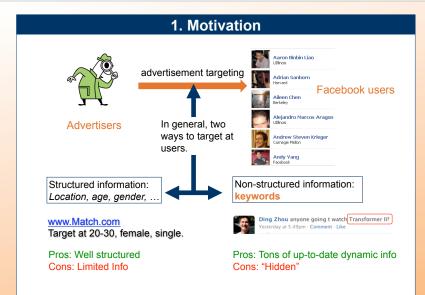


Keyword Extraction for Social Snippets

⁺Zhenhui Jessie Li [×]Ding Zhou [×]Yun-Fang Juan ⁺Jiawei Han

*University of Illinois at Urbana-Champaign

*Facebook Inc.



2. Social Snippets

What are social Snippets?

Text generated for social purposes (e.g., Facebook status updates or Tweeter posts):

- ❖updating friends about one's current status (e.g., "attending WWW conf at Raleigh")
- ❖initiating or engaging conversations around a topic (e.g., "anyone bought iPad?")
- ❖expressing the state of the mood (e.g., "is excited for the concert today")

What are the differences between social snippets and normal documents?

			_
# Statistics	Facebook	Random web pages	=
# of social snippets	1,830	2,000	
# of words	39,249	2,151,500	Extremely short and
# of words # of social snippets	21.45	1075.75	considerably noisy
# of words in Brown corpus	33,823	1,954,383	· — ·
# of words in Brown corpus # of words	86.18%	90.84%	

What are the major contributions of this work?

- ❖Define social snippets, a newly emerging type social text data calls for *special attention* on various applications (**keyword extraction**, topic modeling, sentiment analysis, ...)
- Experimental study of keyword extraction on social snippets (feature engineering and model selection)

3. Keyword Extraction Method

The problem is modeled as a classification problem.

Generate keyword candidates

- Original Text: I am going to bay area this weekend.
- 2. Tokenize: I | am | going | to | bay | area | this | weekend
- 3. Remove stopwords: | am | going | to | bay | area | this | weekend
- **4. Generate uni- and bi-grams:** {bay, area, weekend, bay area}

Features

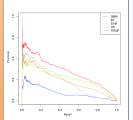
- **❖**TFIDF
- ❖lin (linguistic feature)
- ❖pos (relative position)
- !en (length of keyword)
- DF (document frequency)
- ❖capital (capitalization)

Classification Model

- ❖Gradient Boosting Machine
- ❖Decision Tree
- ❖Support Vector Machine
- ❖Linear Regression
- **❖**TFIDF

4. Experiment

Model comparison



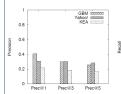
❖GBM performs the best

Feature importance

features	relative influence	
TFIDF	31.28%	
lin	23.91%	
len	17.60%	
pos	13.46%	
lenText	10.32%	
DF	2.61%	
capital	0.82%	

❖TFIDF does not dominate the importance ❖lin shows to be important

Compare with other methods



- ❖Yahoo! api prunes many stopwords (high precision, low recall)
- ❖KEA is based on Naïve Bayes model.

5. Future Work

Mining latent interest

- ◆The status or wall posts people "liked".
 ◆People commented are also interested in this topic.
- ❖Extract keywords from the conversation.

Propagate keywords

❖Keywords can be propagated to friends. ❖How to measure the common interest between two users? ❖How to deal with efficiency issue on big social network?

