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Abstract As spatiotemporal data becomes widely available, mining and understand-
ing such data have gained a lot of attention recently. Among all important patterns,
periodicity is arguably the most frequently happening one for moving objects. Find-
ing periodic behaviors is essential to understanding the activities of objects, and
to predict future movements and detect anomalies in trajectories. However, periodic
behaviors in spatiotemporal data could be complicated, involving multiple interleav-
ing periods, partial time span, and spatiotemporal noises and outliers. Even worse,
due to the limitations of positioning technology or its various kinds of deployments,
real movement data is often highly incomplete and sparse. Inthis chapter, we dis-
cuss existing techniques to mine periodic behaviors from spatiotemporal data, with
a focus on tackling the aforementioned difficulties risen inreal applications. In par-
ticular, we first review the traditional time-series methodfor periodicity detection.
Then, a novel method specifically designed to mine periodic behaviors in spatiotem-
poral data,Periodica, is introduced.Periodica proposes to use reference spots to ob-
serve movement and detect periodicity from the in-and-out binary sequence. Then,
we discuss the important issue of dealing with sparse and incomplete observations
in spatiotemporal data, and propose a new general frameworkPeriodo to detect pe-
riodicity for temporal events despite such nuisances. We provide experiment results
on real movement data to verify the effectiveness of the proposed methods. While
these techniques are developed in the context of spatiotemporal data mining, we be-
lieve that they are very general and could benefit researchers and practitioners from
other related fields.
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1 Introduction

With the rapid development of positioning technologies, sensor networks, and on-
line social media, spatiotemporal data is now widely collected from smartphones
carried by people, sensor tags attached to animals, GPS tracking systems on cars
and airplanes, RFID tags on merchandise, and location-based services offered by
social media. While such tracking systems act as real-time monitoring platforms,
analyzing spatiotemporal data generated from these systems frames many research
problems and high-impact applications. For example, understanding and modeling
animal movement is important to addressing environmental challenges such as cli-
mate and land use change, bio-diversity loss, invasive species, and infectious dis-
eases.

As spatiotemporal data becomes widely available, there areemergent needs in
many applications to understand the increasingly large collections of data. Among
all the patterns, one most common pattern is theperiodic behavior. A periodic be-
havior can be loosely defined as the repeating activities at certain locations with
regular time intervals. For example, bald eagles start migrating to South America
in late October and go back to Alaska around mid-March. People may have weekly
periodicity staying in the office.

Mining periodic behaviors can benefit us in many aspects. First, periodic behav-
iors provide an insightful and concise explanation over thelong moving history. For
example, animal movements can be summarized using mixture of multiple daily
andyearlyperiodic behaviors. Second, periodic behaviors are also useful for com-
pressing spatiotemporal data [17, 25, 4]. Spatiotemporal data usually have huge
volume because data keeps growing as time passes. However, once we extract peri-
odic patterns, it will save a lot of storage space by recording the periodic behaviors
rather than original data, without losing much information. Finally, periodicity is
extremely useful in future movement prediction [10], especially for a distant query-
ing time. At the same time, if an object fails to follow regular periodic behaviors, it
could be a signal of abnormal environment change or an accident.

More importantly, since spatiotemporal data is just a special class of temporal
data, namely two-dimensional temporal data, many ideas andtechniques we discuss
in this chapter can actually be applied to other types of temporal data collected
in a broad range of fields such as bioinformatics, social network, environmental
science, and so on. For example, the notion of probabilisticperiodic behavior can
be very useful in understanding the social behaviors of people via analyzing the
social network data such as tweets. Also, the techniques we developed for period
detection from noisy and incomplete observations can be applied to any kind of
temporal event data, regardless of the type of the collecting sensor.
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1.1 Challenges in Mining Periodicity from Spatiotemporal Data

Mining periodic behaviors can bridge the gap between raw data and semantic under-
standing of the data, but it is a challenging problem. For example, Figure 1 shows the
raw movement data of a student David along with the expected periodic behaviors.
Based on manual examination of the raw data (on the left), it is almost impossi-
ble to extract the periodic behaviors (on the right). In fact, the periodic behaviors
are quite complicated. There are multiple periods and periodic behaviors that may
interleave with each other. Below we summarize the major challenges in mining
periodic behavior from movement data:

Raw data of David’s movement

2009−02−05 09:14 (811, 60)
2009−02−05 10:58 (810, 55)
2009−02−05 14:29 (820, 100)

...

...

...

2009−06−12 09:56 (110, 98)
2009−06−12 11:20 (101, 65)
2009−06−12 20:08 (20, 97)
2009−06−12 22:19 (15, 100)

2009−02−05 07:01 (601, 254)

  20:00−8:00 in the dorm
  9:00−18:00 in the office

  14:00−16:00 Tues. and Thurs. in the gym

Periodic Behavior #1

Periodic Behavior #3 
  (Period: week; Time span: Sept. − May)

  (Period: day; Time span: Sept. − May)

  20:00−7:30 in the apartment
  8:00−18:00 in the company
  (Period: day; Time span: June − Aug.)
Periodic Behavior #2 

  13:00−15:00 Mon. and Wed. in the classroom

Hidden periodic behaviors

Fig. 1 Interleaving of multiple periodic behaviors

1. A real life moving object does not ever strictly follow a given periodic pattern.
For example, birds never follow exactly the same migration paths every year.
Their migration routes are strongly affected by weather conditions and thus could
be substantially different from previous years. Meanwhile, even though birds
generally stay in north in the summer, it is not the case that they stay at exactly
the same locations, on exactly the same days of the year, as previous years. There-
fore, “north” is a fairly vague geo-concept that is hard to bemodeled from raw
trajectory data. Moreover, birds could have multiple interleaved periodic behav-
iors at different spatiotemporal granularities, as a result of daily periodic hunting
behaviors, combined with yearly migration behaviors.

2. We usually haveincomplete observations, whichare unevenly sampledandhave
large portion of missing data. For example, a bird can only carry small sensors
with one or two reported locations in three to five days. And the locations of a
person may only be recorded when he uses his cellphone. Moreover, if a sensor
is not functioning or a tracking facility is turned off, it could result in a large
portion of missing data.

3. With the periods detected,the corresponding periodic behaviors should be mined
to provide a semantic understanding of movement data, such as the hidden pe-
riodic behaviors shown in Figure 1. The challenge in this step lies in the inter-
leaving nature of multiple periodic behaviors. As we can seethat, for a person’s
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movement as shown in Figure 1, one periodic behavior can be associated with
different locations, such as periodic behavior #1 is associated with both office
and dorm. Also, the same period (i.e., day) could be associated with two differ-
ent periodic behaviors, one from September to May and the other from June to
August.

1.2 Existing Periodicity Mining Techniques

In this section, we will describe the existing periodicity mining techniques on var-
ious types of data, such as signal processing, gene data, andsymbolic sequences.
The techniques for spatiotemporal mining will be discussedin more detail in Sec-
tion 2. Here we focus on two problems: (1) period detection and (2) periodic be-
havior mining. Period detection is toautomaticallydetect the periods in time series
or sequences. Periodic behavior mining problem is to mine periodic patterns witha
given period.

1.2.1 Period Detection in Signals

A signal is a function that conveys information about the behavior or attributes of
some phenomenon. If the function is on the time domain, the signal is a temporal
function (i.e., time series). The most frequently used method to detect periods in
signals areFourier transformandautocorrelation[18].

Fourier Transform maps a function of time into a new functionwhose argu-
ment is frequency with units of cycles/sec (hertz). In the case of a periodic func-
tion, the Fourier transform can be simplified to the calculation of a discrete set
of complex amplitudes, called Fourier series coefficients.Given a sequencex(n),
n= 0,1, . . . ,N−1, the normalized Discrete Fourier Transform is a sequence of com-
plex numbersX( f ):

X( fk/N) =
1√
N

N−1

∑
n=0

x(n)e−
j2πkn

N

where the subscriptk/N denotes the frequency that each coefficient captures. In
order to discover potential periodicities of a time series,one can useperiodogram
to estimate the spetral density of a signal. The periodogramP is provided by the
squared length of each Fourier coefficient:

P( fk/N) = ‖X( fk/N)‖2,k= 0,1, . . . ,⌈N−1
2
⌉

If P( fk∗/N) is the maximum over all periodogram values of other frequencies, it
means that frequencyk∗/N has the strongest power in signal. Mapping frequency to
time domain, a frequencyk∗/N corresponds to time range[ N

k∗ ,
N

k∗−1).
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Autocorrelation is the cross-correlation of a signal with itself. It is often used
to find repeating patterns, such as the presence of a periodicsignal. In statistics,
autocorrelation of a time lagτ is defined as:

ACF(τ) =
1
N

N−1

∑
n=0

x(τ) ·x(n+ τ)

If ACF(τ∗) is the maximum over autocorrelation values of all time lags,it means
thatτ∗ is most likely to be the period of the sequence. Different from Fourier trans-
form thatk∗/N is in frequency domain, time lagτ∗ is in time domain.

Vlachoset al. [21] gives a comprehensive analysis and comparison between
Fourier transform and autocorrelation. In general, Fourier transform is a great in-
dicator for potential periods but the indicator is on the frequency domain. When
mapping a frequency to time domain, it could correspond to a time range instead of
one particular time. On the other hand, autocorrelation is not a good indicator for the
true period because the true period and the multipliers of the true period will all have
high autocorrelation values. For example, ifτ∗ is the true period,ACF(k ·τ∗) are all
likely to have similar or even higher values thanACF(τ∗). Thus, it is hard to use a
cut-off threshold to determine the true period. However, autocorrelation calculates
the periodicity score on the time domain, so it does not have the mapping frequency
problem in Fourier transform. In [21], Vlachoset al.proposes a method to combine
autocorrelation and Fourier transform. It uses Fourier transform to find a good in-
dicator of the potential period range and use autocorrelation to further validate the
exact period.

1.2.2 Period Detection in Symbolic Sequences

Studies on period detection in data mining and database areausually assume the
input to be a sequence of symbols instead of real value time series. A symbol could
represent an event. An event could be a transaction record, for example, a person
bought a bottle of milk. In transaction history, people could buy certain items pe-
riodically. Every timestamp is associated with one event ora set of events. The
problem is to find whether there is an event or a set of events that have periodicity.

