Enabling Direct Interest-Aware Audience Selection

Ariel Fuxman
Microsoft Research
Mountain View, CA

arielf@microsoft.com

*
Zhenhui Li
University of lllinois
Urbana-Champaign, lllinois
zli28@Quiuc.edu

ABSTRACT

Advertisers typically have a fairly accurate idea of the inter-
ests of their target audience. However, today’s online adver-
tising systems are unable to leverage this information. The
reasons are two-fold. First, there is no agreed upon vocab-
ulary of interests for advertisers and advertising systems to
communicate. More importantly, advertising systems lack a
mechanism for mapping users to the interest vocabulary.

In this paper, we tackle both problems. We present a sys-
tem for direct interest-aware audience selection. This system
takes the query histories of search engine users as input, ex-
tracts their interests, and describes them with interpretable
labels. The labels are not drawn from a predefined tax-
onomy, but rather dynamically generated from the query
histories, and are thus easy for the advertisers to interpret
and use. In addition, the system enables seamless addition
of interest labels provided by the advertiser.

The proposed system runs at scale on millions of users and
hundreds of millions of queries. Our experimental evaluation
shows that our approach leads to a significant increase of
over 50% in the probability that a user will click on an ad
related to a given interest.
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1. INTRODUCTION

In online advertising, advertisers want to target a specific
audience that is more likely to engage with their campaign.
Typically, advertisers are capable of describing this audience
fairly accurately. However, in today’s online advertising sys-
tems, they do not have the option to explicitly specify the
characteristics of the users that they wish to target, except
for broad demographic information. Instead, they bid on
query terms, which act as a proxy for the user interests.
But queries can be misleading when taken out of context.
For example, if a user queries for “helmets”; it is not obvi-
ous if she is looking for bike helmets or motorcycle helmets.
Ads for both will appear, since this is a term related to both
bike and motorcycle helmet companies. If we knew that the
user who posed the query has a long-term interest in biking,
then it would become clear that the query is more likely to
be about bike helmets. The techniques that we present in
this paper allow the bike helmet advertiser to directly specify
that she prefers users who are interested in biking and the
advertising system to identify the users who are interested
in biking. Thus, a match between users and advertisers with
intersecting interests can be easily made. We call this capa-
bility direct interest-aware audience selection.

Enabling advertisers to directly specify user interests is
extremely powerful. For instance, part of the appeal of ad-
vertising on social media sites such as Facebook is the abil-
ity for advertisers to directly select their audience based on
their expressed interests, as well as their “likes” and friends’.
An expensive restaurant can select users who have specified
interest in “Food and Wine”, while a company that sells out-
doors equipment can advertise to users who have declared
interest in “Camping”. This option is not available when
advertising on search engines. The aforementioned restau-
rant would have to guess the terms with which a user will
express their interest, and bid on these terms. In the case
of “Food and Wine”, this translates to a large set of terms
related to restaurants, fine dining, wine selection, entertain-
ment arrangements, etc. This places a huge burden on the
advertisers to come up with the right terms, and they still
run the risk of triggering incorrectly, or missing an impor-
tant term.

Unlike social media users, search engine users do not ex-
plicitly state their interests and preferences. However, they
give abundant implicit information about their interests

!See https:/ /www.facebook.com/business#!/business/ads/.
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(a) A portion of the user history corresponding to queries for only two of the
identified clusters, “football” and “cars”. The clusters spread over a long period
of time. Queries of the clusters are semantically related but do not necessarily
share terms. For instance, the “football” cluster has queries “oakland raiders”
and “houston texans” with no overlapping terms. Similarly, the “cars” cluster
has queries including “Sema 2010 awards” and “redline motorsports”. For best
visualization, please see this figure in color.

Figure 1: Example of inference of user interests

user.

furniture | travel movies basketball | games fishing | coupons wedding
airlines dining | diet food recipes hotels | cars games
cruises baby chiropractic | music health lyrics baking commodities
brewers divorce | timeshare cycling arthritis | roofing | orthopedic | flu

Table 1: A subset of interest labels identified using our approach

through their actions, and more specifically their queries.
Users query about anything and everything that is on their
mind. Compiling the long-term (e.g., year-long) query his-
tory of a user reveals a variety of interests: ephemeral inter-
ests that correspond to short-term tasks such as buying a
new washing machine; routine interests that correspond to
queries that enable everyday tasks such as reading a news-
paper or checking email; activities that correspond to long-
term interests of the user such as diet, sports, gaming, and
health care.

In this paper, we consider the problem of extracting user
interests from query histories for enabling direct interest-
aware audience selection. Given a collection of multiple user
histories, we will produce a set of interest labels, and train
a model that assigns interest labels to users. The labels
are not drawn from a predefined taxonomy, but rather dy-
namically generated from the query histories, and thus easy
for the advertisers to interpret and use for targeting specific
users. A direct interest-aware audience selection capability
is important for both sponsored search and display adver-
tising. In the former, the targeted user interests would be
provided by the advertisers alongside the usual bid terms;
in the latter the interests would be specified together with
demographic and other behavioral targeting information.

We contrast our approach to other audience selection ap-
proaches, where users may be associated to interests, but
these interests cannot be directly used by the advertisers.
For example in the work of Ahmed et al. [1] interests are
represented by topics produced by a topic model, and used
for ad click prediction. Advertisers do not have the option to
directly specify the interests they want to target. Further-
more, the produced interests are not easily interpretable,
and thus they cannot be used for direct targeting.

