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Abstract As spatiotemporal data becomes widely available, minimenderstand-
ing such data have gained a lot of attention recently. Amdinghaortant patterns,
periodicity is arguably the most frequently happening arerfoving objects. Find-
ing periodic behaviors is essential to understanding thieites of objects, and
to predict future movements and detect anomalies in tr@jiest. However, periodic
behaviors in spatiotemporal data could be complicated)winvg multiple interleav-
ing periods, partial time span, and spatiotemporal noisdsoatliers. Even worse,
due to the limitations of positioning technology or its wars kinds of deployments,
real movement data is often highly incomplete and sparsthisnchapter, we dis-
cuss existing techniques to mine periodic behaviors froatisgmporal data, with
a focus on tackling the aforementioned difficulties risereial applications. In par-
ticular, we first review the traditional time-series mettodperiodicity detection.
Then, a novel method specifically designed to mine periogli@liors in spatiotem-
poral dataPeriodica, is introducedPeriodica proposes to use reference spots to ob-
serve movement and detect periodicity from the in-and-mary sequence. Then,
we discuss the important issue of dealing with sparse arahipéete observations
in spatiotemporal data, and propose a new general framevweoikdo to detect pe-
riodicity for temporal events despite such nuisances. Weigde experiment results
on real movement data to verify the effectiveness of the @eg methods. While
these techniques are developed in the context of spatiatedgata mining, we be-
lieve that they are very general and could benefit resea@met practitioners from
other related fields.
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1 Introduction

With the rapid development of positioning technologiesisee networks, and on-
line social media, spatiotemporal data is now widely cadlddrom smartphones
carried by people, sensor tags attached to animals, GPI8nigasystems on cars
and airplanes, RFID tags on merchandise, and locatiordsemeices offered by
social media. While such tracking systems act as real-timpitoring platforms,
analyzing spatiotemporal data generated from these sgdtames many research
problems and high-impact applications. For example, wstdrding and modeling
animal movement is important to addressing environmeiht@lenges such as cli-
mate and land use change, bio-diversity loss, invasiveiespeand infectious dis-
eases.

As spatiotemporal data becomes widely available, there@rergent needs in
many applications to understand the increasingly largeciidns of data. Among
all the patterns, one most common pattern isghgodic behavior A periodic be-
havior can be loosely defined as the repeating activitie®dhio locations with
regular time intervals. For example, bald eagles start atiigg to South America
in late October and go back to Alaska around mid-March. Reogly have weekly
periodicity staying in the office.

Mining periodic behaviors can benefit us in many aspectst,Fieriodic behav-
iors provide an insightful and concise explanation ovetlading moving history. For
example, animal movements can be summarized using mixfumeuttiple daily
andyearly periodic behaviors. Second, periodic behaviors are alstulifor com-
pressing spatiotemporal dafa [17] 25, 4]. Spatiotempaatd dsually have huge
volume because data keeps growing as time passes. Howegene extract peri-
odic patterns, it will save a lot of storage space by recaythe periodic behaviors
rather than original data, without losing much informatiémally, periodicity is
extremely useful in future movement prediction![10], esalicfor a distant query-
ing time. At the same time, if an object fails to follow regupeeriodic behaviors, it
could be a signal of abnormal environment change or an attcide

More importantly, since spatiotemporal data is just a sgestass of temporal
data, namely two-dimensional temporal data, many ideasemihiques we discuss
in this chapter can actually be applied to other types of tmalpdata collected
in a broad range of fields such as bioinformatics, social ag¢ywenvironmental
science, and so on. For example, the notion of probabilitodic behavior can
be very useful in understanding the social behaviors of lgegipa analyzing the
social network data such as tweets. Also, the techniquesewelaped for period
detection from noisy and incomplete observations can béieabf any kind of
temporal event data, regardless of the type of the collgstEmsor.
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1.1 Challenges in Mining Periodicity from Spatiotemporaldda

Mining periodic behaviors can bridge the gap between raa datl semantic under-
standing of the data, but it is a challenging problem. Foneple, Figur&Il shows the
raw movement data of a student David along with the expeateidgic behaviors.
Based on manual examination of the raw data (on the lefty, &linost impossi-
ble to extract the periodic behaviors (on the right). In faélese periodic behaviors
are quite complicated. There are multiple periods and gdaribehaviors that may
interleave with each other. Below we summarize the majotl@hges in mining
periodic behavior from movement data:

Raw data of David’'s movement Hidden periodic behaviors

o Periodic Behavior #1

2009-02-05 07:01 (601, 254) (Period: day; Time span: Sept. - May)
2009-02-05 09:14 (811, 60) 9:00-18:00 in the office

2009-02-05 10:58 (810, 55) 20:00-8:00 in the dorm

2009-02-05 14:29 (820, 10 e Periodic Behavior #2

(Period: day; Time span: June - Aug.)
2009-06-12 09:56 (110, 98) 8:00-18:00 in the company

2009-06-12 11:20 (101, 65) 20:00-7:30 in the apartment
2009-06-12 20:08 (20, 97) e Periodic Behavior #3

2009-06-12 22:19 (15, 100) (Period: week; Time span: Sept. — May)

13:00-15:00 Mon. and Wed. in the classro
14:00-16:00 Tues. and Thurs. in the gym

Fig. 1 Interleaving of multiple periodic behaviors

1. A real life moving object does not ever strictly follow a giyeeriodic pattern
For example, birds never follow exactly the same migratiathp every year.
Their migration routes are strongly affected by weathedéoons and thus could
be substantially different from previous years. Meanwhéeen though birds
generally stay in north in the summer, it is not the case they stay at exactly
the same locations, on exactly the same days of the yeaewsps years. There-
fore, “north” is a fairly vague geo-concept that is hard tonbedeled from raw
trajectory data. Moreover, birds could have multiple ilgaved periodic behav-
iors at different spatiotemporal granularities, as a tesfdaily periodic hunting
behaviors, combined with yearly migration behaviors.

2. We usually havencomplete observationwhichare unevenly samplezhdhave
large portion of missing data=or example, a bird can only carry small sensors
with one or two reported locations in three to five days. Angl ltications of a
person may only be recorded when he uses his cellphone. Mengba sensor
is not functioning or a tracking facility is turned off, it aldl result in a large
portion of missing data.

. With the periods detectetthe corresponding periodic behaviors should be mined
to provide a semantic understanding of movement data, ssitheahidden pe-
riodic behaviors shown in Figuté 1. The challenge in thip s$ies in the inter-
leaving nature of multiple periodic behaviors. As we cantbeg, for a person’s
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movement as shown in Figulé 1, one periodic behavior can smcided with
different locations, such as periodic behavior #1 is asdediwith both office
and dorm. Also, the same perioidg, day) could be associated with two differ-
ent periodic behaviors, one from September to May and therdtbm June to
August.

1.2 Existing Periodicity Mining Techniques

In this section, we will describe the existing periodicityning techniques on var-
ious types of data, such as signal processing, gene datayamublic sequences.
The techniques for spatiotemporal mining will be discusseahore detail in Sec-
tion[2. Here we focus on two problems: (1) period detectiod ¢&) periodic be-
havior mining. Period detection is taitomaticallydetect the periods in time series
or sequences. Periodic behavior mining problem is to mimegie patterns witra
given period

1.2.1 Period Detection in Signals

A signal is a function that conveys information about theawedr or attributes of
some phenomenon. If the function is on the time domain, theasiis a temporal
function (.e, time series). The most frequently used method to dete@bgeein
signals ard-ourier transformandautocorrelation[18].

Fourier Transform maps a function of time into a new functimose argu-
ment is frequency with units of cycles/sec (hertz). In theecaf a periodic func-
tion, the Fourier transform can be simplified to the caldatabf a discrete set
of complex amplitudes, called Fourier series coefficie@igsen a sequence(n),
n=0,1,...,N—1,the normalized Discrete Fourier Transform is a sequefho@n-

plex numbers((f):
X(fiyn) = \/— Z)

where the subscrigt/N denotes the frequency that each coefficient captures. In
order to discover potential periodicities of a time ser@® can us@eriodogram

to estimate the spetral density of a signal. The periododgPdmprovided by the
squared length of each Fourier coefficient:

]ann

P(fk/N) = ”x(fk/N)”zvk: 01..., (;—'

If P(fi: )n) is the maximum over all periodogram values of other freqiesmat
means that frequendy /N has the strongest power in signal. Mapping frequency to
time domain, a frequendy /N corresponds to time rangg, :N+)
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Autocorrelation is the cross-correlation of a signal witkelf. It is often used
to find repeating patterns, such as the presence of a pesatial. In statistics,
autocorrelation of a time lag is defined as:

N-1

ACF(1) = % Zox(r)-x(n—k T)

n=

If ACF(T") is the maximum over autocorrelation values of all time ldgseans
thatt* is most likely to be the period of the sequence. Differentfiiéourier trans-
form thatk* /N is in frequency domain, time lag’ is in time domain.

Vlachos et al. [21] gives a comprehensive analysis and comparison between
Fourier transform and autocorrelation. In general, Fourgnsform is a great in-
dicator for potential periods but the indicator is on thegfrency domain. When
mapping a frequency to time domain, it could correspond tma tange instead of
one particular time. On the other hand, autocorrelationisrgood indicator for the
true period because the true period and the multiplierseofirtie period will all have
high autocorrelation values. For examplegifis the true periodACF(k-7*) are all
likely to have similar or even higher values th&@F(t*). Thus, it is hard to use a
cut-off threshold to determine the true period. Howevetpaorrelation calculates
the periodicity score on the time domain, so it does not hiagertapping frequency
problem in Fourier transform. IN[21], Vlaches$ al.proposes a method to combine
autocorrelation and Fourier transform. It uses Fouriergfarm to find a good in-
dicator of the potential period range and use autocoroeldt further validate the
exact period.

