
Can Back-of-the-Book Indexes be Automatically Created?

Zhaohui Wu†, Zhenhui Li‡, Prasenjit Mitra‡†, C. Lee Giles‡†
†Computer Science and Engineering, ‡Information Sciences and Technology

Pennsylvania State University, University Park, PA 16802, USA
zzw109@psu.edu, {jessieli, pmitra, giles}@ist.psu.edu

ABSTRACT
Automatic creation of back-of-the-book indexes remains one of

the few manual tasks related to publishing. Inspired by how

human indexers work on back-of-the-book indexes creation, we

present a new domain-independent, corpus-free and training-free

automation approach. Given a book, the index terms will be se-

quentially selected according to an indexability score encoded by

the structure information residing in a book as well as a novel

context-aware term informativeness measurement utilizing the

power of the web knowledge base such as Wikipedia. By ex-

tensive experiments on books from various domains, we show our

approach to be a more effective and practical than ones that used

previous keyword extraction and supervised learning.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Text Mining;
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Back-of-the-Book Index, Book Index, Term Informativeness

1. INTRODUCTION
A back-of-the-book index is a collection of words or phrases,

often alphabetically arranged to allow users to locate in-
formation in a given book. Creating an index for a non-
fiction book is the responsibility of the author, but most
authors do not actually do it. Usually indexing is done by
freelancers hired by authors, publishers or an independent
business which manages the production of a book, namely
professional indexers. An index entry is an index term with
its locators as shown in Figure 1. The locators are usually
depicted by single page numbers, ranges of page numbers or
even the section numbers, where a bold number indicates a
more important reference. Besides, a good back-of-the-book
index may also contain semantic relationships among those
index terms. Typical relationships include 1) subcategory
represented by subheadings such as those under “mixture

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505627.

mixture coefficient, 111
mixture component, 111
mixture density network, 272, 673
mixture distribution, see mixture model
mixture model, 162, 423
 conditional, 273, 666
 linear regression, 667
 logistic regression, 670
 symmetries, 483
mixture of experts, 672
mixture of Gaussians, 110, 270, 273, 430
MLP, see multilayer perceptron

Figure 1: An back-of-the-book index snippet

model”; 2) homographs or synonyms indicated by “see”, e.g.
“MLP, see multiple perceptron”; and 3) cross references indi-
cated by“see”and“see also”. A good index is more than just
an alphabetical list of all proper nouns (which is properly
called a concordance) and their locations; it is a way of re-
organizing the knowledge in a book that can guide a reader
to the locations they most need to consult. So a good book
index should be regarded as a creative work of a professional
indexer, which reflects his/her understanding and analyzing
of the book content; thus the indexing industry believe the
book index creation cannot be replaced by computers 1.

Indexing softwares can help to sort and manipulate index;
establish subheading sequences; restyle and amend entries;
and keep track of what has been indexed where; but can-
not really create indexes “automatically”, or even provide
some facility to do content analysis and understanding. Re-
cent development of keyword extraction should render new
assistance to the book indexing. Surprisingly, very little
attention has been drawn to book indexing by taking ad-
vantage of keyword extraction techniques except [4], which
explored the automatic back-of-the-book index generation
problem as a keyword extraction problem using supervised
learning. However, a set of keywords is still far away from
the book index. What really matters for the index is a term
with its proper locators that point to the text. For example,
in the book Pattern Recognition and Machine Learning [1],
the term “hidden Markov model” appears in more than 20
pages while the actual index entry has only 2 pages as its
locators. Keyword extraction only gives a list of keywords
in a context-oblivious way, without pointing out from what
context the keyword should be indexed. Back-of-the-book
index generation needs to identify the exact contexts/pages
of a term to ensure it’s informative or valuable enough for
indexing. The new challenge is how to identify the proper
locators given a keyword.

