Differentially Private Data Cubes: Optimizing Noise Sources and Consistency

Bolin Ding (UIUC), Marianne Winslett (ADSC&UIUC), Jiawei Han (UIUC), Zhenhui Li (UIUC)

SIGMOD'11, Athens, Greece

Outline

- Introduction
 - Data cube and privacy concerns
 - Differential privacy (DP)
- Optimizing noise sources in DP publishing
- Enforcing consistency
- Experiments and future work

Outline

- Introduction
 - Data cube and privacy concerns
 - Differential privacy (DP)
- Optimizing noise sources in DP publishing
- Enforcing consistency
- Experiments and future work

• Data cube

- Fact table
- Cuboids
- Cells
- Measure

(count)

Sex	Age	U)	Salary	/
F	21-3	0	10-50	K
F	21-3	0	10-50	K
F	31-4	0	50-200)k
F	41-5	0	500k+	-
Μ	21-3	0	10-50	ĸ
Μ	21-3	0	50-200)k
Μ	31-4	0	50-200	k
Μ	60+	-	500k+	-
(:	a) Fact	t Ta	able T	
Sex	Age		Salary	С
*	*		0-10k	0
*	*	1	0-50k	3
*	*	5	0-200k	3
*	*			
(b)	Cuboi	d -	{Salary	}

Sex	Age	Salary	С
F	21-30	0-10k	0
F	21-30	10-50k	2
c) Cul	boid {Se	ex, Age, Sa	$alary\}$
Sex	Age	Salary	С
*	21-30	0-10k	0
*	21-30	10-50k	3
*	21-30	50-200k	1
*	21-30	200-500k	0
*	21-30	500k+	0
*	31-40	0-10k	0
*	31-40	10-50k	0
*	31-40	50-200k	2
*	31-40	200-500k	0
*	31-40	500k+	0
*			<u> </u>
(d) (Cuboid {	Age, Sala	ry}

- Application: fast OLAP, decision support, summarization

- Privacy concerns of publishing data cube
 - Health summary tables, census data ...

Sex	Age	È	Salary	/
F	21-3	0	10-50	<
F	21-3	0	10-50	<
F	31-4	0	50-200	k
F	41-5	0	500k+	-
Μ	21-3	0	10-50	<
Μ	21-3	0	50-200	k
Μ	31-4	0	50-200	k
Μ	60+	-	500k+	-
(8	a) Fact	t Ta	able T	
Sex	Age		Salary	С
*	*		0-10k	0
*	*	1	0-50k	3
*	*	5	0-200k	3
*	*			
(b)	Cuboi	d ·	{Salary	}

	Sex	Age	Salary	С
_	F	21-30	0-10k	0
-	F	21-30	10-50k	2
-				
(c) Cub	oid {Se	x, Age, Sa	alary
-	Sex	Age	Salary	С
	*	21-30	0-10k	0
	*	21-30	10-50k	3
	*	21-30	50-200k	1
	*	21-30	200-500k	0
_	*	21-30	500k+	0
. (*	31-40	0-10k	0
<u> </u>	*	31-40	10-50k	0
3	*	31-40	50-200k	2
3	*	31-40	200-500k	0
(*	31-40	500k+	0
-	*			
	(d) C	uboid {	Age, Sala	ry}

Alice with Age 31-40

- Privacy concerns of publishing data cube
 - Health summary tables, census data ...

Sex	Age	(L	Salary	/
F	21-3	0	10-50	Κ
F	21-3	0	10-50	K
F	31-4	0	50-200)k
F	41-5	0	500k+	-
Μ	21-3	0	10-50	K
М	21-3	0	50-200	k
Μ	31-4	0	50-200	k
М	60+	-	500k+	-
(:	a) Fact	t Ta	able T	
Sex	Age		Salary	С
*	*		0-10k	0
*	*	1	0-50k	3
*	*	5	0-200k	3
*	*			
(b)	Cuboi	d -	{Salary	}

_				
_	Sex	Age	Salary	С
	F	21-30	0-10k	0
	F	21-30	10-50k	2
(c)	Cuł	ooid {Se	ex, Age, Sa	alary}
	Sex	Age	Salary	с
ſ	*	21-30	0-10k	0
	*	21-30	10-50k	3
_	*	21-30	50-200k	1
	*	21-30	200-500k	0
	*	21-30	500k+	0
	*	31-40	0-10k	0
	*	31-40	10-50k	0
	*	31-40	50-200k	2
	*	31-40	200-500k	0
	*	31-40	500k+	0
	*			<u> </u>
((d) (Cuboid {	Age, Sala	ry}

