The archive consists of
data from 10,000 anonymized women, and the data is stored in the
Multimedia Database Tool (MDT) developed by the National Library of
Medicine [15]. In the archive, each patient typically had multiple visits
at different ages. During each visit, multiple cervical screening tests
including cervicography were performed. The cervicography test pro-
duced two Cervigram images for a patient during her visit and the
images were later sent to an expert for interpretation.

In our dataset, we used 1112 patient visits, 345 positive (CIN2/3/
cancer) and 767 negative (CIN1/Normal). For each patient, the ground
truth diagnosis is based on the Worst Histology result of that patient
visit: multiple expert histology interpretations were done on each
biopsy; the most severe interpretation is labeled the Worst Histology
for that visit in the database. Note that our dataset is unbalanced, i.e. it
contains more negative cases than positive cases. Since many classifi-
cation methods assume a balanced distribution of classes and require
additional strategies to handle unbalanced data, we apply under-
sampling to the negative visits and randomly choose 345 negative
visits from each dataset. In this paper, we will use this balanced sub-
dataset, including all 345 positive visits and the randomly selected 345
negative visits.

Interpretations based on Cervigram images have been shown to be
an effective way to detect CIN2/3+ [2]. Some of the most important
visual observations in Cervigrams include the acetowhite region, and
features within that region, such as mosaicism, punctation, and
atypical vessels; it is important to distinguish these possibly disease-
related features from benign features such as polyps or cysts. Fig. 1
shows some example images of those observations [7]. To robustly
identify these characteristics which are helpful for diagnosis, we
propose a type of hand-crafted pyramid features. We also investigate
the performance of deep features for cervical disease classification,
which have achieved superior performance in many other domains
[16].

Fig. 1. Illustration of visual observations in Cervigrams.
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3.1. Hand-crafted pyramid features

Previous works [2,7–10] have shown that the local color, gradient
and texture features are good at encoding Cervigram information. For
example, color plays a key role to detect the presence of acetowhitened
regions in Cervigrams; gradient plays important role in detecting
specularities; texture is important for the identification of mosaicism
and vessel pattern. We convert the pixel colors in a Cervigram into the
perceptually uniform L*A*B color space because of its property: a small
change in the color value corresponds to about the same small change
in visual appearance. We utilize LBP for texture encoding and HOG for
gradient encoding because of their great success in various classifica-
tion tasks.

We extract multi-scale pyramid histogram features to encode the
statistical appearance information in Cervigrams, as shown in Fig. 2.
First, we isolate the cervix region of interest (ROI) from the input
image and resize it to 300*250 pixels. We use the method proposed in
[2] to segment the ROI. Second, we transform the ROI image patch
into different types of feature maps, including the local binary pattern
(LBP) map, L*A*B color channels, and the image gradient maps. Third,
we construct a spatial pyramid of sub-regions for each feature map. We
then extract and concatenate pyramid LBP (PLBP), pyramid LAB
(PLAB) and pyramid Histogram of Oriented Gradients (PHOG) fea-
tures to be a multi-feature descriptor.

Color and image gradient: Color plays an important role in cervical
lesion classification, because one of the most important visual features
on the cervix that have relevant diagnostic properties is the presence of
acetowhitened regions. Thus, the color feature is widely used in
Cervigram analysis [2,7,12]. We calculate the L*A*B color channels
as our color feature maps. To capture edge and shape information, we
calculate the gradient map, which is shown to be complementary to the
color feature [2,7].

Texture: In addition to the color and gradient features, we
introduce a new local binary pattern (LBP) feature that extracts local
texture characteristics for cervical lesion classification. Ojala et al. [17]
first introduced LBP and showed its powerful ability for texture
classification. In a local neighborhood of an input image, given a pixel
x y( , )c c which is surrounded by 8 neighbors, we can calculate its LBP
value by

∑LBP x y s i i( , ) = ( − )2c c
p

p c
p

=0

7

(1)

where ic indicates the gray-scale value of the center pixel x y( , )c c ; ip
corresponds to the gray-scale value of the pth neighbor. s(x) is a sign
function where s x( ) = 1, if x ≥ 0; else, s x( ) = 0.

