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ABSTRACT
Crime is one of the most important social problems in the country,
affecting public safety, children development, and adult socioeco-
nomic status. Understanding what factors cause higher crime is
critical for policy makers in their efforts to reduce crime and in-
crease citizens’ life quality. We tackle a fundamental problem in
our paper: crime rate inference at the neighborhood level. Tradi-
tional approaches have used demographics and geographical influ-
ences to estimate crime rates in a region. With the fast development
of positioning technology and prevalence of mobile devices, a large
amount of modern urban data have been collected and such big data
can provide new perspectives for understanding crime. In this pa-
per, we used large-scale Point-Of-Interest data and taxi flow data
in the city of Chicago, IL in the USA. We observed significantly
improved performance in crime rate inference compared to using
traditional features. Such an improvement is consistent over mul-
tiple years. We also show that these new features are significant in
the feature importance analysis.

1. INTRODUCTION
Understanding how to control crime is important because ex-

posures to violence and crime have been unusually high in the
U.S. for several decades and, while declining, they remain high [6,
16]. Over half a million children and youth aged 10-24 years were
treated in 2012 in emergency departments for nonfatal physical
assault injuries related to gun shots, cuts and stabbings, among
others [17]. Understanding the neighborhood context of crime is
particularly important because victimization and other forms of
crime exposures have many severe consequences. Beyond the high
medical bills and violent death, consequences include behavioral
and mental health problems, aggression, substance abuse, post-
traumatic stress disorder, and suicide, lower academic achievement,
and engaging in further violence [22].

In this paper, we study the problem of crime rate inference of
communities. We select Chicago as the target of study for the fol-
lowing reason. Chicago has more homicides and non-negligent
manslaughter rates (15.2) per 100,000 residents than New York
(4.0) and Los Angeles (6.5) according to the FBI crime statistics for
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Figure 1: An illustration of various types of features we used in
Chicago. The POI distribution across community areas reflects
profiles of the region functionality. The taxi flow connects non-
adjacent regions and act as “hyperlinks” on the space.

2013 and has experienced no decline in the past decade compared
to the other two large cities, which have been on a slow declining
slope [39].

Traditionally, researchers have used demographic information
(e.g., population poverty level, socioeconomic disadvantage, racial
composition of population) to estimate the crime rate in a commu-
nity [24]. However, such demographic information only contains
partial information about the neighborhoods and does not dynam-
ically reflect the changes in the community (e.g., official counts
are collected by the U.S. Census Bureau every 10 years). Using
only demographic information will result in a relative error of at
least 30% for crime rate estimation in Chicago (refer to experiment
section in the paper). Existing studies also use the geographical in-
fluence [4] to estimate the crime rate, i.e., the crime in the nearby
communities can be propagated to the focal community. But this
geographical influence is of little help in improving the crime infer-
ence on top of demographic feature, with at most 0.4% relative im-
provement in our experiments. This is probably because the nearby
communities also share similar demographics, which limits the ad-
ditional benefit of geographical influence.

Recently, big data reflecting city dynamics have become widely
available [45], e.g., traffic flow, human mobility, social media, and
crowd-generated Points-Of-Interest (POI). As shown in Figure 1,
such newer types of big data could provide us new insights to un-
derstand some traditional socioeconomic urban problems, such as
the crime rate inference problem we focus on in this paper. In par-
ticular, we propose to study two newer types of urban data: POI
and taxi flow.

POI data. POI data provide venue information such as GPS co-



ordinates, category, popularity, and reviews. These POIs mostly be-
long to categories such as food, shop, transit, education, etc. Recent
studies have shown that using such categorical information of POIs
are useful to profile neighborhood functions [44]. Such neighbor-
hood functions could further help us predict crime rate (e.g., com-
munities with less education or entertainment facilities may have
a higher rate of crime). Our experiments show that incorporating
POI features significantly improve the crime rate inference. Adding
POI features in addition to demographics features reduces the rel-
ative error by at least 5% in our experiments. This demonstrates
that POI data provide additional information about the communi-
ties that is not covered by the demographics.

Taxi flow data. A huge amount of taxi flow data reflect how
people commute in the city. In previous studies, when using ge-
ographical influence [4], people assume that a community is af-
fected by the spatially nearby communities. However, communi-
ties are not only affected by spatially-close communities. Even if
two communities are distant in geographical space, they could have
a strong correlation if many people frequently travel between these
two communities [23]. We hypothesize that taxi flows may be con-
sidered as “hyperlinks” in the city that connect the locations and
we use such data to estimate crime rates. Taxis may be preferred
to public transportation by offenders traveling to a crime location
as they offer more privacy and more flexible pick-up and drop-off
points. Even if taxis do not constitute the main transportation mode
in committing crime, taxi flows may be a proxy for broader patterns
of population routine activity and mobility, commuting flows, and
other forms of social and economic exchanges between two com-
munities over space. Such exchanges may increase the number of
potential targets and opportunities for crime [13, 9] or contribute
to inter-community diffusion of information about successful lo-
cal strategies to control or prevent crime (e.g., successful features
of neighborhood watch programs). Our experiments show very
promising results – adding taxi flow data on top of all other fea-
tures can further decrease the error by 5%.

We conduct extensive experiments including a systematic com-
parison between linear regression and negative binomial models,
tests of different combinations of features, detailed discussions of
how to construct features, analysis of the relative importance of
features, and theoretical interpretations of the results from a social
scientist (a co-author in the paper). The experiments are conducted
on the crime data over multiple years. We demonstrate that using
the big urban data shows significant improvements.

In summary, the contribution of this paper are: 1) We study an
old but very important crime inference problem by utilizing new
urban data: POIs and taxi flows. 2) We find that utilizing these new
types of big urban data significantly improves the crime rate infer-
ence. 3) We conduct systematic experiments to compare different
results and feature combinations. The significantly better perfor-
mance could serve as a new baseline for future crime inference
problems.