1.2.2 Period Detection in Symbolic Sequences

Studies on period detection in data mining and databaseusrtegly assume the
input to be a sequence of symbols instead of real value timessé& symbol could
represent an event. An event could be a transaction recmréxmple, a person
bought a bottle of milk. In transaction history, people ebbuy certain items pe-
riodically. Every timestamp is associated with one evena @et of events. The
problem is to find whether there is an event or a set of eveatdve periodicity.

A common way to tackle the period detection in symbolic segeeis to get
all the time indexes for each event and check whether these itidexes show
periodicity. The time series that is being examined heréoesronsidered as a binary
sequences = X1X2 ... Xn, Wherex; = 1 means this event happens at tinaadx; =0
means this event does not happen. The characteristicstotlsig is that the number
of 1s could only be a very small portion in the sequence. Anchbse of such
sparsity, the period detection method is more sensitiv@igen

Ma et al.[16] proposes a chi-squared test for finding period by cangig time
differences in adjacent occurrences of an eventske{ts, to, ..., tm} denote all the
timestamps that an event happens. It considers the timereliftes between every
adjacent occurrences of the event=t;,; —t;. Looking at the histogram of af



6 Zhenhui Li and Jiawei Han

values, the true periog should have high frequency. In this method, authors use
Chi-square measure to set the threshold for the frequeiryine difference value
p has frequency more than this threshold, it outguiés the period.

Berberdiset al.[3] uses autocorrelation to detect periods in the binaryieege
x. Elfeky et al.[5] further improves this method by considerinwiltiple events at
the same time. It assumes that there is only one event atieaestamp. Each event
is mapped to a binary sequence. For example, event “a” maj@®1d, event “b”
maps to “010”, event “c” maps to “100”. Then the original syofib sequence input
is transformed into a binary sequence. It further appligscirrelation on this bi-
nary sequence to detect periods. In a follow-up wbik [5]ekfet al. mention the
previous method$[3] 5] are sensitive to noises. Thesesimiskide insertion, dele-
tion, replacement of an event at some timestamps.,1So [6Jogespa method based
on Dynamic Time Warping to detect periods. The method is sfofve., O(n?))
compared with the previous methad [3}g, O(nlogn)). But it is more accurate in
terms of noises.

1.2.3 Period Detection in Gene Data

In bioinformatics, there are several studies in mining @ésiin gene data. A DNA
sequence is a high-dimensional symbolic sequencgl In [yhr&t al. mention that
DNA sequence is often unevenly spaced and Fourier transfourdd fail when the
data contains an excessive number of missing values. Tlopope to use Lomb-
Scargle periodogram in such case. Lomb-Scargle periodo{td,(19] is a vari-
ation of Fourier transform to handle unevenly spaced dategusast-squares fit-
ting of sinusoidal curves. In a follow-up workl[1], Ahdeska#t al. mention that
Lomb-Scargle periodogram used [ [7] is not robust since the basic Fisher's
test. So they propose to use regression method for peripdietection in non-
uniformly sampled gene data. In|13], Liareg al. also mention that the perfor-
mance of Lomb-Scargle periodograim [7] degrades in the poesef heavy-tailed
non-Gaussian noise. In the presence of noises in gene daa,dt al.[13] propose
to use Laplace periodogram for more robust discovery ofopity. They show
Laplace periodogram is better than Lomb-Scarlge pericatodii] and regression
method|[[1]. An interesting previous study [11] has studhezlproblem of periodic
pattern detection in sparse boolean sequences for genendeee the ratio of the
number of 1's to Qs is small. It proposes a scoring functiond potential period
p by checking the alignment properties of periodic pointsalesoidal coordinates
w.r.t. p.

1.2.4 Periodic Behavior Mining
A number ofperiodic pattern miningechniques have been proposed in data mining

literature. In this problem setting, each timestamp cquoesls to a set of items. The
goal is to, with agivenperiod, find the period patterns that appear at le@stsup
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times. Hanet al.[9}[8] propose algorithms for mining frequent partial peliopat-
terns. Yanget al.[27,[28 23 20] propose a series of work dealing with vaoizgiof
periodic pattern mining, such as asynchronous patterfjsd@iprising periodic pat-
terns [28], patterns with gap penalti€s|[29], and higheell@atterns[[23]. In[[30],
it further addresses the gap requirement problem in biolegguences. Different
from previous works which focus on the categorical data, dalis et al.[17] de-
tects the periodic patterns for moving objects. Frequenodie pattern mining tend
to output a large set of patterns, most of which are slighffgieknt.

1.3 Organization of this Chapter

In Section2, we first review in more details the existing workapplying time-
series methods to detect periodicity in spatiotemporad.dBihen, we introduce a
new approachReriodica, which is able to discover complicated periodic behaviors
from movement data. Sectifh 3 is devoted to the importaoeiss detecting pe-
riodicity in real data: highly incomplete observations. Wéscribe a novel method
Periodo for robust periodicity detection for temporal events inghehallenging
cases, and verify its effectiveness by comparing it withstxg methods on syn-
thetic datasets. In Sectibh 5, we show the results of applyie techniques intro-
duced in this chapter to real spatiotemporal datasetsjdimd the movement data
of animals and humans. We conclude our discussion and paiifiiture directions
in SectiorL 6.

2 Techniques for Periodicity Mining in Spatiotemporal Data

In this section, we describe techniques which are develtpéeétect periodic be-
haviors in spatiotemporal data. LBt= {(xq,y1,timey), (X2,y2,timey),...} be the
original movement data for a moving object. Throughout #astion, we assume
that the raw data is linearly interpolated with constantetigap, such as hour or
day. The interpolated sequence is denoted®@8 = locjloc; - - - locy, wherelog; is

a spatial point represented as a f#ic;.x,loc;.y). Hence, our goal is to detect the
periodicity in the movement sequenc@C.

While period detection in 1-D time series has been long stlidvith standard
techniques such as fast Fourier transform (FFT) and aut@letion existing in the
literature, solution to the problem of detecting period®ibB spatiotemporal data
remains largely unknown until the recent work [2]. In thisnkiothe authors first
describe an intuitive approach to identify recursions invemoent data, and then
propose an extension of the 1-D Fourier Transform, namegtoat-ourier trans-
form (CFT), to detect circular movements from the input ssoe. Therefore, in
this section we first review both methods, and point out thmitations in handling
real-world movement data. Then, we show how such limitaticen be overcome
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using a novel two-stage algorithrReriodica, which is designed to mine complex
periodic behaviors from real-world movement data.

2.1 Existing Time-Series Methods

There have been many period detection methods develop&th®series analysis.
A direct usage of time series techniques requires we tramgfte location sequence
into time series. A simple transform is mapping a locatiary) onto complex plane
x+ iy, wherei = v/—1. We denote the mapping of a locatitot, as a complex
numberz, wherez, = locy.x+ ilocy.y.

2.1.1 Recursion Analysis

Recursion analysis is used to identifipsed pathén the movement patterns. In or-
der to define a closed path, or a recursion, one needs to divkdandscape into a
grid of patches (a 105 105 matrix is used i [2]). Then, a close path exists in the
movement sequence if an exact (to the resolution of lan@sdpretization) recur-
sion to a previous location at a later time is found. To desech recursions, one
simply notices that the sum of vector displacements alorigsed path is zero and
thus requires the identification of zero-valued partial mations of the coordinates
of sequential locations.

Specifically, given a sequence of locations vecirk = 1,2, ..., n, the method
first compute the difference vectos= 7,1 — z, fork=1,2,...,n— 1. Then, for
any time window(s,t),t > s, the segment of the path from to z is denoted as
V(st):

t
V(st) = z V- (1)
k=s
Thus, a recursion of duratiddis a window for whichV(s,t) = 0 andt — s=D. No-
tice that the recursion analysis identifies all closed pdkiesr length, and locations.
These recursions are then sorted according to their dasat@identify significant
and semantic meaningful lengths of recursion (e.g., a day).

2.1.2 Circle Analysis

Fourier transform is one of the most widely used tools foretiseries analysis. By
extending it to complex numbers, one can identify circukgthg, clockwise or coun-
terclockwise, in the movement. Mathematically, given ausgge of location coor-
dinates represented by a series of complex numim}§_,, the periodogram of the
complex Fourier transform (CFT) & is defined as:
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n .
Z(f)= zzkxe*'zﬂfk, f>0 2)
k=1

Note that these spectra @fare functions of the frequendy which is the recip-
rocal of durationD (i.e., D = 1/f). It can be shown th&( f) provides an indication
of the trend of circular motion, and can also be used to djsigh clockwise from
counterclockwise patterns. Interested readers are eefes[2] for detailed illustra-
tions and results of CFT.

Meanwhile, it is important to distinguish the circular ayssé from the aforemen-
tioned recursion analysis. Note that a close path detegteetirsion analysis is not
necessarily circular, and similarly a clockwise or coucl@rkwise movement does
not ensure a recursion. In this sense, these two methodsm@@mentary to each
other. Consequently, one can combine these two methodsteeamore complex
questions such as whether there is a circular path betwearsiens.

2.1.3 Limitations of Time-Series Methods

While tools from time-series analysis have demonstrate@icesuccess when gen-
eralized to handle spatiotemporal data, it also has seweagr limitations as we
elaborate below.

First, the performance of recursion analysis heavily raljhe resolution of land-
scape discretization, for which expert information abbetmoving objects’ typical
range of activity is crucial. For example, one will miss adbtrecursions when the
resolution is set too coarse, whereas when the resolutset i®o fine a large num-
ber of false positives will occur. Due to the same reasonrélearsion analysis is
also very sensitive to noise in the movement data.

Second, while circle analysis does not have the same depenissue as re-
cursion analysis, its usage is however strictly restrittedetecting circular paths
in the movement data. Unfortunately, real-world spatiqgieral data often exhibit
much more complex periodic patterns which are not necégsartular (see Fig-
ure[2 for an example). Therefore, the development of a moxébfeemethod is of
great important in practice.

