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Moving Object Data

A sequence of the location and timestamp of a 
moving object

Hurricanes Turtles

Vessels Vehicles
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Why Mining Moving Object Data?

Satellite, sensor, RFID, and wireless technologies have 
been improved rapidly

Prevalence of mobile devices, e.g., cell phones, smart 
phones and PDAs

GPS embedded in cars

Telemetry attached on animals

Tremendous amounts of trajectory data of moving objects

Sampling rate could be every minute, or even every 
second

Data has been fast accumulated



Complexity of the Moving Object Data

Uncertainty
Sampling rate could be inconstant: From every few 
seconds transmitting a signal to every few days 
transmitting one
Data be sparse: A recorded location every 3 days

Noise
Erroneous points (e.g., a point in the ocean) 

Background
Cars follow underlying road network
Animals movements relate to mountains, lakes, ...

Movement interactions
Affected by nearby moving objects
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Research Impacts

Moving object and trajectory data mining has many 
important, real-world applications driven by the real need

Homeland security (e.g., border monitoring)

Law enforcement (e.g., video surveillance)

Ecological analysis (e.g., animal scientists)

Weather forecast

Traffic control

Location-based service

…



8

Part I. Moving Object Data Mining

Introduction

Movement Pattern Mining

Periodic Pattern Mining

Clustering

Prediction

Classification

Outlier Detection



9

Moving Object Clustering

A moving cluster is a set of objects that move close to 
each other for a long time interval

Note: Moving clusters and flock patterns are 
essentially the same

Formal Definition [Kalnis et al., SSTD’05]:
A moving cluster is a sequence of (snapshot) clusters 
c1, c2, …, ck such that for each timestamp i (1 ≤ i < k), 
|ci ∩ ci+1| / |ci ∪ ci+1| ≥ θ (0 < θ ≤ 1)
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Retrieval of Moving Clusters 
(Kalnis et al. SSTD’05)

Basic algorithm (MC1)

1. Perform DBSCAN for each time slice

2. For each pair of a cluster c and a moving cluster g, 
check if g can be extended by c

If yes, g is used at the next iteration

If no, g is returned as a result

Improvements

MC2: Avoid redundant checks (Improve Step 2)

MC3: Reduce the number of executing DBSCAN 
(Improve Step 1)
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Relative Motion Patterns 
(Laube et al. 04, Gudmundsson et al. 07)

Flock (m > 1, r > 0): At least m entities are within a 
circular region of radius r and they move in the same 
direction
Leadership (m > 1, r > 0, s > 0) At least m entities are 
within a circular region of radius r, they move in the same 
direction, and at least one of the entities was already 
heading in this direction for at least s time steps
Convergence (m > 1, r > 0) At least m entities will pass 
through the same circular region of radius r (assuming 
they keep their direction)
Encounter (m > 1, r > 0) At least m entities will be 
simultaneously inside the same circular region of radius 
r (assuming they keep their speed and direction)
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Flock, Leadership & Convergence

Examples

An example of a flock pattern for 
p1 , p2 , and p3 at 8th

 

time step; 
also a leadership pattern with p2 
as the leader

A convergence pattern if m = 4 
for p2

 

, p3

 

, p4

 

, and p5
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Complexity of Moving Relationship 
Pattern Mining

Algorithms: Exact and approximate algorithms are 
developed

Flock: Use the higher-order Voronoi diagram
Leadership: Check the leader condition additionally
…

t is multiplicative factor in all time bounds



14

An Extension of Flock Patterns 
(Gudmundsson et al. GIS’06, Benkert et al. SAC’07)

A new definition considers multiple time steps, whereas 
the previous definition only one time step
Flock: A flock in a time interval I, where the duration of I
is at least k, consists of at least m entities such that for 
every point in time within I, there is a disk of radius r that 
contains all the m entities

e.g.,

A flock through 3 time steps
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Computing Flock Patterns

Approximate flocks
Convert overlapping segments of length k to points in a 
2k-dimensional space
Find 2k-d pipes that contain at least m points

Longest duration flocks
For every entity v, compute 
a cylindrical region and
the intervals from the 
intersection of the cylinder
Pick the longest one



Convoy: An Extension of Flock Pattern 
(Jeung et al. ICDE’08 & VLDB’08)
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Flock pattern has rigid definition with a circle
Convoy use density-based clustering at each timestamp



Efficient Discovery of Convoys

Base-line algorithm:
Calculate density-based clusters for each timestamp
Overlap clusters for every k consecutive timestamps

Speedup algorithm using trajectory simplification
Trajectory simplification
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A Filter-and-Refine Framework for 
Convoy Mining

Filter-and-refine framework
Filter: partition time intoλ-size time slot; a trajectory is 
transformed into a set of segments; density-based 
clustering on segments.
Refine: Look into everyλ-size time slot, refine the 
clusters based on points.  

18
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An Extension of Leadership Patterns 
(Andersson et al. GeoInformatica 07)

Leadership: if there is an entity that is a leader of at least 
m entities for at least k time units

An entity ej is said to be a leader at time [tx, ty] for time-
points tx, ty, if and only if ej does not follow anyone at 
time [tx, ty], and ej is followed by sufficiently many 
entities at time [tx, ty]

ei follows ej

||di

 

– dj

 

|| ≤
 

β

ei ej
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Reporting Leadership Patterns

Algorithm: Build and use the follow-arrays

e.g., Store nonnegative integers specifying for how many 
past consecutive unit-time-intervals ej is following ei (ej ≠

 

ei )



Swarms: A Relaxed but Real, 
Relative Movement Pattern

Flock and convoy all require k 
consecutive time stamps (still very 
rigid definition)
Moving objects may not be close to 
each other for consecutive time 
stamps (need to relax time 
constraint)