1http://www.backwordsindexing.com/Comp.html

Besides, whether the supervised learning approach is a
good choice seems questionable. First, books from different
domains vary a lot in vocabulary composition and structure
style, requiring various indexing specialties. For example,
there are different indexing guiding books for medicine [24]
and law [9]. Second, book indexing is a highly subjective
work and indexes of different books are always created by
different professional indexers who have their own prefer-
ences and background [5]. Third, the learning is on an ex-
tremely unbalanced training set. As we found in our dataset,
the index size is only 0.42% of the length of book in aver-
age. These deficiencies might cause the problems of domain
dependence and harm the efficiency. All these give us the
motivation to move a further step on book indexing by ex-
plore generating index terms aware of their locators through
an efficient training-free and domain independent approach.

Admittedly, the intellectual and analytical work of index-
ing is the task of human, but can we do more than just
give a list of keywords? Inspired by how human indexers
work on book indexing, we presents a domain-independent
and training-free approach, relying on the book content and
structure and the web knowledge base. Given a book, the
index terms will be selected according to 1) the indexabil-
ity score measuring a word’s quality of being an index term
for its context, combined with, 2) the context weight that
measures the importance of a term’s context based on the
book structure information. We redefine the back-of-the-
book generation as an optimization problem aiming to find
a set of index terms with good“indexability”in contexts with
high context weight. We then develop efficient algorithms to
solve the problem and evaluated our methods on hundreds
of books in more than 10 domains, including computer sci-
ence, art, history, Psychology, and so on. The experimental
results show that our approach is effective and efficient in
creating book indexes and outperforms the previous super-
vised learning approaches. Besides the domain-independent
and training-free, we argue our approach could be easily ap-
plied to books of other languages.

2. RELATED WORK

2.1 Existing aiding tools
There are plenty of indexing softwares such as CINDEX,

Macrex 2, and IndDoc [14], which provide aid to human
indexers. They can help to produce a concordance or a
word list, locate the various occurrences of a word, sort the
entries in alphabetical order and format the resulting index
according to different index styles. However, they by no
means give any aid to the key indexing process, i.e. selecting
an index term based on understanding of book content.

2.2 Back-of-the-book index generation
Though more and more books are becoming available on-

line in electronic format, the automatic back-of-the-book in-
dex generation, as an influential application for the index-
ing society and publishing industry and also a challenging
AI task, has not receive enough attention. In 1998, Schutze
proposed hypertext concordance as a hypertext back-of-the-
book index, which mainly focus on the design of connecting
index entries and their occurrence in a book while simply
select index terms based on the likelihood ratio of occurring

2http://www.asindexing.org/i4a/pages/index.cfm?pageid=3319

in the target document collection and a reference collection
[16]. Csomai and Mihalcea first evaluated the performance
of different informativeness measurements such as TFIDF,
χ2, and KL divergence for selecting book index terms [3],
and then studied it in a supervised learning framework [4]
based on syntactic features, linguistical features, encyclo-
pedic features and so on. However, their work is closer to
keyword extraction in long documents rather than build a
real book index.

2.3 Keywords Extraction
The closest work of rich literature to back-of-the-book

indexing is the keyphrase extraction, which has been ex-
tensively studied in different application contexts such as
academical and digital library resources [6, 18, 8, 13], web
pages [12, 25, 15, 19] and social media documents [11, 26,
20]. Presumably many of the keyphrase extraction methods
can be applied to select candidate index terms for books.
However, they are inherently context-oblivious, limiting its
capability to find the appropriate references of index terms.
What’s more, most of the keyphrase extraction approaches
are either highly supervised or must be run in a large cor-
pus environment. Our is not only unsupervised and domain
independent, but also corpus-free, thus can be much more
practical for back-of-the-book index generation.

3. METHODS
Unlike the previous approach that simply hires a brunch of

features and then throws them to supervised learning mod-
els, ours is inspired by the way professional indexers create
real book indexes. They read the text, select the terms that
readers are likely to inquiry and relates them to the text
segments, based on not only the structure and content of
a book but also, more importantly, their own background
knowledge that enables them to gain a comprehensive un-
derstanding of the book. Similarly, our method goes through
the whole book sequentially and identifies the index terms
according to the indexability score and context weight mea-
sured by both inner information within the book and exter-
nal information from web knowledge.

