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ABSTRACT
Multi-label learning studies the problem where each instance
is associated with a set of labels. There are two challenges
in multi-label learning: (1) the labels are interdependent
and correlated, and (2) the data are of high dimensional-
ity. In this paper, we aim to tackle these challenges in one
shot. In particular, we propose to learn the label correlation
and do feature selection simultaneously. We introduce a
matrix-variate Normal prior distribution on the weight vec-
tors of the classifier to model the label correlation. Our
goal is to find a subset of features, based on which the
label correlation regularized loss of label ranking is mini-
mized. The resulting multi-label feature selection problem
is a mixed integer programming, which is reformulated as
quadratically constrained linear programming (QCLP). It
can be solved by cutting plane algorithm, in each iteration
of which a minimax optimization problem is solved by dual
coordinate descent and projected sub-gradient descent al-
ternatively. Experiments on benchmark data sets illustrate
that the proposed methods outperform single-label feature
selection method and many other state-of-the-art multi-label
learning methods.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.5.1 [Pattern
Recognition]: Models

General Terms
Algorithms, Experimentation

Keywords
Feature Selection, Label Correlation, Multi-Label Learning,
Dual Coordinate Descent, Cutting Plane

1. INTRODUCTION
Multi-label learning [7, 30, 35, 39, 13, 27, 4, 11, 31, 36]

is a very important topic in data mining and information
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retrieval. It studies the problem where each instance is as-
sociated with a set of labels. This is not uncommon in many
important applications, such as protein function classifica-
tion [7], text categorization [19], and semantic scene classi-
fication [1]. For example, one gene can be associated with
several functions, one image may have several tags, and one
document can cover several topics.
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Figure 1: The label correlation computed from the
labels of all the data points in the Yahoo/Arts data
set

There are mainly two challenges in multi-label learning.
First, different from traditional single-label learning where
the classes are mutually exclusive, the classes in multi-label
learning are typically interdependent and correlated, which
poses more difficulties to predict all the relevant labels for
a given instance. For example, in image annotation, “sea”
and “ship” tend to appear in the same image, while “car”
typically does not appear together with “ship”. Figure 1
illustrates the label correlation which is computed from the
labels of all the data points in the Yahoo/Arts data set. The
higher the value between two labels is (lighter color), the
more correlated these two labels are. It can be seen that the
5th label is highly correlated with the 14th and 18th labels,
while it is not correlated with the 12th label. On the other
hand, the label correlation offers a possibility to infer the
unknown label of an instance from the known label. In order
to utilize the relation between labels, [7, 6] proposed to learn
the ranks of labels for each instance, which is basically first-
order information. However, the correlation among labels is
second-order information [36]. And we will show that it is
essential for better performance in our experiments.



The second challenge is that multi-labeled data usually
have thousands or even tens of thousands of features. This
is especially true for documents and news articles. For ex-
ample, the news articles in the Yahoo data set used in our
experiments are of about 20K features. As we know, high
dimensional data may cause the curse of dimensionality,
which increases the computational burden and deteriorate
the generalization ability of the classifier. To overcome this
problem, many dimensionality reduction based multi-label
learning approaches [35, 39, 13, 31] have been proposed. Al-
though these methods perform good for high dimensional
data, they still fail to explicitly model the label correlation,
which is crucial for better performance.
In this paper, based on the above motivation, we aim

to solve the two challenges in one shot. We built up our
model on the label rank support vector machine (LaRank
SVM) [7]1, which is among state-of-the-art multi-label learn-
ing methods [7, 13]. We introduce a matrix-variate Nor-
mal prior distribution [10] on the weight vectors of LaRank
SVM. Since the column covariance matrix of matrix-variate
Normal distribution characterizes the correlation among the
weight vectors, each of which associates with one label, the
label correlation is modeled explicitly. To avoid the curse of
dimensionality, we incorporate feature selection into LaRank
SVM. Our goal is to find a subset of features, based on which
the label correlation regularized loss of label ranking [7] is
minimized. The resulting multi-label feature selection is a
mixed integer programming problem, which is difficult to
solve. Fortunately, it can be reformulated as Quadratically
Constrained Linear Programming (QCLP) [2]. It is solved
by cutting plane algorithm [17], in each iteration of which a
minimax optimization problem is solved by dual coordinate
descent [12] and projected sub-gradient descent [22] alterna-
tively. As a by-product, we also propose a correlated label
rank support vector machine (CLaRank SVM), which is an
extension of LaRank SVM [7]. It is worth noting that, the
proposed approach is able to not only learn the label cor-
relation automatically, but also reduce the dimensionality
of the original data. Experiments on benchmark data sets
indicate that the proposed methods outperform single-label
feature selection and many other state-of-the-art methods.
The remainder of this paper is organized as follows. In

Section 2, we discuss several related works on multi-label
learning. In Section 3 we present correlated multi-label fea-
ture selection. The experiments on real world data sets are
demonstrated in Section 4. Finally, we draw a conclusion
and point out the future work in Section 5.