A common way to tackle the period detection in symbolic sequence is to get
all the time indexes for each event and check whether these time indexes show
periodicity. The time series that is being examined here canbe considered as a binary
sequence,x= x1x2 . . .xn, wherext = 1 means this event happens at timet andxt = 0
means this event does not happen. The characteristics of such data is that the number
of 1s could only be a very small portion in the sequence. And because of such
sparsity, the period detection method is more sensitive to noise.

Ma et al.[16] proposes a chi-squared test for finding period by considering time
differences in adjacent occurrences of an event. Lets= {t1, t2, . . . , tm} denote all the
timestamps that an event happens. It considers the time differences between every
adjacent occurrences of the event:τi = ti+1− ti . Looking at the histogram of allτi
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values, the true periodp should have high frequency. In this method, authors use
Chi-square measure to set the threshold for the frequency. If a time difference value
p has frequency more than this threshold, it outputsp as the period.

Berberdiset al.[3] uses autocorrelation to detect periods in the binary sequence
x. Elfeky et al. [5] further improves this method by consideringmultipleevents at
the same time. It assumes that there is only one event at each timestamp. Each event
is mapped to a binary sequence. For example, event “a” maps to“001”, event “b”
maps to “010”, event “c” maps to “100”. Then the original symbolic sequence input
is transformed into a binary sequence. It further applies autocorrelation on this bi-
nary sequence to detect periods. In a follow-up work [5], Elfeky et al.mention the
previous methods [3, 5] are sensitive to noises. These noises include insertion, dele-
tion, replacement of an event at some timestamps. So [6] proposes a method based
on Dynamic Time Warping to detect periods. The method is slower (i.e., O(n2))
compared with the previous method [5] (i.e., O(nlogn)). But it is more accurate in
terms of noises.

1.2.3 Period Detection in Gene Data

In bioinformatics, there are several studies in mining periods in gene data. A DNA
sequence is a high-dimensional symbolic sequence. In [7], Glynn et al.mention that
DNA sequence is often unevenly spaced and Fourier transformcould fail when the
data contains an excessive number of missing values. They propose to use Lomb-
Scargle periodogram in such case. Lomb-Scargle periodogram [15, 19] is a vari-
ation of Fourier transform to handle unevenly spaced data using least-squares fit-
ting of sinusoidal curves. In a follow-up work [1], Ahdesmäki et al. mention that
Lomb-Scargle periodogram used in [7] is not robust since it is the basic Fisher’s
test. So they propose to use regression method for periodicity detection in non-
uniformly sampled gene data. In [13], Lianget al. also mention that the perfor-
mance of Lomb-Scargle periodogram [7] degrades in the presence of heavy-tailed
non-Gaussian noise. In the presence of noises in gene data, Lianget al.[13] propose
to use Laplace periodogram for more robust discovery of periodicity. They show
Laplace periodogram is better than Lomb-Scarlge periodogram [7] and regression
method [1]. An interesting previous study [11] has studied the problem of periodic
pattern detection in sparse boolean sequences for gene data, where the ratio of the
number of 1’s to 0’s is small. It proposes a scoring function for a potential period
p by checking the alignment properties of periodic points in solenoidal coordinates
w.r.t. p.

1.2.4 Periodic Behavior Mining

A number ofperiodic pattern miningtechniques have been proposed in data mining
literature. In this problem setting, each timestamp corresponds to a set of items. The
goal is to, with agivenperiod, find the period patterns that appear at leastmin sup
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times. Hanet al.[9, 8] propose algorithms for mining frequent partial periodic pat-
terns. Yanget al.[27, 28, 23, 29] propose a series of work dealing with variations of
periodic pattern mining, such as asynchronous patterns [27], surprising periodic pat-
terns [28], patterns with gap penalties [29], and higher level patterns [23]. In [30],
it further addresses the gap requirement problem in biologic sequences. Different
from previous works which focus on the categorical data, Mamoulis et al. [17] de-
tects the periodic patterns for moving objects. Frequent periodic pattern mining tend
to output a large set of patterns, most of which are slightly different.

1.3 Organization of this Chapter

In Section 2, we first review in more details the existing workon applying time-
series methods to detect periodicity in spatiotemporal data. Then, we introduce a
new approach,Periodica, which is able to discover complicated periodic behaviors
from movement data. Section 3 is devoted to the important issue of detecting pe-
riodicity in real data: highly incomplete observations. Wedescribe a novel method
Periodo for robust periodicity detection for temporal events in these challenging
cases, and verify its effectiveness by comparing it with existing methods on syn-
thetic datasets. In Section 5, we show the results of applying the techniques intro-
duced in this chapter to real spatiotemporal datasets, including the movement data
of animals and humans. We conclude our discussion and point out future directions
in Section 6.

2 Techniques for Periodicity Mining in Spatiotemporal Data

In this section, we describe techniques which are developedto detect periodic be-
haviors in spatiotemporal data. LetD = {(x1,y1, time1),(x2,y2, time2), . . .} be the
original movement data for a moving object. Throughout thissection, we assume
that the raw data is linearly interpolated with constant time gap, such as hour or
day. The interpolated sequence is denoted asLOC= loc1loc2 · · · locn, whereloci is
a spatial point represented as a pair(loci .x, loci .y). Hence, our goal is to detect the
periodicity in the movement sequenceLOC.

While period detection in 1-D time series has been long studied, with standard
techniques such as fast Fourier transform (FFT) and auto-correlation existing in the
literature, solution to the problem of detecting periods in2-D spatiotemporal data
remains largely unknown until the recent work [2]. In this work, the authors first
describe an intuitive approach to identify recursions in movement data, and then
propose an extension of the 1-D Fourier Transform, named complex Fourier trans-
form (CFT), to detect circular movements from the input sequence. Therefore, in
this section we first review both methods, and point out theirlimitations in handling
real-world movement data. Then, we show how such limitations can be overcome
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using a novel two-stage algorithm,Periodica, which is designed to mine complex
periodic behaviors from real-world movement data.

2.1 Existing Time-Series Methods

There have been many period detection methods developed fortime series analysis.
A direct usage of time series techniques requires we transform the location sequence
into time series. A simple transform is mapping a location(x,y) onto complex plane
x+ iy, wherei =

√
−1. We denote the mapping of a locationlock as a complex

numberzk, wherezk = lock.x+ ilock.y.

2.1.1 Recursion Analysis

Recursion analysis is used to identifyclosed pathsin the movement patterns. In or-
der to define a closed path, or a recursion, one needs to dividethe landscape into a
grid of patches (a 105×105 matrix is used in [2]). Then, a close path exists in the
movement sequence if an exact (to the resolution of landscape discretization) recur-
sion to a previous location at a later time is found. To detectsuch recursions, one
simply notices that the sum of vector displacements along a closed path is zero and
thus requires the identification of zero-valued partial summations of the coordinates
of sequential locations.

Specifically, given a sequence of locations vectorszk,k = 1,2, . . . ,n, the method
first compute the difference vectorsvk = zk+1− zk, for k= 1,2, . . . ,n−1. Then, for
any time window(s, t), t > s, the segment of the path fromzs to zt is denoted as
V(s, t):

V(s, t) =
t

∑
k=s

vk. (1)

Thus, a recursion of durationD is a window for whichV(s, t) = 0 andt−s=D. No-
tice that the recursion analysis identifies all closed paths, their length, and locations.
These recursions are then sorted according to their durations to identify significant
and semantic meaningful lengths of recursion (e.g., a day).

2.1.2 Circle Analysis

Fourier transform is one of the most widely used tools for time-series analysis. By
extending it to complex numbers, one can identify circular paths, clockwise or coun-
terclockwise, in the movement. Mathematically, given a sequence of location coor-
dinates represented by a series of complex numbers{zk}nk=1, the periodogram of the
complex Fourier transform (CFT) ofzk is defined as:
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Z( f ) =
n

∑
k=1

zk×e−i2π f k, f > 0 (2)

Note that these spectra ofZ are functions of the frequencyf , which is the recip-
rocal of duration,D (i.e., D= 1/ f ). It can be shown thatZ( f ) provides an indication
of the trend of circular motion, and can also be used to distinguish clockwise from
counterclockwise patterns. Interested readers are referred to [2] for detailed illustra-
tions and results of CFT.

Meanwhile, it is important to distinguish the circular analysis from the aforemen-
tioned recursion analysis. Note that a close path detected by recursion analysis is not
necessarily circular, and similarly a clockwise or counterclockwise movement does
not ensure a recursion. In this sense, these two methods are complementary to each
other. Consequently, one can combine these two methods to answer more complex
questions such as whether there is a circular path between recursions.

2.1.3 Limitations of Time-Series Methods

While tools from time-series analysis have demonstrated certain success when gen-
eralized to handle spatiotemporal data, it also has severalmajor limitations as we
elaborate below.

First, the performance of recursion analysis heavily rely on the resolution of land-
scape discretization, for which expert information about the moving objects’ typical
range of activity is crucial. For example, one will miss a lotof recursions when the
resolution is set too coarse, whereas when the resolution isset too fine a large num-
ber of false positives will occur. Due to the same reason, therecursion analysis is
also very sensitive to noise in the movement data.

Second, while circle analysis does not have the same dependency issue as re-
cursion analysis, its usage is however strictly restrictedto detecting circular paths
in the movement data. Unfortunately, real-world spatiotemporal data often exhibit
much more complex periodic patterns which are not necessarily circular (see Fig-
ure 2 for an example). Therefore, the development of a more flexible method is of
great important in practice.

Finally, as we mentioned before, the objects of interest (e.g., humans, animals)
often have multiple periodic behaviors with the same period, which is completely
ignored by existing methods. In order to achieve semantic understanding of the data,
it is important for our algorithm to be able to mine such multiple behaviors in move-
ment data.

With all of these considerations in mind, we now proceed to describe a new
algorithms for periodic behavior mining in spatiotemporaldata, which handles all
the aforementioned difficulties in a unified framework.
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2.2 Periodica: Using Reference Spots to Detect Periodicity

As discussed above, periodic behaviors mined from spatiotemporal data can provide
people with valuable semantic understanding of the movement. In order to mine
periodic behaviors, one typically encounters the following two major issues.