3.1 Problem Statement
Definition A book is a sequence of contexts, i.e. B =
[C0, ..., C|B|−1]. A context is a syntactic unit of discourse
such as a paragraph or a sentence, composed of a sequence
of terms, denoted by Ci = [ti1, ..., ti|Ci|], where a term t is
represented by an n-gram. The whole set of terms in book B
is denoted by T . An index item is paired by an index term
and its context, denoted by it = (t, idC), where t = it[0] ∈ T
and idC = it[1] ∈ {0, ..., |B|− 1}. A back-of-the-book index,
denoted by E = {it0, ...its−1}, is a collection of index items
where s is the index size or total number of index items.

Given a book and its index size s, our goal is to generate s
index items that maximize the indexability scores as well as
have good coverage to all the information conveyed in the
whole book. Note that the total number of index terms ≤ s
since an index entry can have multiple contexts. Based on
the definitions, the back-of-the-book index generation can
be formulated as the following problem:

E∗ = arg max
E={it0,...its−1}

s−1∑
j=0

ω(Citj [1], B) · S(itj [0], Citj [1])

s.t.

ω(Citj [1], B) ≥ ω0 (1)

S(itj [0], Citj [1]) ≥ S0 (2)

max
0≤j≤s

(|itj [1]− itj−1[1]|) ≤ σ0 (3)

where
• Citj [1] is the context of term itj [0], itj [1] ≤ itj−1[1] (0 <
j < s, it−1[1] = 0, its[1] = |B| − 1);
• ω(Citj [1], B) measures the context weight score of Citj [1]

in book B;
• S(itj [0], Citj [1]) measures the indexability score of the

term itj [0] in its context Citj [1];
• ω0 and S0 are two threshold parameters and σ0 is an

adjustable parameter to control the coverage of book
index.

Since our method is corpus-free, relying only on a given
book, we can omit the B in all related notations.

3.2 Measuring Indexability
The indexability is encoded by two factors, context-aware

informativeness and keyphraseness.

3.2.1 Context-aware Informativeness
Most known approaches to measure term informativeness

fall into two categories: frequency-based and semantic-based.
The frequency-based methods are based on derivations from
term frequency (TF) and document frequency (DF), while
the semantic-based methods compute latent semantic anal-
ysis (LSA) term vector length or the ratio of a term’s LSA
vector length to its document frequency [10]. Those meth-
ods, all corpus-based, which are effective to identify infor-
mative words in document level, lose the power to capture
the term informativeness in a particular context, since they
are context-oblivious[22]. We could segment a book into
chapters or paragraphs, and then apply the corpus-based
methods, or even more sophisticated keyword extraction al-
gorithms. However, we still will face the difficulty in de-
termining proper locators of index terms. We could hire
the context weighting metric, which will be given in next
subsection, to choose the contexts. However, before lever-
aging the structure information of a book, can we derive a
context-aware term informativeness measurement for a given
context or even a general textual snippet? Our intuition is
that higher informative terms in a context tend to have more
similar contexts. Considering the following two contexts of
“graph” from chapter 8 of PRML, it is easy to demonstrate
that the first one tends to have more similar contexts on the
web by search “graph” using Wikipedia, Google, and Bing.
This motivates our definition of context-aware term infor-
mativeness.

1. A graph comprises nodes (also called vertices) con-
nected by links (also known as edges or arcs).

2. We shall now go from this graph to the correspond-
ing representation of the joint probability distribution
written in terms of the product of a set of conditional
distribution, one for each node in the graph.

Definition Given a term t and its context C, suppose the
featured context set of t is Uf = {Ci|i = 1, ..., k}, the term
informativeness of t in context Ci is defined as

I(t, C) =
∑
i

sim(C,Ci) · p(Ci) (4)

where sim(C,Ci) is a similarity distance between C and Ci,
and p(Ci) is the prior importance of Ci to t.

Wikipedia is used as the knowledge base since it is cur-
rently one of the largest and most readily available knowl-
edge repositories. Given any keyword, the Wikipedia query
API will return the ranked Wikipedia entries along with the
contexts containing the keyword. The top k results are con-
sidered as the featured context set and the discounted rank
is used to estimate the prior p(Ci).