The rest of this paper is organized as follows. We first review the
related work in Section 2. The crime inference problem is formu-
lated in Section 3. We discuss the inference model in Section 4 and
feature extraction procedure in Section 5. The Section 6 presents
the quantitative evaluation results on real data. Finally, we con-
clude the paper in Section 7.

2. RELATED WORK
In the criminology literature researchers have studied the rela-

tionship between crime and various features. Examples are histor-
ical crime records [28, 40], education [15], ethnicity [8], income
level [32], unemployment [18], and spatial proximity [4]. In data

mining, newer types of data are used in the study. For example,
there are studies using twitter to predict crime [41, 20], and studies
using cellphone data [38, 7] to evaluate crime and social theories at
scale. Overall, the existing work on crime prediction can be cate-
gorized into three paradigms.

Time-centric paradigm. This line of work focuses on the tem-
poral dimension of crime incidents. For example, in a study [28],
the authors propose to use a self-exciting point process to model
the crime and gain insights into the temporal trends in the rate of
burglary. In another study [33], the authors investigate the tempo-
ral constraints on crime, and propose an offender travel and oppor-
tunity model. This paper validates the claim that a proportion of
offending is driven by the availability of opportunities presented in
the routine lives of offenders.

Place-centric paradigm. Most existing work adopt a place-
centric paradigm, where the research question is to predict the lo-
cation of crime incidents. The predicted crime location is usu-
ally referred by the term hotspot, which has various geographi-
cal size. There are plenty of studies on exploration of the crime
hotspots. For example, in a study [37] the authors use criminal of-
fense records to identify spatio-temporal patterns at multiple scales.
They employ various quantitative tools from mathematics and physics
and identify significant correlation in both space and time in the
crime behavioral data. Short et al. [36] use a simple model to
study the dynamics of crime hotspots and identify stable hotspots,
where criminals are modeled as random walkers. Bogomolov et
al. [7] use human behavioral data derived from mobile network
and demographic sources, together with open crime data to predict
crime hotspots. They compare various classifiers and find random
forests have the best prediction performance. The paper [41] uses
automatic semantic analysis to understand natural language Twit-
ter posts from which the crime incidents are reported. Some other
work [12, 14] employ kernel density estimation (KDE) to identify
and analyze crime hotspots. Those studies form another form of
crime prediction, which relies on the retrospective crime data to
identify areas of high concentrations of crime. In [30], the authors
extend the crime cluster analysis with a temporal dimension. They
employ the space-time variants of KDE to simultaneously visualize
geographical extent and duration of crime clusters.

Population-centric paradigm. In the last paradigm, research
focuses on the criminal profiling at individual and community lev-
els. At the individual level, [40] aim to automatically identify
crimes committed by the same individual from a historical crime
database. The proposed system, called Series Finder, is designed to
find and classify modus operandi (M.O.) of criminals. At the com-
munity level, Buczak et al. [10] use fuzzy association rule mining
to find crime patterns. The rules they found are consistent across
all regions. The paper constructs association rules from population
demographics in communities. In another paper [38], the authors
use computational methods to validate various social theories at a
large scale. They used mobile phone data in London, from which
they mine the people dynamics as features to correlate with crime.

Our problem is different from the first two categories of work,
mainly because our innovation lies in using newer type of data to
enhance the commonly used traditional counterparts. More specif-
ically, we use POI to enhance the demographics information and
use taxi flow as hyperlinks to enhance the geographical proximity
correlation. Although our problem does not consider the temporal
dimension of crime in depth, it could be a promising supplement
to better profile crime. Our problem does not predict the location
of any particular crime incident. Therefore the methods proposed
in place-centric methods are not applicable in our problem. How-
ever, the features we proposed may be incorporated in those crime
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Figure 2: Crime rate of Chicago by community areas. The
community area #32 is Chicago downtown, which has the high-
est crime rate.

prediction models.
Our problem falls into the third paradigm because we try to pro-

file the crime rate for Chicago community areas. In our problem,
the community areas are well-defined and stable geographical re-
gions. The newly proposed POI features and taxi links providenew
perspectives in profiling the crime rate across community areas.

3. OVERVIEW
The crime data collected in Chicago has detailed information

about the time and location (i.e., latitude and longitude) of crime
and the types of crime. In our problem, the term crime count refers
to number of crime incidents in a region (i.e., community area) in
a year. The community area is used as our geographical unit of
study, since it is well-defined, historically recognized and stable
over time [42]. In total, there are 77 community areas in Chicago.
Crime rate is the crime count normalized by the population in a re-
gion. We use vector ~y = [y1, y2, . . . , yn] to denote the crime rates
in regions. The crime rate inference problem is to estimate the
crime rate in one region using the crime rate of other regions in the
same year by considering the features of regions and correlations
between regions.

The crime data of Chicago are obtained from the City of Chicago
data portal [3]. Chicago is the city with most complete crime data
that are made public online. The crime dataset contains the inci-
dent date, location (strict name and GPS coordinates), and primary
type from year 2001 to 2015. In total there are 5,856,414 recorded
crime incidents over 15 years, which is an average 390,417 crimes
incidents per year. We visualize the crime normalized by popula-
tion in Figure 2, from which we can see that the downtown area has
the highest crime rate.

In this paper we study the crime rate inference problem. More
specifically, we estimate the crime rate of some regions given the
information of all the other regions. Without loss of generality, we
assume there is one community area t with crime rate yt missing,
and we use the crime rate of all the other regions {yi}\yt to infer
this missing value. Our problem is mathematically formalized as
follows

ŷt = f({yi}\yt, X), (1)

where X refers to observed extra information of all those commu-
nity areas.

We consider two types of features X for inference:
• Nodal feature. Nodal features describe the characteristics of the

focal region. Such features include demographic information

and Point-of-Interest (POI) distribution. Demographics are fre-
quently used in literature, but POI is a newer type of big data,
which we find significantly improve the crime inference accu-
racy.

