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Abstract. Generative models have been applied in the medical imaging domain
for various image recognition and synthesis tasks. However, a more controllable
and interpretable image synthesis model is still lacking yet necessary for impor-
tant applications such as assisting in medical training. In this work, we leverage
the efficient self-attention and contrastive learning modules and build upon state-
of-the-art generative adversarial networks (GANs) to achieve an attribute-aware
image synthesis model, termed AttributeGAN, which can generate high-quality
histopathology images based on multi-attribute inputs. In comparison to existing
single-attribute conditional generative models, our proposed model better reflects
input attributes and enables smoother interpolation among attribute values. We
conduct experiments on a histopathology dataset containing stained H&E images
of urothelial carcinoma and demonstrate the effectiveness of our proposed model
via comprehensive quantitative and qualitative comparisons with state-of-the-art
models as well as different variants of our model.

Keywords: Histopathology Image Synthesis · Attribute-aware Conditional Gen-
erative Model · Conditional Contrastive Learning

1 Introduction

Discriminative models, especially those based on deep learning, have been proven ef-
fective in various medical image analysis tasks [15]. However, such models primarily
focus on discovering distinguishable patterns and features existing in medical images
for down-stream analysis tasks, thus may neglect patterns that are characteristic of the
images but not distinct enough for discriminative tasks. Meanwhile, generative models
provide a complementary way of learning all image patterns by modeling the entire data
distribution. Towards a better comprehension of medical image attributes, we propose
an attribute-guided generative adversarial network, termed AttributeGAN, to model the
data distribution conditioned on different attributes and link the attribute values with
image patterns and characteristics. Different from existing generative models proposed
in the medical image domain for applications such as cross-modality translation [1],
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synthetic augmentation [21] and image reconstruction [13], we investigate the problem
of synthesizing histopathology images conditioned on different image attributes to build
a more controllable and interpretable medical image generative model.

Existing literature on controllable and interpretable image synthesis models [16,
18] focus on noticeable attributes such as human body pose, hair color, age of hu-
man face, among others. However, attributes of medical images are more nuanced and
harder to model and thus the problem of generating medical images based on control-
lable attributes is more challenging to solve. For conditional image synthesis, condi-
tional GANs (cGANs) [12, 11] have utilized various types of discriminator networks
to help the models capture the relationships between input conditions and image fea-
tures. However, few of them work on multiple attribute inputs or are studied for medical
image applications.

In this work, our goal is to develop an attribute-guided medical image synthesis
model which can generate high-resolution and realistic images as well as make sure the
generated images accurately reflect the attributes given to the model. We build upon
a successful unsupervised generative model, leverage a carefully designed attribute-
attention model, and employ a conditional contrastive learning strategy to efficiently
model the conditional data distribution. Multiple attributes are one-hot encoded and
concatenated with the noise vector and fed into different stages of the proposed model.
Our proposed model generates photo-realistic histopathology images while being more
controllable and interpretable than unconditional generative models. We conduct ex-
periments on a histopathology dataset containing stained H&E images of urothelial
carcinoma and compare our proposed AttributeGAN with the state-of-the-art cGAN as
well as different variants of our model. We summarize our contributions in this work as
follows:

* We propose a multi-attribute controllable generative model for high quality histopathol-
ogy image synthesis. To the best of our knowledge, our work is the first to develop
an attribute-aware GAN model with the capability to precisely control cellular fea-
tures while preserving photo-realism for synthesized images.

* We incorporate efficient attention modules and conditional contrastive learning in
both the generator and the discriminator to significantly improve quality as well
as achieve better attribute-awareness of the generated images. Experiments on a
histopathology dataset show better image quality using our proposed AttributeGAN
than the state-of-the-art conditional GAN model.