3.2.2 Keyphraseness
We assume the keyphraseness of a term is qualitatively de-

termined by two key properties: 1) it should be a meaning-
ful phrase in the book; 2) it is highly possible that the term
had been selected as a keyphrase in other similar resources.
Pointwise Mutual Information (PMI) [2], was shown to be
the best metric to measure word association [17]. Given an
n-gram (x1..xn), its PMI is defined as

PMI(x1..xn) = log
p(x1..xn)

p(x1)p(x2..xn)
(5)

where p(x) is the probability of occurrence of word x and
p(x1..xn) the corresponding joint probability in a book.

In Wikipedia a term is marked as “keyword” in terms of
title or anchor text in a link. The Wikipedia keyphraseness
estimates the probability of a term t being a keyword in a
new document by the ratio of number of documents where
t was marked as a keyword to its DF [4].

WK(t) = count(Dkey(t))/DF (t) (6)

This metric is computational impractical due to the high
cost for harvesting count(Dkey) online. It is even costly to
precompute WK of all keywords in Wikipedia to provide
local fast access. Thus we present a new lightweight version
by leveraging the power of Wikipedia API.

WK(t) = count(Backlinks(t))/totalhits(t) (7)

where Backlinks(t) lists pages that link to t by Backlinks
API 3 and totalhits(t) returns number of hit pages by Search
API 4.

3.3 Context weighting
It is possible that human indexers may not be knowl-

edgeable enough to gain an exact understanding of every
book they work on, especially the professional and technical
books. However, they can still create an acceptable index
using their indexing techniques, most of which are based on
the fact the structure and format information in a book gives
useful clues for what should be indexed. For example, words
in chapter titles should be more likely to be indexed than
those in general paragraphs. To leverage the structure infor-
mation, the context weight score is defined to measure the
importance of a context w.r.t indexability based on solely
on structure or format features, which have been previously
shown useful for keyphrase extraction [7]. We define the
context weight as a weighed sum of the three indicators:

ω(C) = λ1 · ωt(C) + λ2 · ωd(C) + λ3 · ωe(C) (8)

where

3http://www.mediawiki.org/wiki/API:Backlinks
4https://www.mediawiki.org/wiki/API:Search

• ωt is a boolean function determined by whether the
context is a chapter or sub-chapter title;

• ωd(C) = 1 − Cid(C)−Cid(titleC)
NtitleC

measures the normal-

ized distance from the context to its direct chapter or
sub-chapter title, where Cid(C) denotes the id of con-
text C, titleC the title of context C and NtitleC the
number of contexts under titleC);

• ωe(C) = |Ccand|
|C| measures the effective length of the

context by counting the fraction of candidate index
words where Ccand indicates all the candidate index
words of C.
• λ1, λ2, and λ3 are adjustable weights for the above

three indicators.

3.4 Algorithm and Technical Implementation

Algorithm 1: Back-of-the-book index generation

1 Input: a book B
2 Output: a book index E sizes s
3 begin

4 initialize a temporary index Ê;
5 for C ∈ B do
6 cands←− getCandidates(C);
7 ωC ←− getContextWeight(C, cands,B);
8 if ωC < ω0 then continue;
9 for t ∈ cands do

10 S ← getIndexability(t, cands, C);
11 if S < S0 then continue;
12 Score←− ωC · S;

13 add ((t, idC) : Score) to Ê;

14 move top s highest Score items from Ê to E;
15 while ∃itj s.t. itj [1]− itj−1[1] > σ0 in E do

16 S1 ← {it ∈ Ê|itj−1[1] ≤ it[1] ≤ itj [1]};
17 move arg max

it∈S1

Score(it) from Ê to E;

18 S2 ← {itk ∈ E|itk+1[1]− itk−1[1] ≤ σ0};
19 remove arg min

it∈S2

Score(it) from E;