In a nutshell, our approach is as follows: First, we cluster
the query history of each individual user in order to identify
groups of queries that are about the same interest. For the
clustering, we use a measure of semantic similarity between
terms that we obtain by exploiting temporal relationships
between queries. Figure 1(a) shows an illustrative example
of two clusters obtained using our approach from a user his-
tory in our data set. Notice, for instance, the queries “oak-
land raiders” and “houston texans” being clustered together
but having no terms in common.

Given the clustering of the query history, we extract a
short description for each cluster consisting of the most pop-
ular query terms present in the cluster. Then, we generate
the interest labels by finding terms that occur frequently
across multiple user histories, and selecting a subset of these
terms as our interest vocabulary. Table 1 lists some of the
terms that our approach extracted as part of the interest
vocabulary. We can see that the interests are represented
using commonly used vocabulary found in search queries.
In order to map the clusters into this vocabulary, we train
a classifier using massive amounts of automatically created
training data constructed from the queries in the labeled
clusters. The classifier can then be applied to new users to
map them to the set of interest labels. For the same user
shown in Figure 1(a), Figure 1(b) shows the top four inter-
ests inferred by our approach.

Our contributions include the following;:

e We address the problem of direct interest-aware audi-
ence selection. Our approach distinguishes itself from
previous work on learning interests [1] by the fact that
users are assigned a concise set of interpretable interest
labels, empowering the advertisers to directly target
users using these labels.



e At the core of our approach is a component for clus-
tering queries within a user history that are themat-
ically related. Our clustering algorithm uses a novel
similarity measure, which makes use of the semantic
relationships between terms defined by the temporal
co-occurrence of queries across multiple user histories.
Thus, our clustering approach exploits both the lo-
cal (within a single user history) and global (across
user histories) relationships between queries for deriv-
ing query clusters.

e We implement our approach on a distributed data stor-
age and processing system. Our system runs at scale
for millions of users and hundreds of millions of queries.
We perform a thorough experimental evaluation that
shows that our approach leads to a significant increase
of over 50% in the probability that a user will click on
an ad related to a given interest. The evaluation was
performed at a large scale, on 150,000 users using 2
months of ad data and user histories consisting of 16
months of query activity.

We note that although in this work we consider the prob-
lem of audience selection, our work can also be applied to
other tasks, such as personalization of search user experi-
ence. In this case, the user interests could be used to provide
context for a query, and tailor the search engine response to
the needs of the specific user.

The rest of the paper is structured as follows. In Section
2, we present related work. In Section 3, we provide an
overview of our approach. In Section 4, we present the de-
tails of the modeling phase of our approach. In Section 5, we
present experimental results. Finally, in Section 6, we make
concluding remarks and give directions for future work.

2. RELATED WORK

Computational advertising is an emerging research field
that considers the application of computational and algo-
rithmic techniques to online advertising. We refer the reader
to the course notes of Introduction to Computational Adver-
tising® for a thorough review of the field. Behavioral target-
ing, the use of prior user history for improving the effective-
ness of an online campaign, is a prominent research topic
within this field and has received considerable attention [1,
5,9, 14, 21, 22]. Pandey et at. [14], Chen et al. [5], and Yan
et al. [22] model the user as a bag of events, such as clicks
to pages or queries. Jaworska et al. [9] represent users as
a vector of categories, by mapping their web page visits to
a predefined taxonomy. A machine-learning model is then
trained in order to predict whether a user will click on an ad.
Tyler et al. [21] model the problem of audience selection as
an information retrieval problem, where there is a repository
of users, and some users that are known to respond well to
a campaign are used as queries over the repository. Users
are modeled again as a bag of events, queries, and web page
clicks. Recent work [12, 17, 2] has also considered the use of
social network information (friendships, email communica-
tion) for improving behavioral targeting. The scalability of
the behavioral targeting problem has been addressed either
with Map-Reduce implementations [5, 14] or sampling [1].

The closest work to our approach is the recent work by
Ahmed et al. [1]. They consider the problem of behavioral

*http:/ /www.stanford.edu/class/msande239/

targeting in display advertising, and use a generative topic
model to define interests over histories of multiple users.
Then, they use the interests of users who have clicked on
an ad as features in a classifier that predicts whether a user
will click on the ad. Their technique assumes the existence
of previous ad click activity for the given ad. Furthermore,
their interest topics are not directly used by the advertis-
ers. In contrast, we associate users to a concise set of in-
terpretable labels and empower the advertisers to directly
specify such interest labels together with their ads.

Query logs are instrumental in the improvement of search
engines, and they have been under intense analysis in the
past few years. There is a voluminous literature on different
aspects of query-log analysis. One important problem is that
of breaking up a query history into sessions [7, 10, 11, 13, 16,
18], dealing with the fact that temporal coherence does not
necessarily imply thematic coherence. This is a challeng-
ing task, since different tasks tend to be interleaved or span
long periods of time. Temporal correlation between queries
over large number of sessions has been exploited to define
semantic correlations between queries [3, 8, 20] for tasks like
reformulations or query suggestions. One key differentiation
of our work is that we use temporal correlations between
queries to define similarity between terms, and then we uti-
lize this similarity to cluster queries. In contrast, previous
works define relationships directly between queries. Related
to our approach is the work by Richardson [19] that discovers
long-term relationships between terms in query histories.