21



Discovery of Swarm Patterns

A system that mines moving object patterns:  Z. Li, et al., 
“MoveMine: Mining Moving Object Databases", SIGMOD’10 
(system demo)

Z. Li, B. Ding, J. Han, and R. Kays, “Swarm: Mining Relaxed 
Temporal Moving Object Clusters”, in submission

← Convoy

 

discovers 

 only restricted patterns 

Swarm

 

discovers 

 more patterns →
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Trajectory Pattern Mining 
(Giannotti et al. KDD 07)

A trajectory pattern should describe the movements of 
objects both in space and in time
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Trajectory (T-) Patterns: Definition

A Trajectory Pattern (T-pattern) is a couple (s,α):
s = <(x0,y0),..., (xk,yk)> is a sequence of k+1 locations
α = <α1,..., αk> are the transition times (annotations)

also written as:

(x0 ,y0 ) → (x1 ,y1 ) →……→ (xk ,yk )

A T-pattern Tp occurs in a trajectory if the trajectory 
contains a subsequence S such that:

Each (xi,yi) in Tp matches a point (xi’,yi’) in S, and 
the transition times in Tp are similar to those in S

α1 α2 αk
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Characteristics of Trajectory-Patterns

Routes between two consecutive regions are not relevant

Absolute times are not relevant

A B

These two movements are not discriminated

1 hour

1 hour

A B

These two movements are not discriminated

1 hour at 5 p.m.

1 hour at 9 a.m.
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Trajectory-Pattern Mining
Convert each trajectory to a sequence, i.e., by converting a 
location (x, y) into a region

Execute the TAS (temporally annotated sequence) algorithm, over 
the set of converted trajectories

A TAS is a sequential pattern annotated with typical transition 
times between its elements
The algorithm of TAS mining is an extension of PrefixSpan so as 
to accommodate transition times
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Sample Trajectory-Patterns

Data Source: Trucks in Athens – 273 trajectories)



28

Part I. Moving Object Data Mining

Introduction

Movement Pattern Mining

Periodic Pattern Mining

Clustering

Prediction

Classification

Outlier Detection



29

Spatiotemporal Periodic Pattern 
(Mamoulis et al. KDD 04)

In many applications, objects follow the same routes 
(approximately) over regular time intervals

e.g., Bob wakes up at the same time and then follows, 
more or less, the same route to his work everyday

Day 1:
Day 2:
Day 3:
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Period and Periodic Pattern

Let S be a sequence of n spatial locations, {l0, l1, …, ln-1}, 

representing the movement of an object over a long 

history

Let T << n be an integer called period, and T is given

A periodic pattern P is defined by a sequence r0r1…rT-1 of 

length T that appears in S by more than min_sup times

For every ri in P, ri = * or lj*T+i is inside ri
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Periodic Pattern Mining (I)

1. Obtain frequent 1-patterns
Divide the sequence S of locations into T spatial datasets, 
one for each offset of the period T, i.e., locations {li, li+T, 
… , li+(m−1)T} go to a set Ri

Perform DBSCAN on each dataset
e.g.,

Five clusters 
discovered in 
datasets R1

 

, R2

 

, 
R3

 

, R4

 

, and R6
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Periodic Pattern Mining (II)

2. Find longer patterns: Two methods
Bottom-up level-wise technique

Generate k-patterns using a pair of (k-1)-patterns with 
their first k−2 non-* regions in the same position
Use a variant of the Apriori-TID algorithm

r1w
r1x

r2y

r3z

r1a
r1d

r2b
r2e

r3c

r3f
r1a r2b r3c
r1d r2e r3f

2-length patterns      generated 3-length patterns
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Periodic Pattern Mining (III)

Faster top-down approach
Replace each location in S with the cluster-id which it 
belongs to or with * if the location belongs to no cluster
Use the sequence mining algorithm to discover fast all 
frequent patterns of the form r0r1…rT−1, where each ri is 
a cluster in a set Ri or *
Create a max-subpattern tree and traverse the tree in 
a top-down, breadth-first order



Periodic Patterns of Moving objects

Periodic behavior is the intrinsic behavior for most moving objects
Yearly migration of birds

Fly to south for winter, fly back to north for summer
People’s daily routines

Go to office at 9:00am, back home around 6:00pm
Detecting periodic behavior is useful for:

Summarizing over long historical movement
People’s behavior could be summarized as some daily 
behavior and weekly behavior

Predicting future movement
E.g., predict the location at the future time (next day, next 
week, or next year)

Help detect abnormal events
A bird does not follow its usual migration path ⇒ a signal of 
environment change

34



Challenges of Periodic Pattern Mining
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interleaved periodsinterleaved periods

multiple periodsmultiple periods different locationsdifferent locations



Detection of Periods: A Naïve Method

Transform the movement points into complex plane 
(x, y) → x-yi
(x, y) → y-xi

Apply Fourier Transform 
Weakness:

Affected by noise
(x, y) → x-yi and y-xi, each produce different result
It cannot detect partial period 

Short FFT solves partial period problem, but it is not 
easy to generalize the result 

36



A Motivating Example: Trajectories of Bees

Bee and Flower:
8 hours stays in the nest
16 hours fly nearby 
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FFT Transformation Does Not Work

38

(x,y) => x‐yi (x,y) => y‐xi

FFT should have strongest power at 42.7

 

(T = 24, NFFT/T = 1024/24 = 42.7)
Failed!

Transform (x,y) into complex plane (two ways to transform)



Observation/Reference Spot: The Nest
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not in 

 
the nest

in the nest

Period is more obvious in this binary 

 
sequence!



Algorithm General Framework

Detecting periods: Use observation spots to find multiple 
interleaved periods

Observation spots are detected using density-based 
method
Periods are detected for each obs. spot using Fourier 
Transform and auto-correlation

Summarizing periodic behaviors: via clustering
Give the statistical explanation of the behavior
E.g., “David has 80% probability to be at the office.”