Bob with Age 21-30

75% 25%

- Privacy concerns of publishing data cube
 - Health summary tables, census data ...
 - Adversary with sufficient background knowledge

Sex	Age	Ð	Salary	/
F	21-3	0	10-50	<
F	21-3	0	10-50	<
F	31-4	0	50-200	k
F	41-5	0	500k+	-
Μ	21-3	0	10-50	<
Μ	21-3	0	50-200	k
Μ	31-4	0	50-200)k
Μ	60+	-	500k+	-
(:	a) Fact	t Ta	able T	
Sex	Age		Salary	С
*	*		0-10k	0
*	*	1	0-50k	3
*	*	5	0-200k	3
*	*			
(b)	Cuboi	id -	{Salary	}

	Sex	Age	Salary	С
		-	,	-
	F	21-30	0-10k	0
	F	21-30	10-50k	2
(c) Cuł	ooid {Se	ex, Age, Sa	alary
	Sex	Age	Salary	С
(*	21-30	0-10k	0
	*	21-30	10-50k	3
	Ť	21 30	50 200k	1
	*	21-30	200-500k	0
	*	21-30	500k+	0
	*	31-40	0-10k	0
	*	31-40	10-50k	0
	*	31-40	50-200k	2
	*	31-40	200-500k	0
	*	31-40	500k+	0
	*			<u> </u>
	(d) (Cuboid {	Age, Sala	ry}

Bob with Age 21-30

100%Carl with Age 21-300%and Salary 50-200k

Outline

Introduction

- Data cube and privacy concerns
- Differential privacy (DP)
- Optimizing noise sources in DP publishing
- Enforcing consistency
- Experiments and future work

Formal Definition of DP [DworkMNS06]

An algorithm **K** is *e*-differentially private if:

for any two neighboring tables differing at most one row

 $|(T_1 - T_2) \cup (T_2 - T_1)| = 1$

for any set S of possible output

$$1 - \epsilon \approx \exp(-\epsilon) \le \frac{\Pr\left[\mathcal{K}(T_1) \in S\right]}{\Pr\left[\mathcal{K}(T_2) \in S\right]} \le \exp(\epsilon) \approx 1 + \epsilon$$

- Implication:
 - Any individual's record has negligible impact on query result
 - An adversary cannot make meaningful inferences about any one individual's record value

Achieving e-Differential Privacy [DworkMNS06]

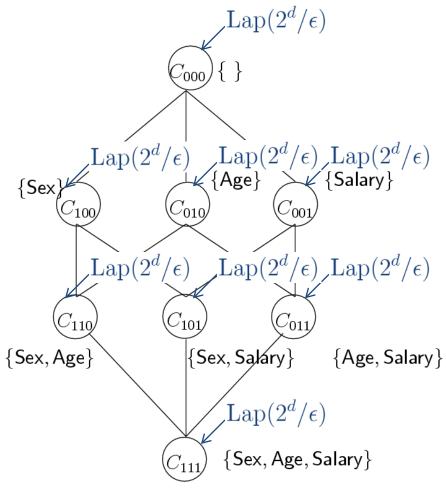
Query result *F*: {Tables} $\rightarrow \mathbb{R}^n$ is a n-dim vector

Sensitivity of F: $S(F) = \max_{\forall \text{ neighboring } T_1, T_2} ||F(T_1) - F(T_2)||_1$

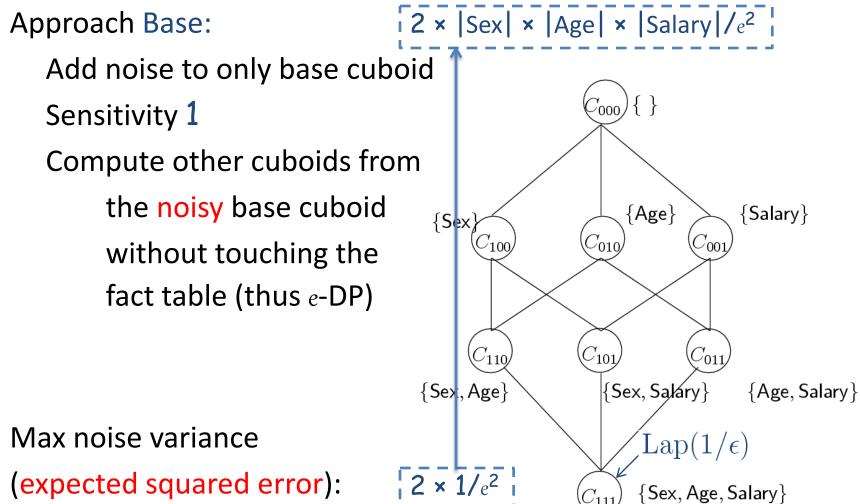
Publishing: $\tilde{F}(T) = F(T) + \langle Lap(S(F)/\epsilon) \rangle^n$ is *e*-differentially private