3. OVERVIEW OF OUR APPROACH

In this paper, we address the problem of identifying user
interests from search query histories, and describing them
using a concise vocabulary. Given a user u and their query
history Q.., we want to assign user u a set of labels L,,, drawn
from a larger vocabulary £ of possible interests. The choice
of the vocabulary L is of paramount importance in enabling
the advertisers to select the appropriate audience for their
campaign. We propose a methodology for generating the
interest vocabulary £, and an algorithm for mapping the
user history to this interest vocabulary.

Our approach has two phases: the modeling phase, and
the inference phase. In the modeling phase we use query
histories from multiple users to generate the vocabulary of
interests, and train a machine learning model that maps
collections of queries to labels in our vocabulary. In the in-
ference phase, we apply our labeling algorithm to user query
histories to obtain a labeling of the users in our interest vo-
cabulary. We now discuss the details of the two phases.

3.1 Modeling User Interests

The modeling phase takes as input a collection
Q ={Q1, ..., Qm} of query histories of m users, and produces
a vocabulary of interest labels £ = {1, ..., £x }, and a model
M that assigns interest labels to collections of queries. This
phase can be decomposed into three steps: First, we clus-
ter the individual query histories in order to extract themes;
Then we use the produced clusterings to generate the label
vocabulary. When available, we also augment the interest
vocabulary with advertiser provided interest labels; Finally,
we train a machine learning model that maps themes into
the label vocabulary. The model itself is trained using data
obtained automatically from the clusters. The pipeline of
these three steps is shown in Figure 2.
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Query History Clustering: Users express their interests
in their search queries, but not necessarily in a temporally
and syntactically coherent way. Queries pertaining to wildly
different interests are interleaved over short intervals of time,
while queries that refer to the same interest recur over the
span of weeks, months, or even years, each time slightly mu-
tated, using different terms and touching different aspects.
As a first step towards extracting interests from query his-
tories, we organize queries of individual users into themes:
semantically coherent clusters that are potentially related to
the same interest. We extract these themes by clustering the
user history. For our clustering, we use a similarity measure
that captures the semantic correlation between queries, as
this is observed over the query histories of millions of users.
We discuss our similarity measure, and clustering algorithm
in detail in Section 4.1.

Formally, given the history Q.. of an individual user u, the
query history clustering step produces a clustering C,, =
{c1,...,cr, }, where each cluster of queries ¢ € C, corre-
sponds to a semantically coherent theme that is candidate
for capturing an interest. Given a collection of user query
histories @ = {Q1, ..., @m} the output of the clustering step
is a collection of clusterings C = {C4,...,Cp }, one for each
individual user.

Label Generation: The clustering step does a good job
in bringing together queries that are semantically related,
and organizing the user query history into themes. Manual
inspection reveals some clearly defined interests: an long-
term engagement in online gaming, a prolonged search for
a new house, or a long-standing quest for medical advice.
These groups of queries make intuitive sense to a human
observer, but they are not actionable for advertisers who
cannot afford to go through millions of query clusters to
find the ones that are of interest to their campaign. We
thus need a concise way to describe the interests we observe.
Using the themes we have identified, we will extract a set of
interest labels, which will define the vocabulary with which
advertisers can select the users they are interested in.

The label extraction process identifies key terms that can
be used for labeling query clusters of individual users. It
then aggregates these terms over the full history collection
to identify terms that pertain to a large number of users.
These terms will define the interest label vocabulary. We

describe the details of this process in Section 4.2. In sum-
mary, given the collection of clusterings C output from the
history clustering step, the label generation step will produce
an interest label vocabulary £ = {/1, ..., £k} that describes
the space of possible interests of a search user.

Optionally, we can also incorporate advertiser-provided
interest labels to the label set, thus allowing the adver-
tisers to dynamically modify the set of interest labels. In
Section 5.3, we show the performance of our system when
advertiser-provided interest labels such as “webkinz” and
“lego” are included.

Model training: We observed that the themes extracted
from the clustering step align well with intuitively defined
interests, and we used this fact to create our interest vocab-
ulary £. Given a new user u, with query history @., which
is clustered into a set of themes C,, we want to be able to
map these themes into the space of interest labels £. In this
step we train a discriminative model M that performs this
task: given a cluster of queries ¢, it produces a probability
distribution P(£|c) over the interest labels £ € L.

In order to train the model we need training data: clusters
that are labeled within our label vocabulary £. We obtain
this data automatically from the clustering collection C we
produced in the clustering step.

In summary, in the model training step, we take as input
the interest vocabulary £ produced in the label generation
step, and the clustering collection C produced in the cluster-
ing step, and we produce a machine learning model M that
maps a cluster of queries ¢ into the label vocabulary £. We
describe the details of this step in Section 4.3.

3.2 Inferring User Interests

At the inference phase, given a user u, with query history
Qu, we will assign a set of labels L,, C £ from the vocabulary
of labels £ produced in the modeling phase. This phase can
be decomposed into three steps: the history clustering step,
the interest assignment step, and the interest aggregation
step. The pipeline for the inference procedure is shown in
Figure 3.

Query History Clustering: In this step we extract the
main themes in the query history of the user, using the
same clustering techniques that we described in the mod-
eling phase, which we describe in detail in Section 4.1. Given

the input history Q. we produce a clustering C,, = {cu, ..., c1, },

where each cluster ¢ € (', corresponds to a theme in the user
history.

