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Abstract. Fisher criterion has achieved great success in dimensional-
ity reduction. Two representative methods based on Fisher criterion are
Fisher Score and Linear Discriminant Analysis (LDA). The former is
developed for feature selection while the latter is designed for subspace
learning. In the past decade, these two approaches are often studied inde-
pendently. In this paper, based on the observation that Fisher score and
LDA are complementary, we propose to integrate Fisher score and LDA
in a unified framework, namely Linear Discriminant Dimensionality Re-
duction (LDDR). We aim at finding a subset of features, based on which
the learnt linear transformation via LDA maximizes the Fisher criterion.
LDDR inherits the advantages of Fisher score and LDA and is able to do
feature selection and subspace learning simultaneously. Both Fisher score
and LDA can be seen as the special cases of the proposed method. The
resultant optimization problem is a mixed integer programming, which is
difficult to solve. It is relaxed into a L2,1-norm constrained least square
problem and solved by accelerated proximal gradient descent algorithm.
Experiments on benchmark face recognition data sets illustrate that the
proposed method outperforms the state of the art methods arguably.

1 Introduction

In many applications in machine learning and data mining, one is often con-
fronted with very high dimensional data. High dimensionality increases the time
and space requirements for processing the data. Moreover, in the presence of
many irrelevant and/or redundant features, learning methods tend to over-fit
and become less interpretable. A common way to resolve this problem is di-
mensionality reduction, which has attracted much attention in machine learning
community in the past decades. Generally speaking, dimensionality reduction
can be achieved by either feature selection [8] or subspace learning [12] [11] [25]
(a.k.a feature transformation). The philosophy behind feature selection is that
not all the features are useful for learning. Hence it aims to select a subset of
most informative or discriminative features from the original feature set. And
the basic idea of subspace learning is that the combination of the original fea-
tures may be more helpful for learning. As a result, it aims at transforming the
original features to a new feature space with lower dimensionality.
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Fisher criterion [6] [22] [9] plays an important role in dimensionality reduc-
tion. It aims at finding a feature representation by which the within-class distance
is minimized and the between-class distance is maximized. Based on Fisher cri-
terion, two representative methods have been proposed. One is Fisher Score [22],
which is a feature selection method. The other is Linear Discriminant Analy-
sis (LDA) [6] [22] [9], which is a subspace learning method. Although there are
many other feature selection methods [8] [10] [23], Fisher score is still among the
state of the art [29]. And LDA has received great success in face recognition [2],
which is known as Fisher Face. In the past decades, both Fisher score and LDA
have been studied extensively [10] [20] [26] [24] [4] [17] [5]. However, they study
Fisher score or LDA independently, ignoring the close relation between them.

In this paper, we propose to study Fisher score and LDA together. The key
motivation is that, although it is based on Fisher criterion, Fisher score is not
able to do feature combination such as LDA. The features selected by Fisher
score are a subset of the original features. However, as we mentioned before,
the transformed features may be more discriminative than the original features.
On the other hand, although LDA admits feature combination, it transforms
all the original features rather than only those useful ones as in Fisher score.
Furthermore, since LDA uses all the features, the resulting transformation is
often difficult to interpret. It can be seen that Fisher score and LDA are ac-
tually complementary to some extent. If we combine Fisher score and LDA in
a systematic way, they could mutually enhance each other. One intuitive way
is performing Fisher score before LDA as a two-stage approach. However, since
these two stages are conducted individually, the whole process is likely to be
suboptimal. This motivates us to integrate Fisher score and LDA in a principled
way to complement each other.