1.1 Notation
In multi-label learning with c labels, each data point xi ∈

Rd, i = 1, . . . , n can be associated with a set of labels, i.e.,
yi ⊆ {1, 2, . . . , c}. We denote the complementary set of yi
by ȳi, and the cardinality of yi by |yi|. For example, suppose
there are totally 6 labels, and xi is labeled by the 2nd and
3rd labels, then yi = {2, 3}, ȳi = {1, 4, 5, 6} and |yi| = 2.
X = [x1,x2, . . . ,xn] ∈ Rd×n represents the data matrix. xj

denotes the jth row of X. ei is a unit vector of all zeros

1Note that in the original paper, the authors called this
model as Rank SVM. To distinguish this model from another
well-known Rank SVM proposed in [14] for information re-
trieval, we call this model as Label Rank SVM or simply
LaRank SVM because it ranks the labels rather than data
points.

except the ith element equal to 1. 1 is a vector of all ones.
0 is a vector of all zeros. Given a matrix R, we denote its
(k, l)th entry by Rkl, and its inverse matrix by R−1. R−1

kl is
the (k, l)th entry of R−1.

2. RELATED WORK
In this section, we give a brief review of multi-label classi-

fication methods which are related to ours. Existing multi-
label learning methods can be cast into different families.

The first family of multi-label learning method is to divide
multi-label learning into a set of one-against-all binary clas-
sification problems [23]. However, since each label is treated
independently, it fails to consider the correlation among dif-
ferent labels, which is essential in multi-label learning. It
is desirable for a multi-label learning method to make use
of label correlation for better performance. Moreover, this
approach suffers from imbalanced data when constructing
binary classifiers to distinguish each class from the remain-
ing classes. This problem becomes more severe when the
number of classes is large.

The second category of multi-label learning approaches
are based on Label Ranking [7, 6, 4], where ranking-based
strategy is taken to learn a ranking function of labels from
the labeled instances and apply it to obtain a real-valued
score for each instance-label pair, then classify each instance
by choosing all the labels whose scores are above the given
threshold. They achieve state-of-the-art results and are scal-
able to large-scale data with the recent progress in support
vector machine optimization [15, 25, 12, 16]. However, these
methods do not explicitly exploit the label correlation, and
are suffering from curse of dimensionality. This motivates
us to propose a model built up on LaRank SVM [7], while
it is able to overcome the limitations.

Another family of multi-label learning methods are based
on dimensionality reduction, which assume that all the la-
bels share a common subspace. For example, [35] extended
unsupervised latent sematic indexing to make use of multi-
label information. [39] proposed Multi-label Dimensionality
reduction via Dependence Maximization (MDDM) method
to identify a lower-dimensional subspace by maximizing the
dependence between the original features and associated class
labels. [31] proposed Multi-Label Linear Discriminant Anal-
ysis (MLDA) which is an extension of linear discriminant
analysis. [27] proposed to construct a hyper-graph on both
the data points and labels, and find a subspace to preserve
the information of the hyper-graph for classification. [13]
proposed Multi-Label Least Square (MLLS) method to ex-
tract a common subspace shared among multiple labels.
These methods have been proved very effective for multi-
label learning. They are also able to deal with the curse of
dimensionality. Subspace based methods utilize the correla-
tion between data and labels. However, they do not consider
the correlation among labels, which is not uncommon in
multi-label data as shown before. In this paper, rather than
subspace learning, we propose to do feature selection for
multi-label learning, which can be integrated into LaRank
SVM [7] coherently. We assume that all the labels share a
common subset of features. Due to the close relationship
between subspace learning and feature selection, feature se-
lection plays a similar role as subspace learning. Moreover,
to capture the correlation among labels, we propose to learn
the label correlation at the same time as feature selection.



3. THE PROPOSED METHOD
Since the proposed method is built upon LaRank SVM [7],

we first briefly review the formulation of LaRank SVM. It
borrowed the large margin idea to multi-label learning and
modified SVM to a ranking system of labels. The basic idea
is, for each instance, the ranking scores of the labels assigned
to the instance should be higher than the ranking scores of
the labels not assigned to it. The resulting maximum margin
multi-label ranking system is

minw,ξ
1

2

c∑
k=1

||wk||2 + C

n∑
i=1

1

|yi||ȳi|
∑

(k,l)∈yi×ȳi

ξikl

s.t. ⟨wT
k −wT

l ,xi⟩ ≥ 1− ξikl, (k, l) ∈ yi × ȳi

ξikl ≥ 0, i = 1, . . . , n, (1)

where C > 0 is a regularization parameter. Note that a bias
term can be incorporated into the form by expanding the
weight vector and input feature vector as wk ← [wT

k , bk]
T

and x ← [xT , 1]T . It has been shown that LaRank SVM
performs better than SVM [7, 27]. LaRank SVM consid-
ers the ordinal relation among labels, which is first-order
information. However, LaRank SVM does not consider the
label correlation, which is a kind of second-order informa-
tion among labels. Moreover, when the dimensionality of the
data is very high, LaRank SVM does not perform as good as
some dimensionality reduction based methods [27, 13]. This
motivates us to consider the label correlation and do feature
selection (dimensionality reduction) simultaneously in this
paper.