Finally, as we mentioned before, the objects of interest (Bumans, animals)
often have multiple periodic behaviors with the same penwlaich is completely
ignored by existing methods. In order to achieve semantierstanding of the data,
itis important for our algorithm to be able to mine such npliéibehaviors in move-
ment data.

With all of these considerations in mind, we now proceed tscdbe a new
algorithms for periodic behavior mining in spatiotempatata, which handles all
the aforementioned difficulties in a unified framework.
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2.2 Periodica: Using Reference Spots to Detect Periodicity

As discussed above, periodic behaviors mined from spatiodeal data can provide
people with valuable semantic understanding of the movénherorder to mine
periodic behaviors, one typically encounters the follaysiwo major issues.

First, theperiods(i.e. the regular time intervals in a periodic behavior) are usu-
ally unknown. Even though there are many period detectichriigues that are
proposed in signal processing area, such as Fourier tramsfiod autocorrelation,
we will see in Sectioh 2.212 that these methods canndtreetly applied to the spa-
tiotemporal data. Besides, there couldbeltiple periods existing at the same time,
for example in Figur€ll, David has one period as “day” and leeroas “week”. If
we consider the movement sequence as a whole, the longedeel, week) will
have fewer repeating times than the shorter pernied flay). So it is hard to select a
threshold to find all periods. Surprisingly, there is no jpweg work that can handle
the issue about how to detect multiple periods from the nwisying object data.

Second, even if the periods are known, tiegiodic behaviorsstill need to be
mined from the data because there couldskeeralperiodic behaviors with the
same period. As we can see that, in David’s movement, the panied (i.e., day)
is associated with two differeperiodic behaviorsone from September to May and
the other from June to August. In previous work, Mamoetisal. [17] studied the
frequent periodic pattern mining problem for a moving objgith a givenperiod.
However, the rigid definition of frequent periodic patteiwed not encode theta-
tistical information It cannot describe the case such as “David has 0.8 protyabili
to be in the office at 9:00 everyday.” One may argue that thesgiént periodic
patterns can be further summarized using probabilisticetiogl approacH 26, 22].
But such models built on frequent periodic patterns do ndy treflect the real un-
derlying periodic behaviors from the original movementdgse frequent patterns
are already a lossy summarization over the original datehBtmore, if we can
directly mine periodic behaviors on the original movemesihg polynomial time
complexity, it is unnecessary to mine frequent perioditgras and then summarize
over these patterns.

We formulate the periodic behavior mining problem and pegpihhe assumption
that the observed movementis generated from seperaidic behaviorassociated
with somereference locationd/Ve design a two-stage algorithRgriodica, to detect
the periods and further find the periodic behaviors.

At the first stage, we focus on detecting all the periods innleeement. Given
the raw data as shown in Figuie 1, we use the kernel method¢owr those refer-
ence locations, namehgference spotd-or each reference spot, the movement data
is transformed from a spatial sequence to a binary sequerigeh facilitates the
detection of periods by filtering the spatial noise. Besithased on our assumption,
every period will be associated with at least one referepoé all periods in the
movement can be detected if we try to detect the periods iryeegerence spot.
At the second stage, we statistically model the periodi@tiein using agenerative
model Based on this model, underlying periodic behaviors areegiized from
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the movement using a hierarchical clustering method andhtimeber of periodic
behaviors is automatically detected by measuringépessentation errar

2.2.1 Problem Definition

Given a location sequent®C, our problem aims at mining all periodic behaviors.
Before defining periodic behavior, we first define some cotscepreference spot
is a dense area that is frequently visited in the movemerd.set of all reference
spots is denoted & = {01, 0y, ...,04}, Whered is the number of reference spots.
A period T is a regular time interval in the (partial) movement. Letl <i <T)
denote the-th relative timestamin T.

A periodic behaviorcan be represented as a pdirP), whereP is a probability
distribution matrix. Each entripi (1 <i <d,1 <k <T) of Pis the probability that
the moving object is at the reference sppat relative timestamf.

As an example, fol = 24 (hours), David’s daily periodic behavior (Figure 1
involved with 2 reference spots.€., “office” and “dorm”) could be represented
as(2+ 1) x 24 probability distribution matrix, as shown Table 1. Thable is an
intuitive explanation of formal output of periodic behargpwhich is not calculated
according to specific data in Figurk 1. The probability nxaricodes the noises and
uncertainties in the movement. It statistically charazesr the periodic behavior
such as “David arrives at offi@round9:00.”

| [[8:00(9:00[10:00 - [17:0018:0419:0q
dorm [[0.9[0.2] 0.1 [--] 02] 0.7 ] 0.8
office ]|0.05 0.7]0.85]- -] 0.75] 0.2 | 0.1
unknowr[0.05 0.1] 0.05] -] 0.05] 0.1 ] 0.1

Table 1 A daily periodic behavior of David.

Definition 1 (Periodic Behavior Mining). Given a lengtha movement sequence
LOC, our goal is to mine all the periodic behavidrd, P) }.

Since there are two subtasks in the periodic behavior mipinglem, detecting
the periods and mining the periodic behaviors. We proposeastage algorithm
Periodica, where the overall procedure of the algorithm is developesvd stages
and each stage targets one subtask.

Algorithm [T shows the general framework Bériodica. At the first stage, we
first find all the reference spots (Line 2) and for each refeseapot, the periods are
detected (Lines35). Then for every period, we consider the reference spots with
periodT and further mine the corresponding periodic behaviorsgin-10).
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Algorithm 1 Periodica

INPUT: A movement sequend¢eéDC = loc;loc; - - -loc,.
OUTPUT: A set of periodic behaviors.
ALGORITHM:

1: /* Stage 1: Detect periods */
2: Find reference spo® = {01,0p,---,04};
3: for eacho; € Odo
4 Detect periods im; and store the periods ®;
5: Pset < PsetUR;
6
7
8

: end for
. [* Stage 2: Mine periodic behaviors */
. for eachT € Py do
9: Or={o|TeR};
10:  Construct the symbolized sequergesingOr;
11:  Mine periodic behaviors i8.
12: end for

2.2.2 Detecting Period

In this section, we will discuss how to detect periods in thevement data. This
includes two subproblems, namely, finding reference spatglatecting periods on
binary sequence generated by these spots. First of all, wetevahow why the idea
of reference spots is essential for period detection. Censhe following example.

We generate a movement dataset simulating an animal’s detilyities. Every
day, this animal has 8 hours staying at the den and the restgtimg to some ran-
dom places hunting for food. Figufe Z(a) shows its trajéesorWe first try the
method introduced in[2]. The method transforms locati¢xny) onto complex
plane and use Fourier transform to detect the periods. Henveg shown in Fig-
ure[2(b) and Figure Z{k), there is no strong signal corredipgrto the correct period
because such method is sensitive to the spatial noise. thijeet does not follow
more or less the same huntinuute every day, the period can hardly be detected.
However, in real cases, few objects repeat the exactly samte in the periodic
movement.

Our key observation is that, if we view the data from the dee period is easier
to be detected. In Figufe 2{d), we transform the movemeatartinary sequence,
where 1 represents the animal is at den and 0 when it goestasiteasy to see
the regularity in this binary sequence. Our idea is to findes@mportant reference
locations, namelyeference spotsto view the movement. In this example, the den
serves as our reference spot.

The notion of reference spots has several merits. Firfittats out the spatial
noiseand turns the period detection problem from a 2-dimensispate ie., spa-
tial) to a 1-dimensional spacéd., binary). As shown in Figuile 2(d), we do not care
where the animal goes when it is out of the den. As long aslitvid a regular pat-
tern going out and coming back to the den, there is a periaztaged with the den.
Second, we can detettultiple periods in the movement. Consider the scenario that
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(a) Raw trajectories (b) Fourier transform ox—+ i
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(c) Fourier transform og—+ xi (d) Binary sequence as viewed from the
den

Fig. 2 lllustration of the importance to view movement from refere spots

there is a daily period with one reference spot and a weekipge&vith another ref-
erence spot, it is possible that only period “day” is diseedebecause the shorter
period will repeat more times. But if we view the movementiréwo reference
spots separately, both periods can be individually dededtkird, based on the as-
sumption that each periodic behavior is associated withesference locations,
all the periods can be found through reference spots.

The rest of this section will discuss in details how to finderehce spots and
detect the periods on the binary sequence for each refespote
Finding Reference SpotsSince an object with periodic movement will repeatedly
visit some specific places, if we only consider the spatifmrimation of the move-
ment, reference spots are those dense regions containirggooints than the other
regions. Note that the reference spots are obtained forirdtidual object.

Many methods can be applied to detect the reference spotsasulensity-based
clustering. The methods could vary according to differgli@ations. We adapt a
popular kernel method [24], which is designed for the puepofinding home
ranges of animals. For human movement, we may use impodeaitidn detection
methods in[[14, 31].

While computing the density for each location in a continaispace is computa-
tionally expensive, we discretize the space into a regutah grid and compute the
density for each cell. The grid size is determined by therddsiesolution to view



14 Zhenhui Li and Jiawei Han

the spatial data. If an animal has frequent activities atpdaee, this place will have
higher probability to be its home. This actually aligns vemsil with our definition
of reference spots.

For each grid celt, the density is estimated using the bivariate normal dgnsit

kernel,
c—log|?

f(c) — i . iexq_;)
ny? i; 21 22

where|c—loci| is the distance between celland locatiorloc;. In addition,y is a
smoothing parameter which is determined by the followingrtstic method([2],

y=5(0 +ap)in t,
whereoy andoy are the standard deviations of the whole sequé&@@in its x and
y-coordinates, respectively. The time complexity for thisthod isO(w- h-n).