Based on the above motivation, we propose a unified framework, namely Lin-
ear Discriminant Dimensionality Reduction (LDDR), integrating Fisher score
and LDA. In detail, we aim at finding a subset of features, based on which
the learnt linear transformation via LDA maximizes the Fisher criterion. LDDR
performs feature selection and subspace learning simultaneously based on Fisher
criterion. It inherits the advantages of Fisher score and LDA to overcome their
individual disadvantages. Hence it is able to discard the irrelevant features and
transform the relevant ones simultaneously. Both Fisher score and LDA can
be seen as the special cases of LDDR. The resulting optimization problem is
a mixed integer programming [3], which is difficult to solve. We relax it into a
L2,1-norm constrained least square problem and solved by accelerated proximal
gradient descent algorithm [18]. It is worth noting that L2,1-norm has already
been successfully applied in Group Lasso [28], multi-task feature learning [1] [14],
joint covariate selection and joint subspace selection [21]. Experiments on bench-
mark face recognition data sets demonstrate the effectiveness of the proposed
approach.

The remainder of this paper is organized as follows. In Section 2, we briefly
review Fisher score and LDA. In Section 3, we present a framework for joint
feature selection and subspace learning. In Section 4, we review some related
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works. Experiments on benchmark face recognition data sets are demonstrated
in Section 5. Finally, we draw a conclusion in Section 6.

1.1 Notations

Given a data set that consists of n data points {(xi, yi)}ni=1, where xi ∈ Rd, and
yi ∈ {1, 2, . . . , c} denotes the class label of the i-th data point. The data matrix
is denoted by X = [x1, . . . ,xn] ∈ Rd×n, and the linear transformation matrix
is denoted by W ∈ Rd×m, projecting the input data into an m-dimensional
subspace. Given a matrix W ∈ Rd×m, we denote the i-th row of W by wi, and
the j-th column of W by wj . The Frobenius norm of W is defined as ||W||F =√∑d

i ||wi||22, and the L2,1-norm of W is defined as ||W||2,1 =
∑d

i ||wi||2. 1 is

a vector of all ones with an appropriate length. 0 is a vector of all zeros. I is an
identity matrix with an appropriate size. Without loss of generality, we assume
that X has been centered with zero mean, i.e.,

∑n
i=1 xi = 0.

2 A Review of LDA and Fisher Score

In this section, we briefly introduce two representative dimensionality reduction
methods: Linear Discriminant Analysis [6] [22] [9] and Fisher Score [22], both of
which are based on Fisher criterion.

2.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) [6] [22] [9] is a supervised subspace learning
method which is based on Fisher Criterion. It aims to find a linear transforma-
tion W ∈ Rd×m that maps xi in the d-dimensional space to a m-dimensional
space, in which the between class scatter is maximized while the within-class
scatter is minimized, i.e.,

argmax
W

tr((WTSwW)−1(WTSbW)), (1)

where Sb and Sw are the between-class scatter matrix and within-class scatter
matrix respectively, which are defined as

Sb =
c∑

k=1

nk(µk − µ)(µk − µ)T ,Sw =
c∑

k=1

∑
i∈Ck

(xi − µk)(xi − µk)
T , (2)

where Ck is the index set of the k-th class, µk and nk are mean vector and size
of k-th class respectively in the input data space, i.e., X, µ =

∑c
k=1 nkµk is

the overall mean vector of the original data. It is easy to show that Eq. (1) is
equivalent to

argmax
W

tr((WTStW)−1(WTSbW)), (3)
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where St is the total scatter matrix, defined as follows,

St =

n∑
i=1

(xi − µ)(xi − µ)T . (4)

Note that St = Sw + Sb.
According to [6], when the total scatter matrix St is non-singular, the solution

of Eq. (3) consists of the top eigenvectors of the matrix S−1
t Sb corresponding to

nonzero eigenvalues. When the total class scatter matrix St does not have full
rank, the solution of Eq. (3) consists of the top eigenvectors of the matrix S†

tSb

corresponding to nonzero eigenvalues, where S†
t denotes the pseudo-inverse of St

[7]. Note that when St is nonsingular, S
†
t equals S−1

t .
LDA has been successfully applied to face recognition [2]. Following LDA,

many incremental works have been done, e.g., Uncorrelated LDA and Orthogonal
LDA [26], Local LDA [24], Semi-supervised LDA [4] and Sparse LDA [17] [5].
Note that all these methods suffer from the weakness of using all the original
features to learn the subspace.