Interest Assignment: In this step we apply the machine
learning model M that we trained in the modeling phase
to the clustering C,,. For every cluster ¢ € C,, we obtain
a probability distribution over the label set £. That is, for
each label £ € L, we obtain the probability P(¢|c) that the
cluster ¢ should be labeled with label £.

Interest Aggregation: Given the clustering C',, and the
probability distributions P(¢|c) defined for each cluster c,
we can aggregate them in a number of ways to obtain the
consolidated user interest profile. In our case, we associate
the user u with the set of labels L, that have probability
P(¢|c) above a certain threshold 6, (set to 0.75 in our exper-
iments), for some cluster ¢ € C,. While being simple, the
experimental results indicate that this aggregation scheme



is robust and works well in practice. It is possible to ex-
ploit a variety of other signals for weighting the probability
scores of the clusters such as the cluster size, the time in-
terval over which the queries were asked, etc., but we leave
this as potential problem for future investigation.

4. MODELING USER INTERESTS

We will now describe in details the three steps of the mod-
eling phase: query history clustering, label generation, and
model training.

4.1 Query History Clustering

An interest manifests itself in the query history over mul-
tiple queries that cover different aspects of the interest. For
example, a user who has an interest in “football” will pose
multiple queries about different football teams, NFL, or
game schedules. All these queries are thematically related
around the interest “football”. Identifying such groups of
thematically related queries poses the challenge of defining
a suitable similarity measure between queries. Typical syn-
tactic similarity measures such as Jaccard coefficient or edit
distance are not sufficient, since they do not capture the di-
versity in the way people query about a topic. Queries like
“wedding gown” and “floral arrangements” are semantically
close under a “wedding” interest, yet far apart under any
measure of textual similarity. Temporal affinity is a popu-
lar method for capturing such semantic correlations: related
queries are likely to appear close in the user history. There
is considerable amount of work in partitioning a user history
into sessions, temporally coherent clusters of queries [4, 7,
10]. However, temporal coherence does not always guaran-
tee thematic coherence: thematically diverse interests may
be interleaved over a short period of time. Conversely, a
thematically coherent interest may span several days, weeks
or months in the history of a user. Therefore, sessions do
not necessarily capture interests fully and accurately.

Although temporal affinity is not sufficient to capture in-
terests in a single user history, when aggregating millions of
user histories, it provides a strong signal for semantic sim-
ilarity. This idea has been previously explored to extract
correlations between queries for tasks such as query sug-
gestions and query reformulations [23, 3]. In our approach
we will use temporal co-occurrence of queries over multiple
user histories in order to define semantic similarity between
terms. We will then use this measure of similarity to group
queries into clusters, which capture themes in the user his-
tory, and are candidates to be mapped to user interests.

Formally, let @ denote a collection of user histories. A
user history Q. is a sequence Qu = ((q1,t1), s (¢ny,tny))
of query, time-stamp pairs (g;, t;), where query ¢; was posed
at time t;. We partition the query history into sessions using
the usual 30-minute timeout rule: a timeout of more than 30
minutes between two queries defines the beginning of a new
session. The session contains the set of queries between two
timeouts. Formally, a session is a maximal subset S C Q,
of the query history, such that for any two query-timestamp
pairs (¢i,t:), (gj,t;) € S, |[ti — t;] is less than 30 minutes.

Let S denote the set of all sessions defined over the history
collection Q. Each session S € S can be thought of as a bag
of words, S = {w1, ..., wx }, consisting of all the terms of the
queries contained in S. Let P(w;, w;) be the number of ses-
sions where words w; and w; occur together. Let N be the
total number of co-occurrences, that is, N = X;3; P(w;, w;).

For a pair of terms (w;, w;) we define the co-occurrence fre-
quency f(ws,w;) as the fraction of co-occurrences that con-
tain both terms w; and w;. That is, f(w;,w;) = w
Similarly, for a term w;, we define the frequency f(w;) of
term w; to be the fraction of co-occurrences that contain
term w;. That is, f(w;) = w

In order for two terms to be similar we would like them
to have high co-occurrence frequency. However, high co-
occurrence frequency by itself is not sufficient to determine
similarity. Terms that have high frequency on their own
are likely to participate in pairs with high co-occurrence
frequency. For example, queries “facebook” and “google”
are prominent in the search logs, and they exhibit high co-
occurrence frequency with each other and with other terms,
yet this does not imply semantic similarity. To normalize for
this effect, we divide the co-occurrence frequency with the
probability that the two terms co-occur in the same session
by chance. This ratio, or more precisely the log of this ratio,
is the point-wise mutual information (PMI) between the two
terms, a commonly used similarity measure in text mining
and natural language processing [6]. Formally, it is defined
as follows:
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A known drawback of PMI is that it favors rare co-occurrences.

Two terms that appear only once in the the query histories
in the same session, have the highest possible PMI. This is
undesirable, since we would like the pair of terms to have
some support in order to be deemed similar. We address this
issue by using the discounted PMI (dPMI) measure [15]:

dPMI(wh Wy ) =

PMI(wi,wj) flwi,wy) min{ f(w;),f(w;)}

fwi,wi)+1/N min{ f(w;),f(w;)}+1/N

Given the similarity measure between terms, we can ex-
tend it to queries, or collection of queries. We represent
those as bags of terms. Given two bags of terms X =
{z1,...,x, } and Y = {y1, ..., yx, }, we define their similarity
as follows:

. 1
Sll“ﬂ()(7 Y) = W Z

(z,y)eX XY

dPMI(z,y)

That is, the similarity of the two bags of terms is the average
dPMI similarity of the pairs of terms in the cross-product
between the two bags.