40



Running Example: Bald Eager Migration

41
Real data of a bald eagle over 3 years



Method: Finding Observation Spots

Observation spots:
Frequently visited regions/locations
They should have higher density than a random 
location

Partition the map into grids and use kernel-based method 
to find high density regions:

Find the observation spots using the contour of high 
density places

42



Example: Finding Observation Spots
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Density Observation spots



Period Detection for Each Observation Spot

For each observation spot, the movement is transformed 
into a binary sequence. 

0: not in the obs. spot

1: in the obs. spot

Use Fourier Transform combined with auto-correlation to 
find the periods

44



Example: Detect Periods for Each Obs. Spot

45

Period candidates first 

 detected using Fourier 

 Transform

The exact period is 

 further refined using 

 circular autocorrelation



Summarizing Periodic Behaviors

For each period, the movement is divided into segments
if the period is “day”, each segment is a day

Some segments during a time period form a periodic 
behavior

Daily behavior in summer
Daily behavior in winter

To distinguish interleaved behavior, apply clustering on 
the segments
A representative behavior is summarized over all the 
segments in a cluster

46



Example: Summarizing Periodic Behaviors
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Jan.‐Mar.Apr.‐June July‐.Oct Nov. Dec.
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Clustering: Distance-Based vs. Shape-Based

Distance-based clustering: Find a group of objects moving together 
For whole time span

high-dimensional clustering
probabilistic clustering

For partial continuous time span
density-based clustering
moving cluster, flock, convoy (borderline case between 
clustering and patterns)

For partial discrete time span
swarm (borderline case between clustering and patterns) 

Shape-based clustering: Find similar shape trajectories
Variants of shape: translation, rotation, scaling, and transformation
Sub-trajectory clustering 

49



High-Dimensional Clustering & Distance Measures

Treat each timestamp as one dimension

Many high-dimensional clustering methods can be applied 
to cluster moving objects

Most popular high-dimensional distance measure

Euclidean distance

Dynamic Time Warping

Longest Common Subsequence

Edit Distance with Real Penalty

Edit Distance on Real Sequence

50



High-Dimensional Distance Measures

Distance Measure Local 
Time 
Shifting

Noise Metric Complexity

Euclidean ✔ O(n)
DTW (Yi et al., ICDE’98) ✔ O(n2)

LCSS (Vlachos et al., KDD’03) ✔ ✔ O(n2)

ERP (Chen et al., VLDB’04) ✔ ✔ O(n2)

EDR (Chen et al., SIGMOD’05) ✔ ✔
(consider 
gap)

O(n2)

51
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Probabilistic Trajectory Clustering 
(Gaffney et al., KDD’00; Chudova et al., KDD’03)

Basic assumption: Data produced in the following generative manner

An individual is drawn randomly from the population of interest

The individual has been assigned to a cluster k with probability wk,                   

these are the prior weights on the K clusters 

Given that an individual belongs to a cluster k, there is a density function 

fk(yj | θk) which generates an observed data item yj for the individual j

The probability density function of observed trajectories is a mixture density

fk(yj | xj, θk) is the density component

wk is the weight, and θk is the set of parameters for the k-th component

θk and wk can be estimated from the trajectory data using the Expectation-
Maximization (EM) algorithm

∑ =
=

K

k
kw

1
,1

P(yj | xj,θ) = fk(yj | xj,θk)wk

k

K

∑
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Tracks Atlantic named Tropical Cyclones 1970-2003.

TRACKS

Mean Regression
Trajectory

Clustering Results For Hurricanes 
(Camargo et al. 06)
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Density-Based Trajectory Clustering 
(M. Nanni & D. Pedreschi, JIIS’06)

Define the distance between whole trajectories
A trajectory is represented as a sequence of location 
and timestamp
The distance between trajectories is the average 
distance between objects for every timestamp

Use the OPTICS algorithm for trajectories
e.g.,

X
Y

Time
Four clusters

Reachability Plot
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Temporal Focusing: TF-OPTICS 
(M. Nanni & D. Pedreschi, JIIS’06)

In a real environment, not all time intervals have the same importance
e.g., in rush hours, many people move from home to work or vice versa

Clustering trajectories only in meaningful time intervals can produce more 
interesting results
TF-OPTICS aims at searching the most meaningful time intervals, which 
allows us to isolate the clusters of higher quality
Method:  

Define the quality of a clustering
Take account of both high-density clusters and low-density noise
Can be computed directly from the reachability plot

Find the time interval that maximizes the quality
1. Choose an initial random time interval
2. Calculate the quality of neighborhood intervals generated by increasing 

or decreasing the starting or ending times
3. Repeat Step 2 as long as the quality increases



Invariant Distance Measures for Trajectories 
(Vlachos et al., KDD’04)

Invariants: Translation, Rotation, Scaling, Transformation

Map each trajectory to a trajectory in a rotation invariant space.
Movement vector: 
angles of each movement vector is relative to a reference vector
Angle/Arc-Length pairs (AAL) 

Use Dynamic Time Warping (DTW) to measure the distance in 
invariant space

56

Similar trajectories in 
different invariants
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Trajectory Clustering: A Partition-and- 
Group Framework (Lee et al., SIGMOD’07)

Existing algorithms group trajectories as a whole ⇒ They might not be 
able to find similar portions of trajectories

e.g., common behavior cannot be discovered since TR1~TR5 move 
to totally different directions

Partition-and-group: discovers common sub-trajectories

Usage: Discover regions of special interest
Hurricane Landfall Forecasts: Discovery of common behaviors of 
hurricanes near the coastline or at sea (i.e., before landing)