First, theperiods(i.e., the regular time intervals in a periodic behavior) are usu-
ally unknown. Even though there are many period detection techniques that are
proposed in signal processing area, such as Fourier transform and autocorrelation,
we will see in Section 2.2.2 that these methods cannot bedirectlyapplied to the spa-
tiotemporal data. Besides, there could bemultipleperiods existing at the same time,
for example in Figure 1, David has one period as “day” and another as “week”. If
we consider the movement sequence as a whole, the longer period (i.e., week) will
have fewer repeating times than the shorter period (i.e., day). So it is hard to select a
threshold to find all periods. Surprisingly, there is no previous work that can handle
the issue about how to detect multiple periods from the noisymoving object data.

Second, even if the periods are known, theperiodic behaviorsstill need to be
mined from the data because there could beseveralperiodic behaviors with the
same period. As we can see that, in David’s movement, the sameperiod (i.e., day)
is associated with two differentperiodic behaviors, one from September to May and
the other from June to August. In previous work, Mamouliset al. [17] studied the
frequent periodic pattern mining problem for a moving object with a givenperiod.
However, the rigid definition of frequent periodic pattern does not encode thesta-
tistical information. It cannot describe the case such as “David has 0.8 probability
to be in the office at 9:00 everyday.” One may argue that these frequent periodic
patterns can be further summarized using probabilistic modeling approach [26, 22].
But such models built on frequent periodic patterns do not truly reflect the real un-
derlying periodic behaviors from the original movement, because frequent patterns
are already a lossy summarization over the original data. Furthermore, if we can
directly mine periodic behaviors on the original movement using polynomial time
complexity, it is unnecessary to mine frequent periodic patterns and then summarize
over these patterns.

We formulate the periodic behavior mining problem and propose the assumption
that the observed movement is generated from severalperiodic behaviorsassociated
with somereference locations. We design a two-stage algorithm,Periodica, to detect
the periods and further find the periodic behaviors.

At the first stage, we focus on detecting all the periods in themovement. Given
the raw data as shown in Figure 1, we use the kernel method to discover those refer-
ence locations, namelyreference spots. For each reference spot, the movement data
is transformed from a spatial sequence to a binary sequence,which facilitates the
detection of periods by filtering the spatial noise. Besides, based on our assumption,
every period will be associated with at least one reference spot. All periods in the
movement can be detected if we try to detect the periods in every reference spot.
At the second stage, we statistically model the periodic behavior using agenerative
model. Based on this model, underlying periodic behaviors are generalized from
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the movement using a hierarchical clustering method and thenumber of periodic
behaviors is automatically detected by measuring therepresentation error.

2.2.1 Problem Definition

Given a location sequenceLOC, our problem aims at mining all periodic behaviors.
Before defining periodic behavior, we first define some concepts. A reference spot
is a dense area that is frequently visited in the movement. The set of all reference
spots is denoted asO= {o1,o2, . . . ,od}, whered is the number of reference spots.
A period T is a regular time interval in the (partial) movement. Letti (1≤ i ≤ T)
denote thei-th relative timestampin T.

A periodic behaviorcan be represented as a pair〈T,P〉, whereP is a probability
distribution matrix. Each entryPik(1≤ i ≤ d,1≤ k≤ T) of P is the probability that
the moving object is at the reference spotoi at relative timestamptk.

As an example, forT = 24 (hours), David’s daily periodic behavior (Figure 1
involved with 2 reference spots (i.e., “office” and “dorm”) could be represented
as(2+1)×24 probability distribution matrix, as shown Table 1. This table is an
intuitive explanation of formal output of periodic behaviors, which is not calculated
according to specific data in Figure 1. The probability matrix encodes the noises and
uncertainties in the movement. It statistically characterizes the periodic behavior
such as “David arrives at officearound9:00.”

8:00 9:00 10:00 · · · 17:0018:00 19:00

dorm 0.9 0.2 0.1 · · · 0.2 0.7 0.8
office 0.05 0.7 0.85 · · · 0.75 0.2 0.1

unknown 0.05 0.1 0.05 · · · 0.05 0.1 0.1

Table 1 A daily periodic behavior of David.

Definition 1 (Periodic Behavior Mining). Given a length-n movement sequence
LOC, our goal is to mine all the periodic behaviors{〈T,P〉}.

Since there are two subtasks in the periodic behavior miningproblem, detecting
the periods and mining the periodic behaviors. We propose a two-stage algorithm
Periodica, where the overall procedure of the algorithm is developed in two stages
and each stage targets one subtask.

Algorithm 1 shows the general framework ofPeriodica. At the first stage, we
first find all the reference spots (Line 2) and for each reference spot, the periods are
detected (Lines 3∼5). Then for every periodT, we consider the reference spots with
periodT and further mine the corresponding periodic behaviors (Lines 7∼10).
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Algorithm 1 Periodica

INPUT: A movement sequenceLOC= loc1loc2 · · · locn.
OUTPUT: A set of periodic behaviors.
ALGORITHM:
1: /* Stage 1: Detect periods */
2: Find reference spotsO= {o1,o2, · · · ,od};
3: for eachoi ∈O do
4: Detect periods inoi and store the periods inPi ;
5: Pset← Pset∪Pi ;
6: end for
7: /* Stage 2: Mine periodic behaviors */
8: for eachT ∈ Pset do
9: OT = {oi |T ∈ Pi};

10: Construct the symbolized sequenceSusingOT ;
11: Mine periodic behaviors inS.
12: end for

2.2.2 Detecting Period

In this section, we will discuss how to detect periods in the movement data. This
includes two subproblems, namely, finding reference spots and detecting periods on
binary sequence generated by these spots. First of all, we want to show why the idea
of reference spots is essential for period detection. Consider the following example.

We generate a movement dataset simulating an animal’s dailyactivities. Every
day, this animal has 8 hours staying at the den and the rest time going to some ran-
dom places hunting for food. Figure 2(a) shows its trajectories. We first try the
method introduced in [2]. The method transforms locations(x,y) onto complex
plane and use Fourier transform to detect the periods. However, as shown in Fig-
ure 2(b) and Figure 2(c), there is no strong signal corresponding to the correct period
because such method is sensitive to the spatial noise. If theobject does not follow
more or less the same huntingroute every day, the period can hardly be detected.
However, in real cases, few objects repeat the exactly same route in the periodic
movement.

Our key observation is that, if we view the data from the den, the period is easier
to be detected. In Figure 2(d), we transform the movement into a binary sequence,
where 1 represents the animal is at den and 0 when it goes out. It is easy to see
the regularity in this binary sequence. Our idea is to find some important reference
locations, namelyreference spots, to view the movement. In this example, the den
serves as our reference spot.

The notion of reference spots has several merits. First, itfilters out the spatial
noiseand turns the period detection problem from a 2-dimensionalspace (i.e., spa-
tial) to a 1-dimensional space (i.e., binary). As shown in Figure 2(d), we do not care
where the animal goes when it is out of the den. As long as it follows a regular pat-
tern going out and coming back to the den, there is a period associated with the den.
Second, we can detectmultipleperiods in the movement. Consider the scenario that
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Fig. 2 Illustration of the importance to view movement from reference spots

there is a daily period with one reference spot and a weekly period with another ref-
erence spot, it is possible that only period “day” is discovered because the shorter
period will repeat more times. But if we view the movement from two reference
spots separately, both periods can be individually detected. Third, based on the as-
sumption that each periodic behavior is associated with some reference locations,
all the periods can be found through reference spots.

The rest of this section will discuss in details how to find reference spots and
detect the periods on the binary sequence for each referencespot.
Finding Reference Spots.Since an object with periodic movement will repeatedly
visit some specific places, if we only consider the spatial information of the move-
ment, reference spots are those dense regions containing more points than the other
regions. Note that the reference spots are obtained for eachindividual object.

Many methods can be applied to detect the reference spots, such as density-based
clustering. The methods could vary according to different applications. We adapt a
popular kernel method [24], which is designed for the purpose of finding home
ranges of animals. For human movement, we may use important location detection
methods in [14, 31].

While computing the density for each location in a continuous space is computa-
tionally expensive, we discretize the space into a regularw×h grid and compute the
density for each cell. The grid size is determined by the desired resolution to view
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the spatial data. If an animal has frequent activities at oneplace, this place will have
higher probability to be its home. This actually aligns verywell with our definition
of reference spots.

For each grid cellc, the density is estimated using the bivariate normal density
kernel,

f (c) =
1

nγ2

n

∑
i=1

1
2π

exp(−|c− loci|2
2γ2 ),

where|c− loci | is the distance between cellc and locationloci . In addition,γ is a
smoothing parameter which is determined by the following heuristic method [2],

γ =
1
2
(σ2

x +σ2
y )

1
2 n−

1
6 ,

whereσx andσy are the standard deviations of the whole sequenceLOC in its x and
y-coordinates, respectively. The time complexity for this method isO(w ·h ·n).

After obtaining the density values, a reference spot can be defined by a contour
line on the map, which joins the cells of the equal density value, with some density
threshold. The threshold can be determined as the top-p% density value among all
the density values of all cells. The larger the valuep is, the bigger the size of refer-
ence spot is. In practice,p can be chosen based on prior knowledge about the size
of the reference spots. In many real applications, we can assume that the reference
spots are usually very small on a large map (e.g., within 10% of whole area). So,
by settingp% = 15%, most parts of reference spots should be detected with high
probability.
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(a) Density map calculated by kernel
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Fig. 3 Finding reference spots.

To illustrate this idea, assume that a bird stays in a nest forhalf a year and moves
to another nest staying for another half year. At each nest, it has a daily periodic
behavior of going out for food during the daytime and coming back to the nest at
night, as shown in Figure 3. Note that the two small areas (spot #2 and spot #3)
are the two nests and the bigger region is the food resource (spot #1). Figure 3(a)
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shows the density calculated using the kernel method. The grid size is 100× 100.
The darker the color is, the higher the density is. Figure 3(b) is the reference spots
identified by contour using top-15% density value threshold.
Periods Detection on Binary Sequence.Given a set of reference spots, we fur-
ther propose a method to obtain the potential periods withineachspotseparately.
Viewed from a single reference spot, the movement sequence now can be trans-
formed into a binary sequenceB = b1b2 . . .bn, wherebi = 1 when this object is
within the reference spot at timestampi and 0 otherwise. In discrete signal process-
ing area, to detect periods in a sequence, the most popular methods are Fourier trans-
form and autocorrelation, which essentially complement each other in the following
sense, as discussed in [21]. On one hand, Fourier transform often suffers from the
low resolution problem in the low frequency region, hence provides poor estimation
of large periods. Also, the well-known spectral leakage problem of Fourier trans-
form tends to generate a lot of false positives in the periodogram. On the other
hand, autocorrelation offers accurate estimation for bothshort and large periods,
but is more difficult to set the significance threshold for important periods. Con-
sequently, [21] proposed to combine Fourier transform and autocorrelation to find
periods. Here, we adapt this approach to find periods in the binary sequenceB.