• Edge feature: (1) Geographical influence. Geographical influ-
ence considers the crime rate of the nearby locations. This fea-
ture has been extensively used in literature as well. To estimate
the focal region, the crime rate of nearby regions are weighted
according to spatial distances. (2) Hyperlink by taxi flow. Loca-
tions are connected through the frequent trips made by humans,
which can be considered as the hyperlinks in space. This type of
feature has never been studied in literature. We propose to use
taxi trips to construct the social flow. Our hypothesis is that two
regions that are more strongly connected through social flow will
influence each other’s crime rate.

In the following sections, we first discuss the inference models
based on these three types of features in Section 4 and then dis-
cuss how to construct these features using the real-world data in
Section 5.

4. INFERENCE MODEL

4.1 Linear Regression
The most straightforward prediction model is the linear regres-

sion. This model assumes the error terms follow a Gaussian distri-
bution ε ∼ N (0, σ2).

Equation 2 gives the linear regression formulation of our prob-
lem.

~y = ~αT~x+ βfW f~y + βgW g~y + ~ε, (2)

where ~x represents the nodal features, including demographics and
POI distribution, W f is the flow matrix of taxi flow, and W g is
the spatial matrix representing the geographical adjacency. On the
right-hand side, ε is the only stochastic variable, and all other terms
are fixed observation values. Therefore, we incorporate all the fixed
observations into one term X , and we get the standard regression
problem

E(y) = Xw + ε.

4.2 Negative Binomial Regression
In our problem, we aim to infer the crime rate, which is guar-

anteed to be a non-negative integer. However, linear regression
does not ensure this property. Poisson regression is another form of
regression, more appropriate for count data than linear regression
[19][27]. With shortened notationX , the Poisson regression model
has the exponential function as link function

E(y) = eXw. (3)

This comes from the assumption that y follows Poisson distribution
with mean λ. Additionally, the mean λ is determined by observed
independent variables X , with the link function λ = eXw. Adding
all together, the joint probability of y is

P (y|w) =
e−e

Xw

(eXw)y

y!
. (4)

However, Poisson regression enforces the mean and variance of
dependent variable y to be equal. This restriction leads to the “over-
dispersion” issue for some real problems, that is the presence of
larger variability in data set than the statistical model expected. To
address this, we use the Poisson-Gamma mixture model, which is



also known as negative binomial regression. Negative binomial
regression has been used in similar work [31].

Given that the crime rate y follows Poisson distribution with
mean λ, in order to allow for larger variance, λ itself is a random
variable having a Gamma distribution with shape k = r and scale
θ = 1−p

p
. The probability function of y becomes

P (y|r, p) =

∫ ∞
0

PPoisson(y|λ) · PGamma(λ|r, p)dλ

=
Γ(r + y)

y!Γ(r)
pk(1− p)y (5)

This is exactly the probability density function of negative binomial
distribution.

In negative binomial regression, the link function is

E(y) = eXw+ε. (6)

The error term eε is the mixture prior, and we assume it follows
Gamma distribution with shape parameter k = 1

θ
, so that it has

mean E(eε) = kθ = 1 and variance V ar(eε) = kθ2 = θ. This
setting ensures the E(y) = eXw · eε = eXw.

5. FEATURE EXTRACTION
In this section, we will discuss the details of features used in our

method. The two types of new features we use are extracted from
Point-Of-Interest data and taxi flow data. Below we describe the
datasets used to construct features and the characteristics of these
features.

5.1 Nodal Feature: Demographics
Socioeconomic and demographic features of neighborhoods have

been widely used to predict crime [7, 25, 43, 34]. Previous studies
have shown that crime rate correlates with certain demographics.
For example, [26, 24] suggests that population diversity leads to
less crime in certain neighborhoods. In our study, we include de-
mographic information from the US Census Bureau’s Decennial
Census [2]. Using 2010 census information would overlap with
the time in which crime is measured. Instead, we use year 2000
demographic data because we are interested in predictors that pre-
cede temporally the period in which crime rates are evaluated. The
demographics include the following features:

total population, population density, poverty, disadvantage
index, residential stability, ethnic diversity, race distribution.

The poverty index measures the proportion of community area
residents with income below the poverty level. The disadvantage
index is a composite scale based on prior work [35], a function
of poverty, unemployment rate, proportions of families with pub-
lic assistance income, and proportion of female headed households.
The residential stability measures home ownership and proportion
of residents who lived in the neighborhood for more than one year.
Racial and ethnic diversity is an index of heterogeneity [24] based
on six population groups, including: Hispanics, non-Hispanic Blacks,
Whites, Asians, Pacific Islanders and others.

Figure 3 visualizes the crime rate and demographics features in
Chicago by community areas. Comparing with Figure 2, it is clear
that the crime rate and poverty index and disadvantage index are
consistent, the ethnic diversity shows an inverse correlation, and
the total population has little correlation with crime.

Table 1 shows the Pearson correlation coefficient between var-
ious demographics features and the crime rate at community area
level. The corresponding p-value is also calculated and shown in
the table to indicate the significance of the correlation coefficient.
There are in total 77 community areas in Chicago. Table 1 shows

such correlation with several most correlated features. We can
see that the poverty index and disadvantage index positively and
strongly correlate with crime, while the ethnic diversity negatively
correlates with crime. Other features such as total population, pop-
ulation density, and residential stability have weaker correlations.
One counter-intuitive observation is that the total population has a
weak and negative correlation with crime. The reason is that we use
crime rate in each community area, which is already normalized by
the population, and therefore the total population and population
density have less impact.

Table 1: Pearson correlation between demographic features
and crime rate (* indicates significant correlations with p-value
less than 5%).

Feature Correlation p-value
Total Population -0.1269 0.2716

Population Density -0.1972 0.0855
Poverty Index 0.5573* 1.403e-07

Disadvantage Index 0.5959* 1.082e-08
Residential Stability -0.0453 0.6965

Ethnic Diversity -0.5545* 1.678e-07
Percentage of Black 0.6696* 2.779e-11

Percentage of Hispanic -0.3820* 0.0006

5.2 Nodal Feature: Point-of-Interest (POI)
While demographics are traditional census data, POI is a type of

modern data that provide fine-grained information about locations.
We collect POI from FourSquare [1]. POI data from FourSquare
provide the venue information including venue name, category, num-
ber of check-ins, and number of unique visitors. We mainly use the
major category information because categories can characterize the
neighborhood functions. There are 10 major categories defined by
FourSquare:

food, residence, travel, arts & entertainment, outdoors &
recreation, college & education, nightlife, professional, shops,
and event.