3.1 Incorporating Label Correlation
To capture the correlation between labels, we place a

matrix-variate Normal distribution prior [10] on the weight
vectors of LaRank SVM, i.e., W = [w1, . . . ,wc],

p(W|D) =MN (0d×c, Id ⊗D), (2)

where 0d×c denotes a d×c zero matrix, Id is a d×d identity
matrix, and MN (X|M,A ⊗ B) denotes a matrix-variate
normal distribution with mean M ∈ Ra×b, row covariance
matrix A ∈ Ra×a, and column covariance matrix B ∈ Rb×b.
The probability density function of the matrix-variate nor-
mal distribution is defined as

p(X|M,A,B)

=
exp

{
− 1

2
tr(A−1(X−M)B−1(X−M)T )

}
(2π)ab/2|A|b/2|B|a/2

. (3)

Note that similar prior has been used for multi-task learning
[37] and transfer distance metric learning [38]. Plug Eq.(3)
into Eq.(2), it can be simplified as

p(W|D) =
exp

{
− 1

2
tr(WD−1WT )

}
(2π)dc/2|D|d/2

. (4)

Since the column covariance matrix D models the correla-
tion between any twowk, it is able to capture the correlation
of different labels.

3.2 Multi-Label Feature Selection
As to feature selection, we introduce a binary variable pj ∈
{0, 1}, j = 1, . . . , d for each feature, such that if pj = 1, then
the jth feature is selected. Otherwise, it is discarded. Our
goal is to find a subset of features, such that the the label

correlation regularized loss of the LaRank SVM in Eq.(1) is
minimized,

minw,D,ξ,p
1

2

c∑
k=1

||wk||22 + C

n∑
i=1

1

|yi||ȳi|
∑

(k,l)∈yi×ȳi

ξikl

−µ

2
log p(W|D),

s.t. ⟨wT
k −wT

l ,p ◦ xi⟩ ≥ 1− ξikl, (k, l) ∈ yi × ȳi

ξikl ≥ 0, i = 1, . . . , n,

p ∈ {0, 1}d,pT1 = m, (5)

where p ◦ xi is element-wise Hadamard product which per-
forms feature selection. Note that the first two terms in
the objective function can be seen as the negative log like-
lihood of some kind of distribution on wk, and the third
term is the negative logarithm of a prior on wk. Hence
the whole objective function can be seen as a negative log-
arithm of the posterior on wk. This is in spirit the same
as maximum a posterior principle. Unfortunately, the term
−µ

2
log p(W|D) ∝ 1

2
tr(WD−1WT )− d

2
log |D| − dc

2
log(2π)

is not easy to optimize since it is non-convex. In this paper,
we turn to solve the following similar problem,

minw,D,ξ,p
1

2

c∑
k=1

||wk||22 + C
n∑

i=1

1

|yi||ȳi|
∑

(k,l)∈yi×ȳi

ξikl

+
µ

2
tr(WD−1WT ),

s.t. ⟨wT
k −wT

l ,p ◦ xi⟩ ≥ 1− ξikl, (k, l) ∈ yi × ȳi

ξikl ≥ 0, i = 1, . . . , n,

p ∈ {0, 1}d,pT1 = m,

D ≽ 0, tr(D) = 1, (6)

We call Eq.(6) as Correlated Multi-Label Feature Selection
(CMLFS).

Both Eq. (5) and Eq.(6) are mixed integer programming
[2]. Compared with Eq.(5), although Eq.(6) sacrifices the
sound probabilistic interpretation to some extent, it has a
more desirable optimization property, which is stated in the
following theorems.

Theorem 3.1 Given p, the optimization problem in Eq.(6)
is jointly convex in wk and D.

Proof. Please refer to [37].

It is worth noting that there are two special instances of
the proposed model in Eq.(6). First, if we set µ = 0, then
the model in Eq.(6) reduces to multi-label feature selection
without learning the label correlation. In the rest of this
paper, we refer to this special model as Multi-Label Feature
Selection (MLFS). Second, if we fix p = 1, then the model in
Eq.(6) can be seen as an extension of label rank SVM, which
is not only learning to rank the labels, but also learning the
correlation among labels. This special model is referred to as
Correlated Label Rank SVM (CLaRank SVM). It is obvious
that if we set µ = 0 and fix p = 1 simultaneously, then
Eq.(6) exactly reduces to original label rank SVM in Eq.(1).
In the sequel, we will present the optimization algorithm to
solve Eq. (6).