Density, Expectation, and Variance of Lap(l):

 $f(x) = \frac{1}{2\lambda} e^{-|x|/\lambda}$ E[Y] = 0 $Var[Y] = 2\lambda^2$

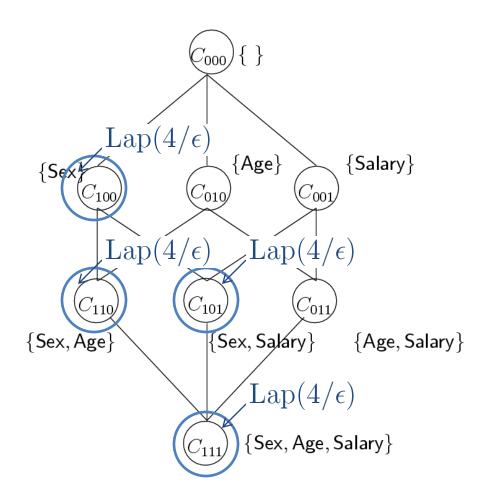

Outline

- Introduction
 - Data cube and privacy concerns
 - Differential privacy (DP)
- Optimizing noise sources in DP publishing
- Enforcing consistency
- Experiments and future work


Approach I: Adding Noise in All Cuboids

Approach All: [BarakCDKMT07] In a d-dim fact table 2^d cuboids in total Add noise to each of them Sensitivity 2^d

Max noise variance (expected squared error): $\overline{2 \times 4^{d}/e^{2}}$


Approach II: Adding Noise in Base Cuboid

(expected squared error):

Can We Do Better?

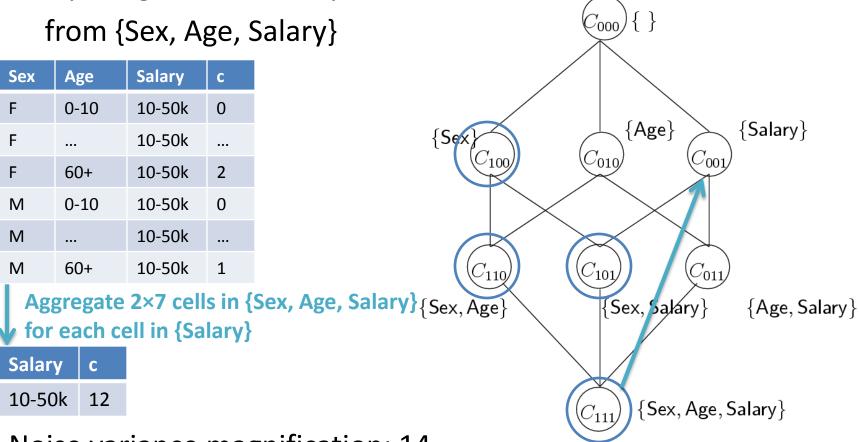
- Choose a set of *s* cuboids L_{pre} Add noise to them Sensitivity $s = |L_{pre}|$ Compute other cuboids from noisy cuboids in L_{pre} without touching the fact table (thus *e*-DP)
 - Both measure and noise are aggregated...