In total, we have crawled 112,000 POIs from FourSquare for
Chicago. Most of these POIs are in the downtown area of Chicago.
For the purpose of visualization, we normalize the POIs count per
category by the total POI count in a neighborhood and plot two
selected categories, i.e. nightlife and professional, in Figure 4. The
darker colored neighborhoods in Figure 4 are the ones with a higher
proportion of residence POIs.

Table 2: Pearson correlation between POI category and crime
rate (* indicates significant correlations with p-value less than
5%).

POI category Correlation p-value
Food -0.1543 0.1803

Residence -0.0610 0.5984
Travel -0.0017 0.9883

Arts & Entertainment -0.0049 0.9661
Outdoors & Recreation 0.0668 0.5637
College & Education -0.0078 0.9473

Nightlife -0.1553 0.1775
Professional 0.3221* 0.0043

Shops -0.1676 0.1450
Event 0.2196 0.0549
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(a) Total population
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(b) Poverty index
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(c) Disadvantage index
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(d) Ethnic diversity

Figure 3: (a)-(d) Demographics in Chicago by community areas. Darker colors indicate higher values. Each demographic feature is
normalized into [0, 1].
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(a) Nightlife
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(b) Professional

Figure 4: POI ratio per neighborhood. The saturation of color
is proportional to the ratio value. The “professional” cate-
gory distribution is more consistent with the crime distribution,
and therefore it is the most correlated with crime. Meanwhile,
the “nightlife” category is negatively correlated with Chicago
crime. The POI ratios are independently normalized for differ-
ent POI categories.

In Table 2 we show the Pearson correlation between POI cate-
gory and crime rate. The category “professional” is most signifi-
cantly correlated with the crime rate. Under the professional POI
category, there are some venues with a large population concen-
tration, such as transportation center, convention center, commu-
nity center, and coworking space. In those venues, the popula-
tion volume is high and residential stability is low, therefore the
professional POI counts positively correlates with crime rate. One
counter-intuitive observation is that “nightlife” category is not pos-
itively correlated with crime (−0.1553). This can be seen in Fig-
ure 4(a). The majority of nightlife venues in Chicago are located
in the northern area, while most crime incidents occur in the down-
town area.

5.3 Edge: Geographical Influence
Together with the US census demographics data, we also col-

lected the boundary shape files of Chicago, which are used to cal-
culate the geographical influence feature.

Previous studies have also shown that the crime rate at one lo-
cation is highly correlated with nearby locations [21, 11]. Such
geographical influence is also frequently used in the literature [5,
29]. It is calculated as:

~F g = W g · ~Y , (7)

where W g is the spatial weight matrix. If region i and j are not
geospatially adjacent,wgij = 0; otherwise,wgij ∝ distance(i, j)

−1.
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Figure 5: The correlation between geographical influence fea-
ture and crime rate. In the plot we marked out three outliers
and their corresponding community area ID.

In Figure 5, we plot crime rate with respect to geographical influ-
ence calculated in Eq. 7. We observe an obvious positive correla-
tion, which means if nearby neighborhoods have a high crime rate,
the focal neighborhood is more likely to have a high crime rate. We
also do observe a few outliers in Figure 5. These neighborhoods
show different crime rate in their nearby neighborhoods compared
to their own. For example, as we can also see in Figure 2, commu-
nity area #38 locates in an area where the the neighbors have high
crime rates but its crime rate is relatively low; in contrast, neigh-
borhood #32 has a high crime rate even though its neighbors have
relatively low crime. The community area #76 home of the O’Hare
International Airport is far from most of other community areas,
however its own crime rate is relative high.

5.4 Edge: Hyperlinks by Taxi Flow
In our Chicago taxi dataset, there are 1,048,576 taxi trips in to-

tal from October to December in 2013. For each trip, the following
information are available: pickup/dropoff time, pickup/dropoff lo-
cation, operation time, and total amount paid. We requested the
taxi trip records from Chicago under the Illinois Freedom of Infor-
mation Act. Figure 6 shows a visualization of the major flows at
community level.

One of our hypotheses is that the social interaction among two
community areas propagates crime from one region to another. The
Chicago taxi data captures the social interactions among various
community areas. To calculate this, we first map all taxi trips to
community areas to get the taxi flow wij ∀i, j ∈ {1, 2, · · ·n}.
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Figure 6: Major taxi flows between neighborhoods. The label
on the edge shows the count of taxi trips commuting between
two community areas from October to December months in
2013. We set a threshold (more than 5,000 trips) on the flow
and only plot high volume flows. The label on a node is the ID
of its corresponding community area. We can see that there are
several hub community areas, such as #6, #8, #32, which are all
in the downtown areas.

Then the taxi flow lag is constructed by the product of social flow
and the crime rate of neighboring regions as follows

~F t = W t · ~Y . (8)

The taxi flow W t is a matrix with entry wij denoting the taxi flow
from i to j. Note that ∀i, wsii = 0 in matrix W t, because we
have to exclude the crime in the focal area from its own predictor.
The semantic of this taxi flow feature is how much crime in the
focal area is contributed by its neighboring areas through social
interaction.

The correlation between taxi flow and crime rate is shown in Fig-
ure 7. From the scatter plot, we can see that overall the crime rate
is positively correlated with the taxi flow. There are two outliers
clearly shown in Figure 7. The community area #32 is the down-
town Loop, which has the highest crime rate and is hard to predict
by taxi flow. Another anomalous community area (#47) has rela-
tively low crime rate by itself. However, this area has a lot of in
flows from high-crime communities.

