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Introduction

e Data cube

Sex Age Salary c
Age Salary F 21-30 0-10k | O
F

Sex
— Fact table F [ 2730 | 10-50k 5130 | 1050k | 2
- F | 21-30 | 10-50k
— Cuboids F_| 3140 | 50-200k (c) Cuboid {Sex, Age, Salary}
F [ 47-50 | 500k+
. Cel IS M 51-30 70-50k Sex Age Salary C
M | 21-30 | 50-200k * 21 '28 100-1500kk 8,
M | 31-20 | 50-200k % - -
~ Measure e | so - |20 | s
* - -
(count) (a) Fact Table 7 = [ 2730 | 500k+ | 0
Sex | Age Salary c * 31-40 0-10k 0
¥ ¥ 0-10k 0 * 31-40 10-50K 0
" " 70-50k | 3 = | 3140 | 50200k | 2
¥ = | 50-200k | 3 = | 31-40 | 200-500k | O
* * ... ... * 31-40 500k+ 0
(b) Cuboid {Salary} * : X

(d) Cuboid {Age, Salary}

— Application: fast OLAP, decision support, summarization



Introduction

* Privacy concerns of publishing data cube

— Health summary tables, census data ...

Sex Age Salary c

Sex Age Salary F 21-30 0-10k | O Alice with Age 31-40
F [ 21-30 | 10-50k F | 21-30 | 10-50k | 2

F [ 21-30 | 10-50k
F_| 3140 | 50-200k (¢) Cuboid {Sex, Age, Salary}
F 41-50 500k+

M 51-30 10-50K Sex Age Salary c

M | 21-30 | 50-200k * 2180 [ 010k | O

M | 31-40 | 50-200K * | 2130 | 10-50k | 3
V| 60+ | Sooks 0T o0000k 0

* - -
(a) Fact Table T’ —1 57730 E00RT 5
Sex | Age Salary c * 31-40 0-10k 0

" ¥ 0-10k | O % | 31-40 10-50k | O
* * 10-50k 3 * 31-40 50-200k 2_|
* * 50-200k | 3 * 31-40 | 200-500k | O
* * LK 31-40 500k+ 0_
(b) Cuboid {Salary} | | -

(d) Cuboid {Age, Salary}



Introduction

* Privacy concerns of publishing data cube

— Health summary tables, census data ...

Sex Age Salary
F 21-30 10-50k
F | 27-30 | 10-50k
F 31-40 | 50-200k
F 41-50 500k+
M 21-30 10-50k
M 21-30 | 50-200k
M 31-40 | 50-200k
M 60+ 500k+
(a) Fact Table T’
Sex | Age Salary c
* * 0-10k 0
* * 10-50k 3
* * 50-200k | 3
* *

(b) Cuboid {Salary}

Sex Age Salar c .
E 21_g30 0_10&/ 5 Bob with Age 21-30
F 21-30 | 10-50k | 2

(c) Cuboid {Sex, Age, Salary}

Sex | Age | Salary | c
a 21-30 0-10k 0"
L 51-30 10-50k 3| 75%

% | 21-30 | 50-200k_| 1 | 25%
|~ % | 21-30 | 200-500k | O

* 21-30 500k+ 0
X 31-40 0-10K 0

* 31-40 10-50k 0

% | 31-40 | 50-200k | 2

% | 31-40 | 200-500k | O

% | 31-40 500k+ 0

*

(d) Cuboid {Age, Salary}



Introduction

* Privacy concerns of publishing data cube

— Health summary tables, census data ...
— Adversary with sufficient background knowledge

Sex Age Salary c

~,

21-30 0-10k
51-30 10-50K

N4 2N [nlaWaYaYaY)"
T YUTETUN

21-30 | 50-200k
31-40 | 50-200k
60+ 500k+

(a) Fact Table T’

100% Carl with Age 21-30
0% and Salary 50-200k

Sex Age Salary F 21-30 0-10k | O Bob with Age 21-30
F 21-30 10-50k F 21-30 | 10-50k | 2

F [ 27-30 | 10-50k

F_| 3140 | 50-200k (¢) Cuboid {Sex, Age, Salary}

F 41-50 500k+

M 51-30 10-50K _Sex Age Salary c

M

M

M

21-30 | 200-500k

O| O] | ] ©

I EAEAE A G S

\ 21-30 500k+ )