After obtaining the density values, a reference spot carefieet by a contour
line on the map, which joins the cells of the equal densityealvith some density
threshold. The threshold can be determined as themtensity value among all
the density values of all cells. The larger the vajuis, the bigger the size of refer-
ence spot is. In practice can be chosen based on prior knowledge about the size
of the reference spots. In many real applications, we camasshat the reference
spots are usually very small on a large map (e.g., within 10%hmle area). So,
by settingp% = 15%, most parts of reference spots should be detected vgth hi
probability.

1b 20 (;0 4‘0 50 Gb 7‘0 8‘0 éO 160 G0
(a) Density map calculated by kernéb) Reference spots defined by contours.
method.

Fig. 3 Finding reference spots.

To illustrate this idea, assume that a bird stays in a nestdtfia year and moves
to another nest staying for another half year. At each nekgs a daily periodic
behavior of going out for food during the daytime and comimaglbto the nest at
night, as shown in Figurel 3. Note that the two small areast pand spot #3)
are the two nests and the bigger region is the food resoupce #4). Figurg 3(%)
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shows the density calculated using the kernel method. Tidesgre is 100x 100.
The darker the color is, the higher the density is. Figuré] B(kthe reference spots
identified by contour using top-15% density value threshold

Periods Detection on Binary SequenceGiven a set of reference spots, we fur-
ther propose a method to obtain the potential periods wihithspotseparately
Viewed from a single reference spot, the movement sequenwecan be trans-
formed into a binary sequende= bib,...b,, whereb; = 1 when this object is
within the reference spot at timestangnd 0 otherwise. In discrete signal process-
ing area, to detect periods in a sequence, the most poputhodssare Fourier trans-
form and autocorrelation, which essentially complemeahezher in the following
sense, as discussed in]21]. On one hand, Fourier transfibem suffers from the
low resolution problem in the low frequency region, henaa/aies poor estimation
of large periods. Also, the well-known spectral leakagebfgm of Fourier trans-
form tends to generate a lot of false positives in the pegoalm. On the other
hand, autocorrelation offers accurate estimation for tsbthrt and large periods,
but is more difficult to set the significance threshold for ortant periods. Con-
sequently,[[2i1] proposed to combine Fourier transform aridarrelation to find
periods. Here, we adapt this approach to find periods in tharbisequencB.

In Discrete Fourier Transform (DFT), the sequeBeebib, ... by is transformed
into the sequence af complex numbery, Xp, ..., Xy. Given coefficientsX, the
periodogram is defined as the squared length of each Foogéigent:F, = || X¢||°.
Here, K is the power of frequenclt. In order to specify which frequencies are
important, we need to set a threshold and identify thosedniffequencies than this
threshold.

The threshold is determined using the following method. R'dbe a randomly
permutated sequence frdnSinceB’ should not exhibit any periodicities, even the
maximum power does not indicate the period in the sequermeTore, we record
its maximum power aPmax and only the frequencies B that have higher power
than pmax may correspond to real periods. To provide a 99% confidene &
what frequencies are important, we repeat the above ranégomuytation experi-
ment 100 times and record the maximum power of each pernadusatpuence. The
99-th largest value of these 100 experiments will serve asoa @stimator of the
power threshold.

Given thatF is larger than the power threshold, we still need to deteertiie
exact period in the time domain, because a single Vaindrequency domaigor-
responds to a range of periods ;) in time domainin order to do this, we use
circular autocorrelation, which examines how similar ausste is to its previous
values for different lags:R(1) = 31, brbi+.

Thus, for each period randgr) given by the periodogram, we test whether
there is a peak iIfR(l),R(I +1),...,R(r — 1)} by fitting the data with a quadratic
function. If the resulting function is concave in the periadge, which indicates the
existence of a peak, we return= argmax<-r R(t) as a detected period. Similarly,
we employ a 99% confidence level to eliminate false positbaesed by noise.

In Figure[4(d), we show the periodogram of reference spon#agure[3. The
red dashed line denotes the threshold of 99% confidenceeBrertwo point$;
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Fig. 4 Finding periods.

andP; that are above the threshold. In Figpire #@)andP, are mapped to a range
of periods. We can see that there is only one pPaksorresponding td = 24 on
the autocorrelation curve.

2.2.3 Modeling Periodic Behaviors

After obtaining the periods for each reference spot, now twdysthe task how to
mine periodic behaviors. We will consider the referencdaspath the same period
together in order to obtain more concise and informativéopiér behaviors. But,
since a behavior may only exist inpartial movement, there could be several peri-
odic behaviors with the same period. For example, therevaralily behaviors in
David’s movement: One corresponds to the school days aratliee occurs during
the summer. However, given a long history of movement andriagas a “day”,
we actually do not know how many periodic behaviors exishis movement and
which days belong to which periodic behavior. This motigais to use a clustering
method. Because the “days” that belong to the same peri@tiavior should have
the similar temporal location pattern. We propose a geiveratodel to measure
the distance between two “days”. Armed with such distancasuee, we can fur-
ther group the “days” into several clusters and each clusfesents one periodic
behavior. As in David's example, “school days” should beugred into one cluster
and “summer days” should be grouped into another one. Natewe assume that
for each period, such as “day”, one “day” wilhly belong to one behavior.
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Since every period in the movement will be considered séplgréhe rest of this
section will focus on one specific period Hitst, we retrieve all the reference spots
with periodT. By combining the reference spots with the same period hayetve
will get a more informative periodic behaviors associateth wlifferent reference
spots. For example, we can summarize David's daily behasd9:00~18:00 at
office and 20:00~8:00 in the dorm”. We do not consider combining two different
periods in current work.

Let Or = {01,0p,...,04} denote reference spots with peridd For simplicity,
we denoteg as any other locations outside the reference spot, ..., 04. Given
LOC = locyloc; - - -locy, we generate the correspondisgmbolized movement se-
quence S 51%;... S, wheres = j if log; is within o;. Sis further segmented into
m= 2] segmenﬂ; We usel! to denote thej-th segment and, (1 <k <T) to
denote thé-th relative timestamp in a periotfc = i means that the object is within
0; atty in the j-th segment. For example, far= 24 (hours), a segment represents
a “day”, tg denotes 9:00 in a day, aﬂ@ = 2 means that the object is withoy at
9:00 in the 5-th day. Naturally, we may use the categoricdtithution to model the
probability of such events.

Definition 2 (Categorical Distribution Matrix). Let.7 = {ty,ts,...,tr} be a set of
relative timestamps be the categorical random variable indicating the selaaifo
reference spot at timestanmyp P = [pa,...,p7] is a categorical distribution matrix
with each colummy = [p(xx = 0), p(xc = 1),..., p(xx = d)]T being an independent
categorical distribution vector satisfyirgf. o p(x =1i) = 1.

Now, supposé?, 12, .. I follow the same periodic behavior. The probability
that the segment set = U|j:1 I! is generated by some distribution matfis

T )
P(oIP) = ] []P0%=10).
llesk=1

Now, we formally define the concept of periodic behavior.

Definition 3 (Periodic Behavior).Let .# be a set of segments. A periodic behavior
over all the segments if, denoted abl (.#), is a pair{T,P). T is the period an® is

a probability distribution matrix. We further l&t7 | denote the number of segments
covered by this periodic behavior.

2.2.4 Discovery of Periodic Behaviors

With the definition of periodic behaviors, we are able toraatie periodic behaviors
over a set of segments. Now given a set of segm@nts?, ..., 1™}, we need to dis-
cover which segments are generated by the same periodigibet@uppose there
areK underlying periodic behaviors, each of which exists in aipemovement,

1 If nis not a multiple ofT, then the last{ modT) positions are truncated.



18 Zhenhui Li and Jiawei Han

the segments should be partitioned iKtgroups so that each group represents one
periodic behavior.

A potential solution to this problem is to apply some cluistgmethods. In order
to do this, a distance measure between two periodic belsanemds to be defined.
Since a behavior is represented as a paiP) andT is fixed, the distance should
be determined by their probability distribution matric€sirther, a small distance
between two periodic behaviors should indicate that thensegs contained in each
behavior are likely to be generated from the same periodiaVier.

Several measures between the two probability distributiatricesP andQ can
be used to fulfill these requirements. Here, since we assheatlependence of
variables across different timestamps, we propose to esedfi-known Kullback-
Leibler divergence as our distance measure:

PO% =1)
KL(P[Q) = Z}p D1og =1
WhenKL(P||Q) is small, it means that the two distribution matridceandQ are
similar, and vice versa.

Note thatkL(P||Q) becomes infinite whep(xx = i) or q(xx = i) has zero prob-
ability. To avoid this situation, we add (xx = i) (andqg(xx = i)) a background
variableu which is uniformly distributed among all reference spots,

Pk =1) = (1=2A)p(x=1)+Au, 3)

whereA is a small smoothing parameterkOA < 1.
Now, suppose we have two periodic behavitts= (T,P) andH» = (T,Q). We
define the distance between these two behaviors as

dist(H1, Hy) = KL(P[ Q).

Suppose there exi#t underlying periodic behaviors. There are many ways to
group the segments int6 clusters with the distance measure defined. However, the
number of underlying periodic behaviorisg, K) is usually unknown. So we pro-
pose a hierarchical agglomerative clustering method tagtbe segments while at
the same time determine the optimal number of periodic belm\At each iteration
of the hierarchical clustering, two clusters with the minimdistance are merged.
In Algorithm[2, we first describe the clustering method assignk is given. We
will return to the problem of selecting optimidllater.

Algorithm[2illustrates the hierarchical clustering medhtt starts withmclusters
(Line 1). A clusterC is defined as a collection of segments. At each iteration, two
clusters with the minimum distance are merged (Line8}% When two clusters are
merged, the new cluster inherits the segments that ownetebgriginal clusters
Cs andG. It has a newly built behavidd (C) = (T, P) over the merged segments,
whereP is computed by the following updating rule:
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Algorithm 2 Mining periodic behaviors.