6. EXPERIMENTS

6.1 Settings
We adopt leave-one-out evaluation to estimate the crime rate of

one geographic region given all the information of all the other re-
gions. When we construct the spatial/social lag variable for the
training data, the effect of testing region is completely removed.
For example, if region yt is the testing region, the remaining {yi}\yt
become the training set. For any yj in the training set, its geograph-
ical influence feature and taxi flow feature are constructed from
{yi}\{yt, yj}.
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Figure 7: Correlation between taxi flow and crime rate. In
the plot, we marked out three outliers and their corresponding
community area ID.

In the evaluation, we estimate the crime rate for testing com-
munity areas. The accuracy of estimation is evaluated by mean
absolute error (MAE) and mean relative error (MRE).

MAE =

∑n
i |yi − ŷi|
n

(9)

MRE =

∑n
i |yi − ŷi|∑n

i yi
(10)

6.2 Performance Study
We evaluate the estimation accuracy under various feature com-

binations. The leave-one-out evaluation results are shown in Ta-
ble 3. We run both the linear regression and the negative binomial
regression on five consecutive years, 2010 – 2014. Both MAE and
MRE are shown in the table. We have four types of features: de-
mographics, POI, geographical influence and taxi flow. We test the
various settings of feature combinations.

6.2.1 Negative Binomial Regression vs. Linear Re-
gression

In Table 3, we can see that in different years and under most
settings, the negative binomial regression significantly outperforms
the linear regression (with only a few exceptions when using only
demographic feature). When using all the features, NB is signif-
icantly better than LR with at least 6% improvement in relative
error. One reason is that negative binomial regression is a count
prediction model, which guarantees the prediction variable is non-
negative . Another reason is that it is difficult to get very precise
estimates of crime rate, and the negative binomial regression allows
a large variance in the estimated crime rate. Therefore negative bi-
nomial is more appropriate for crime rate estimation than linear
regression.

In the following discussions, we only refer to the performance of
the negative binomial regression.

6.2.2 POI Feature
Adding POI features always improves the accuracy (see NB for

column 2 vs. column1, column 6 vs. column 5, column 8 vs.
column 7). The POI distribution reflects the functionality of a re-
gion. The most correlated POI major category is “professional”,
under which there are a lot of venues like transportation center
and conventional center. These are locations with more dynamic
movements of people. Such location information is not reflected in
any of other features. POI thus provides unique information and it
shows that using big data can benefit us in advancing the study of
traditional crime inference problems.



Table 3: Performance evaluation. Various feature combinations are shown in each column. The linear regression model and negative
binomial results are compared by year group.

Settings
Column ID 1 2 3 4 5 6 7 8

Features1
Demo X X X X X X X X
Geo X X X X
POI X X X X
Taxi X X X X

Year Model2 Error
MAE 394.41 416.98 408.09 406.93 394.78 432.45 402.25 416.41LR MRE 0.294 0.311 0.304 0.304 0.295 0.323 0.300 0.310
MAE 391.53 333.14 395.64 323.47 389.55 350.06 387.43 320.752010

NB MRE 0.292 0.249 0.295 0.241 0.290 0.261 0.289 0.239
MAE 380.22 409.30 396.97 401.11 379.61 422.94 389.39 408.91LR MRE 0.295 0.318 0.309 0.312 0.295 0.328 0.302 0.320
MAE 381.11 332.62 388.81 328.94 378.84 345.24 381.33 335.972011

NB MRE 0.296 0.259 0.302 0.256 0.294 0.268 0.296 0.253
MAE 378.91 412.95 401.54 412.20 376.53 423.88 399.25 419.93LR MRE 0.306 0.334 0.325 0.333 0.304 0.343 0.322 0.339
MAE 386.31 337.24 389.58 331.41 384.23 352.22 381.67 345.492012

NB MRE 0.312 0.273 0.315 0.268 0.310 0.284 0.308 0.279
MAE 367.89 420.81 390.75 402.75 369.24 433.48 388.92 412.31LR MRE 0.324 0.370 0.344 0.354 0.325 0.381 0.342 0.362
MAE 376.08 333.92 373.08 312.63 377.57 350.33 368.49 319.862013

NB MRE 0.331 0.294 0.328 0.275 0.332 0.308 0.324 0.281
MAE 331.28 375.53 349.00 350.31 329.93 386.90 345.79 361.28LR MRE 0.326 0.369 0.343 0.345 0.324 0.380 0.340 0.355
MAE 340.73 293.52 339.17 274.45 336.09 308.18 326.07 273.272014

NB MRE 0.335 0.289 0.334 0.270 0.331 0.303 0.321 0.269
1 D – demographic features, G – geographical influence, P – POI features, T – taxi flow feature.

2 LR – Linear Regression, NB – Negative Binomial Regression.

Another issue that is worth discussing is whether POI is a sur-
rogate of population features from demographics. That is, a region
with POIs is a region with a higher population. However, as we
see from Table 3, adding POI in addition to demographics always
outperforms the features without POI. This is because population
from demographics reflects the number of residents in that region,
but POI reflects dynamics of population (e.g., people go to venues
for food, entertainment, or travel). Therefore, the dynamic pop-
ulation in POI further complements the residential population in
demographics.

6.2.3 Taxi Flow
The taxi flow is shown to improve the inference accuracy (see

NB for column 3 vs. column 1, column 7 vs. column 5, column 8
vs. column 6). This validates our hypothesis that crimes do not only
correlate with nearby regions but also correlate through hyperlinks
on the space (i.e., the taxi flow).

Comparing column 7 (D+G+T) with column 5 (D+G), we find
that the improvement by taxi flow is not obvious. However, com-
paring column 8 (D+G+P+T) with column 6 (D+G+P), we observe
a much significant accuracy boost. The reason could be that the taxi
flow further complements the POI data. When POI information is
missing from the predictor, the city dynamics captured by taxi flow
are weakened as well.