2.2 Fisher Score for Feature Selection

The key idea of Fisher score [22] is to find a subset of features, such that in the
data space spanned by the selected features, the distances between data points
in different classes are as large as possible, while the distances between data
points in the same class are as small as possible. In particular, given the selected
m features, the input data matrix X ∈ Rd×n reduces to Z ∈ Rm×n. Then the
Fisher Score is formulated as follows,

argmax
Z

tr
{
S̃−1
t S̃b

}
, (5)

where S̃b and S̃t are defined as

S̃b =

c∑
k=1

nk(µ̃k − µ̃)(µ̃k − µ̃)T , S̃t =

n∑
i=1

(zi − µ̃)(zi − µ̃)T , (6)

where µ̃k and nk are the mean vector and size of the k-th class respectively in
the reduced data space, i.e., Z, µ̃ =

∑c
k=1 nkµ̃k is the overall mean vector of

the reduced data. Note that there are
(
d
m

)
candidate Z’s out of X, hence Fisher

score is a combinatorial optimization problem.
We introduce an indicator variable p, where p = (p1, . . . , pd)

T and pi ∈
{0, 1}, i = 1, . . . , d, to represent whether a feature is selected or not. In order to
indicate that m features are selected, we constrain p by pT1 = m. Then the
Fisher Score in Eq. (5) can be equivalently formulated as follows,

argmax
p

tr{(diag(p)Stdiag(p))
−1(diag(p)Sbdiag(p))},

s.t. p ∈ {0, 1}d,pT1 = m, (7)
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where diag(p) is a diagonal matrix whose diagonal elements are pi’s, Sb and St

are the between-class scatter matrix and total scatter matrix, defined as in Eq.
(2) and Eq. (4).

As can be seen, like other feature selection approaches [8], Fisher score only
does binary feature selection. It does not admit feature combination like LDA
does.

Based on the above discussion, we can see that LDA suffers from the problem
which Fisher score does not have, while Fisher score has the limitation which
LDA does not have. Hence, if we integrate LDA and Fisher score in a systematic
way, they could complement each other and be benefited from each other. This
motivates the proposed method in this paper.

3 Linear Discriminant Dimensionality Reduction

In this section, we will integrate Fisher score and Linear Discriminant Analysis
in a unified framework. The key idea of our method is to find a subset of features,
based on which the learnt linear transformation via LDA maximizes the Fisher
criterion. It can be mathematically formulated as follows,

argmax
W,p

tr{(WTdiag(p)Stdiag(p)W)−1(WTdiag(p)Sbdiag(p)W)},

s.t. p ∈ {0, 1}d,pT1 = m, (8)

which is a mixed integer programming [3]. Eq. (8) is called as Linear Discrimi-
nant Dimensionality Reduction (LDDR) because it is able to do feature selection
and subspace learning simultaneously. It inherits the advantages of Fisher score
and LDA. That is, it is able to find a subset of useful original features, based
on which it generates new features by feature transformation. Given p = 1, Eq.
(8) reduces to LDA as in Eq. (3). Letting W = I, Eq. (8) degenerates to Fisher
score as in Eq.(7). Hence, both LDA and Fisher score can be seen as the special
cases of the proposed method. In addition, the objective functions corresponding
to LDA and Fisher score are lower bounds of the objective function of LDDR.

Recent studies [9] [27] established the relationship between LDA and multi-
variate linear regression problem, which provides a regression-based solution for
LDA. This motivates us to solve the problem in Eq.(8) in a similar manner. In the
following, we present a theorem, which establishes the equivalence relationship
between the problem in Eq.(8) and the problem in Eq.(9).

Theorem 1. The optimal p that maximizes the problem in Eq. (8) is the same
as the optimal p that minimizes the following problem

argmin
p,W

1

2
||XT diag(p)W −H||2F

s.t. p ∈ {0, 1}d,pT1 = m, (9)
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where H = [h1, . . . ,hc] ∈ Rn×c, and hk is a column vector whose i-th entry is
given by

hik =

{√
n
nk

−
√

nk

n , if yi = k

−
√

nk

n , otherwise.
(10)

In addition, the optimal W1 of Eq. (8) and the optimal W2 of Eq. (9) have the
following relation

W2 = [W1,0]Q
T , (11)

under a mild condition that

rank(St) = rank(Sb) + rank(Sw), (12)

and Q is a orthogonal matrix.