3.3 The Dual Problem
Instead of directly optimizing the problem in Eq. (6), we

choose to optimize its dual problem [2].



Theorem 3.2 The dual of the problem in Eq. (6) is

min
D,p

max
α

n∑
i=1

∑
(k,l)∈yi×ȳi

αikl

−1

2

c∑
k,l=1

R−1
kl

n∑
i,j=1

βikβjl(p ◦ xi)
T (p ◦ xj),

s.t. 0 ≤ αikl ≤
C

|yi||ȳi|
p ∈ {0, 1}d,pT1 = m

D ≽ 0, tr(D) = 1, (7)

where R = I+ µD−1, R−1 is the inverse matrix of R, and
R−1

kl is the (k, l)th entry of R−1, βik is defined as

βik =
∑

(p,q)∈yi×ȳi

γk
ipqαipq, (8)

and γk
ipq is defined as,

γk
ipq =

 1, if p = k
−1, if q = k
0, if p ̸= k and q ̸= k

. (9)

Moreover, we have

c∑
l=1

Rklwl =

n∑
i=1

βikp ◦ xi. (10)

For the sake of notional simplicity, we denote the objective
function of Eq.(7) by f(α,D,p), and define

D = {D ≽ 0, tr(D) = 1} ,

P =
{
p ∈ {0, 1}d,pT1 = m

}
,

A =

{
α|0 ≤ αikl ≤

C

|yi||ȳi|
, k = 1, . . . , c

}
. (11)

Then the optimization problem in Eq.(7) can be rewritten
as

min
D∈D,p∈P

max
α∈A

f(α,D,p). (12)

By interchanging the order of minD∈D,p∈P and maxαk∈Ak

in Eq. (12), we obtain

max
α∈A

min
D∈D,p∈P

f(α,D,p). (13)

According to the minimax theorem [18], the optimal objec-
tive value of Eq.(7) is an upper bound of that of Eq.(13).
The problem in Eq. (13) is indeed a convex-concave op-

timization problem, and therefore its optimal solution is a
saddle point for the function f(α,D,p) subject to the con-
straints in Eq. (11). Let (α∗,D∗,p∗) be optimal to Eq.
(13). For any feasible α and p, we have

f(α,D∗,p∗) ≤ f(α∗,D∗,p∗) ≤ f(α∗,D,p). (14)

Borrowing the idea used in [5] [20] [28], we add an addi-
tional variable θ ∈ R, then the problem in Eq. (13) can be
reformulated equivalently as follows

max
α∈A

min
D∈D

max
θ
−θ

s.t.θ ≥ −f(α,D,pt),pt ∈ P. (15)

Note that each pt ∈ P corresponds to one constraint, so the
above optimization problem has

(
d
m

)
constraints. The op-

timization problem in Eq.(15) is called Quadratically Con-
strained Linear Programming (QCLP) [2].

We introduce a set of Lagrange multipliers λt ≥ 0, each of
which corresponds to an inequality constraint θ ≥ −f(α,D,pt).
Then the Lagrange function of Eq.(6) is given by

L(θ) = −θ +
|P|∑
t=1

λt(θ + f(α,D,pt)). (16)

Taking the partial derivative of L with respect θ and set-
ting it to zero, we obtain

∂L
∂θ

= −1 +
|P|∑
t=1

λt = 0. (17)

Plugging Eq.(17) back into Eq.(15), we get the dual prob-
lem of the inner maximization problem in Eq(15), we obtain
the following problem,

max
α∈A

min
D∈D,λt∈Λ

|P|∑
t=1

λtf(α,D,pt)

= min
D∈D,λt∈Λ

max
α∈A

|P|∑
t=1

λtf(α,D,pt), (18)

where Λ = {λt|
∑|P|

t=1 λt = 1, λt ≥ 0}. The equality holds
due to the fact that the objective function is concave in α
and convex in D and λ.

3.4 Alternating Optimization
Actually, Eq. (18) can be seen as a multiple kernel learn-

ing problem [22], where the base kernels and kernel weights
are the same for all the labels. It is worth noting that [29]
proposed a multiple kernel learning with multiple labels.
Their method is different from ours. In their method, the
kernel weights are different for each label. Moreover, they
did not consider the label correlation. As a result, their
algorithm cannot be adapted to our problem.

Following the technique used in the state-of-the-art single-
label multiple kernel learning [22], we optimize Eq. (18) in
an alternative way. In particular, we alternatively solve one
variable such as α given the other variables such as D and
λ fixed.

3.4.1 Compute α when λ and D are fixed
Fixing D and λ, the optimization problem in Eq.(18) re-

duces to

min
α

g(α)

s.t. 0 ≤ αikl ≤
C

|yi||ȳi|
, (19)

where g(α) is defined as

g(α) =
1

2

c∑
k,l=1

R−1
kl

n∑
i,j=1

βikβjl(p̄ ◦ x̄i)
T (p̄ ◦ x̄j)

−
n∑

i=1

∑
(k,l)∈yi×ȳi

αikl, (20)

where p̄ = [pT
1 , . . . ,p

T
|P|]

T and x̄i = [λ1xi, . . . , λ|P|x
T
i ]

T .