In Discrete Fourier Transform (DFT), the sequenceB= b1b2 . . .bn is transformed
into the sequence ofn complex numbersX1,X2, . . . ,Xn. Given coefficientsX, the
periodogram is defined as the squared length of each Fourier coefficient:Fk = ‖Xk‖2.
Here,Fk is the power of frequencyk. In order to specify which frequencies are
important, we need to set a threshold and identify those higher frequencies than this
threshold.

The threshold is determined using the following method. LetB′ be a randomly
permutated sequence fromB. SinceB′ should not exhibit any periodicities, even the
maximum power does not indicate the period in the sequence. Therefore, we record
its maximum power aspmax, and only the frequencies inB that have higher power
than pmax may correspond to real periods. To provide a 99% confidence level on
what frequencies are important, we repeat the above random permutation experi-
ment 100 times and record the maximum power of each permutated sequence. The
99-th largest value of these 100 experiments will serve as a good estimator of the
power threshold.

Given thatFk is larger than the power threshold, we still need to determine the
exact period in the time domain, because a single valuek in frequency domaincor-
responds to a range of periods[n

k ,
n

k−1) in time domain. In order to do this, we use
circular autocorrelation, which examines how similar a sequence is to its previous
values for differentτ lags:R(τ) = ∑n

i=1bτbi+τ .
Thus, for each period range[l , r) given by the periodogram, we test whether

there is a peak in{R(l),R(l +1), . . . ,R(r−1)} by fitting the data with a quadratic
function. If the resulting function is concave in the periodrange, which indicates the
existence of a peak, we returnt∗ = argmaxl≤t<r R(t) as a detected period. Similarly,
we employ a 99% confidence level to eliminate false positivescaused by noise.

In Figure 4(a), we show the periodogram of reference spot #2 in Figure 3. The
red dashed line denotes the threshold of 99% confidence. There are two pointsP1
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Fig. 4 Finding periods.

andP2 that are above the threshold. In Figure 4(b),P1 andP2 are mapped to a range
of periods. We can see that there is only one peak,P1, corresponding toT = 24 on
the autocorrelation curve.

2.2.3 Modeling Periodic Behaviors

After obtaining the periods for each reference spot, now we study the task how to
mine periodic behaviors. We will consider the reference spots with the same period
together in order to obtain more concise and informative periodic behaviors. But,
since a behavior may only exist in apartial movement, there could be several peri-
odic behaviors with the same period. For example, there are two daily behaviors in
David’s movement: One corresponds to the school days and theother occurs during
the summer. However, given a long history of movement and a period as a “day”,
we actually do not know how many periodic behaviors exist in this movement and
which days belong to which periodic behavior. This motivates us to use a clustering
method. Because the “days” that belong to the same periodic behavior should have
the similar temporal location pattern. We propose a generative model to measure
the distance between two “days”. Armed with such distance measure, we can fur-
ther group the “days” into several clusters and each clusterrepresents one periodic
behavior. As in David’s example, “school days” should be grouped into one cluster
and “summer days” should be grouped into another one. Note that, we assume that
for each period, such as “day”, one “day” willonlybelong to one behavior.
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Since every period in the movement will be considered separately, the rest of this
section will focus on one specific period T .First, we retrieve all the reference spots
with periodT. By combining the reference spots with the same period together, we
will get a more informative periodic behaviors associated with different reference
spots. For example, we can summarize David’s daily behavioras “9:00∼18:00 at
office and 20:00∼8:00 in the dorm”. We do not consider combining two different
periods in current work.

Let OT = {o1,o2, . . . ,od} denote reference spots with periodT. For simplicity,
we denoteo0 as any other locations outside the reference spotso1,o2, . . . ,od. Given
LOC= loc1loc2 · · · locn, we generate the correspondingsymbolized movement se-
quence S= s1s2 . . .sn, wheresi = j if loci is within o j . S is further segmented into
m= ⌊ n

T ⌋ segments1. We useI j to denote thej-th segment andtk (1≤ k ≤ T) to

denote thek-th relative timestamp in a period.I j
k = i means that the object is within

oi at tk in the j-th segment. For example, forT = 24 (hours), a segment represents
a “day”, t9 denotes 9:00 in a day, andI5

9 = 2 means that the object is withino2 at
9:00 in the 5-th day. Naturally, we may use the categorical distribution to model the
probability of such events.

Definition 2 (Categorical Distribution Matrix). Let T = {t1, t2,. . . ,tT} be a set of
relative timestamps,xk be the categorical random variable indicating the selection of
reference spot at timestamptk. P= [p1, . . . ,pT ] is a categorical distribution matrix
with each columnpk = [p(xk = 0), p(xk = 1), . . . , p(xk = d)]T being an independent
categorical distribution vector satisfying∑d

i=0 p(xk = i) = 1.

Now, supposeI1, I2, . . ., I l follow the same periodic behavior. The probability
that the segment setI =

⋃l
j=1 I j is generated by some distribution matrixP is

P(I |P) = ∏
I j∈I

T

∏
k=1

p(xk = I j
k).

Now, we formally define the concept of periodic behavior.

Definition 3 (Periodic Behavior).Let I be a set of segments. A periodic behavior
over all the segments inI , denoted asH(I ), is a pair〈T,P〉. T is the period andP is
a probability distribution matrix. We further let|I | denote the number of segments
covered by this periodic behavior.

2.2.4 Discovery of Periodic Behaviors

With the definition of periodic behaviors, we are able to estimate periodic behaviors
over a set of segments. Now given a set of segments{I1, I2, . . . , Im}, we need to dis-
cover which segments are generated by the same periodic behavior. Suppose there
areK underlying periodic behaviors, each of which exists in a partial movement,

1 If n is not a multiple ofT, then the last (n modT) positions are truncated.
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the segments should be partitioned intoK groups so that each group represents one
periodic behavior.

A potential solution to this problem is to apply some clustering methods. In order
to do this, a distance measure between two periodic behaviors needs to be defined.
Since a behavior is represented as a pair〈T,P〉 andT is fixed, the distance should
be determined by their probability distribution matrices.Further, a small distance
between two periodic behaviors should indicate that the segments contained in each
behavior are likely to be generated from the same periodic behavior.

Several measures between the two probability distributionmatricesP andQ can
be used to fulfill these requirements. Here, since we assume the independence of
variables across different timestamps, we propose to use the well-known Kullback-
Leibler divergence as our distance measure:

KL(P‖Q) =
T

∑
k=1

d

∑
i=0

p(xk = i) log
p(xk = i)
q(xk = i)

.

WhenKL(P‖Q) is small, it means that the two distribution matricesP andQ are
similar, and vice versa.

Note thatKL(P‖Q) becomes infinite whenp(xk = i) or q(xk = i) has zero prob-
ability. To avoid this situation, we add top(xk = i) (andq(xk = i)) a background
variableu which is uniformly distributed among all reference spots,

p(xk = i) = (1−λ )p(xk = i)+λu, (3)

whereλ is a small smoothing parameter 0< λ < 1.
Now, suppose we have two periodic behaviors,H1 = 〈T,P〉 andH2 = 〈T,Q〉. We

define the distance between these two behaviors as

dist(H1,H2) = KL(P‖Q).

Suppose there existK underlying periodic behaviors. There are many ways to
group the segments intoK clusters with the distance measure defined. However, the
number of underlying periodic behaviors (i.e., K) is usually unknown. So we pro-
pose a hierarchical agglomerative clustering method to group the segments while at
the same time determine the optimal number of periodic behaviors. At each iteration
of the hierarchical clustering, two clusters with the minimum distance are merged.
In Algorithm 2, we first describe the clustering method assuming K is given. We
will return to the problem of selecting optimalK later.

Algorithm 2 illustrates the hierarchical clustering method. It starts withmclusters
(Line 1). A clusterC is defined as a collection of segments. At each iteration, two
clusters with the minimum distance are merged (Lines 4∼8). When two clusters are
merged, the new cluster inherits the segments that owned by the original clusters
Cs andCt . It has a newly built behaviorH(C) = 〈T,P〉 over the merged segments,
whereP is computed by the following updating rule:
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Algorithm 2 Mining periodic behaviors.
INPUT: symbolized sequenceS, periodT, number of clustersK.
OUTPUT:K periodic behaviors.
ALGORITHM:
1: segmentS into msegments;
2: initializek= m clusters, each of which has one segment;
3: compute the pairwise distances amongC1, . . . ,Ck, di j = dist(H(Ci ),H(Cj ));
4: while (k> K) do
5: selectdst such thats, t = argmini, j di j ;
6: merge clustersCs andCt to a new clusterC;
7: calculate the distances betweenC and the remaining clusters;
8: kv= k−1;
9: end while

10: return{H(Ci ),1≤ i ≤ K}.

P=
|Cs|

|Cs|+ |Ct |
Ps+

|Ct |
|Cs|+ |Ct |

Pt . (4)

Finally, K periodic behaviors are returned (Line 9).
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Fig. 5 Periodic behaviors.

To illustrate the method, we again use the example shown in Figure 3. There are
two periodic behaviors with periodT = 24 (hours) in the bird’s movement. Figure 5
shows the probability distribution matrix for each discovered periodic behavior. A
close look at Figure 5(a) shows that at time 0:00∼8:00 and 22:00∼24:00, the bird
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has a high probability being at reference spot #2, which is a nest shown in Fig-
ure 3(b). At time 12:00∼18:00, it is very likely to be at reference spot #1, which
is the food resources shown in Figure 3(b). And at the time 9:00∼11:00, there are
also some probability that the bird is at reference spot #1 orreference spot #2. This
indicates the bird goes out of the nest around 8:00 and arrives at the food resources
place around 12:00. Such periodic behaviors well representthe bird’s movement
and truly reveal the mechanism we employed to generate this synthetic data.