Note that a collection of terms may contain the same term
multiple times. According to our similarity definition this
term will appear multiple times in the sum, and thus con-
tribute more to the similarity. This follows the intuition
that terms that are frequent should have more impact on
the similarity of the collection of queries. It is also possible
that X and Y share a term w. In this case we need to define
a measure of similarity of a term to itself. We compute this
using the definition of PMI, where we define f(w,w) = f(w).
Therefore, we have:

PMI(w,w) = lo L
’ ® F(w)
This definition captures nicely the intuition that two col-
lections that share a rare term (e.g., “aquarium”) are more



similar than two collections that share a frequent term (e.g.,
“facebook”).

Note that our final query similarity measure makes use
of both semantic and syntactic similarity between queries.
Semantic similarity is explicitly introduced by using the tem-
poral co-occurrence of terms, while syntactic similarity is a
side benefit of reducing the similarity of queries to compar-
isons between terms.

Equipped with a similarity measure between queries and
sets of queries, we can now apply any standard clustering al-
gorithm for grouping the queries into interests. We opt for
hierarchical agglomerative clustering. The algorithm pro-
ceeds iteratively, starting with a set of singleton clusters
each consisting of a single query, and at each iteration it
merges the clusters with the highest similarity. It continues
until the similarity of the most similar pair drops below a
predefined threshold.

Therefore, given a collection of m user query histories Q =
{Q1, ..., Qm}, we have obtained a collection of m clusterings
C = {Ch,...,Cn}. A cluster ¢ € C, in the clustering of
user u is a set of queries that are thematically related, and
are candidates for defining an interest of user w. In the
following section, we will show how we generate the interest
labels from the clusterings C, and then label the clusters in
C, with the appropriate interest label.

4.2 Label Generation

In the label generation step, we exploit the collection of
clusterings C that we obtained in the clustering step to au-
tomatically generate a rich set of terms that can serve as the
vocabulary £ of interest labels.

Given the collection C, we first perform a pruning step
to remove clusters with number of distinct queries below
a certain threshold (set to 30 in our experiments). Such
clusters are too small to capture a prevalent interest of the
user. Let C, denote the new clustering collection. For each
cluster ¢ € C, we produce a set T. containing the top-¢
most frequent terms, where ¢ = 5 in our experiments (we
exclude stop words, etc. ). These top frequently-occurring
terms represent a “synopsis” of the cluster, capturing the
underlying “theme” of its queries. Let T' = UT, denote the
union of all terms that are among the most frequent terms 7.
of at least one cluster, for at least one user. We keep as our
label set £ the terms in T' that appear in the query history
of at least 6, users, where 6, = 100 in our experiments.
That is, our label set consists of terms that appear as a
theme for at least 100 users. We also do minimal human
inspection to remove certain labels that do not correspond to
interests (e.g., “map” and “store”), and canonicalize certain
synonymous terms (e.g., “recipes” and “recipe”).

Table 1 shows a subset of the 300 labels that were gener-
ated using this approach. We can see that the labels cover
a wide spectrum of interests, and at different levels of gran-
ularity. For instance, while a label like “games” tends to be
more encompassing, a label such as “basketball” is more spe-
cific. There are subtle variants of similar kind of interests,
e.g., “food”, “recipes”, “baking” and “dining”, to name a few.
There are also time bounded interests such as “wedding”
and “roofing”. Furthermore, these interest labels are of high
value to the advertisers. To verify this, we performed the
following check: we obtained the top 1,000 unigram adver-
tising bid terms (in terms of the revenue that they generate
in a major sponsored search engine), and we computed the

overlap with the list of generated interest labels. It turns out
that 12.5% of these 1,000 top advertising terms are actually
included in our list.

It is important to note that our approach is not restricted
to using these automatically-generated interest labels. Any
list of interest labels provided by the advertisers can be used,
as long as it contains terms that appear in the query clus-
ters. In Section 5.3, we experimentally show the effectiveness
of our approach not only in the scenario of automatically-
generated labels but also in the case of additional labels
provided by the advertisers.

4.3 Model Training

Given the label set £ = {/1, ..., £k}, in this step we train
a machine learning model M which given a cluster ¢, pro-
duces the probability P(¢|c) that the cluster ¢ belongs to the
interest described by label £, for every label £ € L. We use
a multiclass logistic regression model parameterized by W
to compute P(¢|c). The parameter matrix W is a collection
of weight vectors {wy}, one for each label ¢;, € £ such that
each component w;;, measures the relative importance of the
4t feature for predicting k*" label. The multiclass logistic
regression learns a mapping from the feature vector of c,
denoted by z(c) to the label y, using the following softmax
logistic function:

P(lglc) =

Py = tlz(c), W) = pseprltelan) (1)

1320 exp (b +a(e)-wy)

where b; (1 < j < K) are bias terms.

In our setting, the feature vector z(c) corresponds to a
summary constructed from the cluster, c. In particular, we
used lexical features consisting of all unigrams (terms) ap-
pearing in the queries in the cluster. We then converted
them to boolean features representing the presence or ab-
sence of these unigrams. We did not consider the frequency
of occurrence of these terms as that would require that the
clusters are normalized for many factors such as number of
queries in the cluster, number of unigrams in the cluster,
etc. In fact, our experimental evaluation shows that these
simple binary features perform effectively.