The above optimization problem can be efficiently solved
by dual coordinate descent method [12]. It updates one vari-
able at a time by minimizing a single variable subproblem.
In particular, it picks one variable αikl at a time and solves
the following single variable subproblem while keeping all
the other variables fixed,

min
α

g(α+ deikl),

s.t. 0 ≤ αikl ≤
C

|yi||ȳi|
, (21)

where eikl = (0, . . . , 0, 1, 0, . . . , 0)T . The objective function
of Eq.(21) is a simple quadratic function of d,

g(α+ deikl) =
Skl

2
(p̄ ◦ x̄i)

T (p̄ ◦ x̄i)d
2

+ ▽iklg(α)d+ const, (22)

where Skl = R−1
kk + R−1

ll − 2R−1
kl , const is a constant which

is independent on d, and ▽iklg(α) can be computed as

▽iklg(α)

=

c∑
q=1

(R−1
kq −R−1

lq )

n∑
j=1

βjq(p̄ ◦ x̄j)
T (p̄ ◦ x̄i)− 1

=
c∑

q=1

(R−1
kq −R−1

lq )(
c∑

l=1

Rqlwl)
T (p̄ ◦ x̄i)− 1

=

c∑
q=1

(R−1
kq −R−1

lq )uT
q (p̄ ◦ x̄i)− 1

= (wk −wl)
T (p̄ ◦ x̄i)− 1, (23)

where uk =
∑c

l=1 Rklwl. It can be easily seen that Eq.(21)
has an optimum at d = 0 if and only if

▽P
iklg(α) = 0, (24)

where ∂g(α)
∂αikl

is the projected gradient

▽P
iklg(α) =


▽iklg(α), if 0 < αikl <

C
|yi||ȳi|

min(0,▽iklg(α)), if αikl = 0
max(0,▽iklg(α)), if αikl =

C
|yi||ȳi|

.

(25)
If Eq.(25) holds, we do not need to update αikl and di-

rectly move to the next variable. Otherwise, the optimal
solution of Eq.(21) is

α∗
ikl = min(max(αikl −

▽P
iklg(α)

Skl(p̄ ◦ x̄i)T (p̄ ◦ x̄i)
, 0),

C

|yi||ȳi|
).

(26)
This means the subproblem can be solved analytically that
ensures the efficiency of the coordinate descent method. Here,
we need to calculate (p̄ ◦ x̄i)

T (p̄ ◦ x̄i) and ▽P
iklg(α). First,

(p̄ ◦ x̄i)
T (p̄ ◦ x̄i) can be pre-computed and stored in the

memory. Second, to evaluate ▽P
iklg(α) using Eq.(23), we

only need to maintain uk by

uk = uk + (α∗
ikl − αikl)p̄ ◦ x̄i

ul = ul − (α∗
ikl − αikl)p̄ ◦ x̄i. (27)

The dual coordinate descent method for optimizing α is
summarized in Algorithm 1.

Theorem 3.3 The α calculated by Algorithm 1 globally con-
verges to an optimal solution α∗. The convergence rate is

Algorithm 1 Dual Coordinate Descent for Optimizing α

Input:C and m;
Output:α;
Initialize α = 0 and wk = 0, k = 1, . . . , c;
repeat

for i = 1, . . . , n and (k, l) ∈ yi × ȳi do
Calculate G = R−1

kl (uk − ul)
Txi − 1;

Calculate PG =


G, if 0 < αikl <

C
|yi||ȳi|

min(0, G), if αikl = 0
max(0, G), if αikl =

C
|yi||ȳi|

.

if |PG| ̸= 0 then
α∗
ikl = min(max(αikl − PG

Skl(p̄◦x̄i)T (p̄◦x̄i)
, 0), C

|yi||ȳi|
)

Calculate uk = uk + (α∗
ikl − αikl)p̄ ◦ x̄i

Calculate ul = ul − (α∗
ikl − αikl)p̄ ◦ x̄i

end if
end for

until converge

at least linear. In other words, there is 0 < τ < 1 and an
iteration t0, such that

g(αt+1)− g(α∗) ≤ τ(g(αt)− g(α∗)). (28)

Proof. Please refer to [12].

The linear convergence result is remarkable, that means
Algorithm can achieves an ϵ-accurate solutionα inO(log( 1

ϵ
))

iterations.

3.4.2 Compute D when α and λ are fixed
Given α and λ, the optimization problem in Eq.(6) boils

down to

minD tr(WD−1WT ),

s.t. D ≽ 0, tr(D) = 1, (29)

which is a semi-definite programming (SDP) [2]. Fortu-
nately, it can be solved by spectral method as stated in the
following theorem.