Now, we discuss how to pick the appropriate parameterK. Ideally, during the
hierarchical agglomerative clustering, the segments generated from the same be-
havior should be merged first because they have smaller KL-divergence distance.
Thus, we judge a cluster is good if all the segments in the cluster are concentrated in
one single reference spot at a particular timestamp. Hence,a natural representation
error measure to evaluate the representation quality of a cluster is as follows. Note
that here we exclude the reference spoto0 which essentially means the location is
unknown.

Definition 4 (Representation Error). Given a set of segmentsC ={I1, I2,. . . ,I l}
and its periodic behaviorH(C) = 〈T,P〉, the representation error is,

E(C) =
∑I j∈C ∑T

i=11
I j
i 6=0
· (1− p(xi = I j

i ))

∑I j∈C ∑T
i=11

I j
i 6=0

.

At each iteration, all the segments are partitioned intok clusters{C1,C2, . . . ,Ck}.
The overall representation error at current iteration is calculated as the mean over
all clusters,

Ek =
1
k

k

∑
i=1

E(Ci).
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Fig. 6 Representation error.

During the clustering process, we monitor the change ofEk. If Ek exhibits dra-
matical increases comparing withEk−1, it is a sign the newly merged cluster may
contain two different behaviors andk− 1 is likely to be a good choice ofK. The
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degree of such change can be observed from the derivative ofE overk, ∂E

∂k . Since a
sudden increase ofE will result in a peak in its derivative, we can find the optimal
K asK = argmaxk

∂E

∂k .
As we can see in Figure 6, the representation error suddenly increases atk= 2 for

the bird’s movement. This indicates that there are actuallytwo periodic behaviors in
the movement. This is true because the bird has one daily periodic behavior at the
first nest and later has another one at the second nest.

3 Mining Periodicity from Incomplete Observations

So far, we have presented a complete framework,Periodica, for mining periodic be-
haviors from spatio-temporal data. Using the notion of reference spots,Periodica
is able to discover complex periodic behaviors from real-world movement data.
Nevertheless, we note thatPeriodica still relies on traditional periodicity analysis
methods, namely Fourier transform and auto-correlation [18, 21, 5, 12], to detect
periods after the movement data is converted to binary sequences. A fundamental
assumption of all the traditional periodicity analysis methods is that they require the
data to beevenly sampled, that is, there is an observation at every timestamp.

Unfortunately, due to thelimitations of data collection devices and methods, this
seemingly weak assumption is often seriously violated in practice. For example,
a bird can only carry small sensors with one or two reported locations in three to
five days. And the locations of a person may only be recorded when he uses his
cellphone. Moreover, if a sensor is not functioning or a tracking facility is turned
off, it could result in a large portion of missing data. Therefore, we usually have
incomplete observations, which are unevenly sampledand have large portion of
missing data. In fact, the issue with incomplete observations is a commonproblem
on data collected from GPS and sensors, making period detection an even more
challenging problem.

Time

18 26 29 5048 67 795

Fig. 7 Incomplete observations.

To illustrate the difficulties, let us first take a look at Figure 3. Suppose we have
observed the occurrences of an event at timestamps 5, 18, 26,29, 48, 50, 67, and 79.
The observations of the event at other timestamps are not available. It is certainly
not an easy task to infer the period directly from theseincompleteobservations.
Even though some extensions of Fourier transform have been proposed to handle
uneven data samples [15, 19], they are still not applicable to the case with very low
sampling rate.

Besides, the periodic behaviors could be inherentlycomplicated and noisy. A
periodic event does not necessarily happen atexactlythe same timestamp in each
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periodic cycle. For example, the time that a person goes to work in the morning
mightoscillatebetween 8:00 to 10:00.Noisescould also occur when the “in office”
event is expected to be observed on a weekday but fails to happen.

In this section, we take a completely different approach to the period detection
problem and handle all the aforementioned difficulties occurring in data collection
process and periodic behavior complexity in a unified framework. The basic idea of
our method is illustrated in Example 1.

Observations are clustered in [5,10] interval.

Overlay the segments

Observations are scattered.

18 26 29 5048 67 795

Overlay the segments

Segment the data using length 20 Segment the data using length 16

Time
Event has period 20. Occurrences of the event happen between 20k+5 to 20k+10.

Fig. 8 Illustration example of our method.

Example 1.Suppose an event has a periodT = 20 and we have eight observations
of the event, as shown in Figure 3. If we overlay the observations with the correct
periodT = 20, we can see that most of the observations concentrate in time interval
[5,10]. On the contrary, if we overlay the points with a wrongperiod, sayT = 16,
we cannot observe such clusters.

As suggested by Example 1, we could segment the timeline using a potential
periodT and summarize the observations over all the segments. If most of the ob-
servations fall into some time intervals, such as interval[5,10] in Example 1,T is
likely to be the true period. In this section, we formally characterize such likelihood
by introducing a probabilistic model for periodic behaviors. The model naturally
handles the oscillation and noise issues because the occurrence of an event at any
timestamp is now modeled with a probability. Next, we propose a new measure for
periodicity based on this model. The measure essentially examines whether the dis-
tribution of observations is highly skewed w.r.t. a potential periodT. As we will see
later, even when the observations are incomplete, the overall distribution of obser-
vations, after overlaid with the correctT, remains skewed and is similar to the true
periodic behavior model.

In summary, our major contributions are as follows. First, we introduce a prob-
abilistic model for periodic behaviors and a random observation model for incom-
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plete observations. This enables us to model all the variations we encounter in prac-
tice in a unified framework. Second, we propose a novel probabilistic measure for
periodicity and design a practical algorithm to detect periods directly from the raw
data. We further give rigorous proof of its validity under both the probabilistic peri-
odic behavior model and the random observation model. Finally, we point out that
our method can be used to detect periodicity for any temporalevents, not necessarily
restricting to movement data.

3.1 Problem Definition

Now we formally define the problem of period detection for events. We first assume
that there is an observation at every timestamp. The case with incomplete observa-
tions will be discussed in Section 3.2.2. We use a binary sequenceX = {x(t)}n−1

t=0
to denote observations. For example, if the event is “in the office”, x(t) = 1 means
this person is in the office at timet andx(t) = 0 means this person isnot in the
office at timet. Later we will referx(t) = 1 as apositive observationandx(t) = 0
as anegative observation.

Definition 5 (Periodic Sequence).A sequenceX = {x(t)}n−1
t=0 is said to be peri-

odic if there exists someT ∈ Z such thatx(t +T) = x(t) for all values oft. We call
T a period ofX .

A fundamental ambiguity with the above definition is that ifT is a period ofX ,
thenmT is also a period ofX for anym∈ Z. A natural way to resolve this problem
is to use the so calledprime period.

Definition 6 (Prime Period). The prime period of a periodic sequence is the small-
estT ∈ Z such thatx(t +T) = x(t) for all values oft.

For the rest of the section, unless otherwise stated, we always refer the word
“period” to “prime period”.

As we mentioned before, in real applications the observed sequences always de-
viate from the perfect periodicity due to the oscillating behavior and noises. To
model such deviations, we introduce a new probabilistic framework, which is based
on theperiodic distribution vectorsas defined below.

Definition 7 (Periodic Distribution Vector). For any vectorpT = [pT
0 , . . . , p

T
T−1] ∈

[0,1]T other than0T and1T , we call it a periodic distribution vector of lengthT. A
binary sequenceX is said to be generated according topT if x(t) is independently
distributed according to Bernoulli(pT

mod(t,T)).

Here we need to exclude the trivial cases wherepT = 0T or 1T . Also note that if
we restrict the value of eachpT

i to {0,1} only, then the resultingX is strictly pe-
riodic according to Definition 5. We are now able to formulateour period detection
problem as follows.
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Problem 1 (Event Period Detection).Given a binary sequenceX generated ac-
cording to any periodic distribution vectorpT0, find T0.
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Fig. 9 (Running Example) Periodic distribution vector of a event with daily periodicityT0 = 24.

Example 2 (Running Example).We will use a running example throughout the sec-
tion to illustrate our method. Assume that a person has a daily periodicity visiting
his office during 10am-11am and 2pm-4pm. His observation sequence is generated
from the periodic distribution vector with high probabilities at time interval [10:11]
and [14:16] and low but nonzero probabilities at other timestamps, as shown in Fig-
ure 9.

3.2 A Probabilistic Model For Period Detection

As we see in Example 3, when we overlay the binary sequence with its true period
T0, the resulting sequence correctly reveals its underlying periodic behavior. Now we
make this observation formal using the concept of periodic distribution vector. Then,
we propose a novel probabilistic measure of periodicity based on this observation
and prove its validity even when observations are incomplete.

3.2.1 A Probabilistic Measure of Periodicity

Given a binary sequenceX , we defineS+ = {t : x(t) = 1} andS−= {t : x(t) = 0} as
the collections of timestamps with 1’s and 0’s, respectively. For a candidate period
T, let IT denote the power set of[0 : T−1]. Then, for any set of timestamps (pos-
sibly non-consecutive) I ∈IT , we can define the collections of original timestamps
that fall into this set after overlay as follows:

S+I = {t ∈ S+ : FT(t) ∈ I}, S−I = {t ∈ S− : FT(t) ∈ I},



Mining Periodicity from Dynamic and Incomplete Spatiotemporal Data 25

whereFT(t) = mod(t,T), and further compute the ratios of 1’s and 0’s whose
corresponding timestamps fall intoI after overlay:

µ+
X
(I ,T) =

|S+I |
|S+| , µ−

X
(I ,T) =

|S−I |
|S−| . (5)

The following lemma says that these ratios indeed reveal thetrue underlying prob-
abilistic model parameters, given that the observation sequence is sufficiently long.

Lemma 1. Suppose a binary sequenceX = {x(t)}n−1
t=0 is generated according to

some periodic distribution vectorpT of length T, write qTi = 1− pT
i . Then∀I ∈IT ,

lim
n→∞

µ+
X
(I ,T) =

∑i∈I pT
i

∑T−1
i=0 pT

i

, lim
n→∞

µ−
X
(I ,T) =

∑i∈I qT
i

∑T−1
i=0 qT

i

.