An efficient algorithm for the back-of-the-book index gen-
eration problem is presented in Algorithm 1. getCandidates
returns the candidate index terms of a context based on POS
patterns and stop-words. getContextWeight calculates the
context weight score defined in Eq.(8). The default λ1, λ2,
and λ3 are set to 0.5, 0.3 and 0.2. ωt, ωd, and ωe are all
initialized to zero. The effective length is calculated by the
ratio of number of candidates to the total number of grams
in context C, shown in line 5. ωt and ωd will be set to 1 if
the context is a chapter or subchapter title. All the chapter
and subchapter titles of a book are collected by detecting its
table of content [23]. We then simply check whether C can
find a fuzzy match in the title collection. If C is not a title,
we then set ωt to 0 and compute ωt based on the distance
of C deviated from its direct title. We find the titleC by
searching the nearest context before C from the title col-
lection. Number of contexts under a title is the difference
between id of a title and id of its next sibling title.
getIndexabilityScore computes the indexability score of

each candidate index term in its context. The default im-
plementation of Sim for context-aware term informativeness

score is the cosine similarity using candidate index terms as
the feature vector. The similarity score is discounted by
log(rank + 1) as an approximation of the prior probability
p in Eq. (4). Finally, we use a hybrid score combining the
context-aware informativeness with term frequency, PMI,
and Wikipedia Keyphraseness. In the experiments, we use
a simple linear combination with the same weight and each
part normalized to [0,1]. We use TF instead of TFIDF
because we found that TF is comparable to TFIDF for
identifying index terms. Moreover, it is costly to have a
huge word dictionary with DF that covers all candidate in-
dex term for an arbitrary book while computing TF is super
easy and fast. The PMI score is computed according to Eq.
(5) while the probability of an n-gram is simply estimated
using its TF in a book. The Wikipedia keyphraseness is
based on Eq. (7).

The smaller ω0 and S0 are, the more items will be added
to Ê. Their default values are set to 0.01. The final s items
are tweaked to satisfy Eq. (3), i.e., making the distance of
each two adjacent items no larger than ω0, delineated by
line 15-19. In line 16-17, we select from Ê the item of the
highest Score between the two items whose distance is large
than ω0 and add it to E. In line 18-19, we remove from E
the item of the lowest Score while the distance between its
previous and next item is no larger than ω0. We set ω0 by
the minimum number of contexts in a subchapter.

4. EMPIRICAL EVALUATION

4.1 Datasets and Experimental Setup
To evaluate our back-of-the-book index generation method,

we conduct extensive experiments on books in various do-
mains, from the Gutenberg dataset and the open book dataset
described in Table 1. The first one was created by [4], con-
taining 55 free books collected from Gutenburg. Every book
in the dataset has the body text, the original version and
three cleaned versions of its index. The cleaned versions are
a list of keyphrases from the original index without their
locators. However, there is no page number information in
the body text. So on this dataset we cannot consider the
location of index terms, but only serve the evaluation as a
keyword extraction task. Books in the second dataset was
collected from the Citeseer repository, most of which are in
computer science and engineering [21]. We manually select
213 books with good quality back-of-the-book index. The
original books are all in pdf format. We extracted the paged
body text and the back index using Pdfbox. Having each in-
dex term associated with its locators (page numbers), we can
perform fairer evaluation for different methods, not solely in
the keyword extraction style.

4.2 Candidate Index Terms Generation
The POS patterns can be represented by regular expres-

sion “[IJN]{0,4}N”. A single letter ‘N’ represents a word
whose tag starting with ‘N’, belonging to a Noun. ‘J’ indi-
cates an Adjective. ‘I’ denotes a Preposition. “[IJN]{0,4}N”
contains all the n-grams (n ∈ [1, 5]) where the last word
is a Noun and all the previous ones are Adjective, Prepo-
sition or Noun. When tagging, we use the model ‘wsj-0-
18-left3words-distsim.tagger’ from the Stanford POS tagger
5. We first examine whether our candidate index term gen-

5http://nlp.stanford.edu/software/tagger.shtml

Table 1: Datasets for book index generation evaluation
Dataset #Books #Words #Contexts Main domains
Gutenberg 55 7,164,463 301,581 History, Art, Psychology, Philosophy, Literature, Zoology
Open Book 213 22,279,530 1,135,919 Computer Science, Engineering, Information Science