Later, several extensions of the original LBP operator were pre-
sented [18]. First, the LBP was extended to a circular neighborhood of
different radii, denoted as LBPP R, which refers to P equally spaced pixels
on a circle of radius R. Furthermore, the rotation invariant local binary

pattern is defined

LBP ROR LBP i i P= min ( , ), = 0,…, − 1P R
ri

i
P R, , (2)

where ROR LBP i( , )P R, performs a circular bit-wise right shift on the P-
bit LBPP R, , for i number of times.

To obtain the LBP map, we compute the LBPP R
ri
, value for each pixel

in the input image. Because of the neighborhood constraints when
capturing LBP features, pixels on the boundary of the input image
within the R range do not have any LBP values. We set those pixels'
values to be zeros or to be their closest neighbors' LBP values.

In this paper, we use LBPri
8,1. There is no need to use LBP with other

radii because our pyramid histogram LBP feature (PLBP) can encode a
multi-scale local binary pattern.

Pyramid feature extraction: As Fig. 2 shows, we construct a spatial
pyramid for each feature map. A pyramid is constructed by splitting the
image into rectangular sub-regions, increasing the number of regions
at each level, i.e., level 0 has 1 sub-region; level 1 has 4 sub-regions;
level 2 has 16 sub-regions, and so forth. Histogram features are
extracted from each of these pyramid sub-regions. The extracted
pyramid histograms encode the statistical distribution of feature values
at different positions and scales in a cervigram.

For the PLBP feature, the total number of bins is 10 for the
histogram of a sub-region. A 4-level pyramid is constructed resulting in
a PLBP histogram feature that has 850 dimensions. For the PLAB
feature, we use 3 pyramid levels with a 16-bin histogram for each
channel in L*A*B color space in each sub-region. Thus, the PLAB color
feature has 1008 dimensions. In the gradient map, we calculate the
histogram of oriented gradients (PHOG) for each subregion in the
pyramid. An 8-bin orientation histogram over a 4-level pyramid is
used. Hence, the total vector size of our PHOG feature is 680. Finally,
we construct a multi-feature descriptor by concatenating the three
different types of features, PLBP-PLAB-PHOG. Thus, this handcrafted
multi-feature descriptor has a vector size of 2538.

3.2. CNN deep features

The work by Razavian et al. [16] indicates that the deep features
extracted from convolutional neural networks (CNN) are very powerful
for many recognition tasks. In this work, we investigate the perfor-
mance of CNN deep features for cervical disease classification. In
contrast to hand-crafted features, CNN features are automatically
learned from a large number of images. We extract CNN features
using the open-source package Caffe [19] with its ImageNet pre-trained
CaffeNet. CaffeNet is a variant of AlexNet [20]. It consists of five
convolutional layers and two fully connected layers (fc6 and fc7) and a
final 1000-way softmax (fc8). Besides those main layers, there are some
other layers, such as max-pooling layers and normalization layers. As
in the published work [16], we extract the 4096 dimensional CNN
features from the fully connected layer (fc6 or fc7).

ROI

1. ROI 
isolation

A 600*400 pixels 
image

2. Image 
transformations

LBP 
map

X/Y 
gradients

L
A      B color channels

A pyramid of sub-regions

Level 0 Level1 Level2

……

Level…

3. Feature 
extractionPLBP-

PLAB-
PHOG

……

Fig. 2. Image features extraction.
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To make the CNN features more discriminative for our CIN
classification task, we also fine-tune the pre-trained CaffeNet from
ROIs extracted in Cervigram images. We replace the original 1000-way
fc8 layer in CaffeNet with our new 2-way fc8 layer with randomly
initialized weights drawn from a Gaussian distribution with σ = 0.01
and μ = 0. Based on the loss curve on the training dataset, we find the
appropriate base learning rate and weight decay. We set 0.0001 as the
learning rate of all pre-trained convolutional layers and fully connected
layers and increase the learning rate by a factor of 10 (i.e., to 0.001) for
our new fc8 layer. The weight decay is set to be 0.5. The ROI of each
training image is resized to 256*256 pixels and then cropped to the
227*227 network input size. Flipped training images are also used in
the fine-tuning process. For testing and for feature extraction, each ROI
is directly resized to 227*227 and no cropping and flipping are used.