INPUT: symbolized sequenc® periodT, number of clusterk.

OUTPUT:K periodic behaviors.

ALGORITHM:
1: segmenSinto msegments;
2: initialize k = mclusters, each of which has one segment;
3: compute the pairwise distances am@ng. . .,Cy, dij = dist(H(G;),H(C;));
4: while (k > K) do

5. selectds such thas,t = argmin ; dij;

6:

7

8

9

merge cluster€s andC; to a new cluste€;
calculate the distances betwe&2and the remaining clusters;
o kv=k-1;
. end while
0: return{H(C;),1<i <K}.

[any

|G| G|
P= Ps+ Pr. 4)
Col+1C]° " |G| +[C]
Finally, K periodic behaviors are returned (Line 9).
1
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Fig. 5 Periodic behaviors.

To illustrate the method, we again use the example showrgior&i3. There are
two periodic behaviors with periofl = 24 (hours) in the bird’s movement. Figlide 5
shows the probability distribution matrix for each discma periodic behavior. A
close look at Figurg 5(h) shows that at time Gs@000 and 22:08.24:00, the bird
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has a high probability being at reference spot #2, which i®st shown in Fig-
ure[3(b). At time 12:08-18:00, it is very likely to be at reference spot #1, which
is the food resources shown in Fig{ire (b). And at the tim@911.:00, there are
also some probability that the bird is at reference spot #&f@rence spot #2. This
indicates the bird goes out of the nest around 8:00 and araivthe food resources
place around 12:00. Such periodic behaviors well reprethenbird’s movement
and truly reveal the mechanism we employed to generateythibetic data.

Now, we discuss how to pick the appropriate paramkteldeally, during the
hierarchical agglomerative clustering, the segments rg¢ee from the same be-
havior should be merged first because they have smaller Kérgience distance.
Thus, we judge a cluster is good if all the segments in theelase concentrated in
one single reference spot at a particular timestamp. Hencatural representation
error measure to evaluate the representation quality afsterlis as follows. Note
that here we exclude the reference spptvhich essentially means the location is
unknown.

Definition 4 (Representation Error). Given a set of segmen@&={11,12,... I'}
and its periodic behavidd (C) = (T, P), the representation error is,

e Ihadise (- pei=11)

E(C
© Shiec 31 Lizo

At each iteration, all the segments are partitioned ktdusters{C;,Cy,...,Cy}.
The overall representation error at current iteration Isutated as the mean over
all clusters,

o o I o
) w ES &)

representation error

o
=

(=)

0 20 40 60 80 100
# of clusters

Fig. 6 Representation error.

During the clustering process, we monitor the changéiolf & exhibits dra-
matical increases comparing witfy_1, it is a sign the newly merged cluster may
contain two different behaviors ard- 1 is likely to be a good choice d€. The
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degree of such change can be observed from the derivati€ewérk, %. Since a
sudden increase @f will result in a peak in its derivative, we can find the optimal
K asK = argmax %; .

As we can see in Figulé 6, the representation error sudderigases &= 2 for
the bird’s movement. This indicates that there are actialhyperiodic behaviors in
the movement. This is true because the bird has one dailggiefehavior at the
first nest and later has another one at the second nest.

3 Mining Periodicity from Incomplete Observations

So far, we have presented a complete framewexkipdica, for mining periodic be-
haviors from spatio-temporal data. Using the notion of nexfiee spotsPeriodica
is able to discover complex periodic behaviors from reattdvanovement data.
Nevertheless, we note thBtriodica still relies on traditional periodicity analysis
methods, namely Fourier transform and auto-correlafi@/(#,[5,12], to detect
periods after the movement data is converted to binary sex@se A fundamental
assumption of all the traditional periodicity analysis heats is that they require the
data to beevenly sampledhat is, there is an observation at every timestamp.
Unfortunately, due to themitations of data collection devices and methatiss
seemingly weak assumption is often seriously violated ecfice. For example,
a bird can only carry small sensors with one or two reportedtions in three to
five days. And the locations of a person may only be recordeehwie uses his
cellphone. Moreover, if a sensor is not functioning or akiag facility is turned
off, it could result in a large portion of missing data. THere, we usually have
incomplete observationsvhich are unevenly samplednd have large portion of
missing dataln fact, the issue with incomplete observations is a comproblem
on data collected from GPS and sensors, making period d&iezmh even more
challenging problem.

Time
—e ——o0 o0 006 0 0 >
5 18 26 29 4850 67 79

Fig. 7 Incomplete observations.

To illustrate the difficulties, let us first take a look at Figl8. Suppose we have
observed the occurrences of an event at timestamps 5, 139 243, 50, 67, and 79.
The observations of the event at other timestamps are ndalalea It is certainly
not an easy task to infer the period directly from th@smompleteobservations.
Even though some extensions of Fourier transform have bemgroped to handle
uneven data samplés |15, 19], they are still not applicabiee case with very low
sampling rate.

Besides, the periodic behaviors could be inhereatignplicated and noisyA
periodic event does not necessarily happeexaictlythe same timestamp in each
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periodic cycle. For example, the time that a person goes & Wwothe morning
mightoscillatebetween 8:00 to 10:0MNoisescould also occur when the “in office”
event is expected to be observed on a weekday but fails tcelnapp

In this section, we take a completely different approacthoperiod detection
problem and handle all the aforementioned difficulties ogog in data collection
process and periodic behavior complexity in a unified frapr&wThe basic idea of
our method is illustrated in Examglé 1.

Event has period 20. Occurrences of the event happen between 20k+5 to 20k+10.

Time
5 18 26 29 4850 67 79
Segment the data using length-20 \§egment the data using length 1€
—e—o —e———
— oo — | ~e——— o o
H—eo——o e
l Overlay the segments —e .

l Overlay the segments

e e el

Observations are clustered in [5,10] interval. Observations are scattered.

Fig. 8 lllustration example of our method.

Example 1Suppose an event has a peribe= 20 and we have eight observations
of the event, as shown in Figure 3. If we overlay the obsemwativith the correct
periodT = 20, we can see that most of the observations concentratadririerval
[5,10]. On the contrary, if we overlay the points with a wrgueyiod, sayT = 16,
we cannot observe such clusters.

As suggested by Examplé 1, we could segment the timeliney usipotential
periodT and summarize the observations over all the segments. If ofidise ob-
servations fall into some time intervals, such as intefsal0] in Example1,T is
likely to be the true period. In this section, we formally charazéesuch likelihood
by introducing a probabilistic model for periodic behagiolThe model naturally
handles the oscillation and noise issues because the encerof an event at any
timestamp is now modeled with a probability. Next, we prapasiew measure for
periodicity based on this model. The measure essentiafignées whether the dis-
tribution of observations is highly skewed w.r.t. a potahpieriodT. As we will see
later, even when the observations are incomplete, the bdéstibution of obser-
vations, after overlaid with the corrett remains skewed and is similar to the true
periodic behavior model.

In summary, our major contributions are as follows. First,imtroduce a prob-
abilistic model for periodic behaviors and a random obs@mamodel for incom-
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plete observations. This enables us to model all the vaniative encounter in prac-
tice in a unified framework. Second, we propose a novel pritisti measure for
periodicity and design a practical algorithm to detectgasidirectly from the raw
data. We further give rigorous proof of its validity undeitfothe probabilistic peri-
odic behavior model and the random observation model. lginaé point out that
our method can be used to detect periodicity for any tempeeaits, not necessarily
restricting to movement data.

3.1 Problem Definition

Now we formally define the problem of period detection forrtee We first assume
that there is an observation at every timestamp. The cabengibmplete observa-
tions will be discussed in Sectign 3.2.2. We use a binaryeecpi2” = {x(t) t”;ol
to denote observations. For example, if the event is “in ffieed, x(t) = 1 means
this person is in the office at timteandx(t) = 0 means this person %ot in the
office at timet. Later we will referx(t) = 1 as apositive observatioandx(t) = 0
as anegative observatian

Definition 5 (Periodic Sequence)A sequenceZ” = {x(t) t”;Ol is said to be peri-
odic if there exists som€& € Z such thai(t + T) = x(t) for all values oft. We call
T a period ofZ".

A fundamental ambiguity with the above definition is that ifs a period 0fZ",
thenmT is also a period of2” for anym € Z. A natural way to resolve this problem
is to use the so callggrime period

Definition 6 (Prime Period). The prime period of a periodic sequence is the small-
estT € Z such thak(t + T) = x(t) for all values oft.

For the rest of the section, unless otherwise stated, weyalwefer the word
“period” to “prime period”.

As we mentioned before, in real applications the observedesgces always de-
viate from the perfect periodicity due to the oscillatinghbeior and noises. To
model such deviations, we introduce a new probabilistim&aork, which is based
on theperiodic distribution vectoras defined below.

Definition 7 (Periodic Distribution Vector). For any vectop’ = [p],...,p+ ;] €
[0,1]T other tharD™ and1T, we call it a periodic distribution vector of lengih A
binary sequence” is said to be generated accordingtoif x(t) is independently
distributed according to BeI‘I’IOL(IfBTmod(t‘U).

Here we need to exclude the trivial cases wh@re= 0" or 17. Also note that if
we restrict the value of eagh to {0,1} only, then the resulting?” is strictly pe-
riodic according to Definitioh]5. We are now able to formulate period detection
problem as follows.
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Problem 1 (Event Period Detection).Given a binary sequenc&” generated ac-
cording to any periodic distribution vectpfo, find To.

o
©

Probability

0 6 12 18 24
Time (hour)

Fig. 9 (Running Example) Periodic distribution vector of a eveithwdaily periodicity To = 24.