2 Methodology

To guarantee the quality of synthesized images, we build our model upon a recent unsu-
pervised backbone generative model introduced by [10]. For attribute-aware and con-
trollable generation, we incorporate multi-attribute annotations of each image as the
additional condition information to explicitly control the generation process. With at-
tribute conditions inserted, the synthesized results are expected to maintain sufficiently
photo-realistic while accurately capturing the distinguishable image feature patterns
within attributes. To fulfill the first goal, we adopt a skip-layer channel-wise excitation
(SLE) module and include additional reconstruction loss in discriminator as in [10].
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Fig. 1. The architecture of our proposed controllable cellular attribute-aware generative model.
Each color block of the attribute vector input represents a corresponding cellular attribute feature:
cell crowding, cell polarity, mitosis, prominence of nucleoli and state of nuclear pleomorphism.
Different colors in the feature space for contrastive learning refers to the label constructed by
combination of 5 cellular attribute levels (e.g. (cell-crowding-severe, cell-polarity-completely-
lacking, mitosis-frequent, nucleoli-prominent, pleomorphism-moderate))

SLE leverages learned feature patterns from a lower abstract level to further re-calibrate
the channel-wise features map of higher scale. As demonstrated in the architecture of
our proposed controllable cellular attribute-aware generative model in Fig. 1, in addi-
tion to the basic structure of SLE, we further improve the backbone by incorporating a
global attention pooling for context modeling [3] at earlier stages of upsampling before
the transformation through the bottleneck blocks to capture channel-wise dependencies.

For the second goal of attribute learning, while existing conditional GANs (cGANs) [11]
concatenate noise vectors with the conditional vectors and leverage projection discrim-
inator for condition correctness, such models may not be able to capture the nuanced
changes in attribute levels of medical images. In addition to input concatenation and
projection discriminator, we integrate conditional contrastive losses [6] to both dis-
criminator and generator to exploit the relation between images and the attributes they
contain. Integrating a self-supervised learning based module to exploit data-to-data and
data-to-attribute relations within a mini-batch of proper size comes with two merits.
First, with known attributes available for reference, the performance no longer heavily
relies on the hard negative and positive samples mining. We consider the anchor image
itself together with real images with the same attribute combination as positive sam-
ples, while real images with different attribute combinations in the same mini-batch
as negative samples. Second, the performance of capturing the explicitly distinguish-
able feature representations in a fine-grained manner is substantially enhanced. The-
oretically, this is achieved by minimizing the feature-level distances between positive
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samples while maximizing the distances between positive and negative samples. Dur-
ing training, the knowledge of attribute-dependent feature distinction learned by the
discriminator is then passed to the generator for synthesizing images that are more
sensitive to inter/intra-attribute characteristics. The effectiveness is further proven em-
pirically in the qualitative ablation study of model architecture with and without the
contrastive learning objective as demonstrated in Fig. 3. To elaborate, first we denote
X = {x1, x2, ..., xn} as extracted features from the intermediate stage of discrimina-
tor, and Y = {y1, y2, ..., yn} as the combination of multiple attributes. Intuitively, after
mapping data to the hypersphere via feature and attribute projectors f and l, our goal
is to push the inter-attribute samples further and pull intra-attribute ones closer at the
feature level. Thus, our conditional contrastive loss is formulated as:

L(xi, yi; t) = − log

(
exp( f(xi)

>l(yi)
t ) +

∑n
k=1 1yk=yi

· exp( f(xi)
>f(xk)
t )

exp( f(xi)>l(yi)
t ) +

∑n
k=1 1k 6=i · exp( f(xi)>f(xk)

t )

)
, (1)

where 1 is the indicator function and the scalar value t plays the role as the regularizer
to balance the push and pull force among samples across different and within the same
group of attributes.