Sex | Age Salary c - -
¥ x 0-10k | O % | 31-40 | 1050k | O
* * 10-50k 3 * 31-40 50-200k 2
* * 50-200k | 3 * 31-40 | 200-500k | O
* * Ve e * 31-40 500k+ 0
(b) Cuboid {Salary} * >

(d) Cuboid {Age, Salary}
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Formal Definition of DP [DworkMNSO06]

An algorithm K'is if:
— for any two neighboring tables differing at most one row
(T —T)U (T —T)|[ =1
— for any set S of possible output

< exple) =1+ ¢
S PrK(Ty) € 5] = Pl m1te

1 — e ~ exp(—¢)

 Implication:
— Any individual's record has negligible impact on query result

— An adversary cannot make meaningful inferences about any
one individual's record value



Achieving e-Differential Privacy [DworkMNSO6]

Query result F: {Tables} - R" is a n-dim vector

of F: S(F) = max |F(TY) — F(Ty)||:

Y neighboring 17,75

Publishing: F(T) = F(T) + (Lap(S(F) /e))" is e
differentially private

Density, Expectation, and Variance of Lap(l):
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e Optimizing noise sources in DP publishing



Approach I: Adding Noise in All Cuboids

Approach All: [BarakCDKMTO7]
. d
In a d-dim fact table Lap(2/e)
29 cuboids in total ‘{ }

Add noise to each of them
Lap( “’/E Lap (2%/€) Lap(2%/¢)

gej{ alary}

Lap( 2(!/(-’ ) Lap(2/e)

o0 o d
Sensitivity 2 (Sex

Lap( Qd/(-’

Max noise variance
(expected squared error):

:_2 x 4d/.2 : {Sex, Age} {Sex Sa ry} {Age, Salary}

Lap(2¢/e)

Ciy1) 15ex,Age, Salary}



Approach Il: Adding Noise in Base Cuboid

Approach Base: 1 2 x |sex| x |Age| x [salary|/é? |

Add noise to only base CUb0|_d_ Z S

Sensitivity 1 { J
Compute other cuboids from
the noisy base cuboid

without touching the
fact table (thus e-DP)

{Sex, Saléry} {Age, Salary}

Max noise variance

(expected squared error): 2% 1/2 1) {Sex, Age, Salary}



Can We Do Better?

Choose a set of s cuboids L,
Add noise to them

Coo) (3

Sensitivity s = [L .|

Compute other cuboids
from noisy cuboidsin L, (s Lap(4/¢) (Age)
without touching the C1og @
fact table (thus e-DP) Lap(4/e) _Lap(4/e)

Both measure and noise {Sex, Age} ,Sal4 {Age, Salary}
are aggregated... Lap(4/e)

Ci11) ) 15ex, Age, Salary }



Noise Aggregation

Suppose |Sex| =2, |Age| =7, and |Salary| =
Computing cuboid {Age, Salary}
from {Sex, Age, Salary}

EIrEETI

21-30 10-50k 2
M 21-30 10-50k 1

Aggregate 2 cells in {Sex, Age, Salary}
for each cell in {Age, Salary}

nge | salay |

21-30 10-50k 3

{Sex, Age} ' 4 {Age, Salary }

Noise variance magnification: 2

{Sex, Age, Salary }



Noise Aggregation

Suppose |Sex| =2, |Age| =7, and |Salary| =
Computing cuboid {Salary}
from {Sex, Age, Salary} {}

e e Do T
F 0-10 10-50k
F 10-50k .. {Sex) {Salary}
F 60+ 10-50k 2
M 0-10 10-50k O
M 10-50k
M 60+ 10-50k 1
{Age, Salary}

Aggregate 2x7 cells in {Sex, Age, Salary}{sex Age)
for each cell in {Salary}

saary Jc

10-50k 12

{Sex, Age, Salary }
Noise variance magnification: 14



Noise Aggregation

Noise variance magnification ratio of
computing cuboid C from C’: mag(C, ")

Compute C from a set of s cuboids L,
The noise variance is:

(choosing the best C” from L )

noise(C, Lpe) = min mag(C, ") - 2s% /€

Gfeﬁpre

A smart choice of L,

cah reduce the overall noise?