Proof. Due to space limit, we only give the sketch of the proof. On the one hand,
given the optimal W, the optimization problem in Eq. (8) with respect to p is
equivalent to the optimization problem in Eq. (9) with respect to p. On the
other hand, for any feasible p, the optimal W that maximizes the problem in
Eq. (8) and the optimal W that minimizes the problem in Eq. (9) satisfy the
relation in Eq. (11) according to Theorem 5.1 in [27]. The detailed proof will be
included in the longer version of this paper.

Note that the above theorem holds under the condition that X is centered with
zero mean. Since rank(St) = rank(Sb) + rank(Sw) holds in many applications
involving high-dimensional and under-sampled data, the above theorem can be
applied widely in practice.

According to theorem 1, the difference betweenW1 andW2 is the orthogonal
matrix Q. Since the Euclidean distance is invariant to any orthogonal transfor-
mation, if a classifier based on the Euclidean distance (e.g., K-Nearest-Neighbor
and linear support vector machine [9]) is applied to the dimensionality-reduced
data obtained by W1 and W2, they will achieve the same classification result.
In our experiments, we use K-Nearest-Neighbor classifier.

Suppose we find the optimal solution of Eq. (9), i.e., W∗ and p∗, then p∗ is
a binary vector, and diag(p)W is a matrix where the elements of many rows are
all zeros. This motivate us to absorb the indicator variables p into W, and use
L2,0-norm on W to achieve feature selection, leading to the following problem

argmin
W

1

2
||XTW −H||2F ,

s.t. ||W||2,0 ≤ m. (13)

However, the feasible region defined by ||W||2,0 ≤ m is not convex. We relax
||W||2,0 ≤ m to its convex hull [3], and obtain the following relaxed problem,

argmin
W

1

2
||XTW −H||2F ,

s.t. ||W||2,1 ≤ m. (14)
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Note that Eq. (14) is no longer equivalent to Eq. (8) due to the relaxation.
However, the relaxation makes the optimization problem computationally much
easier. In this sense, the relaxation can be seen as a tradeoff between the strict
equivalence and computational tractability.

Eq. (14) is equivalent to the following regularized problem,

argmin
W

1

2
||XTW −H||2F + µ||W||2,1, (15)

where µ > 0 is a regularization parameter. Given an m, we could find a µ, such
that Eq. (14) and Eq. (15) achieve the same solution. However, it is difficult to
give an analytical relationship between m and µ. Fortunately, such a relationship
is not crucial for our problem. Since it is easier to tune µ than an integer m, we
consider Eq. (15) in the rest of this paper.

Eq. (15) is mathematically similar to Group Lasso problem [28] and multi-
task feature selection [14]. However, the motivations of our method and those
methods are essentially different. Our method aims at integrating feature se-
lection and subspace learning in a unified framework, while Group Lasso and
multi-task feature selection aim at discovering common feature patterns among
multiple related learning tasks. The objective function in Eq. (15) is a non-
smooth but convex function. In the following, we will present an algorithm for
solving Eq. (15). Similar algorithm has been used for multi-task feature selection
[14].

3.1 Proximal Gradient Descent

The most natural approach for solving the problem in Eq. (15) is the sub-gradient
descent method [3]. However, its convergence rate is very slow, i.e., O( 1

ϵ2 ) [19].
Recently, proximal gradient descent has received increasing attention in the

machine learning community [13] [14]. It achieves the optimal convergence rate,
i.e., O( 1ϵ ) for the first-order method and is able to deal with large-scale non-
smooth convex problems. It can be seen as an extension of gradient descent,
where the objective function to minimize is the composite of a smooth part and
a non-smooth part. As to our problem, let

f(W) =
1

2
||XTW −H||2F

F (W) = f(W) + µ||W||2,1. (16)

It is easy to show that f(W) is convex and differentiable, while µ||W||2,1 is
convex but non-smooth.