Noise Aggregation

[₀₀₀]{}

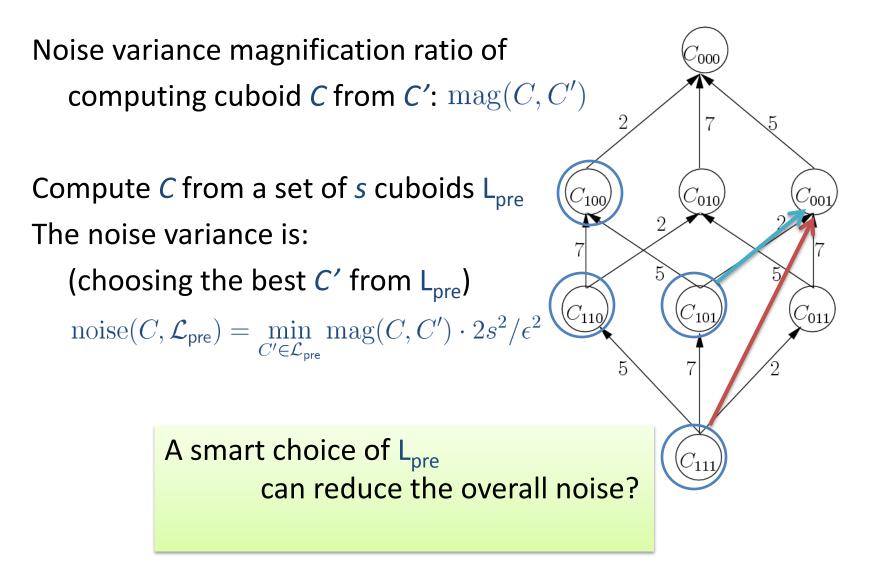
 $\{Sex, Age, Salary\}$

Suppose |Sex| = 2, |Age| = 7, and |Salary| = 5 Computing cuboid {Age, Salary}


from {Sex, Age, Salary}

	-	-	•		
Sex	Age	Salary	С		
F	21-30	10-50k	2		{See {Age} {Salary}
Μ	21-30	10-50k	1		$\begin{cases} Sex \\ C_{100} \end{cases} \qquad $
	gregate r each co		-	x, Age, Salary} alary}	
Age	Salar	y c			
21-3	0 10-50	Ok 3			$\begin{pmatrix} C_{110} \\ C_{101} \\ C_{011} \\ C_$
	_	_			$\{Sex, Age\}$ $\{Sex, Salar, \}$ $\{Age, Salar, \}$

Noise variance magnification: 2


Noise Aggregation

Suppose |Sex| = 2, |Age| = 7, and |Salary| = 5 Computing cuboid {Salary}

Noise variance magnification: 14

Noise Aggregation

Optimizing Noise Sources Lpre

- Problem 1 (Bound Max Variance)
 - Choosing L_{pre} s.t. max noise in all cuboids $noise(\mathcal{L}_{pre}) = \max_{C} noise(C, \mathcal{L}_{pre}) \text{ is minimized}$
- Problem 2 (Publish Most)
 - Given noise variance threshold q_0 and cuboid weights w
 - Choosing L_{pre} s.t. weight of precise cuboids

 $\sum w(C)$ is maximized

 $C: \operatorname{noise}(C, \mathcal{L}_{\mathsf{pre}}) \leq \theta_0$

- Problems 1 and 2 are NP-Hard
 - Reduction from Vertex Cover In Degree-3 Graphs
 - Design approximation algorithms

Approximation Algorithm

- Guess the optimal solution q = OPT and $s = |L_{pre}^*|$
 - using binary search
 - Fixing q and s

 $\operatorname{noise}(C, \mathcal{L}_{\operatorname{pre}}) \le \theta \Leftrightarrow \min_{C' \in \mathcal{L}_{\operatorname{pre}}} \operatorname{mag}(C, C') \le \frac{\theta \epsilon^2}{2s^2}$

- Define coverage of a cuboid C' $\operatorname{cov}(C') = \{ C \in \mathcal{L} \mid C \preceq C', \ \operatorname{mag}(C, C') \leq \frac{\theta \epsilon^2}{2s^2} \}$
- Sub-problem: Select s cuboids L_{pre} to cover all cuboids L

Approximation Algorithm

- Guess q and s
- Solve sub-problem:
 - Select s cuboids L_{pre} to cover all cuboids L

Using the greedy algorithm for Set Cover

- We may need (log |L|+1)s cuboids
- So noise is magnified another (log|L|+1)² times

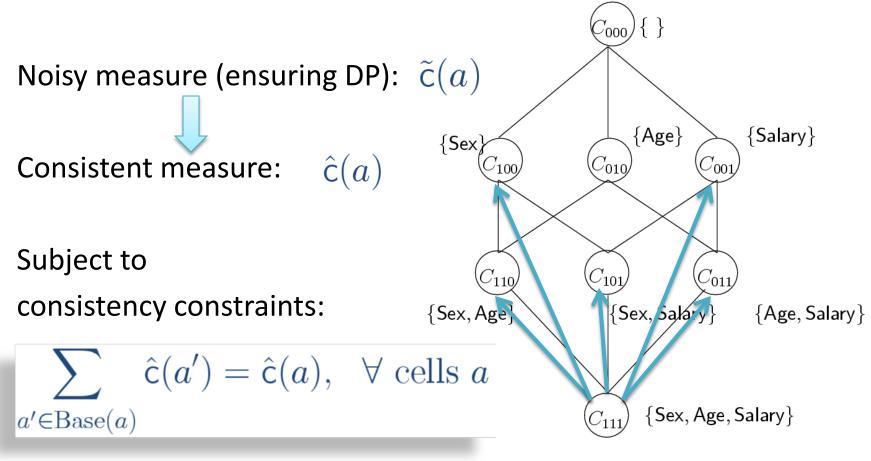
• So, (log|L|+1)²-approximation

Outline

- Introduction
 - Data cube and privacy concerns
 - Differential privacy (DP)
- Optimizing noise sources in DP publishing
- Enforcing consistency
- Experiments and future work