Recent GAN models [22] for image synthesis have adopted the self-attention mod-
ule [20] to capture long-range dependencies within the image. However, the dot-product
based self-attention can quadratically increase computational complexity and constrain
the number of images inside each batch. Meanwhile, the aforementioned contrastive
learning efficiency heavily relies on a relatively large batch size as both data-to-data
and data-to-attribute relation learning would be seriously compromised with a small
batch size and insufficient number of positive/negative pairs. Hence, in order to free
up more space to accommodate a larger volume of data in each batch and train with
lower computational complexity, we apply a more efficient equivalence [17] of self-
attention. As illustrated in the efficient attention module in Fig. 1, feature vectors at
intermediate stages in both generator and discriminator are projected onto three latent
spaces through convolution operations termed as query, key and value as in the original
self-attention [20], and denoted as Q,K, V , respectively. Here, Q ∈ R(H∗W )×dq ,K ∈
R(H∗W )×dk , V ∈ R(H∗W )×dv , dq = dk and H,W refer to the height and width of the
image. Leveraging the associative property of matrix multiplication, rather than start
with the multiplication of QKT as formulated in [20] to measure the pair-wise simi-
larity exhaustively, instead we begin with the multiplication between KT and V . It is
feasible because (QKT

n )V = Q√
n
(K

T
√
n
V ). Following this procedure, we obtain a ma-

trix g ∈ Rdk×dv , representing the intermediate global context vector with dimension
of dv in dk channels after aggregating from H ∗W positions through weighted sum-
mation. At the next step, the context vector is acquired by having each pixel gathering
positional features from all dk channels for dv dimensions, by multiplying Q and the
result of (KTV ). With the efficient attention, the memory complexity is reduced to
O(dk ∗dv) from the originalO(n2), escalating convergence speed and freeing up more
space, making it possible for conditional contrastive learning to deliver its performance
to the fullest.
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More specifically, for conditional attributes, we encode the input condition into a
one-hot vector with attribute level labels for all five cellular features. The attribute vec-
tor is later concatenated with the input noise vector after the initial stage of upsampling
both vectors using transposed convolution operators. For synthesizing images with res-
olution 512 × 512, efficient attention modules are applied in two intermediate upsam-
pling stages at 32×32 and 64×64 resolutions as shown in Fig. 1. For each upsampling
block without attention module, input images first go through an upsampling layer with
scale factor set as 2, immediately followed by a gaussian blurring kernel for antialias-
ing. Next, to enlarge the feature learning space channel-wise, a basic block including a
convolutional layer, a batch normalization layer and an activation layer is added as an-
other major component in each individual upsampling block. Gated Linear Units (GLU)
is utilized for every activation layer in the AttributeGAN architecture, as it has shown
quality-improving potential over the commonly used ReLU or GELU activations [14].
Additionally, three skip-layer connections are applied at the resolutions of 16 × 16,
32× 32, and 64× 64 to 128× 128, 256× 256 and 512× 512 in order to strengthen the
gradient signals between layers.

For the discriminator, the conditional attributes are required together with either
synthesized or real images to be further utilized in a projection based discrimination.
Attribute vectors are fed into a feed-forward layer before being incorporated into the
output of discriminator. As shown in Fig. 1, at the resolution of 128 × 128 the feature
vectors and the attribute level information are projected to an embedded space for con-
trastive learning, which is later included in the losses for the discriminator. To further
refine the discriminator’s capability of capturing a more comprehensive feature map to
be differentiated from the fakes, two auxiliary reconstruction losses are added. We uti-
lize two additional simple decoders trained within the discriminator for the 8 × 8 and
16 × 16 feature vectors, and calculate the mean squared error (MSE) for both in the
reconstruction loss.

3 Experiments and Results

Dataset. We conduct comprehensive experiments on a histopathology dataset repre-
senting patients with bladder cancer collected by [23]. The dataset contains 4, 253
histopathology image patches with 512 × 512 resolution. Each patch is accompanied
with a paragraph of pathology report descriptions provided by multiple experienced
pathologists. Each report follows a template format that describes 5 types of key mor-
phological visual cellular features essential for classifying urothelial carcinoma, includ-
ing cell crowding, cell polarity, mitosis, prominence of nucleoli and state of nuclear
pleomorphism.