The weight vector in Equation 1 is learned from a la-
beled data set D = {(x*,'),..., (x™, 4™}, where each pair
(x7,47) corresponds to the feature extracted from a cluster
and its corresponding interest label. In particular, W is
learned so as to maximize the conditional log-likelihood of
the labeled data:

W* = arg mV%XZ; log P(y’ = t4|x7, W) (2)
i=

Labeled data for training: Manual construction of a la-
beled training set can be too expensive and time-consuming.
Our approach enables an effective way to obtain large amounts
of automatically labeled training data. For some label ¢ € L,
let Cy denote the set of clusters, from any clustering C,, € C,
such that for all ¢ € Cy, ¢ € T, that is, the label £ is one of
the top terms in the cluster ¢. We treat the clusters in Cy
as positive examples for the label ¢, and we use this data to
train our model. In order for our approach to be successful,
we need clusters in Cy to be homogenous, with highly fre-
quent terms being semantically related. We manually evalu-
ated the clusterings for their homogeneity and we confirmed



that this is indeed the case. The homogeneity of the clus-
ters follows from the way we have constructed our similarity
function to capture the semantic similarity of terms.

Note that our approach generalizes naturally to the case
that the set of labels we want to train against is provided
from some external source (e.g., provided by the advertis-
ers). Let £’ denote this provided set of labels. For each label
¢ € £ we can use the process described above to obtain the
set Cy of clusters that have ¢’ in their top terms. Then we
can train our model against these externally provided labels.
We experiment with this case in Section 5.3.

5. EXPERIMENTAL EVALUATION

We now report the results of a large-scale, end-to-end eval-
uation that we performed on our system. In Section 5.1, we
present the experimental setup. In Section 5.2, we describe
our methodology and metrics for evaluating on advertising
data. Finally, in Section 5.3, we present our key findings.

5.1 Experimental Setup

We now provide the details of the data and parameters
used for the different components of our system. The clus-
tering algorithm uses the similarity measure defined in Sec-
tion 4.1, which relies on a discounted PMI computation for
unigram pairs over user sessions. We computed discounted
PMI over the sessions of 2.2 million users over 16 months of
queries from the query log of the Bing search engine. We
used the standard definition of session, where a session con-
sists of all consecutive queries until there is a period of 30
minutes inactivity [4].

To create the set of interest labels, we ran the clustering
algorithm on 580,000 users. To ensure good quality key-
words, we constrained ourselves to clusters with at least 30
queries. As a result, we obtained 1,042,729 clusters mapped
to their top-5 keywords. We aggregated this mapping by
counting for each keyword the number of users who have
at least one cluster that is mapped to the keyword. We
then produced a list of all keywords that are associated to
at least 100 users; after removing stop-words, plurals etc,
this resulted in 5,500 keywords. The size of this list was
manageable enough to be processed editorially in order to
detect highly frequent terms related to interests. After ed-
itorial processing, we obtained a list of 332 interest labels.
To verify that these interest labels are of high value to the
advertisers, we performed the following check: we obtained
the top 1,000 unigram advertising bid terms in terms of the
revenue that they generate in a major sponsored search en-
gine, and we computed the overlap with our list of interest
labels. It turns out that 12.5% of these 1,000 top advertising
terms are actually captured by our list. This indicates that
the interest labels are, indeed, monetizable.

We note that the creation of a meaningful taxonomy, or
class system, is an extremely hard undertaking that merits
its own scientific field. Complete automation is nearly im-
possible, and probably not desirable, since introducing some
human intuition can improve the quality significantly. Our
approach simplifies the vocabulary creation process signifi-
cantly, by offering a manageable set of labels for the data
analyst to process. Processing is also simplified, consisting
mostly of filtering out uninteresting or very specific terms.
This is a considerably easier task compared to deriving such
class labels from scratch. More importantly, the produced
labels capture the underlying trends in the data, they can

be updated dynamically as query histories get updated, and
they come together with training data.

The Model Training component used the clustering of
120,000 users to create 116,839 (user,cluster,label) training
examples. The classifier uses lexical features: we used a
feature vector consisting of 56,983 binary features (these
features correspond to unigrams that appeared in at least
20 queries among the 120,000 users). A logistic regression
model was learned using these training examples.

At inference time, the Interest Aggregation component
mapped users to the labels for which they had at least one
cluster with classification score above a threshold. Unless
otherwise stated, we used threshold 6, = 0.75. As we explain
in the next section, the system was tested on 150,000 users
using 16 month of query activity. Running the system at
this scale was enabled by our implementation on large-scale
Map-Reduce distributed data processing system.

5.2 Evaluation on Advertising data

The main goal of this evaluation is to study the effective-
ness of our interest-aware audience selection system. Our
hypothesis is that users who match advertiser-specified in-
terests are (on average) more likely to click on ads related
to the interest than the users currently selected via keyword
match.

User click probability. Let A denote a set of ads, e.g.,
the set of ads in a specific advertising campaign, or all the
ads related to a specific interest. Let U denote the set of
users that are candidates to be shown the ads in A, and let
U# C U denote the set of users that are actually impressed
with at least one ad from the set A. Also let C4 C U#
denote the subset of these users that clicked on at least one
of the ads that they were impressed. We define the user
click probability of the set A with respect to the user set U
as follows:

CA

UA

That is, Py (A) is the fraction of users being impressed with
ads from A, that actually clicked on at least one ad from the
set A.