Effects of Roads and Traffic on Animal Movements: Discover 
common behaviors of animals near the road

A common sub-trajectory
TR2

TR3
TR5

TR1

TR4
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Partition-and-Group: Overall Procedure

Two phases: partitioning and grouping
TR5

TR1

TR2

TR3
TR4

A set of trajectories

A set of line segments
A cluster

(1) Partition

(2) Group

A representative trajectory

Note: A representative trajectory is a common sub-trajectory
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The Partitioning Phase

Identify the points where the behavior of a trajectory 
changes rapidly ⇒ characteristic points

An optimal set of characteristic points is found by using 
the minimum description length (MDL) principle

Partition a trajectory at every characteristic point

1p
2p3p

4p
5p

6p 7p
8p

: characteristic point             : trajectory partition

1cp2cp

3cp 4cp

iTR
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Overview of the MDL Principle

The MDL principle has been widely used in information 
theory

The MDL cost consists of two components: L(H) and 
L(D|H), where H means the hypothesis, and D the data

L(H) is the length, in bits, of the description of the 
hypothesis

L(D|H) is the length, in bits, of the description of the 
data when encoded with the help of the hypothesis

The best hypothesis H to explain D is the one that 
minimizes the sum of L(H) and L(D|H)
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MDL Formulation

Finding the optimal partitioning translates to finding the 
best hypothesis using the MDL principle

H → a set of trajectory partitions, D → a trajectory
L(H) → the sum of the length of all trajectory partitions
L(D|H) → the sum of the difference between a trajectory 
and a set of its trajectory partitions

L(H) measures conciseness; L(D|H) preciseness

)),(),(),((log
)),(),(),((log)|(

))((log)(

4341324121412

4341324121412

412

ppppdppppdppppd
ppppdppppdppppdHDL

pplenHL

θθθ ++
+++=

=
⊥⊥⊥

1cp 2cp
1p

2p 3p

4p

5p
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Grouping Phase (1/2)

Find the clusters of trajectory partitions using density-
based clustering (i.e., DBSCAN)

A density-connect component forms a cluster, e.g., 
{ L1, L2, L3, L4, L5, L6 }

L1
L3

L5 L2 L4

L6

L6  L5

 

L3

 

L1

 

L2

 

L4

MinLns

 

= 3
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Grouping Phase (2/2)

Describe the overall movement of the trajectory partitions 
that belong to the cluster

A red line: a representative trajectory, 
A blue line: an average direction vector, 

Pink lines: line segments in a density-connected set
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Example: Trajectory Clustering Results

570 Hurricanes (1950~2004)

Seven clusters discovered from 
the hurricane data set

Red line: a representative trajectory

Two clusters discovered 
from a deer data set
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Location Prediction for Moving Objects

Predicting future location

Based on its own history of one moving object

Linear (not practical) vs. non-linear motion (more 
practical)

Vector based (predict near time, e.g., next minute) 
vs. pattern based (predict distant time, e.g., next 
month/year)

Based on all moving objects’ trajectories

based on frequent patterns

66



Recursive Motion Function 
(Tao et al., SIGMOD’04)

Non-linear model, near time prediction, vector-based method
Linear model is not practical in prediction, so better to use non-linear 
model

67

Recursive motion function

Ci

 

is a constant matrix expressing several 
complex movement types, including 
polynomials, ellipse, sinusoids, etc. 

Use basic motion matrices to model 
unknown motion matrices



Efficient Implementation: Recursive Motion 
Prediction

Indexing expected trajectories using Spatio-Temporal 
Prediction Tree (STP-Tree)
A combination of Time Parameterized R Tree (TPR-tree) 
and TPR*-tree
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Experimental Results: Recursive Motion 
Prediction

Effectiveness (wrt retrospect)

Efficiency using STP-tree indexing
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Hybrid Prediction (Jeung et al. , ICDE’08)

Combining pattern and vector to prediction locations

Can predict both distant and near time locations

Mining frequent periodic patterns

70

Ex: inadequate prediction using vector-based 
method



Hybrid Prediction: Implementation 
and Predication

Implementation: Indexing patterns using trajectory pattern tree

Prediction:
For non-distant query, use Forward Query Processing to retrieve all 
the trajectory patterns

The premise of the trajectory pattern is similar to that of the 
query pattern key
its corresponding consequence time offset is the same as the 
query time

For distant query, use Backward Query Processing to retrieve 
patterns

Give up the premise key in FQP & relax time constraint
71



Prediction Using Frequent Trajectory 
Patterns (Monreale et al., KDD’09)

Use frequent T-patterns of other moving objects
If many moving objects follow a pattern, it is likely that a moving 
object will also follow this pattern
Method

Mine T-Patterns
Construct T-Pattern Tree
Predict using T-pattern tree

72

T-Patterns
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Trajectory Classification

Task: Predict the class labels of moving objects based on 
their trajectories and other features

Two approaches

Machine learning techniques

Studied mostly in pattern recognition, bioengineering, 
and video surveillance

The hidden Markov model (HMM)

Trajectory-based classification (TraClass): Trajectory 
classification using hierarchical region-based and 
trajectory-based clustering
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Machine Learning for Trajectory 
Classification (Sbalzarini et al. 02)

Compare various machine learning techniques for 
biological trajectory classification
Data encoding

For the hidden Markov model, a whole trajectory is 
encoded to a sequence of the momentary speed
For other techniques, a whole trajectory is encoded to 
the mean and the minimum of the speed of a 
trajectory, thus a vector in R2

Two 3-class datasets: Trajectories of living cells taken 
from the scales of the fish Gillichthys mirabilis

Temperature dataset: 10°C, 20°C, and 30°C
Acclimation dataset: Three different fish populations
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Machine Learning Techniques Used

k-nearest neighbors (KNN)
A previously unseen pattern x is 
simply assigned to the same class 
to which the majority of its k-
nearest neighbors belongs