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0
0

5

1 0

1 5

2 0

pe
rce

nta
ge

(%
)

r a t i o (%)
(a) ratio of index size to

book length

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

rat
io

of
#c

an
did

ate
s t

o #
wo

rds
 of

 bo
ok

 te
xt

b o o k I D

(b) ratio of #candidates
to book length

Figure 2: Results for candidate index term generation

eration method is capable to enumerate all potential index
terms. Ideally, we hope it can cover 100% of the true index
terms by generating a relative small number of candidates,
since the number of items from a book index is much smaller
than the number of words from the book text. We estimated
the average ratio as 0.42% in our open book dataset, which
is very close to 0.45% shown in the previous work[4]. The
distribution of the ratio is shown in Figure 2a. Figure 2b
shows the ratio of number of generated candidates to the to-
tal number of words in each book. It covers more than 95%
of the ground truth using only less than 25% of number of
all the words in most books. In average, there are 104600
words in a book while number of candidates is 12055, in a
ratio of 11.5%. Considering that those candidates are se-
lected from unigram to five-gram, it actually rules out far
more than 88.5% of the total grams.

4.3 Index Generation
To measure the effectiveness of our approach as well as

the roles of “indexability” and “context weight”, we run ex-
periments on the open book dataset using three methods,
showing in Figure 3a. CTI is the context-aware term in-
formativeness in Section 3.2.1. Indexability does not use
context weight. CI-Indexer represents method shown in Al-
gorithm 1. The results clearly demonstrate that TF , PMI,
and WK can gain around 4% more recall over CTI while
context weight can bring around 6% more recall over index-
ability. Note that here the recall of CIT is lower than that
in Section 4.3 because we take the locators of index terms
into consideration. Only a index term with its context in
the right page will be counted into recall.

We then compare our method with three baselines includ-
ing TFIDF, KEA 6, and SLD (supervised learning using de-
cision tree in Csomai’s [4]). KEA builds a Naive Bayes model
using features TFIDF, first occurrence, length of a phrase,
and node degree (number of candidates that are semanti-
cally related to this phrase). First occurrence is computed
as the percentage of the document preceding the first occur-
rence of the term in the document. We compute the node
degree as the textrank[13] degree in a book by simply relat-
ing two candidate terms with each other if they are in the
same context. For SLD, we hire all the features presented in
[4] except the discourse comprehension based features which
are too complicate to implement. We choose decision tree
because its training is much faster than other two models
in [4] while its performance is close to the best. Since those
three are context-oblivious, we set two strategies to make
them context-aware. First, we select the page of a term’s

6http://www.nzdl.org/Kea/

1 2 3 4 5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Av
era

ge
 Re

ca
ll (

%)

I n d e x s i z e

 C T I
 I n d e x a b i l i t y
 C I - I n d e x e r

(a) CIIndexer

1 2 3 4 5
5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Av
era

ge
 Re

ca
ll (

%)

I n d e x s i z e

 T F I D F + F O
 T F I D F + C W
 C I - I n d e x e r

(b) TFIDF

1 2 3 4 5
1 0

1 5

2 0

2 5

3 0

3 5

4 0

Av
era

ge
 Re

ca
ll (

%)

I n d e x s i z e

 K E A + F O
 K E A + C W
 C I - I n d e x e r

(c) KEA

1 2 3 4 5
1 0

1 5

2 0

2 5

3 0

3 5

4 0

Av
era

ge
 Re

ca
ll (

%)

I n d e x s i z e

 S L D + F O
 S L D + C W
 C I - I n d e x e r

(d) SLD

Figure 3: Results for book index generation

first occurrence as its locator, denoted by“+FirstOccurence”
in Figure 3. Second, we apply our context weight to them,
denoted by “+CW”. The results are shown in Figure 3b, 3c
and 3d respectively. For all the three baselines, adding con-
text weight gains better performance than using the simple
first occurrence guess, especially for TFIDF. KEA benefits
least from context weight, suggesting its first occurrence and
node degree features play part of similar role as our context
weight features. SLD outperforms TFIDF and KEA under
both the two strategies probably because the new features
of POS pattern and Wikipedia keyphraseness. SLD+CW
performs closest to ours.