This metric is reminiscent of the standard notion of click-
through rate (CTR)?® which, like user click probability, is
also a ratio between clicks and impressions. However, CTR
is the probability that, given an impression of an ad, the
ad will be clicked, while user click probability is the prob-
ability that given a user who is impressed an ad, the user
will at some point click on the ad. Although related, the
two metrics capture different information. We believe that
user click probability metric fits nicely with the goal of au-
dience selection, which is to select users to whom to impress
advertisements.

Now, let U, denote a set of users tagged with an interest
label £. Also, let Ay denote a set of ads that are related to the
interest ¢ (we discuss later how we obtain this set). The user
click probability Py, (A¢) is the probability that a user who
is assigned the interest label £ will click on an ad related to
the interest ¢. Therefore, mathematically, our hypothesis is
that on average Py, (A¢) > Py (Ag), that is, users associated
with interest ¢ are more likely to click on an ad related to ¢,
than users drawn from the general population of all users U
who are impressed with the ad.

Py(A) =

http://www.stanford.edu/class/msande239/



To test our hypothesis, we used the sponsored search logs
of the Bing search engine for a 2-month period, which does
not overlap with the time period used to compute user in-
terests®. For each label ¢ in the vocabulary £, we applied
our algorithm to the set of users U in the 2-month query
log, and we generated a subset of users U, C U that were
assigned this label. Next, for each label ¢ we need to ob-
tain a set of ads A, that are related to interest ¢. It is not
immediate how to obtain such a set, since currently, adver-
tisers do not provide interest labels, and thus there exists
no test set of ads labeled with interest labels that we could
use for the evaluation. We tackle this problem by making
the following approximation: we use the readily available,
existing bid terms from advertisers as a proxy for interest
labels. More specifically, let a be an ad, and let B, denote
the set of all bid keywords associated with this ad. We say
that ad a is labeled with interest label ¢ if ¢ € B,. We define
the set A, as the set of ads that are labeled with the label
L.

Given the set of ads Ay, we use UZA"’ to denote the subset
of users from U, that are impressed an ad in A,. Ideally,
we would like to have control over the set Uf ¢ in our ex-
periments. However, since we do not have such control,
we define Ulfqe = U, N U, ie., the subset of users la-
beled with ¢, that are impressed an ad from A, in the ex-
isting logs. The set leqe of users tagged with the interest
label ¢ that clicked on the ads in A, is defined similarly.
The user click probability of A, with respect to set U is
Py (Ag) = |C4¢|/|U¢| while the user click probability with
respect to Uy is Py, (Ae) = |C|/|UM|.

To make it more concrete, consider the following example.
We have a set of four users U = {Alice, Bob, Cathy, David},
and a set of three ads A = {a1, a2,a3s}. Advertisement a; is
tagged with bid keywords By ={ “casino”, “hotel”}, as with
keywords By = {“vegas”, “casino” }, and a3 with keywords
Bs = {“vegas”, “hotel”}. In our logs, Alice is shown ads
{a1,a2,as}, Bob is shown ads {as2, as}, Cathy is shown ads
{a1,a3} and David is shown ad {as}. Alice clicked on ads
a1 and a2, Bob clicked on a3, and Cathy and David did not
click on any of the ads.

Suppose now that our interest label ¢ is “casino”, and
that our algorithm tagged users U, = {Alice, Bob, David}
with the interest label £. We have that A; = {a1,a2}, and
U4t = {Alice, Bob, Cathy} is the set of users that were im-
pressed with an ad in A,. The set of users tagged with
the label ¢ that are also impressed with an ad in Ay is
U/t = {Alice, Bob}. Only Alice clicked on an ad related

to the interest ¢, therefore, C4¢ = C’ff = {Alice}. The
user click probability with respect to the set of all users U is
Py (Ag) = |C4|/|UA¢| = 1/3 while the user click probabil-
ity with respect to the set of users U, that we tagged with
the interest £ is Py(Ae) = |Cfe|/|Ulfqe| = 1/2. Therefore, in
our example, among the users impressed with an ad in A,
there is a 33% probability for one of them to click on an ad,
while this probability increases to 50% when a user is drawn
from the set of users tagged with the interest label £.

User coverage. We also consider a measure of coverage
which is defined as the fraction of users who are assigned an
interest profile (set of labels) of a minimum given size. The
goal is to show that a large fraction of users get assigned

4We further restricted the users to “high engagement” users,
as determined by the rules of the search engine company.

0.4

>
shoes =3» @

035 -
c ?wery * P
g 03 - o0 * o
2 electronics & 2PN
@
=
$ 0.25 - * buseba/(v :0 - *
g e
3 02 ;‘.’ *
s 0’ diet
2 .
& 1 *
g /
L2
g (N
8
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

User Click Probability - baseline

Figure 4: Scatter plot of User Click Probability of
baseline vs. our system.

interest labels. Let U be the universe of users considered in
an experiment (in our case, the users in the 2-month snap-
shot of the sponsored search logs). Let Vi be the users in U
that are assigned a profile consisting of at least k labels by
the interest-aware system. Then, the measure user coverage
for profile of size k is defined as follows:
UserCoveragey, = M
U]

Recall that in our system, we only keep the labels whose
classification score for some cluster is above a classification
threshold. Thus, there is a clear tradeoff between user cov-
erage and user click probability. A high user coverage means
that more users will be assigned interest labels, but this may
come at the expense of retrieving “poor-quality” users who
might not click on ads.

5.3 Key Findings

We now discuss the main results from our experiments.