In each iteration of the proximal gradient descent algorithm, F (W) is lin-
earized around the current estimate Wt, and the value of W is updated as the
solution of the following optimization problem,

Wt+1 = argmin
W

Gηt(W,Wt), (17)
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where Gηt
(W,Wt) is called proximal operator, which is defined as

Gηt(W,Wt) = ⟨∇f(Wt),W −Wt⟩+
ηt
2
||W −Wt||2 + µ||W||2,1. (18)

In our problem, ∇f(Wt) = XXTWt −XH. The philosophy under this formu-
lation is that if the optimization problem in Eq. (17) can be solved by exploiting
the structure of the L2,1 norm, then the convergence rate of the resulting al-
gorithm is the same as that of gradient descent method, i.e., O( 1ϵ ), since no
approximation on the non-smooth term is employed. It is worth noting that
the proximal gradient descent can also be understood from the perspective of
auxiliary function optimization [15].

By ignoring the terms in Gηt(W,Wt) that is independent of W, the opti-
mization problem in Eq. (17) boils down to

Wt+1 = argmin
W

1

2
||W − (Wt −

1

ηt
∇f(Wt))||2F +

µ

ηt
||W||2,1. (19)

For the sake of simplicity, we denote Ut = Wt − 1
ηt
∇f(Wt), then Eq. (19)

takes the following form

Wt+1 = argmin
W

1

2
||W −Ut||2F +

µ

ηt
||W||2,1, (20)

which can be further decomposed into c separate subproblems of dimension d

wi
t+1 = argmin ||wi − ui

t||22 +
µ

ηt
||wi||2, (21)

where wi
t+1, w

i and ui
t are the i-th rows of Wt+1, W and Ut respectively. It

has a closed form solution [14] as follows

wi∗ =

{
(1− µ

ηt||ui
t||
)ui

t, if ||ui
t|| >

µ
ηt

0, otherwise.
(22)

Thus, the proximal gradient descent in Eq. (17) has the same convergence rate
of O( 1ϵ ) as gradient descent for smooth problem.

3.2 Accelerated Proximal Gradient Descent

To achieve more efficient optimization, we employ Nesterov’s method [19] to
accelerate the proximal gradient descent in Eq. (17), which owns the convergence
rate as O( 1√

ϵ
). More specifically, we construct a linear combination of Wt and

Wt+1 to update Vt+1 as follows:

Vt+1 = Wt +
αt − 1

αt+1
(Wt+1 −Wt), (23)

where the sequence {αt}t≥1 is conventionally set to be αt+1 =
1+

√
1+4α2

t

2 . For
more detail, please refer to [13]. Here we directly present the final algorithm for
optimizing Eq. (15) in Algorithm 1.

The convergence of this algorithm is stated in the following theorem.
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Algorithm 1 Linear Discriminant Dimensionality Reduction

Initialize: η0,W1 ∈ Rd×m, α1 = 1;
repeat

while F (Wt) > G(Wt,Wt) do
Set η = γηt−1

end while
Set ηt = ηt−1

Compute Wt+1 = argminW Gηt(W,Vt)

Compute αt+1 =
1+

√
1+4α2

t

2

Compute Vt+1 = Wt +
αt−1
αt+1

(Wt+1 −Wt)

until convergence

Theorem 2. [19] Let {Wt} be the sequence generated by Algorithm 1, then for
any t ≥ 1 we have

F (Wt)− F (W∗) ≤ 2γL||W1 −W∗||2F
(t+ 1)2

, (24)

where L is the Lipschitz constant of the gradient of f(W) in the objective func-
tion, W∗ = argminW F (W).

Theorem 2 shows that the convergence rate of the accelerated proximal gra-
dient descent method is O( 1√

ϵ
).

4 Related Work

In this section, we discuss some approaches which are closely related to our
method.