Proof. The proof is a straightforward application of the Law of Large Numbers
(LLN), and we only prove the first equation. With a slight abuse of notation we
write Si = {t : FT(t) = i} andS+i = {t ∈ S+ : FT(t) = i}. Since{x(t) : t ∈ Si} are
i.i.d. Bernoulli(pT

i ) random variables, by LLN we have

lim
n→∞

|S+i |
n

= lim
n→∞

∑t∈Si
x(t)

n
=

pT
i

T
,

where we use limn→∞
|Si |
n = 1

T for the last equality. So,

lim
n→∞

µ+
X
(I ,T) = lim

n→∞

|S+I |/n
|S+|/n

= lim
n→∞

∑i∈I |S+i |/n

∑T−1
i=0 |S+i |/n

=
∑i∈I pT

i /T

∑T−1
i=0 pT

i /T
=

∑i∈I pT
i

∑T−1
i=0 pT

i

.

Now we introduce our measure of periodicity based on Lemma 1.For anyI ∈IT ,
its discrepancy score is defined as:

∆X (I ,T) = µ+
X
(I ,T)− µ−

X
(I ,T). (6)

Then, the periodicity measure ofX w.r.t. periodT is:

γX (T) = max
I∈IT

∆(I ,T). (7)

It is obvious thatγX (T) is bounded: 0≤ γX (T) ≤ 1. Moreover,γX (T) = 1 if
and only ifX is strictly periodic with periodT. But more importantly, we have the
following lemma, which states that under our probabilisticperiodic behavior model,
γX (T) is indeed a desired measure of periodicity.

Lemma 2. If a binary sequenceX is generated according to any periodic distribu-
tion vectorpT0 for some T0, then

lim
n→∞

γX (T)≤ lim
n→∞

γX (T0), ∀T ∈ Z.
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Proof. Define

ci =
pT0

i

∑T0−1
k=0 pT0

k

− qT0
i

∑T0−1
k=0 qT0

k

,

it is easy to see that the value limn→∞ γX (T0) is achieved byI∗ = {i ∈ [0,T0−1] :
ci > 0}. So it suffices to show that for anyT ∈ Z andI ∈IT ,

lim
n→∞

∆X (I ,T) ≤ lim
n→∞

∆X (I∗,T0) = ∑
i∈I∗

ci .

Observe now that for any(I ,T),

lim
n→∞

µ+
X
(I ,T) = ∑

i∈I





1
T

T0−1

∑
j=0

pT0
FT0(i+ j×T)

∑T0−1
k=0 pT0

k



 ,

lim
n→∞

µ−
X
(I ,T) = ∑

i∈I





1
T

T0−1

∑
j=0

qT0
FT0

(i+ j×T)

∑T0−1
k=0 qT0

k



 .

Therefore we have

lim
n→∞

∆X (I ,T) =
1
T ∑

i∈I

T0−1

∑
j=0





pT0
FT0(i+ j×T)

∑T0−1
k=0 pT0

k

−
qT0

FT0(i+ j×T)

∑T0−1
k=0 qT0

k





=
1
T ∑

i∈I

T0−1

∑
j=0

cFT0(i+ j×T) ≤
1
T ∑

i∈I

T0−1

∑
j=0

max(cFT0(i+ j×T),0)

≤ 1
T

T0T−1

∑
j=0

max(cFT0
(i+ j×T),0) =

1
T
×T ∑

i∈I∗
ci = ∑

i∈I∗
ci ,

where the third equality uses the definition ofI∗.

Note that, similar to the deterministic case, the ambiguityof multiple periods still
exists as we can easily see that limn→∞ γX (mT0) = limn→∞ γX (T0) for all m∈Z. But
we are only interested in finding the smallest one.

Example 3 (Running Example (cont.)).When we overlay the sequence using poten-
tial periodT = 24, Figure 10(a) shows that positive observations have highprob-
ability to fall into the set of timestamps:{10,11,14,15,16}. However, when using
the wrong periodT = 23, the distribution is almost uniform over time, as shown in
Figure 10(c). Similarly, we see large discrepancy scores for T = 24 (Figure 10(b))
whereas the discrepancy scores are very small for T = 23 (Figure 10(d)). Therefore,
we will haveγX (24)> γX (23). Figure 11 shows the periodicity scores for all po-
tential periods in[1 : 200]. We can see that the score is maximized atT = 24, which
is the true period of the sequence.
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Fig. 10 (a) and (c): Ratios of 1’s and 0’s at a single timestamp (i.e., µ+
X
(·,T) and µ−

X
(·,T))

whenT = 24 andT = 23, respectively. (b) and (d): Discrepancy scores at a single timestamp (i.e.
∆X (·,T)) whenT = 24 andT = 23.
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Fig. 11 Periodicity scores of potential periods.

3.2.2 Random Observation Model

Next, we extend our analysis on the proposed periodicity measure to the case of in-
complete observations with a random observation model. To this end, we introduce
a new label “−1” to the binary sequenceX which indicates that the observation
is unavailable at a specific timestamp. In the random observation model, each ob-



28 Zhenhui Li and Jiawei Han

servationx(t) is associated with a probabilitydt ∈ [0,1] and we writed = {dt}n−1
t=0 .

Definition 8. A sequenceX is said to be generated according to(pT ,d) if

x(t) =

{

Bernoulli(pT
FT (t)

) w.p.dt

−1 w.p. 1−dt
(8)

In general, we may assume that eachdt is independently drawn from some fixed
but unknown distributionf over the interval[0,1]. To avoid the trivial case where
dt ≡ 0 for all t, we further assume that it has nonzero mean:ρ f > 0. Although
this model seems to be very flexible, in the section we prove that our periodicity
measure is still valid. In order to do so, we need the following lemma, which states
that µ+

X
(I ,T) and µ−

X
(I ,T) remain the same as before, assuming infinite length

observation sequence.

Lemma 3. Supposed = {dt}n−1
t=0 are i.i.d. random variables in[0,1] with nonzero

mean, and a sequenceX is generated according to(pT ,d), write qT
i = 1− pT

i .
Then∀I ∈IT ,

lim
n→∞

µ+
X
(I ,T) =

∑i∈I pT
i

∑T−1
i=0 pT

i

, lim
n→∞

µ−
X
(I ,T) =

∑i∈I qT
i

∑T−1
i=0 qT

i

.

Proof. We only prove the first equation. Lety(t) be a random variable distributed
according to Bernoulli(dt) andz(t) = x(t)y(t). Then{z(t)}n−1

t=0 are independent ran-
dom variables which take value in{0,1}, with meanE[z(t)] computed as follows:

E[z(t)] = P(z(t) = 1) = P(x(t) = 1,y(t) = 1)

= P(x(t) = 1|y(t) = 1)P(y(t) = 1)

= pT
FT (t)

P(y(t) = 1) = pT
FT (t)

E[dt ] = pT
FT (t)

ρ f .

DefineSi = {t : FT(t) = i} andS+i = {t ∈ S+ : FT(t) = i}, it is easy to see that
|S+i |= ∑t∈Si

z(t). Using LLN we get

lim
n→∞

|S+i |
n

= lim
n→∞

∑t∈Si
z(t)

n
=

pT
i ρ f

T
,

where we use limn→∞
|Si |
n = 1/T for the last equality. Therefore,

lim
n→∞

µ+
X
(I ,T) = lim

n→∞

|S+I |/n
|S+|/n

= lim
n→∞

∑i∈I |S+i |/n

∑T−1
i=0 |S+i |/n

=
∑i∈I

pT
i ρ f
T

∑T−1
i=0

pT
i ρ f
T

=
∑i∈I pT

i

∑T−1
i=0 pT

i

.

Since our periodicity measure only depends onµ+
X
(I ,T) and µ−

X
(I ,T), it is

now straightforward to prove its validity under the random observation model. We
summarize our main result as the following theorem.
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Fig. 12 Period detection with unknown observations.

Theorem 1 Supposed = {dt}n−1
t=0 are i.i.d. random variables in[0,1] with nonzero

mean, and a sequenceX is generated according to any(pT0,d) for some T0, then

lim
n→∞

γX (T)≤ lim
n→∞

γX (T0), ∀T ∈ Z.

The proof is exactly the same as that of Lemma 2 given the result of Lemma 3,
hence is omitted here.

Here we make two useful comments on this result. First, the assumption that
dt ’s are independent of each other plays an important role in the proof. In fact, if
this does not hold, the observation sequence could exhibit very different periodic
behavior from its underlying periodic distribution vector. But a thorough discussion
on this issue is beyond the scope of this book. Second, this result only holds exactly
with infinite length sequences. However, it provides a good estimate on the situation
with finite length sequences, assuming that the sequences are long enough. Note
that this length requirement is particularly important when a majority of samples
are missing (i.e., ρ f is close to 0).

Example 4 (Running Example (cont.)).To introduce random observations, we sam-
ple the original sequence with sampling rate 0.2. The generated sequence will have
80% of its entries marked as unknown. Comparing Figure 12(a)with Figure 10(b),
we can see very similar discrepancy scores over time. Randomsampling has little
effect on our period detection method. As shown in Figure 12(b), we can still detect
the correct period at 24.

3.2.3 Handling Sequences Without Negative Samples

In many real world applications, negative samples may be completely unavailable
to us. For example, if we have collected data from a local cellphone tower, we will
know that a person is in town when he makes phone call through the local tower.
However, we are not sure whether this person is in town or not for the rest of time
because he could either be out of town or simply not making anycall. In this case,
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the observation sequenceX takes value in{1,−1} only, with −1 indicating the
missing entries. In this section, we modify our measure of periodicity to handle this
case.

Note that due to the lack of negative samples,µ−
X
(I ,T) can no longer be com-

puted fromX . Thus, we need find another quantity to compareµ+
X
(I ,T) with. To

this end, consider a binary sequenceU = {u(t)}n−1
t=0 where eachu(t) is an i.i.d.