Gaussian mixtures with expectation 
maximization (GMM)
Support vector machines (SVM)
Hidden Markov models (HMM)

Training: Determine the model 
parameters λ = (A, B, π) to 
maximize P [x | λ] for a given 
observation x

Temperature data set

Acclimation data set

Evaluation: Given an observation x = { O1, …, OT } and a model λ
= (A, B, π), compute the probability P [x | λ] that the observation x
has been produced by a source described by λ



77

Vehicle Trajectory Classification 
(Fraile and Maybank 98)

The measurement sequence is divided into overlapping 

segments

In each segment, the trajectory of the car is approximated 

by a smooth function and then assigned to one of four 

categories: ahead, left, right, or stop

The list of segments is reduced to a string of symbols 

drawn from the set {a, l, r, s} 

The string of symbols is classified using the hidden 

Markov model (HMM)
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Use of the HMM for Classification

Classification of the global motions 
of a car is carried out using an HMM

The HMM contains four states which 
are in order A, L, R, S, which are 
the true states of the car: ahead, 
turning left, turning right, stopped

The HMM has four output symbols 
in order a, l, r, s, which are the 
symbols obtained from the 
measurement segments

The Viterbi algorithm is used to 
obtain the sequence of internal 
states

Observed symbols

Sequence of inferred states

This measurement sequence means the 
driver stops and then turns to the right

Measurement sequence
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Motion Trajectory Classification 
(Bashir et al. 07)

Motion trajectories
Tracking results from video trackers, sign language data 
measurements gathered from wired glove interfaces, and so on

Application scenarios
Sport video (e.g., soccer video) analysis

Player movements ⇒ A strategy
Sign and gesture recognition

Hand movements ⇒ A particular word
The HMM-Based Algorithm
1. Trajectories are segmented at points of change in curvature
2. Sub-trajectories are represented by their Principal Component 

Analysis (PCA) coefficients
3. The PCA coefficients are represented using a GMM for each class
4. An HMM is built for each class, where the state of the HMM is

 

a 
sub-trajectory and is modeled by a mixture of Gaussians
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Use of the HMM for Classification

Training and parameter estimation
The Baum-Welch algorithm is 
used to estimate the 
parameters

Classification
The PCA coefficient vectors of 
input trajectories after 
segmentation are posed as an 
observation sequence to each 
HMM (i.e., constructed for 
each class)
The maximum likelihood (ML) 
estimate of the test trajectory 
for each HMM is computed
The class is determined to be 
the one that has the largest 
maximum likelihood

Experiment:  Datasets
The Australian Sign 
Language dataset (ASL)

83 classes (words), 5,727 
trajectories

A sport video data set (HJSL)
2 classes, 40 trajectories 
of high jump and 68 
trajectories of slalom 
skiing objects

Accuracy
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A Critique of Previous Methods

Common Characteristics of Previous Methods: Use the 
shapes of whole trajectories to do classification

Encode a whole trajectory into a feature vector;

Convert a whole trajectory into a string or a sequence 
of the momentary speed; or

Model a whole trajectory using the HMM

Note: Although a few methods segment trajectories, the 
main purpose is to approximate or smooth trajectories 
before using the HMM
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TraClass: Trajectory Classification 
Based on Clustering

Motivation

Discriminative features are likely to appear at parts of 
trajectories, not at whole trajectories

Discriminative features appear not only as common 
movement patterns, but also as regions

Solution

Extract features in a top-down fashion, first by region-
based clustering and then by trajectory-based 
clustering
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Intuition and Working Example

Parts of trajectories near the container port and near the 
refinery enable us to distinguish between container ships 
and tankers even if they share common long paths
Those in the fishery enable us to recognize fishing boats 
even if they have no common path there

Refinery

Fishery

Port A Port B

Container Port

Container Ships Tankers Fishing Boats
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Region-Based Clustering 

Trajectory-Based Clustering 

Region-Based Clustering

Trajectory-Based Clustering

Trajectory Partitions

Features
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Class-Conscious Trajectory Partitioning

1. Trajectories are partitioned based on their shapes as in 
the partition-and-group framework

2. Trajectory partitions are further partitioned by the class 
labels

The real interest here is to guarantee that trajectory 
partitions do not span the class boundaries

Additional partitioning points

Non-discriminative              Discriminative

Class A
Class B
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Region-Based Clustering

Objective: Discover regions that have trajectories mostly 
of one class regardless of their movement patterns
Algorithm: Find a better partitioning alternately for the X 
and Y axes as long as the MDL cost decreases

The MDL cost is formulated to achieve both 
homogeneity and conciseness
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Trajectory-Based Clustering

Objective: Discover sub-trajectories that indicate common 
movement patterns of each class

Algorithm: Extend the partition-and-group framework for 
classification purposes so that the class labels are 
incorporated into trajectory clustering

If an ε-neighborhood contains trajectory partitions 
mostly of the same class, it is used for clustering; 
otherwise, it is discarded immediately
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Selection of Trajectory-Based Clusters

After trajectory-based clusters are found, highly 
discriminative clusters are selected for effective 
classification

If the average distance from a specific cluster to other 
clusters of different classes is high, the discriminative 
power of the cluster is high
e.g.,

C1
C2

Class A
Class B

C1 is more discriminative than C2
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Overall Procedure of TraClass

1. Partition trajectories

2. Perform region-based clustering

3. Perform trajectory-based clustering

4. Select discriminative trajectory-based clusters

5. Convert each trajectory into a feature vector

Each feature is either a region-based cluster or a 
trajectory-based cluster

The i-th entry of a feature vector is the frequency that 
the i-th feature occurs in the trajectory