4.4 Parameters and Running Time
The context weight can be regarded as an “indexability”

measurement in context level. To further understand the
importance of different ingredients in context weight, we
run the CI-Indexer by ruling out one part of context weight
and set the other two equally weighted. The experimen-
tal results are shown in Figure 4a denoted by CI-Indexer
- CW(title), CI-Indexer - CW(distance) and CI-Indexer -
CW(length). Based on the decrement from CI-Indexer to
each of them, we could conclude that “title” is more impor-
tant than “distance” while “length” is the least important
part. We also study the sensitivity of their weights λ1, λ2

and λ3 and recommend their setting following λ1 > λ2 > λ3

with λ1 ∈ [0.4, 0.6], λ2 ∈ [0.2, 0.4] and λ3 = 1 − λ1 − λ2.
Another important parameter is the number of retrieved
snippets from Wikipedia when computing the context-aware
term informativeness. We run the CTI in Section 4.3 by set-
ting the number to 5, 10, 15 and 20. Results in Figure 4b
shows the performance of CTI is not sensitive to this number
but gain slight improvement as it increases under different
output index size.

Time is not an issue for our approach since it is training
free and corpus free. For a book of around 200,000 words,
while our approach totally costs 5-8 minutes to generate
an index sizing 5 times of the ground truth, the supervised
learning approach costs 10-15 minutes apart from the much
more offline training time. More than 60% time of our ap-
proach is cost on the computation of CTI. In terms of scala-

1 2 3 4 5

1 5

2 0

2 5

3 0

3 5

4 0
Av

era
ge

 Re
ca

ll (
%)

I n d e x s i z e

 C I - I n d e x e r
 C I - I n d e x e r - C W (t i t l e)
 C I - I n d e x e r - C W (d i s t a n c e)
 C I - I n d e x e r - C W (l e n g t h)

(a) Context weights

5 1 0 1 5 2 0

1 0

2 0

3 0

4 0

5 0

Av
era

ge
 Re

ca
ll(%

)

k

I n d e x s i z e : 1
I n d e x s i z e : 2
I n d e x s i z e : 3
I n d e x s i z e : 4
I n d e x s i z e : 5

(b) number of retrieved snippets
Figure 4: Parameters Study

bility, the proposed method is inherently parallelizable, not
only at the document level, but also a the context level, since
computing CTI does not depend on any other context in the
document. In addition, we do not need to issue the same
query more than once. Our strategy is to locally cache the
returned results of every seen query. For a new term seen
in a previous query, we can directly access the local cached
file. If we have built a large local pool, the queries will rarely
go to a search engine or other source. Given a corpus size
N (words in total), the number of actual issued queries will
be at most the number of unique terms, which is far less
than O(N). Of course, new terms never seen will have to be
processed, but there will be fewer of these over time.

5. CONCLUSION AND FUTURE WORK
In this paper, we tackled the back-of-the-book index gen-

eration problem in a novel context-aware approach, which is
capable of giving index terms as well as their locators. We
measure indexability of a term in context by informative-
ness and keyphraseness. We then developed a new context-
aware term informativeness measurement by leveraging web
knowledge base. and a computationally practical Wikipedia
keyphraseness. The structure information residing in book
text are then encoded as context weight to weight the im-
portance of contexts. We conducted extensive experiments
to examine the performance of our approach.

In the future, we will make our back-of-the-book index
generation system publicly available. Besides, the automatic
construction of semantic relationships between index terms,
which are not addressed in this work, including subheadings,
homographs or synonyms, and cross references, could all be
promising future research topics.

6. REFERENCES
[1] C. M. Bishop. Pattern Recognition and Machine

Learning. Springer, 2006.

[2] K. W. Church and P. Hanks. Word association norms,
mutual information and lexicography. Computational
Linguistics, 16(1):22–29, 1990.