Example 2 (Running Examplé&)e will use a running example throughout the sec-
tion to illustrate our method. Assume that a person has & gaiiiodicity visiting

his office during 10am-11am and 2pm-4pm. His observationesecg is generated
from the periodic distribution vector with high probaligi at time interval [10:11]
and [14:16] and low but nonzero probabilities at other tiraegps, as shown in Fig-

ure9.

3.2 A Probabilistic Model For Period Detection

As we see in Exampld 3, when we overlay the binary sequenteitwitrue period

To, the resulting sequence correctly reveals its underlyangpgdic behavior. Now we
make this observation formal using the concept of perioidicidution vector. Then,
we propose a novel probabilistic measure of periodicityedasn this observation
and prove its validity even when observations are incoraplet

3.2.1 A Probabilistic Measure of Periodicity

Given a binary sequenc®’, we defineS" = {t: x(t) =1} andS™ = {t : x(t) =0} as
the collections of timestamps with 1's and 0's, respecyiviebr a candidate period
T, let %7 denote the power set @@ : T — 1]. Then, for any set of timestampsds-
sibly non-consecutiyé € .7, we can define the collections of original timestamps
that fall into this set after overlay as follows:

§ ={teS": Ft)el}, § ={teS : Fr(t)el},
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where.Z7(t) = mod(t,T), and further compute the ratios of 1's and 0’'s whose
corresponding timestamps fall int@fter overlay:

_ s S|

u}(I,T)_@, F‘Eg‘('vT):E- (5)

The following lemma says that these ratios indeed reveattieeunderlying prob-
abilistic model parameters, given that the observationsece is sufficiently long.

Lemma 1. Suppose a binary sequencé = {x(t)}{‘;(;L is generated according to
some periodic distribution vectqr of length T, write § = 1— p. Thenvl € 77,

, 1 Sicl O

lim ph-(1,T) = z'f' o dim o, (1,T) = &5

noet Y Siopl el Sioal
Proof. The proof is a straightforward application of the Law of Lafyumbers
(LLN), and we only prove the first equation. With a slight adwd notation we
write § = {t : Zr(t) =i} and§" = {t € S" : Fr(t) =i}. Since{x(t) :t € S} are
i.i.d. Bernoulli(p) random variables, by LLN we have

ST StesX() Pl

lim —— = lim
n—o n—co n T’
where we use lim. e % = % for the last equality. So,

ST/ SialSTI/n Sia /T Siap
)= S7/n A ST ST oipr /T siap

Now we introduce our measure of periodicity based on Lefrfradanyl € .47,
its discrepancy score is defined as:

Ao (1,T) = po(1T) = pye(1,T). (6)

Then, the periodicity measure & w.r.t. periodT is:

lim b
namu%

Y2 (T) = maxA(l,T). (7
le st
It is obvious thaty, (T) is bounded: < y4(T) < 1. Moreover,y, (T) = 1 if
and only if 2" is strictly periodic with period’. But more importantly, we have the
following lemma, which states that under our probabilipciodic behavior model,
y2 (T) is indeed a desired measure of periodicity.

Lemma 2. If a binary sequence?” is generated according to any periodic distribu-
tion vectorp™ for some §, then

lim v (T) < lim vy (To), VT €Z.

n—oo
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Proof. Define
p° q°
TR s
it is easy to see that the value lim y2 (To) is achieved by* = {i € [0,To — 1] :
¢i > 0}. So it suffices to show that for affye Z andl € s,

Iim Ay (1,T) <lim Ay (1", Tg) = ZCi.
n—oo n—oo i&
Observe now that for anft, T),

To
1 T2t Py (i jxT)
im0 =5 (§ 5 S
et A\T S 520 pe

lim p1,(1,T) = 170t 1141
H D=2 T 2 e )

Therefore we have

P q2

T i+ xT) T (i+]xT)

imAz(1,T) = ZZ) S R,
(el 5o Py 5o O

1 ot 1 _ ot
= Tg J; Comyi+ixT) S T 2 J; max(C (i+jxT):0)

1 ToT—-1 1
T j;) maX(CfTO(inT)aO) = T xT » c= igZ* G,

IN

icT
where the third equality uses the definitionl tf

Note that, similar to the deterministic case, the ambigofityultiple periods still
exists as we can easily see that]iga, y2 (mT) = limp .« Y2+ (To) for all me Z. But
we are only interested in finding the smallest one.

Example 3 (Running Example (contWhen we overlay the sequence using poten-

tial periodT = 24, Figurg 10(d) shows that positive observations have pigh-
ability to fall into the set of timestamp$10,11,14,15,16}. However, when using
the wrong period” = 23, the distribution is almost uniform over time, as shown in
Figure[I0(d). Similarly, we see large discrepancy scored fe 24 (Figurg 10(B))
whereas the discrepancy scores are very small for T = 23 (&R(d)). Therefore,
we will haveyy-(24) > v, (23). Figure[I1 shows the periodicity scores for all po-
tential periods irf1 : 200. We can see that the score is maximized at 24, which
is the true period of the sequence.
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Fig. 10 (a) and (c): Ratios of 1's and O's at a single timestare, (u}-(-,T) and u;,-(-,T))
whenT = 24 andT = 23, respectively. (b) and (d): Discrepancy scores at assitigiestampi(e.
Ay (-, T))whenT = 24 andT = 23.
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Fig. 11 Periodicity scores of potential periods.

3.2.2 Random Observation Model

Next, we extend our analysis on the proposed periodicitysunesto the case of in-
complete observations with a random observation modehigcend, we introduce
a new label “1" to the binary sequencg” which indicates that the observation
is unavailable at a specific timestamp. In the random observenodel, each ob-
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servatiorx(t) is associated with a probability € [0,1] and we writed = {c}[""¢

Definition 8. A sequence?’ is said to be generated accordingpd , d) if
B Bernoulli(p}T(t))w.p.dt
X(t) = { -1 w.p. 1— ¢ (8)

In general, we may assume that edgls independently drawn from some fixed
but unknown distributiorf over the interval0, 1]. To avoid the trivial case where
d: = 0 for all t, we further assume that it has nonzero mean> 0. Although
this model seems to be very flexible, in the section we progé dlr periodicity
measure is still valid. In order to do so, we need the follapgmma, which states
that u-(1,T) and U,-(1,T) remain the same as before, assuming infinite length
observation sequence.

Lemma 3. Supposea = {d; }{— are i.i.d. random variables if0, 1] W|th nonzero
mean, and a sequencg’ is generated according tep",d), write q =1- pI .
Thenvl € 1,

Yiel p| 2iel g QiT
lim p-(1,T) = lim po,-(1,T) = &——-.
e Siopl e EiT:o1 q'

Proof. We only prove the first equation. Lg(t) be a random variable distributed
according to Bernoulfdy) andz(t) = x(t)y(t). Then{z(t)}{—y ! are independent ran-
dom variables which take value {0, 1}, with meanE|z(t)] computed as follows:

DefineS = {t: ﬂ«‘T( )=i}andS§" = {t € S": Fr(t) =i}, it is easy to see that
|S7| = Yites Z(t). Using LLN we get

lim |S+| _ lim Steg At) _ pr P

n—co n—co n T

3

where we use lim;e. Bl = = 1/T for the last equality. Therefore,

T
lim 5-(1.T) = lim S'/n lim 2! ST/n _ Sia —p'{f _ Siap _
e ST/ e s TS/ sT a3t

Since our periodicity measure only dependsl,oj@(l,T) and p,-(1,T), it is
now straightforward to prove its validity under the randobservation model. We
summarize our main result as the following theorem.
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Fig. 12 Period detection with unknown observations.

Theorem 1 Suppose = {d;}["¢ are i.i.d. random variables if0, 1] with nonzero
mean, and a sequenc¥ is generated according to arfp'0,d) for some F, then
lim vy (T) < lim vz (To), VT €Z.

The proof is exactly the same as that of Lenitha 2 given thetrebuemma[3,
hence is omitted here.

Here we make two useful comments on this result. First, tiseiraption that
di’s are independent of each other plays an important rolearptioof. In fact, if
this does not hold, the observation sequence could extelbjt different periodic
behavior from its underlying periodic distribution vectBut a thorough discussion
on thisissue is beyond the scope of this book. Second, thistrenly holds exactly
with infinite length sequences. However, it provides a gadnireate on the situation
with finite length sequences, assuming that the sequenedsrag enough. Note
that this length requirement is particularly important wree majority of samples
are missingie., ps is close to 0).

Example 4 (Running Example (contd® introduce random observations, we sam-
ple the original sequence with sampling rate.0rhe generated sequence will have
80% of its entries marked as unknown. Comparing Fifure hith) Figure] 10(H),
we can see very similar discrepancy scores over time. Rarsdonpling has little
effect on our period detection method. As shown in Fiurd@},2¢e can still detect
the correct period at 24.

3.2.3 Handling Sequences Without Negative Samples

In many real world applications, negative samples may beptetely unavailable
to us. For example, if we have collected data from a locapbelhe tower, we will
know that a person is in town when he makes phone call thraugtotal tower.
However, we are not sure whether this person is in town orarathe rest of time
because he could either be out of town or simply not makingcaily In this case,
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the observation sequenc®’ takes value in{1,—1} only, with —1 indicating the
missing entries. In this section, we modify our measure abpkcity to handle this
case.

Note that due to the lack of negative samples;(I,T) can no longer be com-
puted from.2". Thus, we need find another quantity to compare(l,T) with. To
this end, consider a binary sequerige= {u(t)}{-3 where eachu(t) is an i.i.d.
Bermoulli(p) random variable for some fixgal> 0. It is easy to see that for afly
andl € 7, we have

lim pi, (1,T) = |I| (9)

This corresponds to the case where the posmve samplesemyy alistributed over
all entries after overlay. So we propose the new discrepsose ofl as follows:

I
A}(I,T)=u}(I,T)—|T—|, (10)
and define the periodicity measure as:

Vi (T) = maxa;-(1,T). (12)

In fact, with some slight modification to the proof of Lemiavw& can show
that it is a desired measure under our probabilistic modsulting in the following
theorem.