6.3 Feature Construction
There are different ways to use the POI and taxi datasets. In

this section, we share our insights into the more effective ways in

constructing the features.
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Figure 8: Absolute POI count distribution. In our crawled
POI dataset, most community areas have less than 100 venues.
Meanwhile, the downtown area there are over 10, 000 venues
for one community area, e.g. #8, #32.

6.3.1 POI Normalization
The straightforward definition of POI distribution is calculated

by normalizing the POI count in each category by the total POI
counts. However, the POIs in Chicago are not evenly distributed.
As shown in Figure 8, most POIs are in the downtown area and
some areas only have a few POIs. If normalized by the total number



of POIs in a neighborhood, two neighborhoods may show similar
distributions but they are quite different. For example, a downtown
neighborhood and a distant neighborhood may both have a high ra-
tio of the food category but the downtown neighborhood has many
more POIs in total and is more dynamic in population constitution.
Therefore, using the raw count instead of normalized distribution
is more effective. This is also demonstrated in estimation accuracy
as shown in Table 4.

Table 4: Using POI count instead of POI percentage improve
the estimation accuracy. Estimation for crime in 2014 with all
other features.

Scheme NB
MAE MRE

POI count 273.27 0.269
POI percentage 283.16 0.278

6.3.2 Taxi Flow Normalization
The taxi flow represents the interactions among community ar-

eas. There are several different approaches to incorporate the taxi
flow into the model. First, we can use the raw taxi count as a weight
on crime from other neighborhoods. One issue with the raw count
is the concentration of taxi trips distribution in the downtown area.
Consider the following example. In the downtown area, the average
taxi flow count is 1000 between any pair of community areas, while
the average of suburbs is 100. When we propagate crime by raw
taxi count, the same amount of crime in downtown is propagated
with a 10 times higher coefficient than that of suburb.

To address this issue, we can normalize the taxi flow, and there
are two different approaches to normalize. 1) We can normalize
the taxi flow by the total incoming traffic of the destination com-
munity area, and the semantics of this normalization is splitting the
crime in the destination to all its neighbors. 2) Alternatively, we
can normalize the taxi flow by the outgoing total trips in the source
community area. This normalization assumes the crime in each
source community is spread out by the flow. The two normaliza-
tion methods are shown in Figure 9.

y1

y2

y3

y4

f1

f2

f3

y5
f5

Normalization by source:
F t4 = f1

f1
y1 + f2

f2
y2 + f3

f3+f5
y3

Normalization by destination:
F t4 = f1

f1+f2+f3
y1 + f2

f1+f2+f3
y2 + f3

f1+f2+f3
y3

Figure 9: Two different normalization schemes.

Table 5: Various approaches to construct taxi flow feature. Es-
timation for crime in 2013 with all other features.

Settings NB
MAE MRE

Taxi flow count 368.71 0.324
Taxi flow normalized by source 349.38 0.307
Taxi flow normalized by destination 319.86 0.281

In Table 5 we compare the different approaches to handle the
taxi flow. Using raw taxi flow count is clearly not a good option,

due to the unbalanced data distribution. We also observe that nor-
malizing taxi flow by destination is better than normalization by
source. The reason could be explained by the example given in
Figure 9. Suppose the focal region is a transportation hub, which
has a lot of isolated regions connected to it. If we normalize the
crime by source region, then the taxi flow feature of focal region is
overestimated, since the coefficients of its neighbors do not sum to
one.

6.4 Feature Importance
In this subsection, we discuss the importance of features by using

significance tests and by studying the coefficient changes over the
years.

6.4.1 Significance Test
From previous results, we see that combining POI features and

taxi flow will help improve the estimation accuracy. Now we try
to measure the significance of this accuracy boost by permutation
tests. If a feature correlates with crime, when we randomly permute
the values of this feature among neighborhoods, we will expect a
higher error in crime estimation. So in each round of permuta-
tion, we can get an error in estimation. We compare the error with
the original feature to the error distribution obtained from permuta-
tions. We conduct 1,000 rounds of permutations to approximately
estimate the error distribution. The position of the original error in
this distribution indicates the significance of this feature. For ex-
ample, if the original error is smaller than 99% of the errors from
the permutations, the p-value is 0.99.

Table 6: Estimated p-value for each feature. The p-value is de-
fined as the possibility that a smaller error measure is observed
under the null hypothesis.

Settings: D+S+P+T
LR NB

MAE MRE MAE MRE
412.31 0.363 319.86 0.281

Feature p-value
D (demographics) 0.000 0.000 0.000 0.000
G (geographic inf.) 0.640 0.664 0.602 0.565
P (POI distribution) 0.025 0.025 0.001 0.001

T (taxi flow) 0.000 0.000 0.000 0.000

In Table 6, the p-values of different features are given. The de-
mographics feature is the most significant with estimated p-value
equals to 0.00. In all the 1, 000 random permutations of demo-
graphic feature, we never observe an error lower than the original
error. The proposed POI distribution and taxi flow are significant
as well, with a p-value of 0.5% and 1.3% for the negative binomial
model. One interesting observation is that the geographical influ-
ence is not significant at all. One possible reason is that the demo-
graphics features capture the similarity of geographical neighbors,
and therefore are surrogates of geographical influence.

6.4.2 Coefficient Study
In our regression model, the coefficient also indicates the impor-

tance of features. We normalize the values of all features to the
range [0, 1], so that coefficients are comparable. The top-6 features
with the most significant coefficients are shown in Table 7. The top
3 rows in Table 7 are features with positive coefficients, which im-
plies the positive correlation with Crime. The three features with
negative coefficients are negatively correlated with crime.

By comparing the coefficients over different years, we observe
that the coefficients are relatively stable with respect to time. The



most important feature is always POI professional category, which
represents many populated public areas. The other two important
demographic features are disadvantage index and percentage black.
We also find three POI categories are among the top negatively cor-
related features. They are the residence, shop, and education cate-
gories. The reason is that at those places the population is relatively
stable, which provides less opportunity for crime.

Table 7: The coefficients of the top-6 features over different
years. There are 21 different features in total. Due to limited
space, we only show the top 3 features with the highest posi-
tive/negative coefficients respectively.