6. Feed feature vectors to the SVM
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Classification Results

Datasets
Animal: Three classes ← three species: elk, deer, and cattle
Vessel: Two classes ← two vessels
Hurricane: Two classes ← category 2 and 3 hurricanes

Methods
TB-ONLY: Perform trajectory-based clustering only
RB-TB: Perform both types of clustering

Results
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Data (Three Classes)

Features:
10 Region-Based Clusters
37 Trajectory-Based Clusters

Accuracy = 83.3%

Example: Extracted Features
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Part I. Moving Object Data Mining

Introduction

Movement Pattern Mining

Periodic Pattern Mining

Clustering

Prediction

Classification

Outlier Detection
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Trajectory Outlier Detection

Task: Detect the trajectory outliers that are grossly different 
from or inconsistent with the remaining set of trajectories

Methods and philosophy:

1. Whole trajectory outlier detection

A unsupervised method

A supervised method based on classification

2. Integration with multi-dimensional information

3.
 

Partial trajectory outlier detection

A Partition-and-Detect framework
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Outlier Detection: A Distance-Based 
Approach (Knorr et al. VLDBJ00)

Define the distance between two whole trajectories
A whole trajectory is represented by

The distance between two whole trajectories is defined as

Apply a distance-based approach to detection of trajectory outliers
An object O in a dataset T is a DB(p, D)-outlier if at least fraction p
of the objects in T lies greater than distance D from O
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Sample Trajectory Outliers

Detect outliers from person trajectories in a room

The entire data set The outliers only
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Use of Neural Networks (Owens and Hunter 00)

A whole trajectory is encoded to a feature vector: F = [ x, 
y, s(x), s(y), s(dx), s(dy), s(|d2x|), s(|d2y|) ]

s() indicates a time smoothed average of the quantity

dx = xt – xt–1

d2x = xt – 2xt–1 + xt–2

A self-organizing feature map (SOFM) is trained using the 
feature vectors of training trajectories, and a new 
trajectory is classified into novel (i.e., suspicious) or not 
novel

Supervised learning
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An Application: Video Surveillance

Training dataset: 206 normal trajectories
Test dataset: 23 unusual and 16 normal trajectories
Classification accuracy: 92%

An example of a normal 
trajectory

An unusual trajectory; 
The unusual points are 
shown in black



98

Anomaly Detection (Li et al. ISI’06, SSTD’07)

Automated alerts of 
abnormal moving 
objects
Current US Navy 
model: manual 
inspection

Started in the 1980s
160,000 ships
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Conditional Anomalies and Motif 
Representations

Raw analysis of collected data 
does not fully convey “anomaly”
information
More effective analysis relies on 
higher semantic features
Examples:

A speed boat moving quickly 
in open water
A fishing boat moving slowly 
into the docks
A yacht circling slowly around 
landmark during night hours

Motif representation

a sequence of motifs

with motif attributes
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Motif-Oriented Feature Space

Each motif expression has attributes (e.g., speed, location, size, time)
Attributes express how a motif was expressed

A right-turn at 30mph near landmark Y at 5:30pm
A straight-line at 120mph (!!!) in location X at 2:01am

Motif-Oriented Feature Space 
Naïve feature space

1. Map each distinct motif-expression to a feature
2. Trajectories become feature vectors in the new space 

Let there be A attributes attached to every motif, each trajectory is 
a set of motif-attribute tuples

{(mi , v1 ,

 

v2 , …, vA ), …, (mj , v1 , v2 , …, vA )}
Example:

Object 1: {(right-turn, 53mph, 3:43pm)} → (1, 0)
Object 2: {(right-turn, 50mph, 3:47pm)} → (0, 1)
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Motif Feature Extraction

Intuition: Should have features that describe general 
high-level concepts

“Early Morning” instead of 2:03am, 2:04am, …

“Near Location X” instead of “50m west of Location X”

Solution: Hierarchical micro-clustering 

For each motif attribute, cluster values to form higher 
level concepts

Hierarchy allows flexibility in describing objects

e.g., “afternoon” vs. “early afternoon” and “late 
afternoon”
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Feature Clustering

Rough, fast micro-clustering 

method based on BIRCH 

(SIGMOD’96)

Extracts a hierarchy for every 

motif-attribute combination

Trajectories can be 

represented at arbitrary level 

of granularity
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Trajectory Outlier Detection: A Partition- 
and-Detect Framework (Lee et al. 08)

Existing algorithms compare trajectories as a whole
They might not be able to detect outlying portions of 
trajectories

e.g., TR3 is not detected as an outlier since its overall 
behavior is similar to those of neighboring trajectories

The partition-and-detect framework is proposed to 
detect outlying sub-trajectories

TR5

TR1

TR4TR3
TR2

An outlying sub-trajectory
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Usefulness of Outlying Sub-Trajectories

Example: Sudden changes in hurricane’s path

Since Hurricane Charley (Aug. 2004) was expected to 
hit the land closer to Tampa, many residents around 
Punta Gorda, Fla., were caught unprepared 

Usual trajectories

Sudden change
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Overall Procedure

Two phases: partitioning and detection

TR5

TR1

TR4TR3
TR2

A set of trajectories

(1) Partition

(2) Detect
TR3

A set of trajectory partitions

An outlier

Outlying trajectory partitions
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Simple Trajectory Partitioning

A trajectory is partitioned at a base unit: the smallest 
meaningful unit of a trajectory in a given application

e.g., The base unit can be every single point

Pros: High detection quality in general

Cons: Poor performance due to a large number of t-
 partitions Propose a two-level partitioning strategy

Neighboring Trajectories
A t-partition

A trajectory TRout

An outlying t-partition
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Two-Level Trajectory Partitioning

Objective 
Achieves much higher performance than the simple 
strategy
Obtains the same result as that of the simple strategy; 
i.e., does not lose the quality of the result 