Theorem 3.4 Let C = WTW, the optimal solution of
Eq.(29) is

D =
C

1
2

tr(C
1
2 )

, (30)

and the optimal value equals to (tr(C
1
2 ))2

Proof. The proof is similar to Theorem 4.6 in [9]. Let
D = Adiag(λ)AT where λ = [λ1, . . . , λc] ∈ Rd, then

d∑
j=1

wjD−1(wj)T = tr(WD−1WT )

= tr(WAdiag(λ)−1ATWT )

= tr(diag(λ)−1ATWTWA)

=

c∑
k=1

aT
k W

TWak

λk
≥ (

c∑
k=1

||Wak||2)2



Next, we have

||Wak||22 = aT
k W

TWak

= aT
k Cak = (aT

k Cak)(a
T
k ak)

= tr(C
1
2 aka

T
k C

1
2 )tr(aka

T
k )

≥ tr(C
1
2 aka

T
k C

1
2 aka

T
k )

= tr(aT
k C

1
2 aka

T
k C

1
2 ak) = (aT

k C
1
2 ak)

2

since tr(A)tr(B) ≥ tr(AB) if A and B are positive semi-

definite. The equality holds if and only if C
1
2 aka

T
k = µaka

T
k

which implies that C
1
2 ak = µak, that is, ak is an eigenvector

of C
1
2 . The optimal µ is tr(C

1
2 ). Hence we obtain

d∑
j=1

wjD−1(wj)T ≥ (
c∑

k=1

aT
k C

1
2 ak)

2

= (tr(ATC
1
2A))2 = (tr(C

1
2 ))2

Consequently, the optimal D = C
1
2

tr(C
1
2 )

. This completes the

proof.

3.4.3 Compute λ when α and D are fixed
Let h(λ) =

∑
t λtf(α,D,pt), we denote the sub-gradient

of h(λ) with respect to λt by ∇λth(λ), which is calculated
as

∇λth(λ) = −
1

2

c∑
k,l=1

R−1
kl

n∑
i,j=1

βikβjl(p
t◦xi)

T (pt◦xj). (31)

Following [22], we use projected gradient descent to up-
date the kernel weights λt. Note that other techniques such
as semi-infinite linear programming [26] and extended level
method [32] can also be adopted.

3.5 Cutting Plane Acceleration
Up to now, we have presented the algorithm for optimizing

Eq.(18). However, given P, the problem has optimization
variables (α,D,λ) with

(
d
m

)
constraints, which is imprac-

tical to solve. Fortunately, cutting plane technique [17] en-
ables us to deal with this problem, which keeps a polynomial
sized subset Ω of working constraints and computes the op-
timal solution to Eq. (18) subject to the constraints in Ω.
In detail, the algorithm adds the most violated constraint
in Eq. (15) into Ω in each iteration. In this way, a succes-
sively strengthening approximation of the original problem
is solved. And the algorithm terminates when no constraints
in Eq. (15) is violated.
The remaining thing is how to find the most violated con-

straint in each iteration. Since the feasibility of a constraint
is measured by the corresponding value of θ, the most vio-
lated constraint is the one which owns the largest θ. Hence,
it could be calculated as follows

argmax
p∈P
−f(α,D,p)

= argmax
p∈P

c∑
k,l=1

Rkl

n∑
i,j=1

βikβjl(p ◦ xi)
T (p ◦ xj)

= argmax
p∈P

d∑
j=1

sjpj , (32)

where sj =
∑c

k,l=1 Rklβ
T
k (x

j)Txjβl and βk = [β1k, . . . , βnk]
T .

According to [28], its optimal solution can be obtained with-
out any numeric optimization solver. Instead, it can be
solved by first sorting sj and then setting the first m num-
bers corresponding to dj to 1 and the rests to 0.

We summarize the algorithm to solve the problem in Eq.
(18) in Algorithm 2. Note that the final selected features are
the union set of the features corresponding to each constraint
pt ∈ ΩT .

Algorithm 2 Correlated Multi-Label Feature Selection

Input:C and m;
Output:α and Ω;
Initialize α = 0 and t = 1;
Find the most violated constraint p1, and set Ω1 = {p1};
repeat

Initialize λ = 1
t
1;

repeat
Solve for α using Algorithm 1;
Solve for D using Eq.(30);
Solve for λ using sub-gradient descent as in Eq. (31);

until converge
Find the most violated constraint pt+1 and set Ωt+1 =
Ωt ∪ pt+1;
t = t+ 1;

until converge

3.6 Convergence Analysis
We analyze the convergence property of Algorithm 2.

Theorem 3.5 Let (α∗,D∗, θ∗) be the global optimal solu-
tion of Eq. (15), lt = max1≤j≤t minα∈A,D∈D,−f(α,D,pj)
and ut = min1≤j≤t maxp∈P −f(αj ,Dj ,p), then

lt ≤ θ∗ ≤ ut. (33)

With the number of iteration t increasing, the sequence {lt}
is monotonically increasing and the sequence {ut} is mono-
tonically decreasing.