Theorem 2 Suppose = {d;}[" are i.i.d. random variables if0, 1] with nonzero
mean, and a sequenc¥ is generated according to arfp'0,d) for some F, then

i +
lim v, (T) < lim v, (To), VT € 2.
To
Proof. Definec” = ﬁ — &, itis easy to see that the value lim. - (To) is
k=0 Pk 2
achieved by* = {i € [0,To— 1] : " > 0}. So it suffices to show that for affyc Z
andl € 77,
L e

Observe now that for anf, T),

. 17 p/T (i+]xT)
+ _ L ol
Pt (D) = % T5 50

Therefore we have
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To—1 pff T
lim 47 (1,T) TZ Zo TO('I’XTO) ~1
k=0 Px
To— /TO i+jxT) 1
T ; ]% 1-0_01 pl-o TO T ; JZO J*To i+jxT)

10Tl

max(c ,0) < = max(c ,0)
;J +j><T T J;) +J><T)

1
==xT cﬁ:Zcf
T iel* iel*

where the fourth equality uses the definition tf

Note that this new measugé, (T) can also be applied to the cases where neg-
ative samples are available. Given the same validity resediders may wonder if
it can replaceyy-(T). This is certainly not the case in practice, as our resullg on
hold exactly when the sequence has infinite length. As wese# in experiment
results, negative samples indeed provide additionalinédion for period detection
in finite length observation sequences.
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Fig. 13 (Running Example) Period detection on sequences with@étive samples.

Example 5 (Running Example (cont.y.this example we further marked all the
negative samples in the sequence we used in Exdrhple 4 aswmkWinen there is
no negative samples, the portion of positive samples atgestimestamp is ex-
pected to bé, as shown in Figure I3{a). The discrepancy scores Wher24 still
have large values dt10,11, 14,15, 16}. Thus the correct period can be successfully
detected as shown in Figyre I3(b).
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4 Algorithm: Periodo

In Sectior 3.2, we have introduced our periodicity measorafly potential period
T € Z. Our period detection method simply computes the peribd&tores for
everyT and report the one with the highest score.

In this section, we first describe how to compute the perigdgcore for a po-
tential period and then discuss a practical issue when aqgpbur method to finite
length sequence. We will focus on the case with both positigenegative observa-
tions. The case without negative observations can be soitbé same way.

As we have seen in Sectibn 3P.1, the set of timestdimgigt maximizeyy (T)
can be expressed as

I"={ie[0,To—1]:c >0}, (12)

To To

wherec; = zToFil T~ zToqjl - Therefore, to find*, it suffices to compute; for
eachi € [0, Tok—0 1]kand skeloecli those ones with> 0.
Time Complexity Analysis. For every potential period, it takesO(n) time to
compute discrepancy score for a single timestang €;) and thenO(T) time to
compute periodicityz- (T). Since potential period should be in raftie], the time
complexity of our method i©(n?). In practice, it is usually unnecessary to try all
the potential periods. For example, we may have common skatthe periods will
be no larger than certain values. So we only need to try patgrériods up tan,
whereng < n. This will make our method efficient in practice with time cplexity
asO(n x ng).

« 24 hours

Periodicity Score
Periodicity Score

100 150 200 “o0 50 100 150 200
Potential Period T Potential Period T

(a) Periodicity scores (b) Normalized scores

0 50

Fig. 14 Normalization of periodicity scores.

Now we want to point out a practical issue when applying outhoeé on finite
length sequence. As one may already notice in our runningpbe we usually see
a general increasing trend of periodicity scoyesT) andy}- (T) for alarger poten-
tial periodT. This trend becomes more dominating as the number of olismmga
decreases. For example, the original running example hssredttions for 1000
days. If the observations are only for 20 days, our method raaylt in incorrect
period detection result, as the case shown in Figure 14(dact, this phenomenon
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is expected and can be understood in the following way. Leakesy}-(T) as an
example. Given a sequenc® with finite numberof positive observations, it is
easy to see that the sizelofhat maximizesy;g- (T) for anyT is bounded above by

the number of positive observations. Therefore the v&ﬁ‘ualways decreases as
increases, no matter whether or fiois a true period ofZ".

To remedy this issue for finite length sequence, we use peitpdcores on
randomizedsequence to normalize the original periodicity scorescEipally, we
randomly permute the positions of observations along thelihe and compute the
periodicity score for each potential peridd This procedure is repeatéd times
and the average periodicity scores oitrials are output as the base scores. The
redline in Figuré¢ T4(%) shows the base scores generatedmiomized sequences
by settingN = 10, which agree well with the trend.

For every potential periodl, we subtract the base score from the original period-
icity score, resulting in the normalized periodicity scaxete that the normalized
score also slightly favors shorter period, which helps uavioid detecting dupli-
cated periodsif(e., multiples of the prime period).

4.1 Experiment Results on Synthetic Datasets

In order to test the effectiveness of our method under vardmenarios, we first use
synthetic datasets generated according to a set of panaWétéake the following
steps to generate a synthetic test sequ&te@

Step 1.We first fix a periodT, for example,T = 24. The periodic segmeBEG

is a boolean sequence of lengkh with values—1 and 1 indicating negative and
positive observations, respectively. For simplicity oégentation, we writSEG=
[s1:t1,%: to,...] where[s,t] denote the-th interval of SEGwhose entries are alll
setto 1.

Step 2.Periodic segmenBEGis repeated foil N times to generate the complete
observation sequence, denoted as standard seqB&ri@gg. SEQq has lengthr x
TN.

Step 3 (Random sampling}). We sample the standard sequence with sampling rate
n. For any element iISE Qyq, We set its value to 0., unknown) with probability
(1-n).

Step 4 (Missing segments). For any segment in standard segm8RiQq, we set
all the elements in that segment ag.@.(unknown) with probability1— a).

Step 5 (Random nois€g8). For any remaining observation 8E Q;q, we reverse its
original values (making-1 as 1 and 1 as 1) with probability3.

The input sequenc8E Qhas values-1, 0, and 1 indicating negative, unknown,
and positive observations. In the case when negative samapdeunavailable, all
the —1 values will be set to 0. Note that here we set negative ohtiens as—1
and unknown ones as 0, which is different from the descripticSectiori 311. The
reason is that the unknown entries are set-asin the presence of many missing
entries, traditional methods such as Fourier transforifbgidominated by missing
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entries instead of actual observations. The purpose ofadjcistment is to facilitate
traditional methods and it has no effect on our method.

4.1.1 Methods for Comparison

We compare our method with the following methods, which aegdiently used to
detect periods in boolean sequerice [11].

1. Fourier Transform (FFT): The frequency with the highest spectral power from
Fourier transform via FFT is converted into time domain aatpat as the result.

2. Auto-correlation and Fourier Transform (Auto): We first compute the auto-
correlation of the input sequence. Since the output of aotoelation will have
peaks at all the multiples of the true period, we further gp@urier transform to it
and report the period with the highest power.

3. Histogram and Fourier Transform (Histogram): We calculate the distances
between any two positive observations and build a histograthe distances over
all the pairs. Then we apply Fourier transform to the histogand report the period
with the highest power.

We will FFT (pos) andAuto(pos) to denote the methods FFT and Auto-correlation
for cases without any negative observations. fistogram, since it only considers
the distances between positive observations, the resultsaes with or without
negative observations are exactly the same.

4.1.2 Performance Studies

In this section, we test all the methods on synthetic dateeurdrious settings.
The default parameter setting is the following:= 24, SEG=[9: 1014 : 16.
TN=1000,n =0.1, 0 = 0.5, andp = 0.2. For each experiment, we report the per-
formance of all the methods with one of these parametersngwyhile the others
are fixed. For each parameter setting, we repeat the exparfiorel00 times and
report the accuracy, which is the number of correct peridea®ns over 100 trials.
Results are shown in Figurells.

Performance w.r.t. sampling raten. To better study the effect of sampling rate, we
seta = 1 in this experiment. Figufe I5{a) shows that our methodjisiicantly bet-
ter than other methods in terms of handling data with low dargpate. The accu-
racy of our method remains 100% even when the sampling ratel@sv as 0075.
The accuracies of other methods start to decrease whenisgmate is lower than
0.5. Also note thafuto is slightly better tharFFT because auto-correlation essen-
tially generates a smoothed version of the categorical fdat&ourier transform.
In addition, it is interesting to see thRET and Auto performs better in the case
without negative observations.

Performance w.r.t. ratio of observed segments. In this set of experiments, sam-
pling raten is set as 1 to better study the effect @f Figure[I5(H) depicts the
performance of the methods. Our method again performs mattkrithan other
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Fig. 15 Comparison results on synthetic data with various paransetéings.

methods. Our method is almost perfect even whea 0.025. And when all other
methods fail abr = 0.005, our method still achieves 80% accuracy.

Performance w.r.t. noise ratioB. In Figureg[I5(d), we show the performance of the
methods w.r.t. different noise ratiodistogram is very sensitive to random noises
since it considers the distances between any two positisergations. Our method
is still the most robust one among all. For example, with= 0.3, our method
achieves accuracy as high as 80%.

Performance w.r.t. number of repetitions T N. Figure[I5(d) shows the accuracies
as a function oflf N. As expected, the accuracies decreas€$decomes smaller
for all the methods, but our method again significantly otftwens the other ones.