Enforcing Consistency

- Possible inconsistency
 - Independent noise


Sex	4	Age	Sa	alary		С		
F	2	21-30	10	D-50k		2 + 0.5	= 2.	5
Μ	2	21-30	10	D-50k		1-0.2	= 0.	8
Ļ								
Age		Salar	У	С				
21-3	80	10-50)k	3 - 0	.2	2 = 2.8		
Age		Salar	У	C			= 0	-

– A sign of bad data?

Consistency Constraints

Every cuboid has the measure as if it is computed from the base cuboid

Consistency Constraints

Base cells under a cell **a**:

Sex	Age	Sa	alary	С	
F	21-30	10	0-50k	2	Base(a)
Μ	21-30	10	0-50k	1	Dasc(a)
Ļ					
Age	Salar	У	С		
21-30	10-50)k	3		

Sex	A	ge	Salary	С
F	0-	-10	10-50k	0
F			10-50k	
F	60)+	10-50k	2
Μ	0-	-10	10-50k	0
Μ			10-50k	
Μ	60)+	10-50k	1
Ļ				
Salar	y	С		
10-50)k	12		

Consistency-Enforcing Framework

Minimizing L^p distance between $\tilde{c}(a)$ and $\hat{c}(a)$

$$||\hat{\mathbf{c}}(\cdot) - \tilde{\mathbf{c}}(\cdot)||_p = \sum_{a \in \mathcal{E}_{\mathsf{pre}}} (|\hat{\mathbf{c}}(a) - \tilde{\mathbf{c}}(a)|^p)^{1/p}$$

subject to consistency constraints

 \mathcal{E}_{pre} : all cells in \mathcal{L}_{pre}

Intuition: We do not know the real measure values... Then let's approximate the noisy version

L[∞] Version

• Minimizing L^{\circ} distance

 $\begin{array}{l} \text{minimize } z\\ \text{s.t.} \quad |\hat{\mathsf{c}}(a) - \tilde{\mathsf{c}}(a)| \leq z, \quad \forall \text{ cells } a \in \mathcal{E}_{\mathsf{pre}};\\ & \displaystyle\sum_{a' \in \mathrm{Base}(a)} \hat{\mathsf{c}}(a') = \hat{\mathsf{c}}(a), \quad \forall \text{ cells } a \in \mathcal{E}_{\mathsf{pre}}.\\ \end{array}$

With probability at least $1 - \delta$, where $\delta = \frac{|\mathcal{E}_{pre}|}{e^{\eta/2}}$, $\sum_{a \in \mathcal{E}_{pre}} |\hat{c}(a) - c(a)| \leq \frac{|\mathcal{E}_{pre}||\mathcal{L}_{pre}|}{\epsilon} 2 \log \frac{|\mathcal{E}_{pre}|}{\delta} = \frac{|\mathcal{E}_{pre}||\mathcal{L}_{pre}|}{\epsilon} \eta.$

L¹ Version

• Minimizing L¹ distance

$$\begin{array}{l} \text{minimize } \sum_{a \in \mathcal{E}_{\mathsf{pre}}} z_a \\ \text{s.t.} \quad |\hat{\mathsf{c}}(a) - \tilde{\mathsf{c}}(a)| \leq z_a, \quad \forall \text{ cell } a \in \mathcal{E}_{\mathsf{pre}}; \\ \sum_{a' \in \mathrm{Base}(a)} \hat{\mathsf{c}}(a') = \hat{\mathsf{c}}(a), \quad \forall \text{ cell } a \in \mathcal{E}_{\mathsf{pre}}. \end{array}$$


With probability at least $1 - \delta$, where $\delta = (\frac{\eta}{2e^{\eta/2-1}})^{|\mathcal{E}_{pre}|}$, $\sum_{a \in \mathcal{E}_{pre}} |\hat{c}(a) - c(a)| \leq \frac{|\mathcal{E}_{pre}||\mathcal{L}_{pre}|}{\epsilon} \eta.$