Optimizing Noise Sources L .

 Problem 1 (Bound Max Variance)
— Choosing L. s.t. max noise in all cuboids

noise(Lyre) = max noise(C, Lyre) is minimized

 Problem 2 (Publish Most)

— Given noise variance threshold ¢, and cuboid weights w

— Choosing L_ . s.t. weight of

pre

Z w(C) is maximized

C': noise(C,L ) <0y

* Problems 1 and 2 are NP-Hard

— Reduction from
— Design approximation algorithms



Approximation Algorithm

* Guess the optimal solution ¢ = OPTand s = [L .|

— using binary search

— Fixing g and s
9 2
noise(C, L) < 0 @Cgenﬁlsremag(C C') <55
— Define of a cuboid C’

cov(C) = {C € £ ] C = C', mag(C,C") < £}

— Sub-problem: Select s cuboids L, to all cuboids L



Approximation Algorithm

* Guessqgands

e Solve sub-problem:

— Select s cuboids L, . to cover all cuboids L
Using the greedy algorithm for Set Cover

— We may need (log|L|+1)s cuboids
— So noise is magnified another (log|L|+1)? times

e So, (log|L|+1)*-approximation
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Enforcing Consistency

e Possible inconsistency
— Independent noise

el s L

21-30 10-50k 2+0.5=2.5
M 21-30 10-50k 1-0.2=0.8

l

nae | say [

21-30 10-50k 3-0.2=2.8

— A sign of bad data?



Consistency Constraints

Every cuboid has the measure as if it is computed from the
base cuboid

Noisy measure (ensuring DP): C(a)

U o

Consistent measure:  C(a)

Subject to
consistency constraints: {Sex, Agh

Y &ld)=¢(a), Veellsa

&’GBa.Se(a) {Sex, Age, Salary }



Consistency Constraints

Base cells under a cell a:

EIEETI EIEETI

21-30 10-50k 2 Base(a) 0-10 10-50k 0 Base(a)
M 21-30 10-50k 1 - | 10-50k ..
l F 60+ 10-50k 2
M 010 10-50k 0

nge | salay ¢ _

21-30 10-50k 3

10-50k
60+ 10-50k 1

M
M
saary ¢

10-50k 12



Consistency-Enforcing Framework

Minimizing LP distance between c(a) and ¢(a)

A ~ . ™ 1/
() = €Ol = D ([e(a) —E(a)P)"?
a€E pre
subject to consistency constraints

Epre: all cellsin Ly

Intuition:
We do not know the real measure values...
Then let’s approximate the noisy version



L= Version

 Minimizing L= distance

minimize z
s.t.  |C(a) —C(a)] <z, Vcellsa € Eye;

Z c(a’) =c(a), Y cellsa € Eye.

a'€Base(a)

@ Generalizing [BarakCDKMTO7]

With probability at least 1 — o, where 0 = —E;’}‘;',
A ‘gpre|‘£pre| |8pre’ |gpre‘|£pre|
cla) —cla)| < 2log ——— = .
) [&(a) —c(a)] < . 8 ]

a-égpre



L1 Version

* Minimizing L distance

s.t.  |cla) —c(a)] <z, Vcell a € Epe;
Y &d) =¢a), Vecella€ Epe.

a'€Base(a)

J

With probability at least 1 — 0, where 0 = (26,;?2_1 )'gpre|:

> le(a) — cla)] < el

a€E e




L1 Version

e Analysis

> [e(a) —cl@)] < ) [ela) + ) e

€€ pre a€Epre a€pre
<) e > [
@€ pre acé
=23 le(a) - &(a)
a€&pre

c(a)—c(a) ~ Lap(|Lpe|/€) = |c(a)—c(a)| ~ Exponential(e/|Lpr|)

@ Extending Chernoff’s Inequality to Exponential Distribution

With probability at least 1 — 4, where § = (7).

ol ol
> lel@)—&@)| <E| Y lela = e

a€E e a€Epre

:_ Lot X = X;+ Xo+...+ X, where X;’s are 1.1.d. \\1‘[1]1
:th[ exponential distribution. With probability at le dst:
11 — 6, where § = (-4)", we have X < nE[X] (n > 1). |

I-———————————————————————————————-l



L2 Version

e Minimizing L2 distance inspired by DP Range Query

in [HayRMS10]
minimize Z (c(a) — c(a))
a€Epre
sty &d)=¢a), Vcella€ Lye.
a’€Base(a)

e Surprisingly, solvable it in linear time!