Effect on user click probability. We first compare
the user click probability of our system against that of the
baseline, for every label ¢ for which there were at least 30
impressed ads in the 2 month time period that we considered
for the advertising data (126 labels in total). In Figure 4, we
present a scatter plot of the user click probability of the two
alternatives we consider for every label ¢. The z-axis corre-
sponds to the user click probability Py(Ag) of the baseline
system, and the y-axis corresponds to the user click proba-
bility Py, (A¢) of our system. We can observe that the points
for most labels lie above the diagonal (more precisely, for 97
out of 120 labels). This means that our system outperforms
the baseline for 81% of the labels.

To get an understanding of the performance for individ-
ual interest labels, we indicate on Figure 4 some labels for
which we do particularly well, and some labels for which the
baseline outperforms our approach. For example, we have
large gains for labels such as “baseball” and “jewelry” which
represent permanent (or long-term) interests of users, and
for long term tasks such as “wedding”. Arguably, consid-
ering entire histories to make a determination of the user
interests helps for these long-term interests. Some of the
worst performing labels for our system are broad, high-level
interests which do not necessarily lead to higher user click
probabilities. Examples include terms such as “science” and
“la,W”.
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Figure 5: User Coverage for our interest-aware sys-
tem.

To get an aggregated view of the results, we computed the
average user click probability over all labels [. For our sys-
tem, the average user click probability is 0.131; for the base-
line, it is 0.087. This represents a 50.5% increase over the
baseline. We used a one-tailed t-test, and verified that this
difference is statistically significant with 95% confidence,
thus establishing our hypothesis that on average it is more
likely for a user who is tagged with an interest label to click
on an ad related to that interest than a user drawn from the
general population.

Our results demonstrate that given an interest of the ad-
vertiser, our technique produces an audience that has in-
creased probability of clicking to an ad related to that in-
terest. Of course, this audience must be of significant size.
That is, U;"Z7 the labeled users to whom the ads related to
£ are impressed, should be a sizeable fraction of U#¢ all the
users to whom an ad related to ¢ were impressed. In our
experiments UZ‘" is on average 10% of U4, indicating that
we capture a sizeable fraction of impressed users.

Effect on user coverage. Since, in our system, a profile
consists of all labels above a classification threshold, users
may get profiles of different sizes (in terms of the number of
labels), or even no profile at all. We measured user coverage
for different minimum profile sizes for our interest-aware sys-
tem. In Figure 5, we give size k of the profile in terms of
number of labels on the z-axis; and the user coverage for
profiles that have at least k labels, UserCoveragex, on the
y-axis. We can observe that the coverage is as high as 0.93
and 0.78 for histories with at least 1 and 2 labels respec-
tively. It remains at reasonable levels even for histories of
size at least five (0.27). This implies that the number of
users retrieved by our system is significant for the different
labels.

Sensitivity to classification threshold. We also per-
formed a sensitivity analysis of the classification score thresh-
old 6,. In particular, we considered different instantiations
of our system, where we varied the classification threshold
0, and measured the corresponding average user click prob-
ability. The results are shown in Figure 6. We can observe
that the average user click probability is not overly sensitive
to the classification threshold: for classification threshold
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Figure 6: Average User Click Probability for differ-
ent classification score thresholds.

| Interest | Baseline | Interest-aware

Vegas 0.181 0.301
Disney 0.205 0.286
Hawaii 0.071 0.097

Lego 0.128 0.176
Webkinz 0.049 0.061

Table 2: Performance on advertiser-provided inter-
ests. The first column shows the User Click Proba-
bility of the Baseline, while the second column the
User Click Probability of our method.

0, = 0.95 it is 0.158, decreasing gently to 0.130 for thresh-
old 6, = 0.6.

Enabling advertisers to extend the vocabulary of
interests. So far, we have presented results on a set of inter-
est labels derived from the clusters themselves (Label Gen-
eration component). However, our system is by no means
restricted to that list: it enables advertisers to flexibly pro-
vide new interest labels and add them to the interest label
set. To show that this is possible, we performed an exper-
iment where we added some highly monetizable interests
to the list of labels, and then performed the same evalu-
ation as before but with the extended list. In particular,
we added three popular tourist destinations (Vegas, Disney,
and Hawaii), and two popular toys (Lego and Webkinz).
We show the results on Table 2. We can observe that our
system outperforms the baseline on the five interests. This
means that click-through rate increases for interests that are
flexibly added by the advertisers to the interest vocabulary.

6. CONCLUSIONS

In this paper, we presented a system for direct interest-
aware audience selection. Our system takes the query histo-
ries of search engine users as input, extracts their interests,
and describes them with interpretable labels that enable ad-
vertisers to easily target users.

We showed the effectiveness of our approach through a
large-scale evaluation using advertising data. The results
indicate that our system associates users to interest labels
that are highly useful for advertisers to better target rele-
vant users. Our system can lead to an increase in user click
probability of over 50% compared to the baseline system.

We are planning to extend our work in multiple direc-
tions. Extensions include employing additional signals such
as clicked URLs and timestamps, and studying the effect



of interests on conversion rates, in addition to clicks. One
particularly interesting direction involves building upon the
output of the clustering algorithm to infer a “time signature”
for different types of interests, based on the distribution over
time of the queries in an interest cluster. This can enable
us to better understand the nature of users interests. For
instance, one may expect that the time signature of a time-
bounded task such as planning a wedding would be different
from that of a more permanent interest such as gardening.
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