L¹ Version

• Analysis

 $\sum_{a \in \mathcal{E}_{\mathsf{pre}}} |\hat{\mathsf{c}}(a) - \mathsf{c}(a)| \leq \sum_{a \in \mathcal{E}_{\mathsf{pre}}} |\hat{\mathsf{c}}(a) - \tilde{\mathsf{c}}(a)| + \sum_{a \in \mathcal{E}_{\mathsf{pre}}} |\tilde{\mathsf{c}}(a) - \mathsf{c}(a)|$ $\leq \sum |\mathsf{c}(a) - \tilde{\mathsf{c}}(a)| + \sum |\tilde{\mathsf{c}}(a) - \mathsf{c}(a)|$ $= 2 \sum_{a \in \mathcal{E}_{pre}} |\mathsf{c}(a) - \tilde{\mathsf{c}}(a)|$ $c(a) - \tilde{c}(a) \sim Lap(|\mathcal{L}_{pre}|/\epsilon) \Rightarrow |c(a) - \tilde{c}(a)| \sim Exponential(\epsilon/|\mathcal{L}_{pre}|)$ Extending Chernoff's Inequality to Exponential Distribution With probability at least $1 - \delta$, where $\delta = \left(\frac{\eta}{e^{\eta-1}}\right)^{|\mathcal{E}_{\mathsf{pre}}|}$, $\sum_{a \in \mathcal{E}_{\mathsf{pre}}} |\mathsf{c}(a) - \tilde{\mathsf{c}}(a)| \le \mathbf{E} \left[\sum_{a \in \mathcal{E}_{\mathsf{pre}}} |\mathsf{c}(a) - \tilde{\mathsf{c}}(a)| \right] \eta = \frac{|\mathcal{E}_{\mathsf{pre}}||\mathcal{L}_{\mathsf{pre}}|}{\epsilon} \eta$ $\underline{\quad}$ $\underline{\quad}$ \underline the exponential distribution. With probability at least $1 - \delta$, where $\delta = \left(\frac{\eta}{e^{\eta-1}}\right)^n$, we have $X \leq \eta \mathbb{E}[X]$ $(\eta > 1)$.

L² Version

• Surprisingly, solvable it in linear time!

LP is not practical in this context... Faster than OLS...

Statistics optimality

- A unbiased estimator of the real values of measure
- The smallest variance (expected squared error) among any linear unbiased estimator