Feature Year
2010 2011 2012 2013 2014

POI professional 1.414 1.733 1.905 2.206 1.874
pct black 1.376 1.370 1.301 1.296 1.252

disadvantage index 1.237 1.055 1.270 1.700 1.462
POI education -1.171 -1.265 -1.735 -2.041 -1.871

POI shops -2.671 -2.747 -2.687 -2.549 -2.834
POI residence -3.059 -2.719 -2.424 -2.151 -2.459

6.5 Improvements on Different Regions
The POI distributions are different from region to region. It is

interesting to find out whether POI distribution is consistently pos-
itive in making the crime estimation better. We calculate the dif-
ference in estimation error (MAE) between two settings: 1) using
demographics, geographical influence, taxi flow; and 2) using all
these three features plus POI distribution. The similar measure-
ment is calculated for the taxi flow feature. The results are shown
in Figure 10. A positive difference (blue area) indicates that adding
the new feature will help reduce the estimation error, while a neg-
ative difference (red area) indicates that the new feature adds more
noise to the data.
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(a) POI
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(b) Taxi flow

Figure 10: Performance improvement per region by using POI
or taxi flow features on 2014 crime. The difference of MAEs in
estimating crime with/without POI feature is shown on the left,
and the same measure of taxi flow is shown on the right. The
color blue means the MAE is reduced by adding correspond-
ing feature (i.e., better performance), while the red means the
MAE is increased (i.e., worse performance). The color satura-
tion indicates the value of difference.

It is interesting to find out that in the downtown area, i.e. com-
munity area #8, #32, #28, and #33, POI significantly improves the
estimation accuracy. The reason is two fold. 1) The demographics
information from census is mostly about the residing population in
the focal area. However, in the downtown area there are a lot of

floating population groups conducting various social activities, and
this is not reflected by the census demographics. The POI informa-
tion, on the other hand, reflects the functionality of a region, and
plays a complementary role of demographic information. 2) In the
downtown area, there are much more POIs than any other places,
which provides more complete information about the community
profile.

As for the taxi flow feature, it helps the most in those suburb
area, because the taxi flow reflects the social interaction in those
areas. In the downtown, the taxi flow feature incurs a relatively
large estimation error. The reason is that the taxi flow distribution
in Chicago is extremely skewed. Roughly 61% of the Chicago taxi
trips have a destination in the downtown area, which may result
in the model over-propagating crime estimates from all of Chicago
into the downtown area.

7. CONCLUSION
In the social science literature, the demographics and geograph-

ical neighbors are known to exhibit strong correlations with crime.
In this paper we solve the problem of crime rate inference with new
features. More specifically, we propose to use POI features to as-
sist the demographic features, and to use taxi flow as hyperlinks
to supplement the geographical neighbors. The intuition behind
the POI feature is that the POI distribution across community areas
reflects profiles of the region functionality. The intuition behind
the hyperlinks is that the taxi flow models the social interaction
among nonadjacent regions, which potentially propagate crime or
resources and information used in crime control. We adopt the neg-
ative binomial regression modal over the linear regression model,
mainly because the count based regression models and guarantees
positive prediction, while the linear regression may give negative
crime rate as prediction. Both POI and taxi flow features from a
publicly accessible dataset in Chicago are evaluated to be helpful.
In the best scenario, the POI distribution and taxi flow reduces the
prediction error by 17.6%.

8. ACKNOWLEDGEMENTS
The work was supported in part by NSF award #1544455, #1054389,

and funding from NICHD R24-HD044943. The views and conclu-
sions contained in this paper are those of the authors and should not
be interpreted as reprinting any funding agencies.

9. REFERENCES
[1] Foursquare venues service.

https://developer.foursquare.com/overview/venues.html.
[2] United states census bureau. http://www.census.gov.
[3] City of chicago data portal. https://data.cityofchicago.org/

Public-Safety/Crimes-2001-to-present/ijzp-q8t2, 2015.
[4] ANSELIN, L. Under the hood: issues in the specification and

interpretation of spatial regression models. Agricultural
economics 27, 3 (2002), 247–267.

[5] ANSELIN, L., COHEN, J., COOK, D., GORR, W., AND
TITA, G. Spatial analyses of crime. Criminal justice 4, 2
(2000), 213–262.

[6] BAUM, K. Juvenile victimization and offending, 1993-2003.
US Department of Justice, Office of Justice Programs,
Bureau of Justice Statistics, 2005.

[7] BOGOMOLOV, A., LEPRI, B., STAIANO, J., OLIVER, N.,
PIANESI, F., AND PENTLAND, A. Once upon a crime:
towards crime prediction from demographics and mobile
data. In Proceedings of the 16th international conference on
multimodal interaction (2014), ACM, pp. 427–434.



[8] BRAITHWAITE, J. Crime, shame and reintegration.
Cambridge University Press, 1989.

[9] BRANTINGHAM, P., AND BRANTINGHAM, P. Criminality
of place. European journal on criminal policy and research
3, 3 (1995), 5–26.

[10] BUCZAK, A. L., AND GIFFORD, C. M. Fuzzy association
rule mining for community crime pattern discovery. In ACM
SIGKDD Workshop on Intelligence and Security Informatics
(2010), ACM, p. 2.

[11] BURNELL, J. D. Crime and racial composition in contiguous
communities as negative externalities: prejudiced
household’s evaluation of crime rate and segregation nearby
reduces housing values and tax revenues. American Journal
of Economics and Sociology 47, 2 (1988), 177–193.

[12] CHAINEY, S., TOMPSON, L., AND UHLIG, S. The utility of
hotspot mapping for predicting spatial patterns of crime.
Security Journal 21, 1 (2008), 4–28.

[13] COHEN, L. E., AND FELSON, M. Social change and crime
rate trends: A routine activity approach. American
sociological review (1979), 588–608.

[14] ECK, J., CHAINEY, S., CAMERON, J., AND WILSON, R.
Mapping crime: Understanding hotspots.