4. Seven classifiers for comparison

On the Cervigram image dataset introduced above, we compare
seven classic machine learning methods, including random forest (RF),
gradient boosting decision tree (GBDT), AdaBoost, support vector
machines (SVM), logistic regression (LR), multilayer perceptron
(MLP), and k-Nearest Neighbors (kNN). Some of these, such as SVM,
have been widely used in the field of medical image analysis [21–24],
while others, like random forest and GBDT, have been used only in the
recent few years [25]. There are additional published works that aim to
compare classifier performances on benchmark datasets. For example,
Morra et al. [21] compared AdaBoost with SVM while Osareh et al. [22]
compared SVM with neural networks. In both papers, the comparisons
were done between two classifiers. In the work by Wei et al. [23], more
classifiers were studied, but ensemble methods like RF and GBDT were
not included. In this paper, we conduct a comprehensive comparison of
seven popular classifiers. Next, we briefly introduce each of them.

Random Forest (RF) is an increasingly popular machine learning
method [26]. It builds an ensemble of many decision trees trained
separately on a bootstrapped sample set of the original data. Each
decision tree grows by randomly selecting a subset of candidate
attributes for splitting at each node. We optimize parameters for RF
by searching the number of trees in {10, 100, 200, 500, 1000, 2000}
and searching the subset size of features for node splitting among
{‘sqrt’, 100, 200, 500, 1000, 2000} where ‘sqrt’ is the square root of the
whole feature size.

Gradient boosting decision tree (GBDT) is a kind of additive
boosting model which, in general, can be expressed as

∑f x βb x γ( ) = ( ; )
m

M

m
=1 (3)

where β is called the expansion coefficient, and serves as the weight of
the tree in each iteration, and b x γ( ; ) are usually simple basic functions,
e.g. decision tree, characterized by parameters γ. Details for the
training process of GBDT can be found in [26]. We optimize the
parameters for GBDT by searching the number of trees among {10,
100, 200, 500, 1000, 2000} and the learning rate in {1, 0.1, 0.01, 0.001,
0.0001}.

Adaboost is a classic boosting tree model [27]. It has the form
H x α h x( ) = ∑ ( )t t t , which can be trained by minimizing the loss
function in a greedy fashion. An optimal weak classifier ht is selected
for each training iteration t. We use shallow decision trees (i.e. stumps)
as the weak learners. In the final strong classifier H(x), the weight of
the weak classifier ht(x) is αt, which is inversely proportional to the
classification error of ht(x). To optimize parameters for AdaBoost, we
search the depth (d) of each decision tree in {1, 2, 3, 4} and the number
of weak classifiers from 10 to the whole feature size with an increment
of 120/d.

Multilayer perceptron (MLP) is a feed-forward neural network.
MLP uses layer-wise connected nodes to build the architecture of the

model. Each node (except for the input nodes) can be viewed as a
neuron with a nonlinear activation function. In this paper, we use the
sigmoid Eq. (4) as the activation function,

σ x
w x b

( ) = 1
1 + exp(−( * + )) (4)

where the weight vector w and bias vector b in each layer pair are
trained by the Back Propagation algorithm. We also introduce L2
regularization weight decay to prevent over-fitting. We optimize hyper-
parameters for MLP by searching the hidden layer size in {2, 3}, the
hidden unit size in {0.0625*m, 0.125*m, 0.25*m} where m is the
feature size 2538, and searching the weight decay strength among
{0.0005, 0.0001, 0.00001, 0.0}.

Logistic regression is a type of probabilistic statistical classification
model. For the binary classification problem, with labeled sample set

x y{( , )}i i i
N
=1, it computes the positive probability by Eq. (5) and the

model parameter θ is trained to minimize the cost:

P x
θ x

( ) = 1
1 + exp(− * )i T

i
1

(5)

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑L θ

N
y P x y P x( ) = − 1 log ( ) + (1 − )log(1 − ( )

i

N

i i i i
=1

1 1
(6)

In our experiments, we use the batch gradient descent algorithm
with L2 regularization to train the model. The strength of regulariza-
tion is searched from 10−5 to 105, with an increment of 1 for the
exponent.