Bermoulli(p) random variable for some fixedp> 0. It is easy to see that for anyT
andI ∈IT , we have

lim
n→∞

µ+
U
(I ,T) =

|I |
T
. (9)

This corresponds to the case where the positive samples are evenly distributed over
all entries after overlay. So we propose the new discrepancyscore ofI as follows:

∆+
X
(I ,T) = µ+

X
(I ,T)− |I |

T
, (10)

and define the periodicity measure as:

γ+
X
(T) = max

I∈IT

∆+
X
(I ,T). (11)

In fact, with some slight modification to the proof of Lemma 2,we can show
that it is a desired measure under our probabilistic model, resulting in the following
theorem.

Theorem 2 Supposed = {dt}n−1
t=0 are i.i.d. random variables in[0,1] with nonzero

mean, and a sequenceX is generated according to any(pT0,d) for some T0, then

lim
n→∞

γ+
X
(T)≤ lim

n→∞
γ+
X
(T0), ∀T ∈ Z.

Proof. Definec+i =
p

T0
i

∑
T0−1
k=0 p

T0
k

− 1
T0
, it is easy to see that the value limn→∞ γ+

X
(T0) is

achieved byI∗ = {i ∈ [0,T0−1] : c+i > 0}. So it suffices to show that for anyT ∈ Z

andI ∈IT ,
lim
n→∞

∆+
X
(I ,T) ≤ lim

n→∞
∆+

X
(I∗,T0) = ∑

i∈I∗
c+i .

Observe now that for any(I ,T),

lim
n→∞

µ+
X
(I ,T) = ∑

i∈I





1
T

T0−1

∑
j=0

pT0
FT0(i+ j×T)

∑T0−1
k=0 pT0

k



 .

Therefore we have
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lim
n→∞

∆+
X
(I ,T) =

1
T ∑

i∈I







T0−1

∑
j=0





pT0
FT0

(i+ j×T)

∑T0−1
k=0 pT0

k



−1







=
1
T ∑

i∈I

T0−1

∑
j=0





pT0
FT0(i+ j×T)

∑T0−1
k=0 pT0

k

− 1
T0



=
1
T ∑

i∈I

T0−1

∑
j=0

c+
FT0(i+ j×T)

≤ 1
T ∑

i∈I

T0−1

∑
j=0

max(c+
FT0

(i+ j×T),0)≤
1
T

T0T−1

∑
j=0

max(c+
FT0

(i+ j×T),0)

=
1
T
×T ∑

i∈I∗
c+i = ∑

i∈I∗
c+i ,

where the fourth equality uses the definition ofI∗.

Note that this new measureγ+
X
(T) can also be applied to the cases where neg-

ative samples are available. Given the same validity result, readers may wonder if
it can replaceγX (T). This is certainly not the case in practice, as our results only
hold exactly when the sequence has infinite length. As we willsee in experiment
results, negative samples indeed provide additional information for period detection
in finite length observation sequences.

0 6 12 18 24
0

0.05

0.1

0.15

Time (hour)

R
at

io

 

 

positive
expectation

(a) Distribution (T = 24)

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

Potential Period T

P
er

io
di

ci
ty

 S
co

re

← 24 hours

(b) Periodicity scores

Fig. 13 (Running Example) Period detection on sequences without negative samples.

Example 5 (Running Example (cont.)).In this example we further marked all the
negative samples in the sequence we used in Example 4 as unknown. When there is
no negative samples, the portion of positive samples at a single timestampi is ex-
pected to be1

T , as shown in Figure 13(a). The discrepancy scores whenT = 24 still
have large values at{10,11,14,15,16}. Thus the correct period can be successfully
detected as shown in Figure 13(b).
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4 Algorithm: Periodo

In Section 3.2, we have introduced our periodicity measure for any potential period
T ∈ Z. Our period detection method simply computes the periodicity scores for
everyT and report the one with the highest score.

In this section, we first describe how to compute the periodicity score for a po-
tential period and then discuss a practical issue when applying our method to finite
length sequence. We will focus on the case with both positiveand negative observa-
tions. The case without negative observations can be solvedin the same way.

As we have seen in Section 3.2.1, the set of timestampsI∗ that maximizesγX (T)
can be expressed as

I∗ = {i ∈ [0,T0−1] : ci > 0}, (12)

whereci =
p

T0
i

∑
T0−1
k=0 p

T0
k

− q
T0
i

∑
T0−1
k=0 q

T0
k

. Therefore, to findI∗, it suffices to computeci for

eachi ∈ [0,T0−1] and select those ones withci > 0.

Time Complexity Analysis. For every potential periodT, it takesO(n) time to
compute discrepancy score for a single timestamp (i.e., ci) and thenO(T) time to
compute periodicityγX (T). Since potential period should be in range[1,n], the time
complexity of our method isO(n2). In practice, it is usually unnecessary to try all
the potential periods. For example, we may have common sensethat the periods will
be no larger than certain values. So we only need to try potential periods up ton0,
wheren0≪ n. This will make our method efficient in practice with time complexity
asO(n×n0).
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Fig. 14 Normalization of periodicity scores.

Now we want to point out a practical issue when applying our method on finite
length sequence. As one may already notice in our running example, we usually see
a general increasing trend of periodicity scoresγX (T) andγ+

X
(T) for a larger poten-

tial periodT. This trend becomes more dominating as the number of observations
decreases. For example, the original running example has observations for 1000
days. If the observations are only for 20 days, our method mayresult in incorrect
period detection result, as the case shown in Figure 14(a). In fact, this phenomenon
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is expected and can be understood in the following way. Let ustakeγ+
X
(T) as an

example. Given a sequenceX with finite numberof positive observations, it is
easy to see that the size ofI that maximizesγ+

X
(T) for anyT is bounded above by

the number of positive observations. Therefore the value|I∗|
T always decreases asT

increases, no matter whether or notT is a true period ofX .
To remedy this issue for finite length sequence, we use periodicity scores on

randomizedsequence to normalize the original periodicity scores. Specifically, we
randomly permute the positions of observations along the timeline and compute the
periodicity score for each potential periodT. This procedure is repeatedN times
and the average periodicity scores overN trials are output as the base scores. The
redline in Figure 14(a) shows the base scores generated fromrandomized sequences
by settingN = 10, which agree well with the trend.

For every potential periodT, we subtract the base score from the original period-
icity score, resulting in the normalized periodicity score. Note that the normalized
score also slightly favors shorter period, which helps us toavoid detecting dupli-
cated periods (i.e., multiples of the prime period).

4.1 Experiment Results on Synthetic Datasets

In order to test the effectiveness of our method under various scenarios, we first use
synthetic datasets generated according to a set of parameter. We take the following
steps to generate a synthetic test sequenceSEQ.
Step 1.We first fix a periodT, for example,T = 24. The periodic segmentSEG
is a boolean sequence of lengthT, with values−1 and 1 indicating negative and
positive observations, respectively. For simplicity of presentation, we writeSEG=
[s1 : t1,s2 : t2, . . .] where[si , ti ] denote thei-th interval ofSEGwhose entries are all
set to 1.
Step 2.Periodic segmentSEGis repeated forTN times to generate the complete
observation sequence, denoted as standard sequenceSEQstd. SEQstd has lengthT×
TN.
Step 3 (Random samplingη). We sample the standard sequence with sampling rate
η . For any element inSEQstd, we set its value to 0 (i.e., unknown) with probability
(1−η).
Step 4 (Missing segmentsα). For any segment in standard segmentSEQstd, we set
all the elements in that segment as 0 (i.e., unknown) with probability(1−α).
Step 5 (Random noiseβ ). For any remaining observation inSEQstd, we reverse its
original values (making−1 as 1 and 1 as−1) with probabilityβ .

The input sequenceSEQhas values−1, 0, and 1 indicating negative, unknown,
and positive observations. In the case when negative samples are unavailable, all
the−1 values will be set to 0. Note that here we set negative observations as−1
and unknown ones as 0, which is different from the description in Section 3.1. The
reason is that the unknown entries are set as−1, in the presence of many missing
entries, traditional methods such as Fourier transform will be dominated by missing
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entries instead of actual observations. The purpose of suchadjustment is to facilitate
traditional methods and it has no effect on our method.

4.1.1 Methods for Comparison

We compare our method with the following methods, which are frequently used to
detect periods in boolean sequence [11].
1. Fourier Transform (FFT): The frequency with the highest spectral power from
Fourier transform via FFT is converted into time domain and output as the result.
2. Auto-correlation and Fourier Transform (Auto): We first compute the auto-
correlation of the input sequence. Since the output of auto-correlation will have
peaks at all the multiples of the true period, we further apply Fourier transform to it
and report the period with the highest power.
3. Histogram and Fourier Transform (Histogram): We calculate the distances
between any two positive observations and build a histogramof the distances over
all the pairs. Then we apply Fourier transform to the histogram and report the period
with the highest power.

We will FFT(pos) andAuto(pos) to denote the methods FFT and Auto-correlation
for cases without any negative observations. ForHistogram, since it only considers
the distances between positive observations, the results for cases with or without
negative observations are exactly the same.

4.1.2 Performance Studies

In this section, we test all the methods on synthetic data under various settings.
The default parameter setting is the following:T = 24, SEG= [9 : 10,14 : 16].
TN= 1000,η = 0.1, α = 0.5, andβ = 0.2. For each experiment, we report the per-
formance of all the methods with one of these parameters varying while the others
are fixed. For each parameter setting, we repeat the experiment for 100 times and
report the accuracy, which is the number of correct period detections over 100 trials.
Results are shown in Figure 15.

Performance w.r.t. sampling rateη . To better study the effect of sampling rate, we
setα = 1 in this experiment. Figure 15(a) shows that our method is significantly bet-
ter than other methods in terms of handling data with low sampling rate. The accu-
racy of our method remains 100% even when the sampling rate isas low as 0.0075.
The accuracies of other methods start to decrease when sampling rate is lower than
0.5. Also note thatAuto is slightly better thanFFT because auto-correlation essen-
tially generates a smoothed version of the categorical datafor Fourier transform.
In addition, it is interesting to see thatFFT andAuto performs better in the case
without negative observations.

Performance w.r.t. ratio of observed segmentsα. In this set of experiments, sam-
pling rateη is set as 1 to better study the effect ofα. Figure 15(b) depicts the
performance of the methods. Our method again performs much better than other
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Fig. 15 Comparison results on synthetic data with various parameter settings.

methods. Our method is almost perfect even whenα = 0.025. And when all other
methods fail atα = 0.005, our method still achieves 80% accuracy.