[3] A. Csomai and R. Mihalcea. Investigations in
unsupervised back-of-the-book indexing. In
Proceedings of FAIRS, pages 211–216, 2007.

[4] A. Csomai and R. Mihalcea. Linguistically motivated
features for enhanced back-of-the-book indexing. In
Proceedings of ACL, pages 932–940, 2008.

[5] V. Diodato and G. Gandt. Back of book indexes and
the characteristics of author and nonauthor indexing:
Report of an exploratory study. JASIS, 42(5):341–350,
1991.

[6] I. H. W. E. Frank, G. W. Paynter and C. Gutwin.
Domain specific keyphrase extraction. In Proceedings
of IJCAI, pages 668–673, 1999.

[7] K. Hofmann, M. Tsagkias, E. Meij, and M. de Rijke.
The impact of document structure on keyphrase
extraction. In Proceedings of CIKM, pages 1725–1728,
2009.

[8] E. F. C. G. I. H. Witten, G. W. Paynter and C. G.
Nevill-Manning. Kea: practical automatic keyphrase
extraction. In Proceedings of the fourth ACM
conference on Digital libraries, pages 254–255, 1999.

[9] P. Kendrick and E. L. Zafran. Indexing Specialities:
Law. Medford, NJ : Information Today, Inc., 2001.

[10] K. Kireyev. Semantic-based estimation of term
informativeness. In Proceedings of NAACL, pages
530–538, 2009.

[11] Z. Li, D. Zhou, Y.-F. Juan, and J. Han. Keyword
extraction for social snippets. In Proceedings of
WWW, pages 1143–1144, 2010.

[12] R. Mihalcea and A. Csomai. Wikify!: linking
documents to encyclopedic knowledge. In Proceedings
of CIKM, pages 233–242, 2007.

[13] R. Mihalcea and P. Tarau. Textrank: Bringing order

into texts. In Proceedings of EMNLP, pages 404Ű–411,
2004.

[14] A. Nazarenko and T. A. E. Mekki. Building
back-of-the-book indexes. Terminology, 11(1):199–224,
2005.

[15] E. F. O. Medelyan and I. H. Witten.
Human-competitive tagging using automatic
keyphrase extraction. In Proceedings of EMNLP,
pages 1318–1327, 2009.

[16] H. Schutze. The hypertext concordance: a better
back-of-the-book index. In Proceedings of Computerm,
pages 101–104, 1998.

[17] E. Terra and C. L. Clarke. Frequency estimates for
statistical word similarity measures. In Proceedings of
NAACL, pages 165–172, 2003.

[18] P. D. Turney. Learning algorithms for keyphrase
extraction. Information Retrieval, 2(4):303–336, 2000.

[19] R. West, D. Precup, and J. Pineau. Automatically
suggesting topics for augmenting text documents. In
Proceedings of CIKM, pages 929–938.

[20] W. Wu, B. Zhang, and M. Ostendorf. Automatic
generation of personalized annotation tags for twitter
users. In Proceedings of NAACL, pages 689–692, 2010.

[21] Z. Wu, S. Das, Z. Li, P. Mitra, and C. L. Giles.
Searching online book doucments and analyzing book
citations. In Proceedings of DocEng, 2013.

[22] Z. Wu and C. L. Giles. Measuring term
informativeness in context. In Proceedings of NAACL,
pages 259–269, 2013.

[23] Z. Wu, P. Mitra, and C. L. Giles. Table of contents
recognition and extraction for heterogeneous book
documents. In Proceedings of ICDAR, 2013.

[24] L. P. Wyman. Indexing Specialities: Medicine.
Medford, NJ : Information Today, Inc., 1999.

[25] Y. Z. Z. Liu, W. Huang and M. Sun. Automatic
keyphrase extraction via topic decomposition. In
Proceedings of EMNLP, pages 366–376, 2010.

[26] W. X. Zhao, J. Jiang, J. He, Y. Song,
P. Achananuparp, E.-P. Lim, and X. Li. Topical
keyphrase extraction from twitter. In Proceedings of
ACL, pages 379–388, 2011.