Support vector machines (SVM) is one of the most widely used
classifiers in medical image analysis [2,6,21,22]. It performs classifica-
tion by constructing a hyperplane in a high-dimensional feature space.
It can use either linear or non-linear kernels, and its effectiveness
depends on the selection of kernel, the kernel's parameters, and the
soft margin parameter C. Linear SVM is widely used because it has
good performance and fast speed in many tasks. In this paper, we also
choose to use the linear SVM; we did try nonlinear kernels such as the
radial basis functions (RBF) but they are time consuming and did not
improve performance in our task. For linear SVM, we need to optimize
the parameter C. Let C = 2m, we search m in the range [−8, 9] with a
step increment of 1.

k-Nearest Neighbors (kNN) is one of the simplest classifiers, which
classifies a new instance by a majority vote of its k nearest neighbors. In
this paper, we use the Euclidean distance metric to find the k nearest
neighbors. We search the optimal k value for our task in the range [1,
50] with a step increment of 1.

5. Experiments

On the image dataset with multiple types of features introduced in
Section 3, we use the same ten-round ten-fold cross validation to
evaluate our features and compare different classifiers. We randomly
divide the samples (Cervigrams) into ten folds. In the ten rounds, we
rotationally use one fold for testing and nine folds for training (or fine-
tuning the CaffeNet). On the training set, we use a uniform strategy,
Exhaustive Grid Search [28], to search for the optimal parameters of
each classifier. The exact parameters and search ranges for each
classifier are discussed in the Section 4. Note that there are two images
from each patient visit, which are visually similar but not identical. We
have to avoid using one image for training while the other image is
being used for testing. Thus we construct two separate image datasets,
D1 and D2, and randomly assign one image of a visit to D1 and assign
the other image from the same visit to D2. We compute the average
results on D1 and D2 to represent the visit-level performance. By
default, we show the visit-level performance in all our experiments.

The results of our ten rounds are used to draw ROC curves. We
compare different features or classifiers by analyzing their ROC curves,
areas under ROC curves (AUC), and accuracy, sensitivity and specificity
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values at the point with the default probability threshold of 0.5. We also
compare the results of our image-based classifiers with several other
screening tests results, obtained for the same visits that are used to
construct our dataset.

All our experiments are conducted on the computer with 3.0 GHz
Intel Xeon E5-2623 CPU and 64 GB memory. The GPU card used in
training the deep CNN network is Nvidia TITAN X. Since we use the
ImageNet pre-trained model as the weight initialization for our deep
CNN network, the training converges fast for our dataset and the total
training time is about half an hour. For testing, the proposed CNN
framework can achieve real-time speed (18 ms per image), which
demonstrates promising efficiency for future applications.

5.1. PLBP–PLAB–PHOG Feature vs. PLAB–PHOG

We evaluate the performance of our PLBP–PLAB–PHOG feature
descriptor by comparing it with the baseline feature PLAB–PHOG
[2,7]. In Fig. 3, we compare their visit-level performance in ROC curves
produced by linear SVM classifier trained on different features. It
shows that the PLBP–PLAB–PHOG feature outperforms PLAB-PHOG.
For example, our PLBP–PLAB–PHOG increases the accuracy from
73.70% to 77.17% at the probability threshold of 0.5. The best accuracy
of PLBP–PLAB–PHOG feature is 78.12% achieved at 83.19% sensitiv-
ity and 73.04% specificity, while the best accuracy of PLAB-PHOG is
74.28%. Consequently, adding PLBP makes a better feature descriptor
for Cervigram images.

5.2. Evaluation of seven classic classifiers with PLBP–PLAB–PHOG
feature

In this set of experiments, we compare seven classifiers described in
Section 4 based on our handcrafted PLBP–PLAB–PHOG feature. The
implementations for the seven classic classifiers are from well known
open source libraries. The Random Forest, GBDT, and LR classifiers
are implemented with scikit-learn [29]; the MLP classifier is provided
by pylearn2 [30]; the SVM is from Libsvm [28]; the AdaBoost is
provided by Appel et al. [27]; and the kNN classifier is provided by the
implementation in MATLAB.