In order to pursue sparsity and interpretability in LDA, [17] proposed both
exact and greedy algorithms for binary class sparse LDA as well as its spectral
bound. For multi-class problem, [5] proposed a sparse LDA (SLDA) based on
ℓ1-norm regularized Spectral Regression,

argmin
w

||XTw − y||22 + µ||w||1, (25)

where y is the eigenvector of Sby = λSty. Due to the nature of the ℓ1 penalty,
some entries in w will be shrunk to exact zero if λ is large enough, which results
in a sparse projection. However, SLDA does not lead to feature selection, because
each column of the linear transformation matrix is optimized one by one, and
their sparsity patterns are independent. In contrast, our method is able to do
feature selection.

On the other hand, [16] proposed another feature selection method based on
Fisher criterion, namely Linear Discriminant Feature Selection (LDFS), which
modifies LDA to admit feature selection as follows,

argmin
W

tr((WTSwW)−1(WTSbW)) + µ
d∑

i=1

||wi||∞, (26)



10 Quanquan Gu, Zhenhui Li, and Jiawei Han

where
∑d

i=1 ||ai||∞ is the ℓ1/ℓ∞ norm of W. The optimization problem is con-
vex and solved by quasi-Newton method [3]. Although LDFS involves structured
sparse transformation matrix W as in our method, it use it to select features
rather than doing feature selection and transformation together. Hence it is
fundamentally a feature selection method. In comparison, our method uses the
structured sparse transformation matrix for both feature selection and combi-
nation.

5 Experiments

In this section, we evaluate the proposed method, i.e., LDDR, and compare
it with the state of the art subspace learning methods, e.g. PCA, LDA and
Locality Preserving Projection (LPP) [12], sparse LDA (SLDA) [5]. We also
compare it with the feature selection methods, e.g., Fisher score (FS) and Linear
Discriminant Feature Selection (LDFS) [16]. Moreover, we study Fisher score
followed with LDA (FS+LDA), which is the most intuitive way to conduct Fisher
score and LDA together. We use K-Nearest Neighbor classifier where K = 1 as
the baseline method. All the experiments were performed in Matlab on a Intel
Core2 Duo 2.8GHz Windows 7 machine with 4GB memory.

5.1 Data Sets

We use two standard face recognition databases which are used in [11] [5].
ORL face database1 contains 10 images for each of the 40 human subjects,

which were taken at different times, varying the lighting, facial expressions and
facial details. The original images (with 256 gray levels) have size 92×112, which
are resized to 32× 32 for efficiency.

Extended Yale-B database2 contains 16128 face images of 38 human sub-
jects under 9 pose and 64 illumination conditions. In our experiment, we choose
the frontal pose and use all the images under different illumination, thus we get
2414 image in total. All the face images are manually aligned and cropped. They
are resized to 32×32 pixels, with 256 gray levels per pixel. Thus each face image
is represented as a 1024-dimensional vector.

5.2 Parameter Settings

For ORL data set, p = 2, 3, 4 images were randomly selected as training samples
for each person, and for Yale-B data set, p = 10, 20, 30 images were randomly se-
lected as training samples for each person. The rest images were used for testing.
The training set was used to learn a subspace, and the recognition was performed
in the subspace by K-Nearest Neighbor classifier where K = 1 according to [5].
Since the training set was randomly chosen, we repeated each experiment 20

1 http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data
2 http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
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times and calculated the average recognition accuracy. In general, the recog-
nition rate varies with the dimensionality of the subspace. The best average
performance obtained as well as the corresponding dimensionality is reported. It
is worth noticing that for LDDR, the dimensionality of the subspace is exactly
the same as the number of classes, i.e., c according to Eq.(9).

For LDA, as in [2], we first use PCA to reduce the dimensionality to n − c
and then perform LDA to reduce the dimensionality to c−1. This is also known
as Fisher Face [2]. For FS+LDA, we first use Fisher Score to select 50% features
and then perform LDA to reduce the dimensionality. For LPP, we use the cosine
distance to compute the similarity between xi and xj . For SLDA, we tune µ
by searching the grid {10, 20, . . . , 100} on the testing set according to [5]. For
LDFS and LDDR, the regularization parameter µ is tuned by searching the grid
{0.01, 0.05, 0.1, 0.2, 0.5} on the testing set. As we know, tuning parameter on the
testing set could be biased. However, since we did this for all the methods as
long as they have parameters to tune, it is still a fair comparison.