Proof. Please refer to [28].

Since the number of constraints in P is finite, i.e.,
(
d
m

)
, based

on Theorem 3.5, the algorithm will converge within finite
number of iterations. Moreover, we can use the gap between
lt and ut to trace the convergence of Algorithm 2. When
the gap is smaller than a predefined tolerance ϵ, we stop
the algorithm. Empirical study shows that the algorithm
converges within 10 outer-iterations in our experiments.

3.7 Time Complexity Analysis
In each outer iteration of Algorithm 2, it needs to find

the most violated p. It can be obtained exactly by finding
the m largest ones from d coefficients sj , which takes only
O(m log d) time. In the inner iteration of Algorithm 2, it
solves a minimax problem by alternating optimization. Its
complexity is proportional to the sum of the complexity of
dual coordinate descent and the complexity of calculating
D. The complexity of dual coordinate descent is O(c2ns),
where s is the average number of nonzero features among
all the training samples. The complexity of calculating D
is O(dc). Hence the total time complexity of the proposed
method is O(T (c2ns+dc+m log d)), where T is the number



of iterations needed to converge, Thus, the proposed method
is computationally efficient for large-scale, high dimensional
data.

3.8 Set Size Prediction
So far we have only developed a ranking system. To ob-

tain the final labels of each instance, we need to design
a label set size predictor s(x). Following [7], we turn to
learn a threshold function t(x), which differentiates labels
in the target set from others. Given the threshold func-
tion, the predictor of the set size is quite straightforward:
s(x) = |{k|wT

k x > t(x)}|. The remaining problem is how
to learn t(x). We formulate it as a regression problem. In
detail, given a training instance xi, its label ranking scores
are wT

1 x, . . . ,w
T
c x, we define the corresponding threshold

ti = t(xi) by

t(xi) =
1

2
(min
k∈yi

wT
k xi +max

l∈ȳi
wT

l xi) (34)

Once we generate the thresholds {ti = t(xi)}ni=1 for the
training set, we can estimate the threshold function t(x) by
any regression model. In this paper, we simply use linear
regression to estimate t(x).

4. EXPERIMENTS
In this section, we empirically evaluate the effectiveness

of the proposed methods. All experiments are performed on
a PC with Intel Core i5 3.20G CPU and 4GB RAM and all
algorithms in our experiments are implemented in Matlab
and C++.

4.1 Data Sets
We carry our experiments on various sets of data, includ-

ing data sets from LibSVM website2 and Yahoo3. In Lib-
SVM data sets, we choose scene data set [1] and yeast data
set [7]. For Yahoo data set [30], we use four categories:
Arts, Business, Education, and Health as four data sets.
In each category, the sub-categories are the labels for each
document. We pre-processed the data sets by removing sub-
categories with less than 100 documents and documents with
no sub-category. Table 1 summarizes the characteristics of
these data sets.

Table 1: Description of the data sets
Datasets #training #features #classes
Scene 2407 294 6
Yeast 2417 103 14
Arts 7441 17973 19

Business 9968 16621 17
Education 11817 20782 14
Health 9109 18430 14

4.2 Evaluation Metrics
To evaluate the performance of different algorithms for

multi-label learning, we use three measures: the Area Under
the Receiver Operating Characteristic (ROC) Curve (AUC),
Micro F1 and Macro F1. For AUC, we first compute the

2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets
/multilabel.html
3http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz

AUC for each class, and then compute the averaged AUC
over all the classes. For more details about the measures,
please refer to [33].

4.3 Parameter Settings
We compare the proposed methods with the related multi-

label learning methods and a single-label feature selection
method. We choose Fisher score [21] as the representative
of single-label feature selection methods. The reason is that
our empirical study [8] found that Fisher score is comparable
to or even better than the other feature selection methods
[34, 24] on the data sets used in our experiments. We will
not report the results of MDDM [39] and MLDA [31] be-
cause they are not better than MLLS [13]. All the methods
and their parameter settings are summarized as follows. By
default, the regularization parameter C of SVM type models
in all the methods is tune by 5-fold cross validation on the
training set via searching the grid {10−3, 10−2, . . . , 103}.

SVM: linear SVM is used for one-against-all classification
individually.

LaRank SVM [7]: The threshold function is learned by
linear regression as stated in Section 3.8.

CCA+SVM: Canonical Correlation Analysis is used for
dimensionality reduction before SVM. The dimensionality
of the subspace is set to c − 1 where c is the number of
classes. The regularization parameter for CCA is tuned by
5-fold cross validation on the training set via searching the
grid {10−5, 10−4, . . . , 10−1}.

MLLS4 [13]: The dimensionality of the subspace is set to
c−1. The two regularization parameters for MLLS is tuned
by 5-fold cross validation on the training set by searching
the grid {10−5, 10−4, . . . , 10−1}.