Our comparison results on D1 and D2 are shown in Fig. 4 as ROC
curves, which illustrate that the three ensemble-tree models—
RandomForest (RF), GBDT, and AdaBoost—outperform other classi-
fiers. At the 5% significance level, there is no difference between
RandomForest, GBDT and AdaBoost. For instance, on D1 the p value is

0.0708 by paired t-test between RF (1st rank) and AdaBoost (3rd
rank). However, these three ensemble-tree classifiers are significantly
better than all other classifiers. The p value is 0.0062 and 1.7191*10−4,
by paired t-test between RF (1st rank) and SVM (4th rank), and
between RF and kNN (lowest rank), respectively. We conjecture that
the ensemble-tree models perform best because they are more robust
to over-fitting than other models such as SVM and MLP when dealing
with scalar data sets that are not too large.

5.3. Evaluation of CNN deep features

In this subsection, we evaluate the CNN deep features extracted
from different layers and trained with different classifiers. Based on the
results shown in Fig. 5 and Table 1, we have several observations. (1)
CNN features extracted directly from pre-trained CaffeNet perform
much worse than our hand-crafted PLBP–PLAB–PHOG feature de-
scriptor. We believe the reason is that our task (i.e. cervical disease
classification) is far too different from the original task of CaffeNet (i.e.
object recognition in natural image scenes). (2) CNN features extracted
from fc7 greatly outperform those from fc6 in the pre-trained model.
The work in [16] also indicates that later layers in the CNN network
can improve performance. Fine-tuning, however, did not improve the
performance of fc7 as much as that of fc6, thus fine-tuned fc6 and fine-
tuned fc7 achieved similar performance; one of the reasons for this
could be that our dataset is too small to fine tune the large number of
parameters in fully connected layers so that there is no big difference
between fc6 and fc7 after fine-tuning. (3) Compared with AdaBoost and
SVM classifiers trained on fine-tuned CNN features, the end-to-end
CNN architecture achieves better performance. Fig. 6 shows some false
positive and true positive examples according to the diagnosis given by
the end-to-end CNN classifier. As one can see, some of the false positive
examples are difficult to distinguish from true positive examples, based
on image information alone. Multi-modal interpretation, using multi-
ple sources of information, may be able to improve classification
performance further.

5.4. Image-based CIN classification vs. Pap and HPV tests

In clinical practice, screening methods should have high specificity
(e.g., higher than 90%) because it is important to have low risk for
unnecessary treatment for women that do not have disease. In Table 2,
we compare our image-based CIN classification methods with several
conventional screening methods (Pap tests and HPV tests), which are
available for the same visits that are used to construct our dataset. As
discussed in Section 1, Pap tests involve collecting a small sample of
cells from the cervix and need a laboratory and trained personnel to
examine these samples under a microscope. Based on the degree of the
disease, the examination result can be classified to be low-risk
(negative) or high-risk (positive). HPV tests are DNA tests which
detect human papillomavirus strains associated with cervical cancer.
The detection result can be negative or positive. The performance for
Pap or HPV tests is computed based on their examination results and
the ground truth. It is clear that those conventional methods are
designed to have high specificity. For fair comparison, we constrain our
methods to have 90% specificity in Table 2.

As illustrated in Table 2, with respect to accuracy and sensitivity,
our hand-crafted PLBP–PLAB–PHOG feature descriptor with random
forest classifier (RF.PLBP–PLAB–PHOG) outperforms every single Pap
test or HPV test, when achieving a specificity of 90%. When not
constrained by the 90% specificity requirement, our image-based
classifier can achieve even better overall accuracy. For example, our
fine-tuned CNN features with Softmax classifier can achieve an
accuracy of 78.41% with 80.87% sensitivity and 75.94% specificity at
the default probability threshold 0.5. Consequently, on this dataset, our
lower-cost image-based classifiers can perform comparably or better
than human interpretation based on widely-used Pap and HPV tests; in
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Fig. 3. Comparison of PLBP–PLAB–PHOG and PLAB–PHOG feature descriptors.
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particular, the image-based classifiers can achieve higher sensitivity in
detecting CIN2/3+.

5.5. Discussion

Besides testing the performance of using hand-crafted or deep
features separately, we have evaluated the performance of combining
hand-crafted and deep features. Unfortunately, the performance is not
improved. For example, the SVM classifier trained on the combined
features achieves 79.99% AUC; but the SVM classifier using hand-
crafted features only or using deep features alone gives 80.71% and
80.01% AUC, respectively. At the 5% significance level, they are proven
to have no significant difference. The p value is 0.5963 and 0.3572 by
paired t-test between the combined features and hand-crafted features,
and between combined features and deep features, respectively. This
result shows that the deep features and hand-crafted features are not
complementary for our task.