5.3 Recognition Results

Table 1. Face recognition accuracy on the ORL data set

Data set 2 training 3 training 4 training

Acc Dim Acc Dim Acc Dim

Baseline 66.81±3.41 – 77.02±2.55 – 81.73±2.27 –

PCA 66.81±3.41 79 77.02±2.55 119 81.73±2.27 159

FS 69.06±3.04 197 79.07±2.71 200 84.42±2.41 199

LDFS 62.69±3.43 198 75.45±2.28 192 81.96±2.56 188

LDA 71.27±3.58 28 83.36±1.84 39 89.63±2.01 39

LPP 72.41±3.17 39 84.20±1.73 39 90.42±1.41 39

FS+LDA 71.81±3.36 28 84.13±1.35 39 88.56±2.16 39

SLDA 74.14±2.92 39 84.86±1.82 39 91.44±1.53 39

LDDR 76.88±3.49 40 86.89±1.91 40 92.77±1.61 40

The experimental results are shown in Table 1 and Table 2. We can observe
that (1) On some cases, Fisher score is better than LDA, while on more cases,
LDA outperforms Fisher score. This implies feature transformation may be more
essential than feature selection; (2) LDFS is worse than Fisher score on the ORL
data set, while it is better than Fisher score on the Yale-B data set. This indicates
the performance gain by doing feature selection under slightly different criterion
is limited; (3) SLDA is better than LDA, which implies sparsity is able to improve
the classification performance of LDA; (4) FS+LDA improves both FS and LDA
at most cases. It is even better than SLDA at some cases. This implies the
potential performance gain of combining Fisher score and LDA. However, at
some cases, FS+LDA is not as good as FS or LDA. This is because Fisher
score and LDA are conducted individually in FS+LDA. The selected features
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Table 2. Face recognition accuracy on the Yale-B data set

Data set 10 training 20 training 30 training

Acc Dim Acc Dim Acc Dim

Baseline 53.44±0.82 – 69.24±1.19 – 77.39±0.98 –

PCA 52.41±0.89 200 67.04±1.18 200 74.57±1.07 200

FS 64.34±1.40 200 76.53±1.19 200 82.15±1.14 200

LDFS 66.86±1.17 182 80.50±1.17 195 83.16±0.90 197

LDA 78.33±1.31 37 85.75±0.84 37 81.19±2.05 37

LPP 79.70±2.96 76 80.24±5.49 75 86.40±1.45 78

FS+LDA 77.89±1.82 37 87.89±0.88 37 93.91±0.69 37

SLDA 81.56±1.38 37 89.68±0.85 37 92.88±0.68 37

LDDR 89.45±1.11 38 96.44±0.85 38 98.66±0.43 38

by Fisher score are not necessarily useful for LDA; (5) LDDR outperforms FS,
LDA, SLDA and FS+LDA consistently and overwhelmingly, which indicates that
by performing Fisher score and LDA simultaneously to maximize the Fisher
criterion, Fisher score and LDA can enhance each other greatly. The selected
features by LDDR should be more useful than those selected by Fisher score.
We will illustrate this point latter.

5.4 Projection Matrices

To get a better understanding of our approach, we plot the linear transformation
matrices of our method and related methods on the ORL and Yale-B data sets
in Fig. 1 and Fig . 2 respectively. Clearly, the linear transformation matrix of
LDA is very dense, which is not easy to interpret. Each column of the linear
transformation matrix of SLDA is sparse. However, the sparse patterns of each
column are not coherent. In other word, for different dimensions of the subspace,
the selected features by SLDA are different. Therefore, it is unclear which fea-
tures are useful for the whole transformation. In contrast, each row of the linear
transformation matrix of LDDR tends to be zero simultaneously, which leads
to joint feature selection and transformation. This is exactly what we pursue.
Note that the sparsity of the linear transformation matrix of LDDR is controlled
by the regularization parameter µ. That is, the number of selected features in
LDDR is indirectly controlled by µ. We will show that the performance of LDDR
is not sensitive to µ latter.