Performance w.r.t. periodic behavior. We also study the performance of all the
methods on randomly generated periodic behaviors. GivegriagT and fix the
ratio of 1's in aSE Gasr, we generat&E Gby setting each element to 1 with prob-
ability r. Sequences generated in this way will have positive obiensascattered
within a period, which will cause big problems for all the mmeds using Fourier
transform, as evidenced in Figure] Thais is because Fourier transform is very
likely to have high spectral power at short periods if theuhpalues alternate be-
tween 1 and 0 frequentlin Figure[16(d) we saet= 0.4 and show the results w.r.t.
period lengthT. In Figure[16(H), we fiXT = 24 and show the results with varying
r. As we can see, all the other methods fail miserably when énegic behavior is
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randomly generated. In addition, when the ratio of positiseervations is low,e.
fewer observations, it is more difficult to detect the corgriod in general.

=
-

o
®
o
®

3 3
~©- Our Method (pos)
@ 09 -©-0ur Method @ 09
35 —%—FFT (pos) 35
S oa B S oa
Auto (pos) //
< -4 - Auto <
0.2| —&- Histogram
20 35 50 65 80 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
T r
(a) True periodl (b) Periodic segmerBEG

Fig. 16 Comparison results on randomly generated periodic betgvio

Parameteqr Accuracy

Our MethodFFT|Lomb
n=05 |1 0.7 |0.09
n=01 |1 0.52|0.10
a=05 |1 1 0.01
a=01 (0.99 0.35|0

Table 2 Comparison with Lomb-Scargle method.

Comparison with Lomb-Scargle method.Lomb-Scargle periodograrh¢mb) [15,
[19] was introduced as a variation of Fourier transform tedgperiods irunevenly
sampled data. The method takes the timestamps with obsersand their corre-
sponding values as input. It does not work for the positaeysle-only case, be-
cause all the input values will be the same hence no periodedetected. The rea-
son we do not compare with this method systematically isttfemethod performs
poorly on the binary data and it is very slow. Here, we run itaosmaller dataset
by settingTN = 100. We can see from Tahlé 2 that, when= 0.5 or a = 0.5,
our method andFFT perform well whereas the accuracy lodmb is already ap-
proaching 0. As pointed out in [20lomb does not work well in bi-modal periodic
signals and sinusoidal signals with non-Gaussian noiggs;ehnot suitable for our
purpose.

5 Experiments Results on Real Datasets

In this section, we demonstrate the effectiveness of théoastdeveloped in this
book on real-world spatio-temporal datasets. We first shh@mwésults of applying
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our periodic behavior mining algorithm described in Seti#bto a real dataset of
bald eagle movemefitsThis experiment verifies that the proposed method is able
to discover semantic meaning periodic behaviors of reahals, as long as there
are enough samples within each period. Then, we use realromgement data to
test the new period detection method introduced in Sectiwhén the observations
are highly incomplete and unevenly sampled. The experime=uiits suggest that
our method is extremely robust to uncertainties, noisesnaisding entries of the
input data obtained in real-world applications.

5.1 Mining Periodic Behaviors: A bald Eagle Real Case

The data used in this experiment contains a 3-year track@gq.1:-2008.12) of
a bald eagle in the North America. The data is first lineartgiipolated using the
sampling rate as a day.

150
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(a) Raw data of bald eagle plotted on Google (b) Reference spots.
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Fig. 17 Real bald eagle data.

Figure[I7(d) shows the original data of bald eagle using @GoBgrth. It is an
enlarged area of Northeast in America and Quebec area indaaAs shown in
Figure[17(H), three reference spots are detected in arddsvofYork, Great Lakes
and Quebec. By applying period detection to each referepot we obtain the
periods for each reference spot, which are 363, 363 and 36} tespectively. The
periods can be roughly explained as a year. It is a sign oflyeaigration in the
movement.

Now we check the periodic behaviors mined from the movemeeglly, we
want to consider three reference spots together becauseltisbow yearly period.
However, we may discover that the periods are not exactlgainge for all the ref-
erence spots. This is a very practical issue. In real casesawhardly get perfectly
the same period for some reference spots. So, we should aalasonstraint and

2 The data set is obtained from www.movebank.org.
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Fig. 18 Periodic behaviors of bald eagle.

consider the reference spots witmilar periods together. If the difference of pe-
riods is within some tolerance threshold, we take the awecddghese periods and
set it as the common period. Here, we take pefiaabs 363 days, and the probabil-
ity matrix is summarized in Figufe18. Using such probapititatrix, we can well
explain the yearly migration behavior as follows.

“This bald eagle stays in New York areag, reference spot # 1) from December
to March. In March, it flies to Great Lakes aread,, reference spot #2) and stays
there until the end of May. It flies to Quebec aré.( reference spot #3) in the
summer and stays there until late September. Then it flidstoeGreat Lake again
staying there from mid October to mid November and goes badketv York in
December”

This real example shows the periodic behaviors mined framtbvement pro-
vides an insightful explanation for the movement data.

5.2 Mining Periodicity from Incomplete Observations: Real
Human Movements

In this experiment, we use the real GPS locations of a perdum vas tracking
record for 492 days. We first pick one of his frequently vigitecations and generate
a boolean observation sequence by treating all the visitsisgdocation as positive
observations and visits to other locations as negativereasens. We study the per-
formance of the methods on this symbolized movement datdfateht sampling
rates. In Figur€_19 and Figurel20, we compare the methodsoasdmpling rates,
20 minutes and 1 hour. As one can see in the figures (a) in Hidieed Figur€ 20,
when overlaying this person’s activity onto an period of diag, most of the visits
occur in time interval [40, 60] for sampling rate of 20 minsiter equivalently, in
interval [15, 20] when the time unit is 1 hour. On one hand, nveampling rate
is 20 minutes, all the methods excéfpiT (pos) andHistogram successfully detect
the period of 24 hours, as they all have the strongest ped laburs (so we take
24 hours as the true period). On the other hand, when the slatnipled at each
hour only, all the other methods fail to report 24 hours asthengest peak whereas
our method still succeeds. In fact, the success of our methnde easily inferred
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from the left-most figures in Figufe 119 and Figlre 20, as omesea that lowering
the sampling rate has little effect on the distribution dgrapthe overlaid sequence.
We further show the periods reported by all the methods abwsisampling rates
in Table[3. Our method obviously outperforms the othersiimgeof tolerating low
sampling rates.
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Fig. 19 [Sampling rate: 20 minutes] Comparison of period deteati@thods on a person’s move-
ment data.
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Fig. 20 [Sampling rate: 1 hour] Comparison of period detection méson a person’s movement
data.
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Fig. 21 Comparion of methods on detecting long peribd,one week (168 hours).

Next, in Figure[2ll, we use the symbolized sequence of the gmms®n at a
different location and demonstrate the ability of our meti detecting multiple
potential periods, especially those long ones. As we cannseegure[21(d), this
person clearly has weekly periodicity w.r.t. this locatidinis very likely that this
location is his office which he only visits during weekdaysir@ethod correctly
detects 7-day with the highest periodicity score and 1-@deydecond highest score.
But all other methods are dominated by the short period cdiyl-Elease note that,
in the figures of other methods, 1-week point is not even orptrek. This shows
the strength of our method at detecting both long and shoitge
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Sampling rate
Method 20min 1houn2hout4hou
Our Method (pod) 24 | 24 | 24 8
Our Method 24 | 24 | 24| 8
FFT(pos) 93| 9 8 8

FFT 24 | 195 372 372
Auto(pos) 24 9 | 42| 8
Auto 24 | 193|372 | 780

Histogram 66.33] 8 42 | 48

Table 3 Periods reported by different methods at various samphiest

6 Summary and Discussion

This chapter offers an overview of periodic pattern miningnf spatiotemporal
data. As movement data is widely available in larger volynties techniques of
data mining nowadays play a crucial role in the semantic tstdeding and analy-
sis of such data. The chapter first discusses the importarttetallenges in min-
ing periodic behaviors from movement data. We then reviewitional time series
methods for periodicity detection and discuss the disaidegas of directly applying
these methods to movement data. To conquer these disageanganovel approach,
Periodica, is introducedPeriodica can detect multiple interleaved periodic behav-
iors from movement data by using the notion of referencesspxt, we examine a
common issue in real-world applications: the incompletsepiations in spatiotem-
poral data. A robust period detection method for temporahés;Periodo, is then
introduced to handle such sparse and incomplete movement da

While experiment results on real movement data have alrdathonstrated the
effectiveness of our methods, there are still many chadierijat remain unsolved
and new frontiers that would be interesting to explore. \&edifew of them below.

First, in Periodica, there is a strong assumption that a reference spot must be a
dense region on the map. However, a periodically visitedgothoes not necessarily
need to be dense in practice. For example, a person may goltblayaevery Sun-
day afternoon. But compared with his home and office, WaltNd&anot a densely
visited location. If we use density-based method to find #ference spots, Wal-
Mart is likely to be missed, even though this person has wep&tiodic pattern
with respect to it. Hence, designing a better method to iflestich locations is a
very interesting future direction.

Second, a more complicated yet more practical scenariairdeda is therreg-
ular periodic behavior. For example, the movement of fishingshigy follow the
tides, which behave according to the cycles of the lunarg@hidence, the move-
ment of the ships may not have a strict monthly periodicityiol is defined based
on the western calendar. Therefore, instead of simply gdyire ships roughly fol-
low the monthly periodicity”, it is desirable to develop newechanisms which can
explicitly model and detect such irregularity in the dupatdf a period.

Third, using periodic behaviors to predict future moversasta very important
topic that deserves more in-depth study. Human and animalsighly dominated
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by a mixture of their routines. For example, if we observe thperson is at home
at 8am, how should we predict his location at 9am based orohtines? The cor-
rect answer may be the following. If it is a weekday, the nexation should be
the office; if it is a weekend, the next location could still lheme; however, if it

is a holiday, the next location might be somewhere on the wayis hometown.

As we can see, the person’s behavior is not confined to a soegiedic behavior,

but rather determined by multiple routines and the semautiche locations and
time. Therefore, it is very important to develop principle@thodology that can
fuse information from various sources to make reliable jotemhs.
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