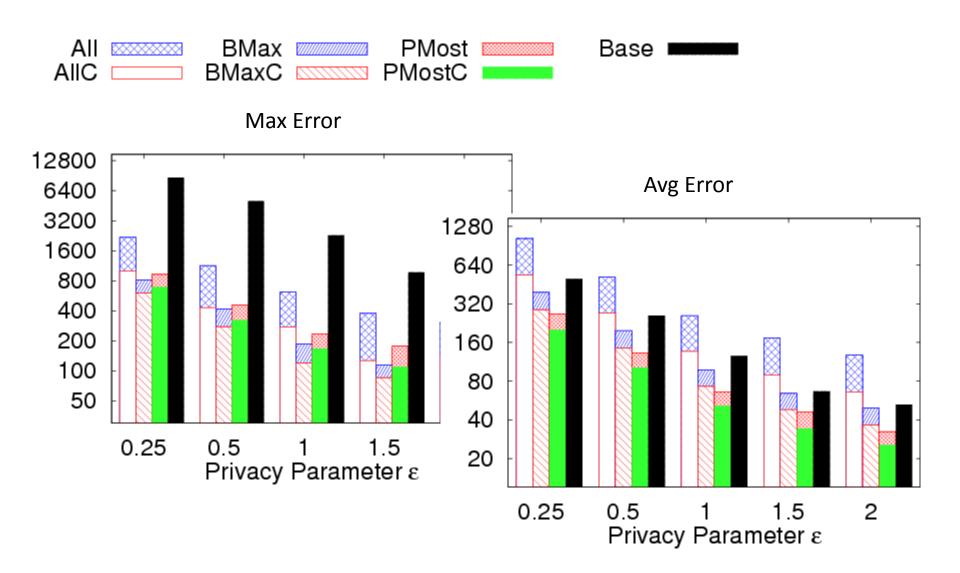
Comparing L[∞], L¹, and L² Versions

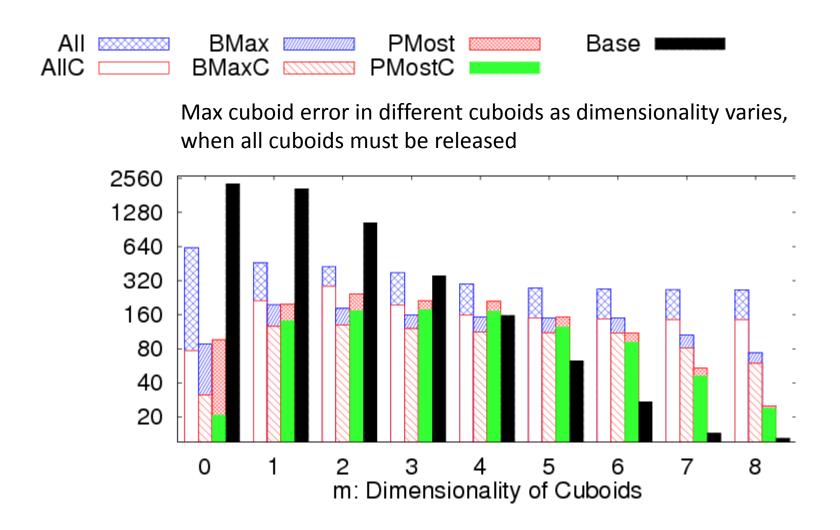
L^{∞}: With probability at least $1 - \delta$, where $\delta = \frac{|\mathcal{E}_{pre}|}{e^{\eta/2}}$,

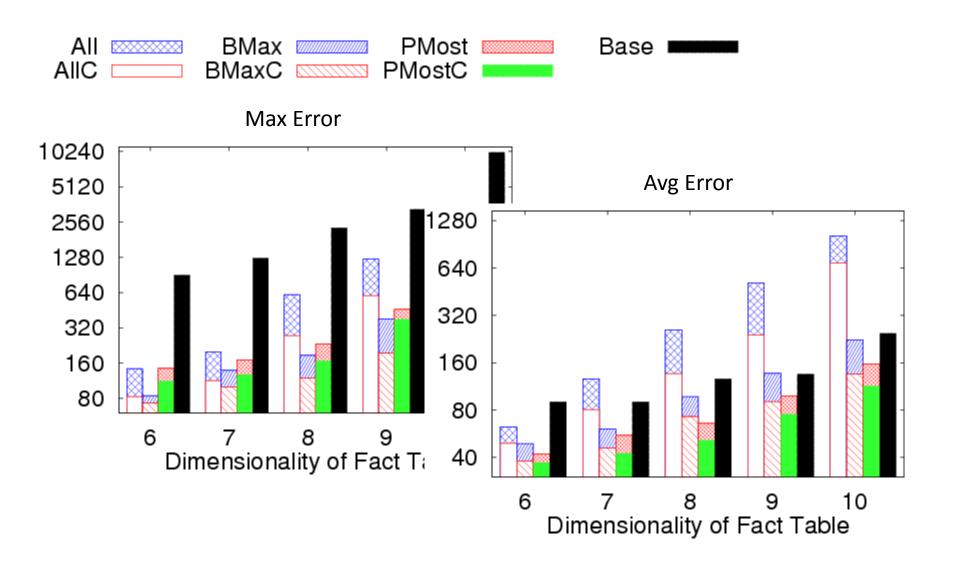
Generalizing [BarakCDKMT07]

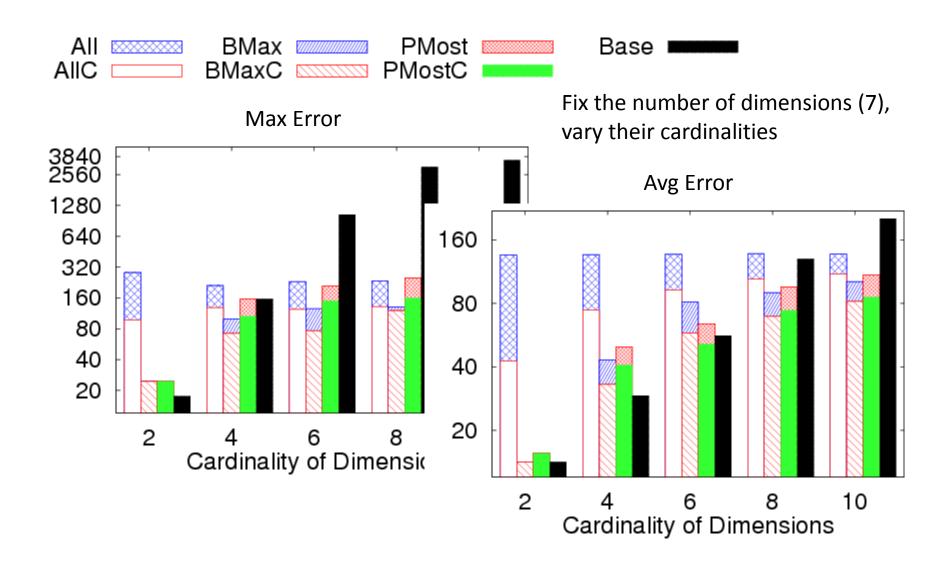
L¹: With probability at least $1 - \delta$, where $\delta = (\frac{\eta}{2e^{\eta/2-1}})^{|\mathcal{E}_{pre}|}$,