To achieve a more concise representation of attributes and their levels, we extract
feature-describing keywords in the report as annotations (see Table 1-5 in Supplemen-
tary Materials). Converting raw reports to categorical levels for each cellular attribute
facilitates the manipulation of semantic editing in our experiments, as demonstrated in
Fig. 2. There are 4, 3, 3, 2, 4 levels assigned to describe different degrees of cell crowd-
ing, cell polarity, mitosis, nucleoli and pleomorphism, respectively. Following this pro-
cedure, each patch is paired with a combination of levels from all 5 cellular attributes.
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Fig. 2. The AttributeGAN generated histopathology patches based on different levels of cell
crowding and the state of nuclear pleomorphism. The input noise vector is set to be identical
for each sample, which explains the resemblance of general shape and texture shared within each
column and rich diversity across columns. Zoom in for better view.

To accelerate the learning of attribute-relevant patterns, we discard the combinations
with frequency less than the 20th percentile since most of those merely appear in the
dataset once or twice.
Implementation Details. AttributeGAN is trained on two NVIDIA Quadro RTX 6000
GPUs each with 24GB RAM in parallel by applying the PyTorch DistributedDataParal-
lel module together with SyncBatchNorm. The GPU space freed up from the attention
module efficiency enables a larger batch size. In our experiments, the batch size is set
as 64, and each device processes half of the inputs from the current batch. The learning
rate is fixed to be 2e− 4 throughout the entire 50000 steps of training.

We present example images generated by our AttributeGAN in Fig. 2. To demon-
strate the smooth progression through different attribute levels and showcase disentan-
glement among attributes, the input attribute is framed as a 5-dimensional vector where
we only alter one attribute at a time inside each result batch. Other than the attribute
whose level is being varied, the remaining dimensions are fixed to be a combination of
the other four attributes that frequently appear in the dataset. With attribute conditions
given in such manner, the generated images show clear progressions in cellular pattern
in accordance with the changes in input attribute condition.

To examine the effectiveness of our proposed AttributeGAN and its components, we
compare images generated by different models as well as the real images in Fig. 3. Var-
ious well-developed and extensively-used models are relevant to attribute-controlling,
such as Fader Networks [9], StyleGAN [7] and StyleGAN v2 [8]. Although the afore-
mentioned models present state-of-the-art results on photo-realism and attribute accu-
racy, they are not suitable to be directly compared with our approach for the conditional
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Fig. 3. Generated images from ablation study. The selected attribute for ablation study is cell
crowding. We present the comparison among images synthesized using our baseline model Big-
GAN, our proposed AttributeGAN w/o the efficient attention module, our proposed Attribute-
GAN w/o the conditional contrastive loss, and real images for 4 levels of cell crowding: normal,
mild, moderate and severe. Zoom in for better view.

histopathology image synthesis task, because they are designed for slightly different
goals such as semantic editing of assigned attributes (e.g. the Fader Networks), or un-
conditional image synthesis (e.g. StyleGAN, StyleGAN v2). Hence we consider the
state-of-the-art conditional GAN model, BigGAN [2], as the most appropriate baseline
model. Since BigGAN can only handle single-dimensional condition, we train 5 differ-
ent BigGAN models for different attributes. Considering that BigGAN consumes larger
memory and requires longer time to converge, we train all baseline BigGAN models
with image resolution 256× 256. During comparison, we resize all images to the same
size for fair comparison. One can observe that images generated by our models show
superb realism. Compared with the BigGAN model, different variants of AttributeGAN
model keep the global shape and texture well inside each column. On the contrary, the
global image pattern changes for BigGAN given different attribute level inputs. For
variants of our AttributeGAN, our proposed model without the attention module gen-
erates less realistic images, and the model without the conditional contrastive learning
reacts less responsively to the changes in attribute level. The full AttributeGAN model
respects the changes in attribute level and retains the global patterns well.