Performance w.r.t. noise ratioβ . In Figure 15(c), we show the performance of the
methods w.r.t. different noise ratios.Histogram is very sensitive to random noises
since it considers the distances between any two positive observations. Our method
is still the most robust one among all. For example, withβ = 0.3, our method
achieves accuracy as high as 80%.

Performance w.r.t. number of repetitionsTN. Figure 15(d) shows the accuracies
as a function ofTN. As expected, the accuracies decrease asTN becomes smaller
for all the methods, but our method again significantly outperforms the other ones.

Performance w.r.t. periodic behavior. We also study the performance of all the
methods on randomly generated periodic behaviors. Given a period T and fix the
ratio of 1’s in aSEGasr, we generateSEGby setting each element to 1 with prob-
ability r. Sequences generated in this way will have positive observations scattered
within a period, which will cause big problems for all the methods using Fourier
transform, as evidenced in Figure 16.This is because Fourier transform is very
likely to have high spectral power at short periods if the input values alternate be-
tween 1 and 0 frequently.In Figure 16(a) we setr = 0.4 and show the results w.r.t.
period lengthT. In Figure 16(b), we fixT = 24 and show the results with varying
r. As we can see, all the other methods fail miserably when the periodic behavior is
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randomly generated. In addition, when the ratio of positiveobservations is low,i.e.
fewer observations, it is more difficult to detect the correct period in general.
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Fig. 16 Comparison results on randomly generated periodic behaviors.

Parameter
Accuracy

Our MethodFFT Lomb

η = 0.5 1 0.7 0.09
η = 0.1 1 0.52 0.10
α = 0.5 1 1 0.01
α = 0.1 0.99 0.35 0

Table 2 Comparison with Lomb-Scargle method.

Comparison with Lomb-Scargle method.Lomb-Scargle periodogram (Lomb) [15,
19] was introduced as a variation of Fourier transform to detect periods inunevenly
sampled data. The method takes the timestamps with observations and their corre-
sponding values as input. It does not work for the positive-sample-only case, be-
cause all the input values will be the same hence no period canbe detected. The rea-
son we do not compare with this method systematically is thatthe method performs
poorly on the binary data and it is very slow. Here, we run it ona smaller dataset
by settingTN = 100. We can see from Table 2 that, whenη = 0.5 or α = 0.5,
our method andFFT perform well whereas the accuracy ofLomb is already ap-
proaching 0. As pointed out in [20],Lomb does not work well in bi-modal periodic
signals and sinusoidal signals with non-Gaussian noises, hence not suitable for our
purpose.

5 Experiments Results on Real Datasets

In this section, we demonstrate the effectiveness of the methods developed in this
book on real-world spatio-temporal datasets. We first show the results of applying
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our periodic behavior mining algorithm described in Section 2 to a real dataset of
bald eagle movements2. This experiment verifies that the proposed method is able
to discover semantic meaning periodic behaviors of real animals, as long as there
are enough samples within each period. Then, we use real human movement data to
test the new period detection method introduced in Section 3when the observations
are highly incomplete and unevenly sampled. The experimentresults suggest that
our method is extremely robust to uncertainties, noises andmissing entries of the
input data obtained in real-world applications.

5.1 Mining Periodic Behaviors: A bald Eagle Real Case

The data used in this experiment contains a 3-year tracking (2006.1∼2008.12) of
a bald eagle in the North America. The data is first linearly interpolated using the
sampling rate as a day.

(a) Raw data of bald eagle plotted on Google
Earth.
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(b) Reference spots.

Fig. 17 Real bald eagle data.

Figure 17(a) shows the original data of bald eagle using Google Earth. It is an
enlarged area of Northeast in America and Quebec area in Canada. As shown in
Figure 17(b), three reference spots are detected in areas ofNew York, Great Lakes
and Quebec. By applying period detection to each reference spot, we obtain the
periods for each reference spot, which are 363, 363 and 364 days, respectively. The
periods can be roughly explained as a year. It is a sign of yearly migration in the
movement.

Now we check the periodic behaviors mined from the movement.Ideally, we
want to consider three reference spots together because they all show yearly period.
However, we may discover that the periods are not exactly thesame for all the ref-
erence spots. This is a very practical issue. In real cases, we can hardly get perfectly
the same period for some reference spots. So, we should relaxour constraint and

2 The data set is obtained from www.movebank.org.
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Fig. 18 Periodic behaviors of bald eagle.

consider the reference spots withsimilar periods together. If the difference of pe-
riods is within some tolerance threshold, we take the average of these periods and
set it as the common period. Here, we take periodT as 363 days, and the probabil-
ity matrix is summarized in Figure 18. Using such probability matrix, we can well
explain the yearly migration behavior as follows.

“This bald eagle stays in New York area (i.e., reference spot # 1) from December
to March. In March, it flies to Great Lakes area (i.e., reference spot #2) and stays
there until the end of May. It flies to Quebec area (i.e., reference spot #3) in the
summer and stays there until late September. Then it flies back to Great Lake again
staying there from mid October to mid November and goes back to New York in
December.”

This real example shows the periodic behaviors mined from the movement pro-
vides an insightful explanation for the movement data.

5.2 Mining Periodicity from Incomplete Observations: Real
Human Movements

In this experiment, we use the real GPS locations of a person who has tracking
record for 492 days. We first pick one of his frequently visited locations and generate
a boolean observation sequence by treating all the visits tothis location as positive
observations and visits to other locations as negative observations. We study the per-
formance of the methods on this symbolized movement data at different sampling
rates. In Figure 19 and Figure 20, we compare the methods at two sampling rates,
20 minutes and 1 hour. As one can see in the figures (a) in Figure19 and Figure 20,
when overlaying this person’s activity onto an period of oneday, most of the visits
occur in time interval [40, 60] for sampling rate of 20 minutes, or equivalently, in
interval [15, 20] when the time unit is 1 hour. On one hand, when sampling rate
is 20 minutes, all the methods exceptFFT(pos) andHistogram successfully detect
the period of 24 hours, as they all have the strongest peaks at24 hours (so we take
24 hours as the true period). On the other hand, when the data is sampled at each
hour only, all the other methods fail to report 24 hours as thestrongest peak whereas
our method still succeeds. In fact, the success of our methodcan be easily inferred
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from the left-most figures in Figure 19 and Figure 20, as one can see that lowering
the sampling rate has little effect on the distribution graph of the overlaid sequence.
We further show the periods reported by all the methods at various sampling rates
in Table 3. Our method obviously outperforms the others in terms of tolerating low
sampling rates.
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Fig. 19 [Sampling rate: 20 minutes] Comparison of period detectionmethods on a person’s move-
ment data.
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Fig. 20 [Sampling rate: 1 hour] Comparison of period detection methods on a person’s movement
data.
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Fig. 21 Comparion of methods on detecting long period,i.e.one week (168 hours).

Next, in Figure 21, we use the symbolized sequence of the sameperson at a
different location and demonstrate the ability of our method in detecting multiple
potential periods, especially those long ones. As we can seein Figure 21(a), this
person clearly has weekly periodicity w.r.t. this location. It is very likely that this
location is his office which he only visits during weekdays. Our method correctly
detects 7-day with the highest periodicity score and 1-day has second highest score.
But all other methods are dominated by the short period of 1-day. Please note that,
in the figures of other methods, 1-week point is not even on thepeak. This shows
the strength of our method at detecting both long and short periods.
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Method
Sampling rate

20min 1hour2hour 4hour
Our Method (pos) 24 24 24 8

Our Method 24 24 24 8
FFT(pos) 9.3 9 8 8

FFT 24 195 372 372
Auto(pos) 24 9 42 8

Auto 24 193 372 780
Histogram 66.33 8 42 48

Table 3 Periods reported by different methods at various sampling rates.

6 Summary and Discussion

This chapter offers an overview of periodic pattern mining from spatiotemporal
data. As movement data is widely available in larger volumes, the techniques of
data mining nowadays play a crucial role in the semantic understanding and analy-
sis of such data. The chapter first discusses the importance and challenges in min-
ing periodic behaviors from movement data. We then review traditional time series
methods for periodicity detection and discuss the disadvantages of directly applying
these methods to movement data. To conquer these disadvantages, a novel approach,
Periodica, is introduced.Periodica can detect multiple interleaved periodic behav-
iors from movement data by using the notion of reference spots. Next, we examine a
common issue in real-world applications: the incomplete observations in spatiotem-
poral data. A robust period detection method for temporal events,Periodo, is then
introduced to handle such sparse and incomplete movement data.

While experiment results on real movement data have alreadydemonstrated the
effectiveness of our methods, there are still many challenges that remain unsolved
and new frontiers that would be interesting to explore. We list a few of them below.

First, inPeriodica, there is a strong assumption that a reference spot must be a
dense region on the map. However, a periodically visited place does not necessarily
need to be dense in practice. For example, a person may go to Wal-Mart every Sun-
day afternoon. But compared with his home and office, Wal-Mart is not a densely
visited location. If we use density-based method to find the reference spots, Wal-
Mart is likely to be missed, even though this person has weekly periodic pattern
with respect to it. Hence, designing a better method to identify such locations is a
very interesting future direction.

Second, a more complicated yet more practical scenario in real data is theirreg-
ular periodic behavior. For example, the movement of fishing ships may follow the
tides, which behave according to the cycles of the lunar phase. Hence, the move-
ment of the ships may not have a strict monthly periodicity, which is defined based
on the western calendar. Therefore, instead of simply saying “the ships roughly fol-
low the monthly periodicity”, it is desirable to develop newmechanisms which can
explicitly model and detect such irregularity in the duration of a period.

Third, using periodic behaviors to predict future movements is a very important
topic that deserves more in-depth study. Human and animals are highly dominated
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by a mixture of their routines. For example, if we observe that a person is at home
at 8am, how should we predict his location at 9am based on his routines? The cor-
rect answer may be the following. If it is a weekday, the next location should be
the office; if it is a weekend, the next location could still behome; however, if it
is a holiday, the next location might be somewhere on the way to his hometown.
As we can see, the person’s behavior is not confined to a singleperiodic behavior,
but rather determined by multiple routines and the semantics of the locations and
time. Therefore, it is very important to develop principledmethodology that can
fuse information from various sources to make reliable predictions.
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