Basic idea
1. Partition a trajectory in coarse granularity first
2. Partition a coarse t-partition in fine granularity only 

when necessary
Main benefit

Narrows the search space that needs to be inspected in 
fine granularity ⇒ Many portions of trajectories can be 
pruned early on



108

Intuition of Two-Level Trajectory 
Partitioning

If the distance between coarse t-partitions is very large (or 
small), the distances between their fine t-partitions are 
also very large (or small)

The lower and upper bounds for fine t-partitions are 
derived in the paper

TRi

TRj

Coarse-Granularity Partitioning

Fine-Granularity Partitioning
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Outlier Detection

Once trajectories are partitioned, trajectory outliers are 
detected based on both distance and density

An outlying t-partition is defined as

A trajectory is an outlier if it contains a sufficient amount 
of outlying t-partitions

iLiTR

Li is an outlying t-partition Li is not an outlying t-partition

Not close

≤ 1‒p
iLiTR

Close > 1‒p



110

Incorporation of Density

The number of close trajectories is adjusted by the 
density of a t-partition

Dense region Decreased, Sparse region Increased

T-Partitions in dense regions are favored!
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Experiments: Sample Detection Results

13 outliers detected from the hurricane 
data

Three outliers found from the Elk Data
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Summary: Moving Object Mining

Pattern Mining
Trajectory patterns, flock and leadership patterns, periodic 
patterns, 

Clustering
Probabilistic method, density-based method, partition-and-group 
framework

Prediction
linear/non-linear model, vector-based method, pattern-based 
method

Classification
Machine learning-based method, HMM-based method, TraClass
using collaborative clustering

Outlier Detection
Unsupervised method, supervised method, partition-and-detect 
framework
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Tutorial Outline

Part I. Mining Moving Objects

Part II. Mining Traffic Data

Part III. Conclusions
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Part II. Traffic Data Mining

Introduction to Traffic Data

Traffic Data Warehousing

Route Discovery by Frequent Path Pattern 

Analysis
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Trillion Miles of Travel

MapQuest

10 billion routes computed by 2006

GPS devices

18 million sold in 2006

88 million by 2010

Lots of driving

2.7 trillion miles of travel (US – 1999)

4 million miles of roads

$70 billion cost of congestion, 5.7 billion gallons of 
wasted gas
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Abundant Traffic Data

Google Maps provides live traffic information
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Traffic Data Gathering

Inductive loop detectors
Thousands, placed every few 
miles in highways

Only aggregate data

Cameras
License plate detection

RFID
Toll booth transponders

511.org – readers in CA
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Road Networks

Node: Road 
intersections

Edge: Road 
segment

Driving Pattern:
Preferred 
Routes

Speed Pattern:
65 mph non rush
35 mph rush hour
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Part II. Traffic Data Mining

Introduction to Traffic Data

Traffic Data Warehousing

Route Discovery by Frequent Path Pattern 

Analysis



Traffic Cube: Motivation Examples

Ex. 1. Bob is a bagpack traveler and he is new to Los 
Angles. He wants to know 

Where are the places the traffic jams are most likely to 
happen in weekend?
When is the best time to visit the Hollywood to avoid 
heavy traffic?

Ex. 2. Jim is the head of the transportation department in 
Los Angeles, the department recently got limited funds to 
improve roads

On which highway the traffic is usually heavy during 
the morning rush hours?



Problem of Traditional Query

Select highway name from traffic table where speed < 40 
mph and Region is Los Angeles

#101, segment id 2, 36 mph, 3:50 pm

#10, segment id 5, 33 mph, 3:50 pm

# 101, segment id 3, 34 mph, 4:00 pm

The results are not organized

Too trivial

Google Traffic is good to visualize current traffic, it also 
provides prediction function, but no analysis on historical 
data



User Requirements

Users demand summaries in their interested time, region, 
scale, etc. 

Bob is only interested in Hollywood region on weekend
Jim is more concerned on the whole Los Angeles on 
weekdays

Users are more interested in the information related to 
traffic jams, incidents, slow traffic—the congestions



Features of Traffic Data

Huge Size
Thousands of road sensors, reporting the data in a 
time frequency of 30 seconds
The traffic databases contains Giga-bytes, even Tera-
bytes of data
Most of them are normal records (the speed reading is 
close to the speed limit of the road)
Congestions are dwarfed by normal data

Complex Object
A congestion is a complex object with several road 
segments and varied time length – hard to model



Traffic Monitoring Systems

PeMS: collects data in California highway
CarWeb: collects real time GPS data from cars
Google Traffic: Toolkit on Google Map
CubeView by Shekhar et al: Implement traditional OLAP 
on the traffic data
AITVS: based on CubeView, using two more distinct 
views to support investigation
Most focus on SQL based queries, lacking analysis 
power
Build on the whole dataset – huge I/O overhead, atypical 
data are dwarfed



Spatial/Traffic/Trajectory Data Cubes

Spatial Cube (Stefanovic et al. 2000)
Dimension members are spatially referenced and can 
be represented on a Map

Trajectory Cube (Giannotti et al. 2007)
include temporal, spatial, demo-graphic and techno-
graphic dimensions, two kinds of measures: spatial 
measure and numerical measure

Flow Cube (Gonzalez et al. 2007)
Analyzing item flows in RFID applications

Congestion Cube: On-going work
Multidimensional analysis of traffic congestions



Congestion Event

A congestion is a dynamic process:
start from a single segment of the streets
expand along the road and influence nearby roads
may cover hundred road segments when reaching the 
full size
As time passes by, those fragments shrink slowly and 
eventually disappear.