6. Conclusions

In this paper, we present a new benchmark dataset with multiple
types of features for evaluating cervical dysplasia classification or
grading algorithms. Both image features and ground truth diagnoses
are included in the dataset. We will publish1 the original dataset,
sample images, fine-tuned CNN model and the source code for
extracting the multiple image features. We will also add information
from other screening tests such as Pap and HPV and expand the size of
the dataset in the future.

Our experimental results indicate that our hand-crafted PLBP–
PLAB–PHOG descriptor and fine-tuned CNN features outperform the
baseline feature descriptor [2,7]. Based on those features, our lower-
cost image-based classifiers perform comparably or better than human
interpretation on traditional Pap and HPV test, on our test dataset.
Further, we adopt a uniform experimentation and parameter optimiza-
tion framework to compare seven classic machine learning algorithms
in terms of their performance in classifying an image into either CIN1/
Normal (i.e. low-grade lesion/healthy) or CIN2/3+ (i.e. high-grade
lesion/cancer). The reported results can serve as a baseline for future
comparisons of automated cervical dysplasia classification methods.
From the results, we find that ensemble-tree models—Random Forest,
Gradient Boosting Decision Tree, and AdaBoost—outperform other
classifiers such as multi-layer perceptron, SVM, logistic regression and
kNN, on this task. This finding is consistent with the conclusion in

Fig. 4. Comparison of seven classifiers based on PLBP–PLAB–PHOG feature.
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Fig. 5. Results of CNN features.

Table 1
Overall performance of CNN features at the default probability threshold 0.5. ft indicates
fine-tuned model. The ft-CNN model utilizes the fine-tuned CNN architecture as an end-
to-end classifier; while all other models use either handcrafted or CNN features to train
classifiers. This table lists the means ± standard deviations of our ten-fold ten-cross
validation results.

Model AUC (%) Accu (%) Sensi (%) Speci (%)

SVM.PLBP–PLAB–
PHOG

80.71 ±
6.15

77.17 ±
6.62

78.55 ±
6.17

75.80 ± 8.39

SVM.CNN-fc6 69.81 ±
5.02

66.01 ±
3.10

65.07 ±
5.52

66.96 ± 6.79

SVM.CNN-fc7 75.05 ±
5.50

69.13 ±
5.16

69.57 ±
8.08

68.70 ± 7.29

SVM.ft-CNN-fc6 79.78 ±
4.60

74.20 ±
4.65

75.36 ±
7.48

73.04 ± 6.55

SVM.ft-CNN-fc7 80.01 ±
4.99

74.64 ±
5.71

76.52 ±
9.11

72.75 ± 6.09

ADA.ft-CNN-fc7 80.30 ±
4.07

77.39 ±
3.89

80.87 ±
6.69

73.91 ± 9.23

ft-CNN 82.31 ±
4.63

78.41 ±
5.01

80.87 ±
7.43

75.94 ± 7.46

1 Project webpage at http://www.cse.lehigh.edu/~idealab/cervitor
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other works [31].
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Table 2
Comparison of visit-level performance: our image-based classifiers vs. Pap tests and HPV
tests.

Method Accu (%) Sensi (%) Speci (%)

Alfaro ThinPrep 51.26 ± 10.02 20.69 ± 19 81.82 ± 5.07
Cytyc ThinPrep 69.01 ± 4.77 49.55 ± 8.14 88.46 ± 3.33
Costa Rica Pap 63.77 ± 4.18 39.42 ± 7.65 88.12 ± 3.18
Hopkins Pap 66.56 ± 9.54 36.00 ± 20.67 97.11 ± 2.51
HPV16 64.01 ± 4.66 33.82 ± 7.41 94.19 ± 3.69
HPV18 53.07 ± 1.95 08.16 ± 3.98 97.97 ± 0.91

Our RF.PLBP–PLAB–PHOG 70.50 ± 6.02 51.00 ± 6.07 90.00 ± 0
Our ft-CNN 65.00 ± 5.11 40.00 ± 7.34 90.00 ± 0
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