FS+SVM [21]: Fisher score (FS) is used for each one-
against-all binary classification individually, followed with
linear SVM. The number of selected features m is tuned by
5-fold cross validation via searching the grid {10, 20, . . . , ⌊ n

10
⌋×

10} on Scene and Yeast data sets, and via the grid {1000, 2000,
. . . ,⌊ n

1000
⌋×1000} on the Yahoo data sets.

CLaRank SVM: The regularization parameter µ is tuned
by 5-fold cross validation on the training set by searching the
grid {10−2, 10−1, . . . , 102}.

MLFS: The m which controls the number of features is
also tuned by 5-fold cross validation on the training set over
the grid {10, 11, . . . , 20} on scene and yeast data sets, and
over the grid {1000, 2000, . . . , 10000} on Yahoo data sets.

CMLFS: The m is tuned the same as above. The regu-
larization parameter µ is tuned the same as CLaRank SVM.

Since learning with small number of labelled data is much
more challenging than learning with large number of labelled
data, we randomly sample 1000 data points from each data
set for training, and the rest for testing. Note that each
label is guaranteed to appear in at least one data point of
the training set and in at least one data point of the testing
set. The process was repeated 10 times and the mean along
with standard deviation of measures are reported.

4.4 Classification Results
The classification results of all the methods are shown in

Table 2. CMLFS, MLFS and CLaRank SVM are the three
methods proposed by us. As is pointed out before, MLFS
and CLaRank SVM are two special instances of CMLFS.

4http://www.public.asu.edu/s̃ji03/multilabel/



Compared with other methods, these three methods show
the best performance. Specifically, CLaRank SVM achieves
better results because it considers label correlation. And
the good performance of MLFS takes advantage of feature
selection. Among these three, CMLFS performs the best.
This demonstrates that it is very necessary to combine la-
bel correlation and feature selection into classification model
simultaneously.
Two state-of-the-art methods, LaRank SVM and MLLS,

perform worse than our methods but still are better than the
others. LaRank SVM classifies (ranks) all the labels simul-
taneously. It considers the ordinal (first-order) information
between labels, which is beneficial for multi-label learning.
MLLS is based on subspace learning, it is able to learn a
discriminative subspace for multi-label classification. That
is why MLLS generally shows better results than LaRank
SVM on Yahoo data sets, which are of high dimensionality.
Let us take a closer look at LaRank SVM in compari-

son with the proposed methods. CLaRank SVM improves
LaRank SVM consistently on all the data sets. The im-
provement is a result of using the correlation (second-order)
information among labels. As we mentioned above, LaRank
SVM only considers the first-order information. On the
other hand, MLFS performs better than LaRank SVM. The
reason is that the feature selection in MLFS helps it avoid
the curse of dimensionality.
Comparing MLLS with MLFS, the major problem of MLLS

is that it fails to consider the label correlation. Though both
MLLS and MLFS involve dimensionality reduction, MLFS
is superior to MLLS at most cases because it considers the
label rank (first-order information).
CCA+SVM and FS+SVM fail to perform well because

both of them are in the fashion of two-stage approach. For
CCA+SVM, it first carries out subspace learning and then
learns a classification model. FS+SVM does feature selec-
tion followed by learning the classifier. Both methods try
to deal with high dimensional data but fail to integrate di-
mensionality reduction and classifier learning into a unified
framework. Besides, Fisher score is used in each one-against-
all binary classification independently, so the selected fea-
tures are generally different from each other for each binary
classification problem.

4.5 AUC v.s. Number of Features
In this subsection, we study the performance of multi-label

learning with respect to the number of selected features. We
compare CMLFS and MLFS with the single-label feature
selection method, i.e., Fisher score. Since the number of
selected features for the CMLFS and MLFS is determined
implicitly by m, we increase m gradually and obtain a in-
creasing number of features. Figure 2 depicts the AUC with
respect to the increasing number of selected features.
We can see that with a very small number of features,

MLFS and CMLFS can achieve very good performance. In
contrast, the performance of Fisher score is pretty bad. In
fact, the satisfying classification results of Fisher score shown
in Table 2 are achieved by selecting almost all the features.
This again strengthens the superiorness of the proposed multi-
label feature selection methods over single-label feature se-
lection method.

5. CONCLUSION AND FUTURE WORK
In this paper, we present a multi-label feature selection

method based on LaRank SVM. It is formulated as quadrat-
ically constrained linear programming and solved by cutting
plane algorithm, in each iteration of which a minimax opti-
mization problem is solved by dual coordinate descent and
stochastic sub-gradient descent alternatively. Its training
time is linear in the number of training samples, which en-
ables it applicable to large scale multi-label data.

In our future work, we will study how to solve the feature
selection problem in the primal [15, 25]. Moreover, we also
plan to study semi-supervised multi-label learning [3].
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