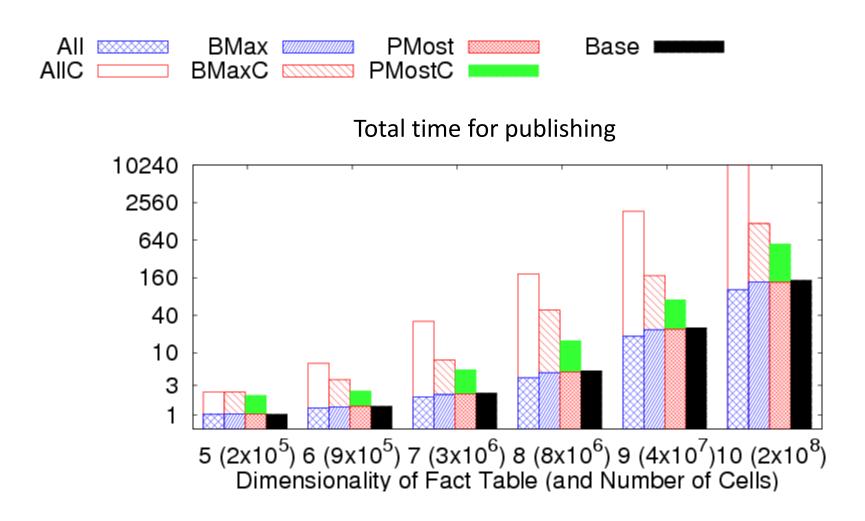
$$\sum_{a \in \mathcal{E}_{\mathsf{pre}}} |\hat{\mathsf{c}}(a) - \mathsf{c}(a)| \le \frac{|\mathcal{E}_{\mathsf{pre}}||\mathcal{L}_{\mathsf{pre}}|}{\epsilon} \eta.$$

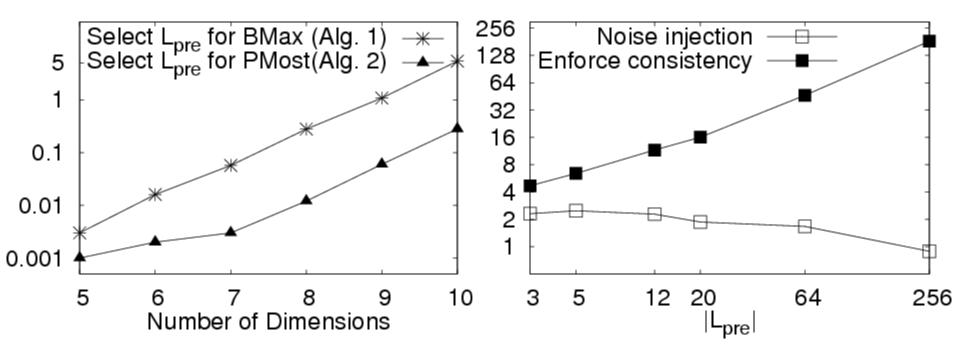

L²: The smallest variance among all linear unbiased estimators Efficient in practice (linear-time solvable)


Outline


- Introduction
 - Data cube and privacy concerns
 - Differential privacy (DP)
- Optimizing noise sources in DP publishing
- Enforcing consistency
- Experiments and future work


- Seven algorithms
 - Baselines: All, Base
 - Optimizing noise sources: BMax, PMost
 - Enforcing consistency: AllC, BMaxC, PMostC
- Dataset
 - Adult dataset from http://archive.ics.uci.edu/ml/
 - 8 categorical dimensions:


workclass (cardinality 9), education (16), marital-status (7), occupation (15), relationship (6), race (5), sex (2), and salary (2).



Running time for each subroutine

Conclusion and Future Work

- Conclusion
 - Publishing a data cube in a differentially private way
 - Optimizing noise sources in DP data publishing algorithms
 - Enforcing consistency in data cubes
- Ongoing work and open questions
 - Gap between hardness and approximation (better approximation algorithm?)
 - Online query model
 - Handling different classes of data cube measures
 - Some cuboids are exact while some are noisy?

Thank You!