5.5 Selected Features

We are also interested in the features selected by LDDR. We plot the top 50 se-
lected features (pixels) of our method and Fisher score on the ORL and Yale-B
data sets in Fig. 3 and Fig. 4 respectively. It is shown that the distribution of se-
lected features (pixels) by Fisher score is highly skewed. Most features distribute
in only one or two regions. Many features even reside on the non-face region.
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Fig. 1. The linear transformation matrix learned by (a) LDA, (b) SLDA (µ = 50) and
(c) LDDR (µ = 0.5) with 3 training samples per person on the ORL database. For
better viewing, please see it in color pdf file.
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Fig. 2. The linear transformation matrix learned by (a) LDA, (b) SLDA (µ = 50) and
(c) LDDR (µ = 0.5) with 20 training samples per person on the Yale-B database. For
better viewing, please see it in color pdf file.

It implies that the features selected by Fisher score are not discriminative. In
contrast, the features selected by LDDR distribute widely across the face region.

From another perspective, we can see that the features (pixels) selected by
LDDR are asymmetric. In other word, if one pixel is selected, its axis symmetric
one will not be selected. This is because the face image is roughly axis symme-
try, so one in a pair of axis symmetric pixels is redundant given the other one
is selected. Moreover, the selected pixels are mostly around the eyebrow, the
boundary of eyes, nose and cheek, which are discriminative for distinguishing
face images of different people. This is accord with our life common sense.

5.6 Sensitivity to the Regularization Parameter

LDDR only has one parameter, which is the regularization parameter µ. It in-
directly controls the number of selected features. Here we will investigate the
recognition accuracy with respect to the regularization parameter µ. We vary
the value of µ, and plot the recognition accuracy with respect to µ on the ORL
and Yale-B data sets in Fig. 5 and Fig. 6 respectively.

As can be seen, LDDR is not sensitive to the regularization parameter µ
in a wide range of µ. In detail, LDDR achieves consistently good performance
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(a) Fisher Score (b) LDDR

Fig. 3. Selected features (marked by blue cross) by (a) Fisher score and (b) LDDR
(µ = 0.5) with 3 training samples per person on the ORL database. For better viewing,
please see it in color pdf file.

(a) Fisher Score (b) LDDR

Fig. 4. Selected features (marked by blue cross) by (a) Fisher score and (b) LDDR
(µ = 0.5)with 20 training samples per person on the Yale-B database. For better
viewing, please see it in color pdf file.

with the µ varying from 0.01 to 0.1 on the ORL data set. LDDR is even more
stable on the Yale-B data set, where it gets overwhelmingly good result with
the µ changing from 0.01 to 0.5. This shows that in certain range, the number
of useful features does not affect the performance of the jointly learnt linear
transformation very much. It is an appealing property because we do not need
to tune the regularization parameter painfully in the application.
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Fig. 5. Recognition accuracy with respect to the regularization parameter µ on the
ORL database
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Fig. 6. Recognition accuracy with respect to the regularization parameter µ on the
Yale-B database

6 Conclusion

In this paper, we propose to integrate Fisher score and LDA in a unified frame-
work, namely Linear Discriminant Dimensionality Reduction. We aim at finding
a subset of features, based on which the learnt linear transformation via LDA
maximizes the Fisher criterion. LDDR inherits the advantages of Fisher score
and LDA and is able to do feature selection and subspace learning simultane-
ously. Both Fisher score and LDA can be seen as the special cases of the pro-
posed method. The resultant optimization problem is relaxed into a L2,1-norm
constrained least square problem and solved by accelerated proximal gradient de-
scent algorithm. Experiments on benchmark face recognition data sets illustrate
the efficacy of the proposed framework.
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