In Table 1, we show quantitative comparison results between different models. Fol-
lowing conventions in image synthesis works [22, 2], we adopt Fréchet Inception Dis-
tance (FID) [5] score which has shown to correlate well with human perception of real-
ism. FID measures the Fréchet distance between two multivariate Gaussians fit to fea-
tures of generated and real images extracted by the pre-trained Inception V3 [19] model.
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Methods FID↓
Attribute Error↓

Cell Cell
Mitosis Nucleoli Pleomorphism

Crowding Polarity
Real Images* - .011 .034 .037 .018 .014
BigGAN [2] 158.39 .112 .080 .104 .049 .065
AttributeGAN (Ours)

142.015 .035 .078 .208 .056 .023
w/o EA

AttributeGAN (Ours)
55.772 .094 .112 .111 .056 .070

w/o CCL
AttributeGAN (Ours) 53.689 .021 .098 .088 .081 .063

Table 1. Quantitative evaluation results of different methods. Real images are from a holdout
validation set during fine-tuning of the pre-trained classifier. Note that we report BigGAN results
from five independently trained BigGAN models for five attributes as it can only work with
single attribute inputs. EA refers to Efficient Attention module and CCL refers to the Conditional
Contrastive Loss.

Compared with BigGAN whose FID score is averaged from five BigGAN models, all
AttributeGAN variants achieve better FID score indicating better realism. After includ-
ing the attention module, the FID score improved significantly for the AttributeGAN
model. To better evaluate the correctness of represented attributes, we further calculate
an Attribute Error to measure the discrepancy between attribute levels predicted by an
ImageNet pre-trained ResNet18 [4] model fine-tuned on the histopathology dataset and
the groundtruth attribute levels. Images generated by all models are first normalized to
same resolution 224 × 224 for fair comparison. All attribute levels are normalized to
the range [0, 1] and the MSE of the predicted attributes and the groundtruth attributes
are computed as the attribute error value. During fine-tuning of the ResNet18 model,
we keep a holdout validation set and the corresponding attribute error evaluated on the
holdout real images are also reported in Table 1. For BigGAN and our proposed At-
tributeGAN without attention, although they achieve small attribute errors for certain
attributes, the quality of generated images are lower which makes them differ more
from real images, thus the attribute prediction model trained on real images may not
be able to correctly predict the attribute level for such images. Compared to Attribute-
GAN without contrastive learning, the full AttributeGAN generally gets lower attribute
error, especially on cell crowding. Based on both the qualitative and quantitative com-
parisons, we prove the necessity of the attention module and the conditional contrastive
loss, and show that one multi-attribute AttributeGAN model can generate images with
better quality than multiple BigGAN models for conditional histopathology image syn-
thesis.

4 Discussion

To assess the quality of the generated images and how well the images correspond to
the input attribute levels, we presented five sets of images that were generated based
on different cellular attribute levels to two expert pathologists. Both pathologists com-
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mented that the synthetic images are remarkably good in resembling routinely stained
H&E images of urothelial carcinoma. In the set of images generated according to differ-
ent levels of cell crowding (see examples in Fig. 2-Left), the crowding of nuclei occurs
appropriately overall at each of the described levels, and the degree of crowding re-
mains within the realm of reality, although for a few images, the increase in crowding
seems to be by increasing the epithelial/stromal ratio, rather than increasing the density
of cells within the same amount of epithelium. For the set of images generated accord-
ing to different levels of pleomorphism (see examples in Fig. 2-Right), an increase in
nuclear pleomorphism was observed as the images progress through the pleomorphism
prominence levels. For the other three sets of images generated based on different lev-
els of cell polarity, mitosis, and prominence of nucleoli (see Figures 1-3 in Supplemen-
tary Materials), the pathologists commented that no obvious progression was observed
through those sequences of images. We plan to further investigate these three attributes
in our future work, study whether the attributes are correlated in some fashion in real
images and learn how to improve the responsiveness of generated images to varying
input conditions.

5 Conclusion

In this work, we present a multi-attribute guided generative model, AttributeGAN, for
synthesizing highly realistic histopathology images. Images generated by the proposed
model show smooth progression through different input attribute levels and contain
photo-realistic patterns. With the quality of synthesized images, AttributeGAN can be
potentially used for medical education or training and support various medical imaging
applications.
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