[15] EHRLICH, I. On the relation between education and crime.
In Education, income, and human behavior. NBER, 1975,
pp. 313–338.

[16] FINKELHOR, D. Childhood victimization: violence, crime,
and abuse in the lives of young people: violence, crime, and
abuse in the lives of young people. Oxford University Press,
USA, 2008.

[17] FOR DISEASE CONTROL, N. C., AND (CDC), P. Leading
causes of nonfatal injury, united states 2001 - 2013. Injury
Prevention and Control: data and statistics (2015).

[18] FREEMAN, R. B. The economics of crime. Handbook of
labor economics 3 (1999), 3529–3571.

[19] GARDNER, W., MULVEY, E. P., AND SHAW, E. C.
Regression analyses of counts and rates: Poisson,
overdispersed poisson, and negative binomial models.
Psychological bulletin 118, 3 (1995), 392.

[20] GERBER, M. S. Predicting crime using twitter and kernel
density estimation. Decision Support Systems 61 (2014).

[21] GORMAN, D. M., SPEER, P. W., GRUENEWALD, P. J.,
AND LABOUVIE, E. W. Spatial dynamics of alcohol
availability, neighborhood structure and violent crime.
Journal of studies on alcohol 62, 5 (2001), 628–636.

[22] GRAIF, C. Toward a geographically extended perspective of
neighborhood effects on children’s victimization. American
Society of Criminology Annual Meeting (2015).

[23] GRAIF, C., GLADFELTER, A. S., AND MATTHEWS, S. A.
Urban poverty and neighborhood effects on crime:
Incorporating spatial and network perspectives. Sociology
Compass 8, 9 (2014), 1140–1155.

[24] GRAIF, C., AND SAMPSON, R. J. Spatial heterogeneity in
the effects of immigration and diversity on neighborhood
homicide rates. Homicide Studies (2009).

[25] HSIEH, C.-C., AND PUGH, M. D. Poverty, income
inequality, and violent crime: a meta-analysis of recent
aggregate data studies. Criminal Justice Review 18, 2 (1993),
182–202.

[26] JACOBS, J. The death and life of great American cities.
Vintage, 1961.

[27] LAMBERT, D. Zero-inflated poisson regression, with an

application to defects in manufacturing. Technometrics 34, 1
(1992), 1–14.

[28] MOHLER, G. O., SHORT, M. B., BRANTINGHAM, P. J.,
SCHOENBERG, F. P., AND TITA, G. E. Self-exciting point
process modeling of crime. Journal of the American
Statistical Association (2012).

[29] MORENOFF, J. D., AND SAMPSON, R. J. Violent crime and
the spatial dynamics of neighborhood transition: Chicago,
1970–1990. Social forces 76, 1 (1997), 31–64.

[30] NAKAYA, T., AND YANO, K. Visualising crime clusters in a
space-time cube: An exploratory data-analysis approach
using space-time kernel density estimation and scan
statistics. Transactions in GIS 14, 3 (2010), 223–239.

[31] OSGOOD, D. W. Poisson-based regression analysis of
aggregate crime rates. Journal of quantitative criminology
16, 1 (2000), 21–43.

[32] PATTERSON, E. B. Poverty, income inequality, and
community crime rates. Criminology 29, 4 (1991), 755–776.

[33] RATCLIFFE, J. H. A temporal constraint theory to explain
opportunity-based spatial offending patterns. Journal of
Research in Crime and Delinquency 43, 3 (2006), 261–291.

[34] SAHBAZ, O., AND HILLIER, B. The story of the crime:
functional, temporal and spatial tendencies in street robbery.
In Proc of 6th International Space Syntax Symposium,
Istanbul (2007), pp. 4–14.

[35] SAMPSON, R. J., RAUDENBUSH, S. W., AND EARLS, F.
Neighborhoods and violent crime: A multilevel study of
collective efficacy. Science 277, 5328 (1997), 918–924.

[36] SHORT, M. B., D’ORSOGNA, M. R., PASOUR, V. B.,
TITA, G. E., BRANTINGHAM, P. J., BERTOZZI, A. L.,
AND CHAYES, L. B. A statistical model of criminal
behavior. Mathematical Models and Methods in Applied
Sciences 18, supp01 (2008), 1249–1267.

[37] TOOLE, J. L., EAGLE, N., AND PLOTKIN, J. B.
Spatiotemporal correlations in criminal offense records.
ACM Transactions on Intelligent Systems and Technology
(TIST) 2, 4 (2011), 38.

[38] TRAUNMUELLER, M., QUATTRONE, G., AND CAPRA, L.
Mining mobile phone data to investigate urban crime theories
at scale. In Social Informatics. Springer, 2014, pp. 396–411.

[39] TRIBUNE, C. A tale of 3 cities: La and nyc outpace chicago
in curbing violence, 2015.

[40] WANG, T., RUDIN, C., WAGNER, D., AND SEVIERI, R.
Learning to detect patterns of crime. In Machine Learning
and Knowledge Discovery in Databases. Springer, 2013.

[41] WANG, X., GERBER, M. S., AND BROWN, D. E.
Automatic crime prediction using events extracted from
twitter posts. In Social Computing, Behavioral-Cultural
Modeling and Prediction. Springer, 2012, pp. 231–238.

[42] WIKIPEDIA. Community areas in chicago — wikipedia, the
free encyclopedia, 2015.

[43] WOLFE, M. K., AND MENNIS, J. Does vegetation
encourage or suppress urban crime? evidence from
philadelphia, pa. Landscape and Urban Planning 108, 2
(2012), 112–122.

[44] YUAN, J., ZHENG, Y., AND XIE, X. Discovering regions of
different functions in a city using human mobility and pois.
In ACM SIGKDD (2012), ACM, pp. 186–194.

[45] ZHENG, Y., CAPRA, L., WOLFSON, O., AND YANG, H.
Urban computing: concepts, methodologies, and
applications. ACM TIST 5, 3 (2014), 38.