Group the congestion records that are spatially 
close and timely relevant to be a congestion 
event



Base Congestion Cluster

For each road segment in the congestion event, record 
the seg_id, total_duration and avg_speed
Congestion Event:

Seg_1, 9:00 am, 30 mph
Seg_2, 9:00 am, 35 mph
Seg_1, 9:05 am, 40 mph
…

Base Congestion Cluster
Seg_1, 30 mins, 32.5 mph
Seg_2, 20 mins, 35 mph



Congestion Cluster and Congestion Cube

Natural and distinguishable
Congestion cube: Constructed based on congestion clusters
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Part II. Traffic Data Mining

Introduction to Traffic Data

Traffic Data Warehousing

Route Discovery by Frequent Path Pattern 

Analysis
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Route Planning
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Heuristic Shortest Path Algorithms for 
Transportation Networks (Fu et al.’06)

Problem

Route Guidance System (RGS)

Route Planning System (RPS)

Second level response, queries on large networks

Solution: Heuristic search

1. Limit Search Area

2. Search Decomposition

3. Limit Examined Links
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General Algorithm

Initialization
o: Origin, d: Dest
L(i) = inf, L(o) = 0
Q.push(o)

Initialization
o: Origin, d: Dest
L(i) = inf, L(o) = 0
Q.push(o)

i = Q.select_node()i = Q.select_node()

For each link (i,j)
If L(i)+C(i,j) < L(j)
L(j) = L(i)+C(i,j)
Q.push(j)

For each link (i,j)
If L(i)+C(i,j) < L(j)
L(j) = L(i)+C(i,j)
Q.push(j)

Q.not_empty()

Label Setting (LS):
return min(L(i)) node

Label Correcting (LC):
return first node
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Method 1. Limit Search Area

Branch Pruning [Fu et al. 96, 
Karim 96]
Q.select_node()

Select node if L(i) + e(i,d) < 
E(o,d)
Prune unpromising nodes
Expands: 20% of LS

A-Star [Hart 68, Nilsson 71]
Select node with min L(i) + 
e(i,d)
Prioritize promising nodes
Expands: 10% of LS

Branch Pruning vs. A-Star

Dest.Origin

Expanded
LS

Expanded
Limited



134

Method 2. Search Decomposition

Algorithm cost grows faster than graph size
Decompose problem

Subgoals
[Bander et al. 91]
[Dillenburg et al. 95]

Bidirectional Search
[Dantzig 60, Nicholson 66]

SubgoalsSubgoals

min e(i,d) min e(o,i)
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Method 3. Limit Links: Hierarchical Search

Divide a graph into layers
Top Layer:

Small
Large roads

Bottom Layer:
Large
Contains all roads

Strategy
Search an entry point to top layer
Run the standard A-Star on top layer

Orders of magnitude faster than A-star
References: [Polya’45, Sacerdoti’74, Korf’87, Timpf et al. 
‘92, Car et al.’94, Liu’97, Chou et al.’98, Jagadish et al.’02, 
Jung et al.’02]
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Hierarchical Search

Speedup
Linear in search space
Orders of magnitude faster than A-Star
Only viable option

Sub-optimal solution
Path 9% - 50% slower than optimal
No shortcuts between top/bottom layers
Bad for short trips

Better to avoid highways
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Mining Frequent Routes: When in 
Rome, Do as the Romans Do

Adaptive Fastest Path Computation on a Road Network 
[Hector et al. 07]

Data is the King

No model can anticipate all variables

Fastest Route

Frequent Route
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Mining for Fast and Popular Routes

Speed Patterns
Driving Patterns

Query:
Start: Node A
End: Node B
Time: T

Route Planning

Road Network

Fast but 
also

 Popular

Fast but 
also

Popular
NewNew

Driving 
Conditions
Forecast
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Road Network Partitioning

Road hierarchy provides 
natural partition
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Traffic Data

car_id eid Time Speed Conditions
1 1 10 30 rain, no construction, accident

1 2 12 25 rain, no construction, no accident

2 10 11 60 good weather, no construction, accident
... ... ... ...

RFID: Yes
Loop Sensor: 

No

National Weather Service
Transportation Management 

 
Centers

Computed
Successive 

 
Observations
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Mining Speed Patterns

Model of speed changes
Classification

Given conditions predict 
speed (discrete)
We use decision tree

Regression problem
Given conditions predict 
speed (continuous)

Area

Weather Time

A1
A2

¼ 1

Icy Other

…

⅓

Rush

⅓

Normal
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Mining Driving Patterns

For each area:
Define minimum support
Mine frequent trajectories

Length k: For RFID Data
Length 1: For loop detectors

Driving Conditions Area Popular Routes
All A1 {r1,r3,r5}

Snow A2 {r13,r29}
Rush Hour, Any Weather A3 {r6,r6}
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Hierarchical Route Planning

Ascending Phase
Move from start through successively bigger roads 
towards goal

Move only through large roads
Descending Phase

Move towards goal through successively smaller roads
At each step

Select frequently traveled roads
Use dynamic speed model
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Example: Hierarchical Route Planning
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Result: San Joaquin Route

Shortest path
Suggested path
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Summary: Traffic Data Mining

Traffic Warehousing

Congestion cluster based approach

Heuristic methods to mine significant clusters

Route Discovery

Heuristic methods (Limit Search Area, Search 
Decomposition, Limit Examined Links), adaptive 
method

Hot-Route Detection

FlowScan
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Tutorial Outline

Part I. Mining Moving Objects

Part II. Mining Traffic Data

Part III. Conclusions
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Conclusions

Mining moving object data, trajectory data and traffic data 

are important tasks in data mining

Lots of rich and exciting results

This tutorial has presented an overview of recent 

approaches in this direction

Promising research directions

Moving object/traffic mining in cyber-physical networks

Integration with heterogeneous information networks

Exploration of diverse applications
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