LP is not practical in this context... Faster than OLS...

o Statistics optimality
— A unbiased estimator of the real values of measure

— The smallest variance (expected squared error) among any
linear unbiased estimator



L=

Comparing L=, L!, and L? Versions

: - Eore Generalizing
With probability at least 1 — o0, where 0 = | po‘, (BarakCDKMTO7]

en/—

With probability at least 1 — 0, where 0 = ( ! )'g‘“‘,

2en/2-1

[Eprel [ Lprel
P P n.
€

D lela) —cla)] <

The smallest variance among all linear unbiased estimators
Efficient in practice (linear-time solvable)
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Experiments

e Seven algorithms
— Baselines: All, Base
— Optimizing noise sources: BMax, PMost
— Enforcing consistency: AllC, BMaxC, PMostC

e Dataset
— Adult dataset from http://archive.ics.uci.edu/ml/

— 8 categorical dimensions:

workclass (cardinality 9), education (16), marital-status (7), occupation
(15), relationship (6), race (5), sex (2), and salary (2).


http://archive.ics.uci.edu/ml/

All BMax

Experiments

AlIC 1 BMaxC PMostC

12800 |
6400 |
3200 |
1600 |

800 |
400 |
200 |
100 |
50

Max Error

0.25

0.5 1 1.5
Privacy Parameter ¢

1280 f
640 i
320
160 |
80
40 ¢
20 ¢

PMost Base mmmm

Avg Error

025 05 1 1.5 2
Privacy Parameter ¢



Experiments

All BMax 71 PMost Base mmmm
AllC 1 BMaxC ———="3 PMostC

Max cuboid error in different cuboids as dimensionality varies,
when all cuboids must be released

2560 T
1280 |
640 |-
320 |/
160 -

e
iy B !

ae o e, i LEF,
ot £ i i i

e o, o iy

40 |
20 |

E i
|
|
I I ||

0 1 2 3 4 5 6 7 8
m: Dimensionality of Cuboids




Experiments

All BMax 71 PMost Base mmmm
AllC 1 BMaxC ———="3 PMostC

Max Error

10240 T
5120 |
2560 |
1280 |

640 |
320 |
160
80 i _Z;Z

Avg Error

6 7 8 9
Dimensionality of Fact T: 40 |

6 7 8 9 10
Dimensionality of Fact Table



Experiments

All BMax 71 PMost Base mmmm
AllC 1 BMaxC ———="3 PMostC

Fix the number of dimensions (7),

Max Error vary their cardinalities

3840 [ | | | |
2560 | l I Avg Error
1280 ¢ . . :

640 160 |
320 ... B 2
160 || 9 -m Ll B a0l
80 | — 77

40 |
20 |

.......

=

40

Cardinality of Dimensic I m

2 4 6 8 10
Cardinality of Dimensions




Experiments

All BMax 71 PMost Base mmmm
AllC 1 BMaxC ———="3 PMostC

Total time for publishing
10240

2560 |
640
160 | ]

(2x10°)
Dimensionality of Fact Table (and Number of Cells)




Experiments

Running time for each subroutine

Select L, for BMax (Alg. 1) —— | 220 [ " Noise injection —5—
5 |Select Lpre for PMost(Alg. 2) —a— 128 [Enforce consistency —&—

S 6 7 8 9 10 3 5 12 20 64 2956
Number of Dimensions Lorel



Conclusion and Future Work

e Conclusion
— Publishing a data cube in a differentially private way
— Optimizing noise sources in DP data publishing algorithms
— Enforcing consistency in data cubes

 Ongoing work and open questions
— Gap between hardness and approximation
(better approximation algorithm?)
— Online query model
— Handling different classes of data cube measures
— Some cuboids are exact while some are noisy?



Thank You!

%
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